JP4818163B2 - Alumina support, hydrodemetallation catalyst using the same, and production method thereof - Google Patents

Alumina support, hydrodemetallation catalyst using the same, and production method thereof Download PDF

Info

Publication number
JP4818163B2
JP4818163B2 JP2007051929A JP2007051929A JP4818163B2 JP 4818163 B2 JP4818163 B2 JP 4818163B2 JP 2007051929 A JP2007051929 A JP 2007051929A JP 2007051929 A JP2007051929 A JP 2007051929A JP 4818163 B2 JP4818163 B2 JP 4818163B2
Authority
JP
Japan
Prior art keywords
pore
group
alumina
aqueous solution
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007051929A
Other languages
Japanese (ja)
Other versions
JP2008212798A (en
Inventor
広 松本
伸吾 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2007051929A priority Critical patent/JP4818163B2/en
Publication of JP2008212798A publication Critical patent/JP2008212798A/en
Application granted granted Critical
Publication of JP4818163B2 publication Critical patent/JP4818163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、炭化水素油、特に重質炭化水素油の水素化処理を行う触媒に係り、詳しくは、細孔容積が大きく、しかも、高強度であるアルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法に関する。   The present invention relates to a catalyst for hydrotreating hydrocarbon oils, particularly heavy hydrocarbon oils, and in particular, an alumina carrier having a large pore volume and high strength, and hydrodemetallation using the same. The present invention relates to catalysts and methods for producing them.

従来、水素化脱金属触媒は、アルミニウム塩を中和剤で中和してアルミナ水和物を調製し、得られたアルミナ水和物を洗浄、加熱捏和、押し出し成形してアルミナ担体を作製し、このアルミナ担体に活性金属成分を担持して製造されている(例えば、特許文献1〜4参照)。ここで、アルミナ水和物の原料となるアルミニウム塩としては、例えば、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、塩基性硫酸アルミニウム、塩基性硝酸アルミニウム、塩基性塩化アルミニウム、塩基性酢酸アルミニウム等の酸性のアルミニウム塩や、アルミン酸ナトリウム、アルミン酸カリウム等の塩基性のアルミニウム塩がある。また、中和剤としては、前記したアルミニウム塩と反応してアルミナ水和物の沈殿(アルミナ水和物)を生成する水溶性の物質が使用される。例えば、酸性のアルミニウム塩が用いられる場合には、アルミン酸ナトリウム、アルミン酸カリウム、水酸化ナトリウム、アンモニア等の塩基性物質が使用され、塩基性のアルミニウム塩を用いる場合には、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、硫酸、硝酸、塩酸、酢酸等の酸性物質が使用される。   Conventionally, hydrodemetallation catalysts are prepared by neutralizing an aluminum salt with a neutralizing agent to prepare an alumina hydrate, washing the resulting alumina hydrate, heating and extruding to produce an alumina support. However, the alumina carrier is produced by supporting an active metal component (see, for example, Patent Documents 1 to 4). Here, as an aluminum salt used as a raw material of alumina hydrate, for example, aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum acetate, basic aluminum sulfate, basic aluminum nitrate, basic aluminum chloride, basic aluminum acetate, etc. Acid aluminum salts and basic aluminum salts such as sodium aluminate and potassium aluminate. Further, as the neutralizing agent, a water-soluble substance that reacts with the above-described aluminum salt to form a precipitate of alumina hydrate (alumina hydrate) is used. For example, when acidic aluminum salts are used, basic substances such as sodium aluminate, potassium aluminate, sodium hydroxide, and ammonia are used. When basic aluminum salts are used, aluminum sulfate, nitric acid are used. Acidic substances such as aluminum, aluminum chloride, sulfuric acid, nitric acid, hydrochloric acid and acetic acid are used.

特許文献1には、種子アルミナ水和物を含有するpH8の水性スラリーを循環させながら、そこにアルミン酸ナトリウム水溶液と硫酸アルミニウム水溶液とをpHを8に保ちながら添加し、これらを混合して得られたアルミナ水和物含有水性スラリーを前記水性スラリーに戻す操作を繰り返してアルミナ水和物を調製し、得られたアルミナ水和物を洗浄、加熱捏和、押し出し成形してアルミナ担体を製造する方法が開示されている。
また、特許文献2には、水に硝酸アルミニウム溶液とアルミン酸ナトリウム溶液とを交互に加えて生成するアルミナ水和物を、洗浄、加熱捏和、押し出し成形して、アルミナ担体を製造する方法が開示されている。
更に、特許文献3及び4には、水にアルミン酸ナトリウムと硫酸アルミニウムとを同時に混合して得られるアルミナ水和物を、洗浄、加熱捏和、押し出し成形して、アルミナ担体を製造する方法が開示されている。
Patent Document 1 is obtained by adding an aqueous sodium aluminate solution and an aqueous aluminum sulfate solution while keeping the pH at 8 while circulating an aqueous slurry of pH 8 containing seed alumina hydrate, and mixing them. The operation of returning the obtained aqueous slurry containing alumina hydrate to the aqueous slurry is repeated to prepare alumina hydrate, and the obtained alumina hydrate is washed, heat-kneaded and extruded to produce an alumina carrier. A method is disclosed.
Patent Document 2 discloses a method for producing an alumina carrier by washing, heating and extruding an alumina hydrate produced by alternately adding an aluminum nitrate solution and a sodium aluminate solution to water. It is disclosed.
Further, Patent Documents 3 and 4 disclose a method for producing an alumina carrier by washing, heating and extruding an alumina hydrate obtained by simultaneously mixing water with sodium aluminate and aluminum sulfate. It is disclosed.

特許第3755826号公報Japanese Patent No. 3755826 特開平8−89805号公報JP-A-8-89805 特開2002−363576号公報JP 2002-363576 A WO2003/066215号公報WO2003 / 066215

しかしながら、従来の方法で製造されたアルミナ担体に活性金属成分を担持した水素化脱金属触媒は、全細孔容積が1.2ml/g以下(実質的には、1.1ml/g未満)と小さいので、脱金属(脱メタル)性能が低く、効率的な脱金属処理ができないという問題があった。また、従来の水素化脱金属触媒の全細孔容積を1.2ml/gよりも大きくした場合には、強度(例えば、耐圧強度、摩耗強度等)が低くなり、実用的でないという問題もあった。   However, a hydrodemetallation catalyst in which an active metal component is supported on an alumina support produced by a conventional method has a total pore volume of 1.2 ml / g or less (substantially less than 1.1 ml / g). Since it is small, the metal removal (demetallization) performance is low, and there is a problem that an efficient metal removal treatment cannot be performed. In addition, when the total pore volume of the conventional hydrodemetallation catalyst is larger than 1.2 ml / g, the strength (for example, pressure strength, wear strength, etc.) is lowered, which is not practical. It was.

本発明はかかる事情に鑑みてなされたもので、細孔容積が大きく、しかも、高強度であるアルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an alumina carrier having a large pore volume and high strength, a hydrodemetallation catalyst using the same, and a method for producing them. .

前記目的に沿う本発明に係るアルミナ担体は、下記(a)〜(f)の性状を有する。
(a)水銀圧入法で測定した全細孔容積(PV)が1.2ml/gを超え、2.0ml/g以下である。
(b)水銀圧入法で測定した全細孔容積(PV)に対する細孔直径100nm以上の細孔の細孔容積(PV)の割合(PV/PV)が0.12〜0.35である。
(c)細孔直径5〜100nm範囲に細孔分布のピークを有する第1細孔群(P)と細孔直径500〜10000nm範囲に細孔分布のピークを有する第2細孔群(P)との少なくとも2つの細孔群からなる細孔を有し、しかも、該第1細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP1)が0.9ml/g以上、かつ、該第2細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP2)が0.1ml/g以上である。
(d)比表面積(Specific surface Area、SA)が150m/g以上である。
(e)耐圧強度(Crushing Strength、CS)が7N/mm以上である。
(f)磨耗強度(Abrasion Rate、AR)が0.5%以下である。
前記目的に沿う本発明に係る水素化脱金属触媒は、本発明のアルミナ担体に、活性金属成分を担持している。なお、本発明のアルミナ担体に、活性金属成分を担持しても、前記アルミナ担体の(a)〜(f)の物性は実質上変化しない。
本発明に係る水素化脱金属触媒において、前記活性金属成分は、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種の金属である。
The alumina carrier according to the present invention that meets the above object has the following properties (a) to (f).
(A) The total pore volume (PV T ) measured by the mercury intrusion method exceeds 1.2 ml / g and is 2.0 ml / g or less.
(B) The ratio (PV L / PV T ) of the pore volume (PV L ) of pores having a pore diameter of 100 nm or more to the total pore volume (PV T ) measured by the mercury intrusion method is 0.12 to 0. 35.
(C) A first pore group (P 1 ) having a pore distribution peak in a pore diameter range of 5 to 100 nm and a second pore group (P 1 ) having a pore distribution peak in a pore diameter range of 500 to 10,000 nm 2 ) and a pore volume (PV P1 ) occupied by pores having a pore diameter in the range of 5 to 100 nm of the first pore group (P 1 ). Is 0.9 ml / g or more, and the pore volume (PV P2 ) occupied by pores having a diameter of 5 to 100 nm of the second pore group (P 2 ) is 0.1 ml / g or more.
(D) Specific surface area (SA) is 150 m 2 / g or more.
(E) The pressure strength (Crushing Strength, CS) is 7 N / mm or more.
(F) The abrasion strength (Abrasion Rate, AR) is 0.5% or less.
The hydrodemetallation catalyst according to the present invention that meets the above-mentioned object has an active metal component supported on the alumina support of the present invention. In addition, even if an active metal component is supported on the alumina carrier of the present invention, the physical properties (a) to (f) of the alumina carrier are not substantially changed.
In the hydrodemetallation catalyst according to the present invention, the active metal component is at least one metal selected from Group 6A metals and Group 8 metals of the periodic table.

ここで、本発明におけるアルミナ担体の全細孔容積(PV)は、水銀圧入法により測定可能な細孔直径を有する細孔(実質的に全ての細孔、例えば、細孔直径が約3〜10000nmの範囲)の細孔容積の合計値である。また、この水銀圧入法による細孔容積の測定結果から、アルミナ担体の細孔直径(pore diameter。以下、単に「細孔径」ともいう)と微分細孔容積(relative pore volume)との関係を示した微分型の細孔分布図(pore distribution)や、アルミナ担体の細孔直径と累積細孔容積(cumulative volume)との関係を表す積分型の細孔分布図等が得られる。本発明のアルミナ担体は、微分型の細孔分布図において、少なくとも細孔直径5〜100nm範囲に細孔分布のピーク(第1ピーク)を有する第1細孔群と、細孔直径500〜10000nm範囲に細孔分布のピーク(第2ピーク)を有する第2細孔群とを備えている(図1参照)。本発明のアルミナ担体は、第1細孔群及び第2細孔群のみを有するバイモーダル細孔構造(bimodal pore Structure)であるのが好ましい。なお、細孔直径5〜100nm範囲及び細孔直径500〜10000nm範囲において、それぞれのピークは1つずつあるのが好ましいが、各細孔直径の範囲内で2つ以上のピークがある場合には、それぞれの細孔直径の範囲において最大のものをそれぞれ第1ピーク、第2ピークという。また、微分型の細孔分布図は、第1ピーク、第2ピークの他に、前記した細孔直径の範囲外に細孔分布のピークを有しても良い。 Here, the total pore volume (PV T ) of the alumina support in the present invention is a pore having a pore diameter measurable by a mercury intrusion method (substantially all pores, for example, a pore diameter of about 3 Is a total value of pore volumes in the range of 10000 nm. Further, the measurement result of the pore volume by the mercury intrusion method shows the relationship between the pore diameter of the alumina support (hereinafter also referred to simply as “pore diameter”) and the differential pore volume. The differential type pore distribution diagram (pore distribution), the integral type pore distribution diagram representing the relationship between the pore diameter of the alumina support and the cumulative pore volume, and the like are obtained. The alumina carrier of the present invention has a first pore group having a pore distribution peak (first peak) in a pore diameter range of 5 to 100 nm and a pore diameter of 500 to 10,000 nm in a differential pore distribution diagram. And a second pore group having a pore distribution peak (second peak) in the range (see FIG. 1). The alumina support of the present invention preferably has a bimodal pore structure having only the first pore group and the second pore group. In addition, in the pore diameter range of 5 to 100 nm and the pore diameter range of 500 to 10000 nm, it is preferable that each peak is one by one, but when there are two or more peaks within the range of each pore diameter, The largest in each pore diameter range is referred to as a first peak and a second peak, respectively. In addition to the first peak and the second peak, the differential pore distribution map may have a pore distribution peak outside the range of the pore diameter described above.

前記目的に沿う本発明に係るアルミナ担体の製造方法は、pH10〜14に調整された敷水を攪拌しながら、該敷水に塩基性塩化アルミニウムの水溶液を5分以内でpH6.5〜10.0となるように添加する第1工程と、
前記第1工程で得られた混合溶液をpH6.5〜10.0の範囲内に保持しながら、更に該混合溶液にアルミン酸ナトリウムの水溶液及び塩基性塩化アルミニウムの水溶液を10分から2時間かけて同時に攪拌しながら添加してアルミナ水和物を得る第2工程と、
前記アルミナ水和物を順次、洗浄、熟成、噴霧乾燥、捏和、成型、乾燥、及び焼成してアルミナ担体を得る第3工程とを有する。
ここで、敷水とは、容器内に最初に貯留される水溶液のことである。
前記目的に沿う本発明に係る水素化脱金属触媒の製造方法は、本発明のアルミナ担体の製造方法で製造されたアルミナ担体に、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種以上の活性金属成分を担持する。
In the method for producing an alumina carrier according to the present invention that meets the above object, an aqueous solution of basic aluminum chloride is added to an aqueous solution of basic aluminum chloride within 5 minutes while stirring the aqueous solution adjusted to pH 10 to 14. A first step of adding to be 0,
While maintaining the mixed solution obtained in the first step within the range of pH 6.5 to 10.0, an aqueous solution of sodium aluminate and an aqueous solution of basic aluminum chloride are further added to the mixed solution over 10 minutes to 2 hours. A second step of simultaneously adding with stirring to obtain alumina hydrate;
A third step of sequentially obtaining the alumina hydrate by washing, aging, spray drying, kneading, molding, drying, and firing the alumina hydrate.
Here, the groundwater is an aqueous solution initially stored in the container.
The method for producing a hydrodemetallation catalyst according to the present invention in accordance with the above object comprises at least one selected from Group 6A metals and Group 8 metals in the periodic table in the alumina carrier produced by the method for producing an alumina carrier of the invention. Supports one or more active metal components.

本発明の一実施の形態に係る水素化脱金属触媒は、本発明のアルミナ担体に活性金属成分を担持させたものである。活性金属成分としては、周期表第6A族金属(例えば、モリブデン、タングステン等)及び第8族金属(例えば、ニッケル、コバルト、パラジウム、白金等)から選ばれた少なくとも1種の金属であるのが好ましく、これらの2種以上組み合わせて用いるとより好ましい。更に好ましくは、水素化脱金属触媒は、活性金属成分として周期表第6A族金属と第8族金属と両成分をも含むのがよい。また、各活性金属成分の担持量は、水素化脱金属触媒に対して(以下、「触媒基準」ともいう)、酸化物としてそれぞれ0.5〜20質量%の範囲が好ましく、1〜15質量%の範囲がより好ましい。
ここで、本発明において、周期表第6A族金属及び第8族金属とは、例えば、「岩波理化学辞典 第4版」(岩波書店、1987年発行)の見返し掲載の「元素の周期表 長周期型」の第6A属金属、第8属金属をそれぞれ指すものであり、18属長周期型周期表(IUPAC、1990年勧告)の第6族、第8〜10族にそれぞれ対応するものである。
The hydrodemetallation catalyst according to one embodiment of the present invention is obtained by supporting an active metal component on the alumina support of the present invention. The active metal component is at least one metal selected from Group 6A metals (eg, molybdenum, tungsten, etc.) and Group 8 metals (eg, nickel, cobalt, palladium, platinum, etc.) of the periodic table. Preferably, these two or more types are used in combination. More preferably, the hydrodemetallation catalyst may also include both the Group 6A metal and Group 8 metal of the periodic table as active metal components. In addition, the supported amount of each active metal component is preferably in the range of 0.5 to 20% by mass as an oxide with respect to the hydrodemetallation catalyst (hereinafter also referred to as “catalyst standard”), and 1 to 15% by mass. % Range is more preferred.
Here, in the present invention, the Group 6A metal and Group 8 metal of the periodic table are, for example, “Periodic Table of Periodic Period of Elements” published in the reversion of “Iwanami Riken Dictionary 4th Edition” (Iwanami Shoten, published in 1987) "Group" refers to Group 6A metal and Group 8 metal, respectively, and corresponds to Groups 6 and 8 to 10 of the 18-general long-periodic periodic table (IUPAC, 1990 recommendation). .

本発明のアルミナ担体は、以下の(a)〜(f)の性状を有する。以下、それぞれについて、詳しく説明する。   The alumina carrier of the present invention has the following properties (a) to (f). Each will be described in detail below.

(a)水銀圧入法で測定した全細孔容積(PV)が1.2ml/gを超え、2.0ml/g以下である点。
アルミナ担体の全細孔容積(PV)が、1.2ml/g以下であると、得られる水素化脱金属触媒の脱金属活性の寿命が短くなる傾向にあり、2.0ml/gを超えると得られる水素化脱金属触媒の強度が弱くなる。全細孔容積(PV)は、1.3〜1.6ml/gであるのが好ましい。なお、前記したように本発明における全細孔容積(PV)は、水銀圧入法により測定可能な細孔直径を有する細孔の細孔容積の合計値である。また、本発明においては、細孔直径、細孔容積、及び細孔分布も、水銀圧入法により測定したものであり、細孔直径は、水銀の表面張力480dyne/cm、接触角150°を用いて計算した値である。
(A) The total pore volume (PV T ) measured by the mercury intrusion method exceeds 1.2 ml / g and is 2.0 ml / g or less.
When the total pore volume (PV T ) of the alumina support is 1.2 ml / g or less, the life of the metallization activity of the resulting hydrodemetallation catalyst tends to be short, and exceeds 2.0 ml / g. And the strength of the resulting hydrodemetallation catalyst is weakened. The total pore volume (PV T ) is preferably 1.3 to 1.6 ml / g. As described above, the total pore volume (PV T ) in the present invention is a total value of pore volumes having pore diameters that can be measured by a mercury intrusion method. In the present invention, the pore diameter, the pore volume, and the pore distribution are also measured by mercury porosimetry, and the pore diameter uses a mercury surface tension of 480 dyne / cm and a contact angle of 150 °. This is the calculated value.

(b)水銀圧入法で測定した全細孔容積(PV)に対する細孔直径100nm以上の細孔の細孔容積(PV)の割合(PV/PV)が0.12〜0.35である点。
アルミナ担体の前記細孔容積の割合(PV/PV)が、0.12未満であると、細孔直径100nm以上の細孔が占める割合が小さいために得られる水素化脱金属触媒の細孔内において油の拡散が悪くなって脱金属活性が低下し、0.35を超えると、細孔直径100nm以上の細孔が占める割合が大きいために得られる水素化脱金属触媒の強度が弱くなる。前記細孔容積の割合(PV/PV)は、0.15〜0.30であるのが好ましい。
(B) The ratio (PV L / PV T ) of the pore volume (PV L ) of pores having a pore diameter of 100 nm or more to the total pore volume (PV T ) measured by the mercury intrusion method is 0.12 to 0. A point that is 35.
When the pore volume ratio (PV L / PV T ) of the alumina support is less than 0.12, the ratio of pores having a pore diameter of 100 nm or more is small, so that the fineness of the hydrodemetallation catalyst obtained is small. In the pores, the diffusion of oil deteriorates and the demetalization activity decreases, and when it exceeds 0.35, the strength of the hydrodemetallation catalyst obtained is weak because the proportion of pores having a pore diameter of 100 nm or more is large. Become. The pore volume ratio (PV L / PV T ) is preferably 0.15 to 0.30.

(c−1)細孔直径5〜100nm範囲に細孔分布のピークを有する第1細孔群(P)と細孔直径500〜10000nm範囲に細孔分布のピークを有する第2細孔群(P)との少なくとも2つの細孔群からなる細孔を有する点。
本発明のアルミナ担体は、水銀圧入法により得られた微分型の細孔分布において、細孔直径5〜100nm範囲、好ましくは5〜50nm範囲に細孔分布のピークを有し、水素化処理触媒では主として脱硫反応が起きる第1細孔群(P)と、細孔直径500〜10000nm範囲、好ましくは500〜5000nm範囲に細孔分布のピークを有し、水素化処理触媒では主として脱金属反応が起こる第2細孔群(P)とを備えている。従って、本発明のアルミナ担体から製造された水素化脱金属触媒は、高い脱金属活性と高い脱硫活性を有する。ここで、水素化脱金属触媒は、用いるアルミナ担体の第1細孔群(P)における細孔分布のピークが細孔直径5nm未満であると、反応油の拡散が悪くなるので脱硫活性が低下する傾向にあり、細孔分布のピークが細孔直径100nmを超えると、脱金属反応が起きて金属が細孔内に沈着するため脱硫活性が低下する傾向にある。また、水素化脱金属触媒は、用いるアルミナ担体の第2細孔群(P)における細孔分布のピークが細孔直径500nm未満であると、分子量の大きいアスファルテン等の分解が十分に起きないので、脱金属活性が低下する傾向にあり、細孔分布のピークが細孔直径10000nmを超えると、強度が弱くなる。更に、本発明のアルミナ担体は、第1細孔群及び第2細孔群のみを有するバイモーダル細孔構造であるのが好ましい。
(C-1) A first pore group (P 1 ) having a pore distribution peak in a pore diameter range of 5 to 100 nm and a second pore group having a pore distribution peak in a pore diameter range of 500 to 10,000 nm (P 2) and a point having pores of at least two pore groups.
The alumina support of the present invention has a pore distribution peak in the pore diameter range of 5 to 100 nm, preferably in the range of 5 to 50 nm in the differential pore distribution obtained by the mercury intrusion method, and is a hydrotreating catalyst. Has a first pore group (P 1 ) in which a desulfurization reaction mainly occurs and a pore distribution peak in a pore diameter range of 500 to 10000 nm, preferably in a range of 500 to 5000 nm. And a second pore group (P 2 ) in which. Therefore, the hydrodemetallation catalyst produced from the alumina support of the present invention has high demetallation activity and high desulfurization activity. Here, the hydrodemetallation catalyst has a desulfurization activity because if the peak of the pore distribution in the first pore group (P 1 ) of the alumina support to be used is less than 5 nm in pore diameter, the diffusion of the reaction oil becomes worse. If the peak of the pore distribution exceeds the pore diameter of 100 nm, the demetallation reaction occurs and the metal is deposited in the pores, so that the desulfurization activity tends to decrease. Further, in the hydrodemetallation catalyst, when the peak of the pore distribution in the second pore group (P 2 ) of the alumina support to be used is less than 500 nm in pore diameter, decomposition of asphaltene having a large molecular weight does not occur sufficiently. Therefore, the metal removal activity tends to decrease, and when the pore distribution peak exceeds the pore diameter of 10,000 nm, the strength becomes weak. Furthermore, the alumina support of the present invention preferably has a bimodal pore structure having only the first pore group and the second pore group.

(c−2)第1細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP1)が0.9ml/g以上、好ましくは1.0ml/g以上(実質的に上限は、ほぼ1.6ml/g程度である)、かつ、第2細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP2)が0.1ml/g以上、好ましくは0.15ml/g以上(実質的に上限は、ほぼ0.6ml/g程度である)である点。
アルミナ担体の第1細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP1)が、0.9ml/g未満であると、得られる水素化脱金属触媒は、金属が細孔内に沈着して細孔を閉塞し、寿命が短くなると共に、脱硫活性が低下する傾向にあり、また、アルミナ担体の第2細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP2)が0.1ml/g未満であると、得られる水素化脱金属触媒は、分子量の大きいアスファルテン等の拡散や分解が十分に起き難いので、脱金属活性が低下する傾向にある。
(C-2) The pore volume (PV P1 ) occupied by pores in the pore diameter range of 5 to 100 nm of the first pore group (P 1 ) is 0.9 ml / g or more, preferably 1.0 ml / g or more. (The upper limit is substantially about 1.6 ml / g), and the pore volume (PV P2 ) occupied by pores in the pore diameter range of 5 to 100 nm of the second pore group (P 2 ) is The point is 0.1 ml / g or more, preferably 0.15 ml / g or more (the upper limit is substantially about 0.6 ml / g).
When the pore volume (PV P1 ) occupied by pores having a pore diameter in the range of 5 to 100 nm of the first pore group (P 1 ) of the alumina support is less than 0.9 ml / g, the resulting hydrodemetallation The catalyst tends to decrease the desulfurization activity as the metal is deposited in the pores and closes the pores, shortens the life, and the pores of the second pore group (P 2 ) of the alumina support. When the pore volume (PV P2 ) occupied by pores having a diameter in the range of 5 to 100 nm is less than 0.1 ml / g, the resulting hydrodemetallation catalyst sufficiently causes diffusion and decomposition of asphaltenes having a large molecular weight. Since it is difficult, the metal removal activity tends to decrease.

(d)比表面積(SA)が150m/g以上である点。
アルミナ担体の比表面積(SA)が、150m/g未満の場合には、得られる水素化脱金属触媒は、脱金属活性への影響は小さいが脱硫活性への影響が大きくなって脱硫活性が低下する傾向にあり、220m/gを超える場合には、第1細孔群が多くなるので、得られる水素化脱金属触媒は、寿命が短くなると共に、脱金属活性が低下する傾向にある。前記比表面積(SA)は、170〜220m/gであるのが好ましい。なお、比表面積はBET法で測定した値である。
(D) The specific surface area (SA) is 150 m 2 / g or more.
When the specific surface area (SA) of the alumina support is less than 150 m 2 / g, the resulting hydrodemetallation catalyst has a small effect on the demetallation activity, but has a large effect on the desulfurization activity and has a high desulfurization activity. When it exceeds 220 m 2 / g, the number of the first pore groups increases, so that the resulting hydrodemetallation catalyst tends to have a shorter life and a lower demetalization activity. . The specific surface area (SA) is preferably 170 to 220 m 2 / g. The specific surface area is a value measured by the BET method.

(e)耐圧強度(CS)が7N/mm以上である点。
アルミナ担体の耐圧強度(CS)が、7N/mm未満であると、得られる水素化脱金属触媒は、充填時に壊れ易く、結果として反応時に偏流や圧損の原因となる。前記耐圧強度(CS)は、10N/mm以上であるのが好ましい。実質的な耐圧強度(CS)の上限値は60N/mmである。なお、耐圧強度は、圧壊強度ともいわれ、本実施の形態では、木屋式硬度計で測定した値である。
(E) The pressure strength (CS) is 7 N / mm or more.
When the compressive strength (CS) of the alumina support is less than 7 N / mm, the resulting hydrodemetallation catalyst is easily broken during filling, resulting in drift and pressure loss during the reaction. The pressure strength (CS) is preferably 10 N / mm or more. The upper limit value of the substantial compressive strength (CS) is 60 N / mm. The pressure strength is also called crushing strength, and is a value measured with a Kiya-type hardness meter in the present embodiment.

(f)磨耗強度(AR)が0.5%以下である点。
アルミナ担体の摩耗強度(AR)が、0.5%を超えると、得られる水素化脱金属触媒は、充填時に粉化し易く、結果として反応時(使用時)に偏流や圧損の原因となる。前記摩耗強度(AR)は、0.3%以下であることが好ましく、0.1%以下であることがより好ましい。実質的な摩耗強度(AR)の下限値は0.01%である。なお、摩耗強度は、摩耗強度粉化率ともいわれ、本実施の形態では、ASTM法(アメリカ試験協会法)D4058−81に基づいて測定した値である。
(F) Abrasion strength (AR) is 0.5% or less.
When the wear strength (AR) of the alumina support exceeds 0.5%, the resulting hydrodemetallation catalyst is likely to be pulverized during filling, resulting in drift and pressure loss during the reaction (during use). The wear strength (AR) is preferably 0.3% or less, and more preferably 0.1% or less. The lower limit value of the substantial wear strength (AR) is 0.01%. The wear strength is also referred to as the wear strength powdering rate, and is a value measured in accordance with ASTM method (American Testing Association method) D4058-81 in this embodiment.

次に、アルミナ担体及びそれを用いた水素化脱金属触媒の製造方法について説明する。
本発明のアルミナ担体は、例えば、容器内に最初に貯留されているpH10〜14に調整された敷水を攪拌しながら、下記(1)式で表される塩基性塩化アルミニウムの水溶液(酸性を示す)を、5分以内でpH6.5〜10.0となるように添加し、この際に得られた混合溶液に、更にアルミン酸ナトリウム、アルミン酸カリウム等の水溶液及び塩基性塩化アルミニウムの水溶液を、pH6.5〜10.0の範囲内に保持しつつ、10分から2時間かけて同時に攪拌しながら添加して得られるアルミナ水和物を、順次、洗浄、熟成、噴霧乾燥、捏和、成型、乾燥、及び焼成して製造することができる。
[Al(OH)Cl6−n・・・(1)
(ただし、0<n<6、1≦m≦10、好ましくは4.8≦n≦5.3、3≦m≦7である。なお、mは、自然数を示す。)
また、本発明の水素化脱金属触媒は、前記したアルミナ担体に、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種以上の活性金属成分を担持して製造することができる。以下、各工程について詳しく説明する。
Next, an alumina carrier and a method for producing a hydrodemetallation catalyst using the same will be described.
The alumina carrier of the present invention is, for example, an aqueous solution (basic acid chloride) of basic aluminum chloride represented by the following formula (1) while stirring the groundwater adjusted to pH 10-14 initially stored in the container. Are added so that the pH becomes 6.5 to 10.0 within 5 minutes, and further to the mixed solution obtained, an aqueous solution of sodium aluminate, potassium aluminate or the like and an aqueous solution of basic aluminum chloride In the range of pH 6.5 to 10.0, while stirring simultaneously for 10 minutes to 2 hours, the alumina hydrate obtained is washed, matured, spray dried, kneaded, It can be produced by molding, drying and firing.
[Al 2 (OH) n Cl 6-n ] m (1)
(However, 0 <n <6, 1 ≦ m ≦ 10, preferably 4.8 ≦ n ≦ 5.3, 3 ≦ m ≦ 7, where m represents a natural number.)
The hydrodemetallation catalyst of the present invention can be produced by supporting at least one active metal component selected from Group 6A metal and Group 8 metal of the periodic table on the above-described alumina support. . Hereinafter, each step will be described in detail.

(第1工程)
まず、Alとして0.05〜0.15質量%となるアルミン酸ナトリウムと0.001〜0.003質量%のグルコン酸ナトリウムとを含む水溶液を、pH10〜14に調整し、更に、その液温を50〜70℃、好ましくは55〜65℃に加温して、敷水を作成する。ここで、グルコン酸ナトリウムは、アルミン酸ナトリウムの加水分解を抑制する効果があり、アルミン酸ナトリウムの安定性を向上させるために添加している。
なお、敷水は、pH10〜14の塩基性の水溶液(アルカリ水溶液)であればよく、水酸化ナトリウム、水酸化カリウム、アンモニア等を含む水溶液であってもよいが、次に行う操作(敷水への塩基性塩化アルミニウムの水溶液の添加)において、擬べーマイトのシード(種)を形成させ易くするために、敷水にアルミナ源となるアルミン酸ナトリウムを添加して、敷水のpHを10〜14にする
(First step)
First, an aqueous solution containing 0.05 to 0.15 mass% sodium aluminate and 0.001 to 0.003 mass% sodium gluconate as Al 2 O 3 was adjusted to pH 10 to 14, and The liquid temperature is heated to 50 to 70 ° C., preferably 55 to 65 ° C., and the groundwater is prepared. Here, sodium gluconate has an effect of suppressing hydrolysis of sodium aluminate, and is added to improve the stability of sodium aluminate .
The groundwater may be a basic aqueous solution (alkaline aqueous solution) having a pH of 10 to 14, and may be an aqueous solution containing sodium hydroxide, potassium hydroxide, ammonia or the like. In order to facilitate the formation of pseudo-boehmite seeds in the addition of an aqueous solution of basic aluminum chloride to the aqueous solution, sodium aluminate serving as the alumina source is added to the groundwater, and the pH of the groundwater is 10. to to 14.

次に、この敷水を攪拌しながら、塩基性塩化アルミニウムの水溶液(例えば、Alとして22〜24質量%含む)を5分間以内、好ましくは1〜3分間程度でpH6.5〜10.0、好ましくはpH7.0〜9.0となるように添加して、敷水を中和する。これによって、この混合溶液中には、擬ベーマイトのシードが形成される。なお、塩基性塩化アルミニウムの水溶液を添加する際に、敷水がpH10.0よりも高い状態で5分を超えると、バイヤライト結晶形のアルミナ水和物が生成するため、得られるアルミナ担体の強度が低くなるので好ましくない。 Next, while stirring the groundwater, an aqueous solution of basic aluminum chloride (for example, containing 22 to 24% by mass as Al 2 O 3 ) is within 5 minutes, preferably about pH 6.5 to 10 in about 1 to 3 minutes. 0.0, preferably pH 7.0-9.0, to neutralize the groundwater. Thereby, pseudo boehmite seeds are formed in the mixed solution. In addition, when adding an aqueous solution of basic aluminum chloride, if the groundwater is higher than pH 10.0 for more than 5 minutes, a bayerite crystal form of alumina hydrate is produced. This is not preferable because the strength is lowered.

(第2工程)
第1工程で得られた混合溶液に、アルミン酸ナトリウム(イ)の水溶液(例えば、好ましくはAlとして21〜23質量%含む)及び塩基性塩化アルミニウム(ロ)の水溶液(例えば、好ましくはAlとして22〜24質量%含む)を、10分から2時間かけて攪拌しながら同時に添加する。この際には、アルミン酸ナトリウムの水溶液と塩基性塩化アルミニウムの水溶液との添加量をそれぞれ適宜調整(それぞれの水溶液の濃度によって異なるが、ほぼ同じ化学等量を混合するのが好ましい)し、混合溶液をpH6.5〜10.0、好ましくはpH7.0〜9.0の範囲内に保持しながら添加する。これによって、第1工程で形成した擬ベーマイトのシードを成長させ、擬ベーマイト構造のアルミナ水和物のスラリー(懸濁液)が得られる。なお、この際には、混合溶液の液温を50〜70℃、好ましくは55〜65℃に保持するのがよい。更に、アルミン酸ナトリウムの水溶液及び塩基性塩化アルミニウムの水溶液の添加を停止した後、所望により10分から2時間攪拌を続け、均一なアルミナ水和物を得るのが好ましい。
(Second step)
In the mixed solution obtained in the first step, an aqueous solution of sodium aluminate (I) (for example, preferably containing 21 to 23% by mass as Al 2 O 3 ) and an aqueous solution of basic aluminum chloride (B) (for example, preferably the Al as 2 O 3 containing 22 to 24 wt%) are added simultaneously with stirring over a period of 10 minutes to 2 hours. At this time, the addition amount of the aqueous solution of sodium aluminate and the aqueous solution of basic aluminum chloride is appropriately adjusted (it is preferable to mix approximately the same chemical equivalent although it varies depending on the concentration of each aqueous solution). The solution is added while maintaining pH 6.5 to 10.0, preferably pH 7.0 to 9.0. Thereby, the pseudo boehmite seed formed in the first step is grown, and a slurry (suspension) of alumina hydrate having a pseudo boehmite structure is obtained. In this case, the liquid temperature of the mixed solution is preferably maintained at 50 to 70 ° C, preferably 55 to 65 ° C. Further, after the addition of the aqueous solution of sodium aluminate and the aqueous solution of basic aluminum chloride is stopped, stirring is preferably continued for 10 minutes to 2 hours as desired to obtain a uniform alumina hydrate.

(第3工程−洗浄操作)
次に、得られたスラリーを50〜70℃、好ましくは55〜65℃の純水で洗浄し、ナトリウム、塩酸根等の不純物を除去し、洗浄ケーキを得る。
(第3工程−熟成操作)
更に、洗浄ケーキに純水を加えて、Al濃度(すなわち、「Alとしての濃度」をいう。以下、同様である)が5〜13質量%、好ましくは7〜11質量%となるように調製した後、アンモニア水でpH9〜12、好ましくはpH10〜11に調製し、調製スラリーを得る。この調製スラリーを還流器付きの熟成タンク内において、80℃以上、好ましくは90〜100℃で、かつ、5〜20時間、好ましくは8〜15時間熟成して熟成スラリーを得る。
(Third step-washing operation)
Next, the obtained slurry is washed with pure water at 50 to 70 ° C., preferably 55 to 65 ° C. to remove impurities such as sodium and hydrochloric acid radicals, thereby obtaining a washed cake.
(3rd step-ripening operation)
Furthermore, pure water is added to the washed cake, and the Al 2 O 3 concentration (that is, “concentration as Al 2 O 3 ”, hereinafter the same) is 5 to 13% by mass, preferably 7 to 11% by mass. %, And then adjusted to pH 9-12, preferably pH 10-11, with aqueous ammonia to obtain a prepared slurry. The prepared slurry is aged in an aging tank equipped with a reflux at 80 ° C. or higher, preferably 90 to 100 ° C., and 5 to 20 hours, preferably 8 to 15 hours to obtain an aged slurry.

(第3工程−噴霧乾燥操作)
得られた熟成スラリーを、例えば、入口温度が280〜550℃、好ましくは350〜500℃で、かつ、出口温度が150〜280℃、好ましくは200〜250℃にそれぞれ調整された噴霧乾燥機によって噴霧乾燥を行って、アルミナ粉を得る。このアルミナ粉を1000℃で1時間加熱したときの強熱減量(ignition loss、loss of ignition。以下、単に「強熱減量」ともいう)は、15〜20質量%であるのが好ましい。ここで、アルミナ粉の強熱源量が15質量%未満では、アルミナ粉の粒子強度が高くなり過ぎ、後工程において捏和物の成型性が悪化し、得られる成型物の強度が低くなることがある。また、アルミナ粉の強熱減量が20質量%を超えると、アルミナ粉に形成された細孔径の大きい細孔構造が捏和時に消失し、得られるアルミナ担体に形成される第2細孔群(P)が減少し、第2細孔群の細孔容積(PVP2)が0.1ml/gよりも小さくなることがある。噴霧乾燥したアルミナ粉には、例えば、付着水が0.3〜1.2質量%、結晶水が15.5〜16.5質量%含有されており、Al・1.05〜1.25HOとして表される。
(Third step-spray drying operation)
The obtained aging slurry is subjected to, for example, a spray dryer in which the inlet temperature is 280 to 550 ° C, preferably 350 to 500 ° C, and the outlet temperature is adjusted to 150 to 280 ° C, preferably 200 to 250 ° C. Spray drying is performed to obtain alumina powder. When this alumina powder is heated at 1000 ° C. for 1 hour, the loss on ignition (ignition loss, loss of ignition. Hereinafter, also simply referred to as “loss on ignition”) is preferably 15 to 20% by mass. Here, if the amount of the ignition source of the alumina powder is less than 15% by mass, the particle strength of the alumina powder becomes too high, the moldability of the kneaded product is deteriorated in the subsequent process, and the strength of the obtained molded product is lowered. is there. When the ignition loss of the alumina powder exceeds 20% by mass, the pore structure having a large pore diameter formed in the alumina powder disappears during the kneading, and the second pore group ( P 2 ) may decrease, and the pore volume (PV P2 ) of the second pore group may be smaller than 0.1 ml / g. The spray-dried alumina powder contains, for example, 0.3 to 1.2% by mass of adhering water and 15.5 to 16.5% by mass of crystal water, and Al 2 O 3 · 1.05-1 .25H 2 O.

(第3工程−捏和操作)
得られたアルミナ粉にAl濃度が20〜40質量%、好ましくは25〜35質量%となるように純水を加えた後、混練機で3〜20分間、好ましくは5〜10分間程度捏和して、捏和物を得る。ここで、捏和時間が3分未満であると、次の成型操作において成型性が悪化し、得られるアルミナ担体の強度が低下し、20分を超えると、第2細孔群の細孔容積(PVP2)が0.1ml/gよりも小さくなることがある。
(第3工程−成形操作)
得られた捏和物を押出成形機によって、1.8mmの四つ葉型の柱状に押し出し成型し、成型物を得る。なお、成型物は、四つ葉型の柱状以外に、三つ葉型の柱状、円柱等の形状に成型でき、その大きさも限定されない。
(第3工程−乾燥焼成操作)
この成型物を、例えば、100〜150℃、好ましくは120〜140℃で、かつ、10〜20時間、好ましくは15〜18時間乾燥した後、更に500〜800℃、好ましくは600〜700℃で、かつ、30分から2時間、好ましくは45〜90分間焼成し、アルミナ担体を得る。
(Third step-kneading operation)
After adding pure water to the obtained alumina powder so that the Al 2 O 3 concentration is 20 to 40% by mass, preferably 25 to 35% by mass, the kneader is used for 3 to 20 minutes, preferably 5 to 10 minutes. Knead to a degree to obtain a koji. Here, if the kneading time is less than 3 minutes, the moldability deteriorates in the next molding operation, and the strength of the resulting alumina carrier decreases. If it exceeds 20 minutes, the pore volume of the second pore group (PV P2 ) may be smaller than 0.1 ml / g.
(Third step-molding operation)
The obtained kneaded product is extruded and molded into a 1.8 mm four-leaf column by an extrusion molding machine to obtain a molded product. In addition, a molded object can be shape | molded in shapes, such as a three-leaf type | mold column shape and a cylinder, besides the four-leaf type | mold column shape, The magnitude | size is not limited, either.
(Third step—dry baking operation)
The molded product is dried at, for example, 100 to 150 ° C., preferably 120 to 140 ° C. and for 10 to 20 hours, preferably 15 to 18 hours, and then further 500 to 800 ° C., preferably 600 to 700 ° C. And calcining for 30 minutes to 2 hours, preferably 45 to 90 minutes, to obtain an alumina support.

(第4工程)
得られたアルミナ担体に、活性金属成分として、例えば、酸化モリブデン及び炭酸ニッケルをそれぞれモリブデン酸化物(MoO)として1〜4質量%及びニッケル酸化物(NiO)として0.4〜0.7質量%含有する活性金属含有水溶液を、ポアフィリング法(pore filling method)、浸漬法、平衡吸着法等により、アルミナ担体に触媒基準でモリブデン酸化物(MoO)として2〜5質量%、好ましくは3〜4質量%、かつ、ニッケル酸化物(NiO)として0.5〜0.9質量%、好ましくは0.6〜0.8質量%含浸させた後、乾燥機で室温から300℃まで、好ましくは室温から270℃まで、更に好ましくは室温から250℃まで昇温乾燥し、更に空気中で400〜700℃、好ましくは500〜600℃、かつ、30分から2時間、好ましくは45〜90分間焼成して、水素化脱金属触媒を製造する。ここで、ポアフィリング法とは、予め秤量したアルミナ担体の全細孔容積に相当する量の活性金属含有水溶液を作製し、この活性金属含有水溶液を減圧条件下で脱気された該アルミナ担体の細孔に取り込むことにより、活性金属成分を細孔内に含浸させる方法である。
本発明の水素化脱金属触媒及びその製造方法において、活性金属成分として、モリブデン及びニッケルの使用が代表的なものであるが、モリブデン及びニッケル以外の組み合わせ、又は、周期表第6A族金属及び第8族金属から選ばれた1種を使用してもよい。
(4th process)
In the obtained alumina carrier, as active metal components, for example, molybdenum oxide and nickel carbonate are 1 to 4% by mass as molybdenum oxide (MoO 3 ) and 0.4 to 0.7% by mass as nickel oxide (NiO), respectively. % Of the active metal-containing aqueous solution containing 2% to 5% by mass of molybdenum oxide (MoO 3 ) on an alumina support on a catalyst basis by a pore filling method, a dipping method, an equilibrium adsorption method, or the like, preferably 3 -4 mass%, and after impregnation as nickel oxide (NiO) 0.5-0.9 mass%, preferably 0.6-0.8 mass%, preferably from room temperature to 300 ° C. with a dryer Is dried at an elevated temperature from room temperature to 270 ° C., more preferably from room temperature to 250 ° C., and further from 400 to 700 ° C., preferably from 500 to 6 in air. 0 ° C., and 30 minutes to 2 hours, preferably calcined 45-90 minutes, to produce a hydrodemetallization catalyst. Here, the pore filling method is to prepare an active metal-containing aqueous solution in an amount corresponding to the total pore volume of the alumina carrier weighed in advance, and this active metal-containing aqueous solution is degassed under reduced pressure. In this method, the active metal component is impregnated in the pores by being taken into the pores.
In the hydrodemetallation catalyst and the method for producing the same of the present invention, molybdenum and nickel are typically used as active metal components, but combinations other than molybdenum and nickel, or periodic table group 6A metal and One selected from Group 8 metals may be used.

本発明の水素化脱金属触媒においては、全細孔容積が大きく、しかも、細孔直径5〜100nm範囲及び細孔直径500〜10000nm範囲にそれぞれ細孔分布のピークを有するアルミナ担体に活性金属成分が担持されているので、脱金属活性及び脱硫活性が高く、バナジウムやニッケル等の金属汚染物質を含む残渣油等の重質炭化水素油の水素化処理に好適に使用できる。また、本発明の水素化脱金属触媒は、高強度のアルミナ担体から製造されるので、工業的に使用可能な強度を有する。   In the hydrodemetallation catalyst of the present invention, the active metal component is present on an alumina support having a large total pore volume and having pore distribution peaks in the pore diameter range of 5 to 100 nm and the pore diameter range of 500 to 10,000 nm. Is supported, it has high demetallation activity and desulfurization activity, and can be suitably used for hydroprocessing heavy hydrocarbon oils such as residual oils containing metal contaminants such as vanadium and nickel. Moreover, since the hydrodemetallation catalyst of the present invention is produced from a high-strength alumina support, it has strength that can be used industrially.

また、本発明のアルミナ担体の製造方法においては、pH10〜14に調整された敷水を攪拌しながら塩基性塩化アルミニウムの水溶液を5分以内でpH6.5〜10.0となるように添加した後、得られた混合溶液をpH6.5〜10.0の範囲内に保持しながら、更に混合溶液にアルミン酸ナトリウムの水溶液及び塩基性塩化アルミニウムの水溶液を10分から2時間かけて同時に攪拌しながら添加するので、擬ベーマイト構造のアルミナ水和物を得ることができ、このアルミナ水和物を順次、洗浄、熟成、噴霧乾燥、捏和、成型、乾燥、及び焼成するので、細孔容積が大きく、しかも、高強度のアルミナ担体を製造することができる。
更に、本発明の水素化処理触媒の製造方法においては、本発明のアルミナ担体に、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種以上の活性金属成分を担持するので、寿命の長い水素化脱金属触媒を製造することができる。
Further, in the method for producing an alumina carrier of the present invention, an aqueous solution of basic aluminum chloride is added so that the pH becomes 6.5 to 10.0 within 5 minutes while stirring the groundwater adjusted to pH 10 to 14. Then, while maintaining the obtained mixed solution within the range of pH 6.5 to 10.0, while further stirring the aqueous solution of sodium aluminate and the basic aluminum chloride in the mixed solution over 10 minutes to 2 hours at the same time. As a result, it is possible to obtain an alumina hydrate having a pseudo boehmite structure, and this alumina hydrate is washed, matured, spray dried, kneaded, molded, dried, and fired sequentially, so that the pore volume is large. Moreover, a high-strength alumina support can be produced.
Furthermore, in the method for producing a hydrotreating catalyst of the present invention, at least one active metal component selected from Group 6A metals and Group 8 metals of the periodic table is supported on the alumina support of the present invention. A long-life hydrodemetallation catalyst can be produced.

本発明の一実施の形態に係るアルミナ担体及びそれを用いた水素化脱金属触媒の製造方法を適用して、アルミナ担体及び水素化脱金属触媒Aを製造した。更に、製造した水素化脱金属触媒Aの脱金属活性を測定した。   The alumina carrier and the hydrodemetallation catalyst A were produced by applying the alumina carrier and the hydrodemetallation catalyst production method using the same according to one embodiment of the present invention. Furthermore, the metal removal activity of the produced hydrodemetallation catalyst A was measured.

(実施例1)
200L容量の攪拌翼及びスチーム加熱装置が設けられたタンクに純水を140.6kg張り込み(貯留し)、スチーム加熱装置によって水温が60℃になるまで加温した。更に、タンク内の純水を攪拌翼で攪拌しながら、0.6kgのアルミン酸ナトリウム水溶液(Alとして、22質量%、すなわち、0.13kg含む)と2.6gのグルコン酸ナトリウムとを、液温を60℃に保ちながら添加して、Al濃度が0.09質量%のアルミン酸ナトリウム水溶液を敷水として作製した。この際、敷水は、pH10.5であった。
次に、敷水を攪拌しながら、1.89kgの塩基性塩化アルミニウム水溶液(Alとして、23質量%、すなわち、0.43kg含む)を2分間で添加して、擬ベーマイトのシードを形成させ、続いて、5.7kgのアルミン酸ナトリウム水溶液(Alとして、22質量%、すなわち、1.25kg含む)、及び、18.2kgの塩基性塩化アルミニウム水溶液(Alとして、23質量%、すなわち、4.19kg含む)を、pH7.2±0.5、かつ、液温を60±1℃に保持しながら、30分かけて同時に添加して、共沈により擬ベーマイト粒子を成長させ、更に1時間攪拌して均一なアルミナ水和物のスラリーを得た。
なお、塩基性塩化アルミニウム水溶液は、〔Al(OH)Clで示される塩基性塩化アルミニウムから作製されている。
Example 1
140.6 kg of pure water was put (stored) in a tank provided with a 200 L capacity stirring blade and a steam heating device, and the water temperature was heated to 60 ° C. by the steam heating device. Furthermore, while stirring pure water in the tank with a stirring blade, 0.6 kg of sodium aluminate aqueous solution (containing 22% by mass, that is, 0.13 kg as Al 2 O 3 ), 2.6 g of sodium gluconate, Was added while maintaining the liquid temperature at 60 ° C., and an aqueous solution of sodium aluminate having an Al 2 O 3 concentration of 0.09 mass% was prepared as the groundwater. At this time, the groundwater was pH 10.5.
Next, 1.89 kg of basic aluminum chloride aqueous solution (containing 23 mass% as Al 2 O 3 , that is, containing 0.43 kg) is added over 2 minutes while stirring the groundwater, and the pseudo boehmite seed is added. Followed by 5.7 kg of aqueous sodium aluminate solution (containing 22% by weight, ie 1.25 kg as Al 2 O 3 ), and 18.2 kg of basic aluminum chloride aqueous solution (as Al 2 O 3 , 23 mass%, that is, 4.19 kg inclusive) was added simultaneously over 30 minutes while maintaining the liquid temperature at 60 ± 1 ° C., and pseudoboehmite by coprecipitation. The particles were grown and stirred for an additional hour to obtain a uniform slurry of alumina hydrate.
The basic aluminum chloride aqueous solution is made from basic aluminum chloride represented by [Al 2 (OH) 5 Cl 1 ] 5 .

得られたスラリーを洗浄し、スラリーに付着しているナトリウム及び塩酸根等の不純物を除去し、67.0kgの洗浄ケーキ(Alとして、9.0質量%、すなわち、6.0kg含む)を得た。
67.0kgの洗浄ケーキに3.6kgの純水を加えて、Alとして8.5質量%に調整した後、15質量%のアンモニア水でpH10.5に調整し、更に、還流器のついた熟成タンク内で、95℃で10時間攪拌しながら熟成し、75.8kgの熟成スラリーを得た。
得られた熟成スラリーを、入口温度が460℃、かつ、出口温度が220℃に調製された大川原化工機株式会社製の噴霧乾燥機ODT−27型で噴霧乾燥して、7.19kgのアルミナ粉を得た。アルミナ粉は、1000℃での強熱減量が16.5%であり、付着水が0.3質量%、結晶水が16.2質量%含有されており、Al・1.12HOとして表された。
更に、1.20kgのアルミナ粉に2.25kgの純水を加えてAl濃度として29質量%に調整した後、混練機(株式会社トーシン製、双腕式ニーダーTK5−3型)で6分間捏和し、捏和物を得た。この捏和物を押出成形機(本田鉄工株式会社製のオーガー式押し出し機DE−75型)で、1.8mmの四つ葉型の柱状に押し出し成型し、成型物を得た。得られた成型物を、110℃で16時間乾燥した後、更に650℃で1時間焼成してアルミナ担体を得た。
The obtained slurry was washed, impurities such as sodium and hydrochloric acid radicals adhering to the slurry were removed, and 67.0 kg of washing cake (9.0 mass% as Al 2 O 3 , that is, containing 6.0 kg) )
3.6 kg of pure water was added to 67.0 kg of washing cake, adjusted to 8.5% by mass as Al 2 O 3 , adjusted to pH 10.5 with 15% by mass of ammonia water, In an aging tank with agitation at 95 ° C. for 10 hours with stirring to obtain 75.8 kg of aging slurry.
The obtained aging slurry was spray-dried with a spray dryer ODT-27 type manufactured by Okawahara Koki Co., Ltd. having an inlet temperature of 460 ° C. and an outlet temperature of 220 ° C. to obtain 7.19 kg of alumina powder. Got. Alumina powder is loss on ignition 16.5% at 1000 ° C., adhesive moisture 0.3 wt%, crystal water are contained 16.2 wt%, Al 2 O 3 · 1.12H 2 Expressed as O.
Further, 2.25 kg of pure water was added to 1.20 kg of alumina powder to adjust the Al 2 O 3 concentration to 29% by mass, and then a kneader (manufactured by Toshin Co., Ltd., double-arm kneader TK5-3 type) was used. Knead for 6 minutes to obtain a kneaded product. This kneaded product was extruded and molded into a 1.8 mm four-leaf column by an extrusion molding machine (Auger type extruder DE-75 manufactured by Honda Iron Works Co., Ltd.) to obtain a molded product. The obtained molded product was dried at 110 ° C. for 16 hours and then calcined at 650 ° C. for 1 hour to obtain an alumina carrier.

得られたアルミナ担体の性状、すなわち、全細孔容積(PV)、全細孔容積(PV)に対する細孔直径100nm以上の細孔の細孔容積(PV)の割合(PV/PV)、第1細孔群(P)の細孔直径5〜100nm範囲の細孔が占める細孔容積(PVP1)、第2細孔群(P)の細孔直径500〜10000nm範囲の細孔が占める細孔容積(PVP2)、比表面積(SA)、耐圧強度(CS)、摩耗強度(AR)、平均細孔径、見掛嵩密度(apparent bulk density、ABD)、圧縮嵩密度(compacted bulk density、CBD)を前記した方法で測定し、その結果を表1に示す。また、図1(a)に、アルミナ担体の細孔直径と累積細孔容積との関係を表す積分型の細孔分布図を示し、(b)に同アルミナ担体の細孔直径と微分細孔容積との関係を表す微分型の細孔分布図を示す。
図1(b)に示すように、得られたアルミナ担体は、細孔直径5〜100nm範囲(約20nm)、及び、細孔直径500〜10000nm範囲(約1400nm)にそれぞれ細孔分布の第1ピーク、第2ピークを有したバイモーダル細孔構造となっている。
Properties of the obtained alumina carrier, that is, the total pore volume (PV T ), the ratio of the pore volume (PV L ) of pores having a pore diameter of 100 nm or more to the total pore volume (PV T ) (PV L / PV T ), pore volume (PV P1 ) occupied by pores having a pore diameter range of 5 to 100 nm in the first pore group (P 1 ), pore diameter 500 to 10,000 nm in the second pore group (P 2 ). Pore volume (PV P2 ), specific surface area (SA), pressure strength (CS), wear strength (AR), average pore diameter, apparent bulk density (ABD), compression bulk The density (compacted bulk density, CBD) was measured by the method described above, and the results are shown in Table 1. FIG. 1 (a) shows an integral pore distribution diagram showing the relationship between the pore diameter of the alumina support and the cumulative pore volume, and FIG. 1 (b) shows the pore diameter and differential pores of the alumina support. The differential type pore distribution map showing the relationship with the volume is shown.
As shown in FIG. 1 (b), the obtained alumina support has a pore distribution first in the range of pore diameters of 5 to 100 nm (about 20 nm) and pore diameters of 500 to 10,000 nm (about 1400 nm). It has a bimodal pore structure having a peak and a second peak.

得られたアルミナ担体を400g量り取り、これにポアフィリング法(この方法は、秤量したアルミナ担体の全細孔容積に相当する量の活性金属含有水溶液を該アルミナ担体と混合して減圧し、該水溶液をアルミナ担体の細孔に取り込むことにより、活性金属成分を細孔内に含浸させる方法である。)により、周期表第6A族金属であるモリブデン及び第8族金属であるニッケルを、それぞれ酸化物として触媒基準で3.3質量%、及び、0.7質量%となるように担持した。ここで、表1よりアルミナ担体の細孔容積(PV)は、1.44ml/gであるので、400gのアルミナ担体の全細孔容積は、576ml(1.44ml/g×400g)であり、活性金属含有水溶液を、アルミナ担体の全細孔容積と同量の576ml作製した。この活性金属含有水溶液は、551gの温水(95℃)に、13.7gの三酸化モリブデン(2.4質量%)及び4.6gの炭酸ニッケル(0.8質量%)を懸濁させた後、密閉して95℃で5時間攪拌した後、炭酸ニッケルを酸化物とした酸化ニッケル(NiO、2.8g)の2.5倍質量(7.1g)のリンゴ酸を添加して、酸化モリブデンと炭酸ニッケルを完全に溶解して作製した。
400gのアルミナ担体をブレンダー(混合機)に入れ、ブレンダーを停止した状態で減圧(ここでは、−60cmHg)し、10分間脱気する。更に、脱気した状態でブレンダーを回転させながら576mlの活性金属含有水溶液を投入した後、常圧下で回転させながら30分間放置し、アルミナ担体にモリブデン及びニッケルを含浸した。回転式乾燥機を用いて室温から250℃まで昇温乾燥し、更に、550℃で1時間空気中において焼成して、モリブデン及びニッケルをそれぞれ酸化物として触媒基準で3.3質量%、0.7質量%担持した水素化脱金属触媒Aを調製した。水素化脱金属触媒Aの性状を表1に示す。また、図2(a)及び(b)に、それぞれ水素化脱金属触媒Aの積分型、微分型の細孔分布図を示す。
400 g of the obtained alumina carrier was weighed and added to the pore filling method (in this method, an active metal-containing aqueous solution in an amount corresponding to the total pore volume of the weighed alumina carrier was mixed with the alumina carrier, and the pressure was reduced. In this method, the active metal component is impregnated into the pores by incorporating the aqueous solution into the pores of the alumina carrier.) The molybdenum which is a Group 6A metal of the periodic table and the nickel which is a Group 8 metal are each oxidized. As a product, it was supported so as to be 3.3% by mass and 0.7% by mass based on the catalyst. Here, since the pore volume (PV T ) of the alumina carrier is 1.44 ml / g from Table 1, the total pore volume of 400 g of the alumina carrier is 576 ml (1.44 ml / g × 400 g). Then, 576 ml of an active metal-containing aqueous solution having the same amount as the total pore volume of the alumina support was prepared. This active metal-containing aqueous solution was obtained by suspending 13.7 g of molybdenum trioxide (2.4% by mass) and 4.6 g of nickel carbonate (0.8% by mass) in 551 g of warm water (95 ° C.). After sealing and stirring at 95 ° C. for 5 hours, 2.5 times (7.1 g) malic acid of nickel oxide (NiO, 2.8 g) with nickel carbonate as an oxide was added, and molybdenum oxide was added. And nickel carbonate was completely dissolved.
400 g of an alumina carrier is put into a blender (mixer), and the pressure is reduced (here, −60 cmHg) while the blender is stopped, and deaerated for 10 minutes. Further, 576 ml of the active metal-containing aqueous solution was added while rotating the blender in a degassed state, and then allowed to stand for 30 minutes while rotating under normal pressure, and the alumina support was impregnated with molybdenum and nickel. The temperature is dried from room temperature to 250 ° C. using a rotary dryer, and further calcined in the air at 550 ° C. for 1 hour to form molybdenum and nickel as oxides in an amount of 3.3% by mass and 0.00%, respectively. A 7% by weight supported hydrodemetallation catalyst A was prepared. Table 1 shows the properties of the hydrodemetallation catalyst A. 2 (a) and 2 (b) show integral and differential pore distribution diagrams of the hydrodemetallation catalyst A, respectively.

Figure 0004818163
Figure 0004818163

(比較例1)
比較例1は、塩基性塩化アルミニウムの代わりに、従来から使用されている硫酸アルミニウムを使用する点が、実施例1と異なり、詳しくは、前記したpH10.5の敷水141.2kg(Alとして、0.09質量%、すなわち、0.13kg含む)に、0.94kgの硫酸アルミニウム水溶液(Alとして、7質量%、すなわち、0.07kg含む)を2分間で添加し、続いて、20.8kgのアルミン酸ナトリウム水溶液(Alとして、22質量%、すなわち、4.58kg含む)と32.6kgの硫酸アルミニウム水溶液(Alとして、7質量%、すなわち、2.28kg含む)を、pH7.2±0.5、液温を60±1℃に保持しながら、30分かけて同時に添加し、更に1時間攪拌して得たアルミナ水和物のスラリーから水素化処理触媒Bを製造する点が、実施例1と異なっている。水素化脱金属触媒Bの性状を表1に示す。
(Comparative Example 1)
Comparative Example 1 is different from Example 1 in that conventionally used aluminum sulfate is used instead of basic aluminum chloride. Specifically, 141.2 kg (Al 2 Add 0.94 kg of aluminum sulfate aqueous solution (7 mass% as Al 2 O 3 , ie, 0.07 kg) over 2 minutes to 0.09 mass% as O 3 , ie, 0.13 kg. Subsequently, 20.8 kg of sodium aluminate aqueous solution (containing 22% by mass as Al 2 O 3 , that is, 4.58 kg) and 32.6 kg of aluminum sulfate aqueous solution (7% by mass as Al 2 O 3 , that is, , 2.28 kg) was added at the same time over 30 minutes while maintaining the liquid temperature at 60 ± 1 ° C. and stirring for 1 hour. The point which manufactures the hydroprocessing catalyst B from the slurry of a mina hydrate is different from Example 1. FIG. Table 1 shows the properties of the hydrodemetallation catalyst B.

(比較例2)
比較例2は、実施例1で得られた熟成スラリーを、噴霧乾燥する代わりに脱水して得られた脱水ケーキから水素化処理触媒Cを製造した点が実施例1と異なっている。詳しくは、まず、熟成スラリーを減圧濾過機により脱水して脱水ケーキを得た。この脱水ケーキを混練機で45分間捏和した捏和物を押出成形機で、1.8mmの四つ葉型の柱状に押出し成型し、得られた成型物を110℃で16時間乾燥した後、更に650℃で1時間焼成してアルミナ担体を得た。得られたアルミナ担体に周期表第6A族金属であるモリブデンと第8族金属であるニッケルをそれぞれ酸化物として触媒基準で3.3質量%、0.7質量%となるように担持して水素化脱金属触媒Cを調製した。水素化脱金属触媒Cの性状を表1に示す。
(Comparative Example 2)
Comparative Example 2 is different from Example 1 in that the hydrotreating catalyst C was produced from a dehydrated cake obtained by dehydrating the aging slurry obtained in Example 1 instead of spray drying. Specifically, first, the ripened slurry was dehydrated with a vacuum filter to obtain a dehydrated cake. After the dehydrated cake was kneaded with a kneader for 45 minutes, the resulting kneaded product was extruded into a 1.8 mm four-leaf type column with an extruder, and the resulting molded product was dried at 110 ° C. for 16 hours. Further, it was calcined at 650 ° C. for 1 hour to obtain an alumina carrier. Hydrogen thus obtained was supported on the obtained alumina support so that molybdenum, which is a Group 6A metal of the periodic table, and nickel, which is a Group 8 metal, were used as oxides in amounts of 3.3% by mass and 0.7% by mass, respectively. A metallization catalyst C was prepared. Table 1 shows the properties of the hydrodemetallation catalyst C.

(試験例)
水素化脱金属触媒A(試験例1)、水素化脱金属触媒B(比較試験例1)、又は水素化脱金属触媒C(比較試験例2)を固定床のマイクロリアクター(水素化処理装置)にそれぞれ使用して、表2に示す原料油を表3に示す条件で処理し、脱金属活性、脱硫活性、脱アスファルテン活性、及び脱残炭活性を測定した。その結果を表4に示す。
ここで、マイクロリアクターは、上段より(1)水素化脱金属触媒A、水素化脱金属触媒B、及び水素化処理触媒Cのいずれか1つ、(2)脱金属触媒D(触媒化成工業株式会社製DM5CQ)、及び(3)脱硫触媒E(触媒化成工業株式会社製R25NQ)の順に、全リアクター容積に占める体積がそれぞれ、30容量%、29容量%、及び41容量%となるように充填した。
(Test example)
Hydrodemetallation catalyst A (Test Example 1), hydrodemetallation catalyst B (Comparative Test Example 1), or hydrodemetallation catalyst C (Comparative Test Example 2) is fixed bed microreactor (hydrotreating apparatus) The raw material oils shown in Table 2 were treated under the conditions shown in Table 3, and the demetallizing activity, desulfurizing activity, deasphaltenic activity, and decarburized carbon activity were measured. The results are shown in Table 4.
Here, the microreactor is as follows: (1) any one of hydrodemetallation catalyst A, hydrodemetallation catalyst B, and hydrotreating catalyst C, (2) demetallation catalyst D (catalyst chemical industry stock) Company DM5CQ), and (3) Desulfurization catalyst E (R25NQ made by Catalytic Chemical Industry Co., Ltd.), in order of 30% by volume, 29% by volume, and 41% by volume, respectively. did.

Figure 0004818163
Figure 0004818163

Figure 0004818163
Figure 0004818163

Figure 0004818163
脱金属率=(原料油中の金属濃度−生成油中の金属濃度)/原料油中の金属濃度×100
脱硫率=(原料油中の硫黄濃度−生成油中の硫黄濃度)/原料油中の硫黄濃度×100
Figure 0004818163
Demetalization rate = (metal concentration in the feedstock-metal concentration in the product oil) / metal concentration in the feedstock × 100
Desulfurization rate = (sulfur concentration in the feed oil−sulfur concentration in the product oil) / sulfur concentration in the feed oil × 100

表1に示すように、本発明の水素化脱金属触媒Aは、水素化脱金属触媒Bと比較して、全細孔容積、第1及び第2細孔群の細孔容積が大きく、しかも、高強度であった。また、水素化脱金属触媒Aは、水素化処理触媒Cと比較して、強度が若干低くなるものの、全細孔容積、第1及び第2細孔群の細孔容積が大きくなった。更に、表4に示すように、水素化脱金属触媒Aは、水素化脱金属触媒B及び水素化処理触媒Cよりも脱金属活性、脱アスファルテン活性、及び脱残炭活性が高く、また、脱硫活性も同等となっている。これらの結果から、本発明の水素化脱金属触媒Aは、工業的に有用であると解される。   As shown in Table 1, the hydrodemetallation catalyst A of the present invention has a larger total pore volume and a pore volume of the first and second pore groups than the hydrodemetallation catalyst B, and It was high strength. In addition, although the hydrodemetallation catalyst A was slightly lower in strength than the hydrotreating catalyst C, the total pore volume and the pore volumes of the first and second pore groups were increased. Further, as shown in Table 4, the hydrodemetallation catalyst A has higher demetalization activity, deasphaltenic activity, and decarburization activity than the hydrodemetallation catalyst B and the hydrotreating catalyst C. The activity is also equivalent. From these results, it is understood that the hydrodemetallation catalyst A of the present invention is industrially useful.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の水素化脱金属触媒及びその製造方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. When the hydrodemetallation catalyst of the present invention and the method for producing the same are combined, the scope of right of the present invention is also included.

(a)は本発明のアルミナ担体の積分型の細孔分布図であり、(b)は同アルミナ担体の微分型の細孔分布図である。(A) is an integral-type pore distribution diagram of the alumina carrier of the present invention, and (b) is a differential pore-distribution diagram of the alumina carrier. (a)は本発明の水素化脱金属触媒Aの積分型の細孔分布図であり、(b)は同水素化脱金属触媒Aの微分型の細孔分布図である。(A) is an integral type pore distribution map of the hydrodemetallation catalyst A of the present invention, and (b) is a differential type pore distribution map of the hydrodemetallation catalyst A of the present invention.

Claims (4)

下記(a)〜(f)の性状を有することを特徴とするアルミナ担体。
(a)水銀圧入法で測定した全細孔容積が1.2ml/gを超え、2.0ml/g以下である。
(b)水銀圧入法で測定した全細孔容積に対する細孔直径100nm以上の細孔の細孔容積の割合が0.12〜0.35である。
(c)細孔直径5〜100nm範囲に細孔分布のピークを有する第1細孔群と細孔直径500〜10000nm範囲に細孔分布のピークを有する第2細孔群との少なくとも2つの細孔群からなる細孔を有し、しかも、該第1細孔群の細孔直径5〜100nm範囲の細孔が占める細孔容積が0.9ml/g以上、かつ、該第2細孔群の細孔直径500〜10000nm範囲の細孔が占める細孔容積が0.1ml/g以上である。
(d)比表面積が150m/g以上である。
(e)耐圧強度が7N/mm以上である。
(f)磨耗強度が0.5%以下である。
An alumina carrier having the following properties (a) to (f):
(A) The total pore volume measured by the mercury intrusion method exceeds 1.2 ml / g and is 2.0 ml / g or less.
(B) The ratio of the pore volume of pores having a pore diameter of 100 nm or more to the total pore volume measured by mercury porosimetry is 0.12 to 0.35.
(C) At least two fine pores, a first pore group having a pore distribution peak in the pore diameter range of 5 to 100 nm and a second pore group having a pore distribution peak in the pore diameter range of 500 to 10,000 nm. A pore volume comprised of pore groups, and the pore volume occupied by pores having a diameter of 5 to 100 nm in the first pore group is 0.9 ml / g or more, and the second pore group The pore volume occupied by pores having a pore diameter of 500 to 10,000 nm is 0.1 ml / g or more.
(D) The specific surface area is 150 m 2 / g or more.
(E) The pressure strength is 7 N / mm or more.
(F) Abrasion strength is 0.5% or less.
請求項1記載のアルミナ担体に、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種以上の活性金属成分を担持したことを特徴とする水素化脱金属触媒。 A hydrodemetallation catalyst comprising the alumina carrier according to claim 1 supporting at least one active metal component selected from Group 6A metal and Group 8 metal of the periodic table . pH10〜14に調整された敷水を攪拌しながら、該敷水に塩基性塩化アルミニウムの水溶液を5分以内でpH6.5〜10.0となるように添加する第1工程と、
前記第1工程で得られた混合溶液をpH6.5〜10.0の範囲内に保持しながら、更に該混合溶液にアルミン酸ナトリウムの水溶液及び塩基性塩化アルミニウムの水溶液を10分から2時間かけて同時に攪拌しながら添加してアルミナ水和物を得る第2工程と、
前記アルミナ水和物を順次、洗浄、熟成、噴霧乾燥、捏和、成型、乾燥、及び焼成してアルミナ担体を得る第3工程を有することを特徴とするアルミナ担体の製造方法。
a first step of adding an aqueous solution of basic aluminum chloride to the groundwater so that the pH becomes 6.5 to 10.0 within 5 minutes while stirring the groundwater adjusted to pH 10 to 14;
While maintaining the mixed solution obtained in the first step within the range of pH 6.5 to 10.0, an aqueous solution of sodium aluminate and an aqueous solution of basic aluminum chloride are further added to the mixed solution over 10 minutes to 2 hours. A second step of simultaneously adding with stirring to obtain alumina hydrate;
A method for producing an alumina carrier, comprising a third step of obtaining the alumina carrier by sequentially washing, aging, spray drying, kneading, molding, drying and firing the alumina hydrate.
請求項記載のアルミナ担体に、周期表第6A族金属及び第8族金属から選ばれた少なくとも1種以上の活性金属成分を担持することを特徴とする水素化脱金属触媒の製造方法。 A method for producing a hydrodemetallation catalyst, comprising supporting at least one active metal component selected from Group 6A metal and Group 8 metal of the periodic table on the alumina support according to claim 1 .
JP2007051929A 2007-03-01 2007-03-01 Alumina support, hydrodemetallation catalyst using the same, and production method thereof Expired - Fee Related JP4818163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007051929A JP4818163B2 (en) 2007-03-01 2007-03-01 Alumina support, hydrodemetallation catalyst using the same, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051929A JP4818163B2 (en) 2007-03-01 2007-03-01 Alumina support, hydrodemetallation catalyst using the same, and production method thereof

Publications (2)

Publication Number Publication Date
JP2008212798A JP2008212798A (en) 2008-09-18
JP4818163B2 true JP4818163B2 (en) 2011-11-16

Family

ID=39833487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051929A Expired - Fee Related JP4818163B2 (en) 2007-03-01 2007-03-01 Alumina support, hydrodemetallation catalyst using the same, and production method thereof

Country Status (1)

Country Link
JP (1) JP4818163B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108188B2 (en) 2012-03-07 2015-08-18 Chevoron Phillip Chemical Company, LP Selective hydrogenation catalyst and methods of making and using same
CN103801310B (en) * 2012-11-07 2016-06-22 中国石油化工股份有限公司 A kind of Hydrobon catalyst preparation method
WO2014176197A1 (en) * 2013-04-24 2014-10-30 Shell Oil Company Activation of a hydroprocessing catalyst with steam
JP6104761B2 (en) * 2013-08-30 2017-03-29 Jxエネルギー株式会社 Method for producing hydrocarbon oil
RU2016105232A (en) * 2013-09-06 2017-10-11 Шеврон Филлипс Кемикал Компани Лп THE CATALYST OF SELECTIVE HYDROGENATION AND METHODS OF ITS PRODUCTION AND APPLICATION
WO2015053087A1 (en) * 2013-10-11 2015-04-16 コスモ石油株式会社 Hydroprocessing catalyst for heavy hydrocarbon oil, method for manufacturing hydroprocessing catalyst for heavy hydrocarbon oil, and hydroprocessing method for heavy hydrocarbon oil
FR3022236B1 (en) * 2014-06-13 2016-07-08 Ifp Energies Now AMORPHOUS AMORPHOUS AMORPHOUS ALUMINA WITH OPTIMIZED POROUS DISTRIBUTION AND PROCESS FOR PREPARING THE SAME
FR3022238B1 (en) * 2014-06-13 2016-07-29 Ifp Energies Now AMORPHOUS AMORPHOUS ALUMINA HAVING HIGH CONNECTIVITY AND PROCESS FOR PREPARING THE SAME
FR3022237B1 (en) * 2014-06-13 2017-09-01 Ifp Energies Now AMORPHOUS AMORPHOUS ALUMINA WITH OPTIMIZED POROUS DISTRIBUTION AND PROCESS FOR PREPARING THE SAME
JP2020179312A (en) * 2019-04-23 2020-11-05 日本化薬株式会社 Catalyst, and production method thereof
CN110028984A (en) * 2019-04-26 2019-07-19 河南百优福生物能源有限公司 Biomass pyrolysis liquid hydrogenation deoxidation oil hydrocracking catalyst and its preparation method and application
CN111420710B (en) * 2020-04-29 2022-12-06 煤炭科学技术研究院有限公司 Alumina carrier with double-peak pore structure and preparation method thereof
CN114471502B (en) * 2020-10-26 2023-07-28 中国石油化工股份有限公司 Preparation method of alumina carrier with gradient pore distribution
CN114471593B (en) * 2020-10-26 2023-09-01 中国石油化工股份有限公司 Preparation method of hydrofining catalyst

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898322A (en) * 1972-12-15 1975-08-05 Continental Oil Co Alumina having a binodal pore volume distribution
JPS6045125B2 (en) * 1978-03-02 1985-10-08 住友アルミニウム製錬株式会社 Manufacturing method of alumina sol
AU547464B2 (en) * 1981-06-17 1985-10-24 Amoco Corporation Catalyst for hydrotreating hydrocarbon feed
JP2546734B2 (en) * 1990-05-07 1996-10-23 株式会社ジャパンエナジー Method for producing alumina for catalyst
WO1995015920A1 (en) * 1993-12-09 1995-06-15 Catalysts & Chemicals Industries Co., Ltd. Process and equipment for producing alumina
JP4054183B2 (en) * 2001-09-27 2008-02-27 触媒化成工業株式会社 Alumina production equipment
JP4368118B2 (en) * 2002-02-20 2009-11-18 大明化学工業株式会社 Boehmite slurry manufacturing method, boehmite sol manufacturing method, boehmite sol, boehmite, recording medium manufacturing method, and recording medium
JP4822705B2 (en) * 2004-12-24 2011-11-24 日揮触媒化成株式会社 Heavy hydrocarbon oil hydrotreating catalyst composition and method for producing the same
JP4916157B2 (en) * 2005-10-28 2012-04-11 日揮触媒化成株式会社 Alumina support for hydrodemetallation catalyst, production method thereof, and hydrodemetallation catalyst using the same

Also Published As

Publication number Publication date
JP2008212798A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4818163B2 (en) Alumina support, hydrodemetallation catalyst using the same, and production method thereof
US8383543B2 (en) Hydroconversion multi-metallic catalyst and method for making thereof
JP5922372B2 (en) Hydrotreating catalyst and method for producing the same
EP2424658B1 (en) Method for making a hydroconversion multi-metallic catalyst
JP2002204959A (en) Catalyst for hydrogenation and hydrogenation treatment
TWI611836B (en) Catalyst support and preparation method thereof
EP2938433B1 (en) Preparation of a hydrocarbon conversion catalyst
JP4537713B2 (en) Method for producing hydrorefining catalyst
WO2016189982A1 (en) Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
JP2016517347A (en) New residual oil hydrotreating catalyst
JP6553030B2 (en) Process for catalytic conversion of micro-residual carbon content of heavy hydrocarbon feedstock and low surface area catalyst for use in said process
JP4264852B2 (en) Alumina extrudate, process for its preparation and its use as catalyst or catalyst support
JP2002363575A (en) Method for two step hydrogenating heavy hydrocarbon oil
JP2006502858A (en) Silicon-containing alumina support, method for preparing the same, and catalyst containing the alumina support
CA2759044C (en) Hydroconversion multi-metallic catalyst and method for making thereof
JP4822705B2 (en) Heavy hydrocarbon oil hydrotreating catalyst composition and method for producing the same
JP2005270937A (en) Hydrogenation treatment catalyst for hydrocarbon oil and production method therefor, and hydrogenation treatment method for hydrocarbon oil
CN114618510B (en) Heavy oil hydrotreating catalyst containing phosphorus and/or magnesium and heavy oil hydrotreating method
WO2023033172A1 (en) Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil
JP4471717B2 (en) Hydrocarbon hydrotreating catalyst composition and hydrocarbon oil hydrotreating method using the catalyst composition.
JP5334632B2 (en) Hydrocarbon hydrotreating catalyst and hydrotreating method using the same
JP2023142910A (en) Silicon scavenger for hydrogenation treatment, manufacturing method thereof, hydrogenation treatment method of hydrocarbon oil
JP2017113715A (en) Hydrogen treatment catalyst and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees