JP2005270937A - Hydrogenation treatment catalyst for hydrocarbon oil and production method therefor, and hydrogenation treatment method for hydrocarbon oil - Google Patents

Hydrogenation treatment catalyst for hydrocarbon oil and production method therefor, and hydrogenation treatment method for hydrocarbon oil Download PDF

Info

Publication number
JP2005270937A
JP2005270937A JP2004092531A JP2004092531A JP2005270937A JP 2005270937 A JP2005270937 A JP 2005270937A JP 2004092531 A JP2004092531 A JP 2004092531A JP 2004092531 A JP2004092531 A JP 2004092531A JP 2005270937 A JP2005270937 A JP 2005270937A
Authority
JP
Japan
Prior art keywords
catalyst
mass
group
acid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092531A
Other languages
Japanese (ja)
Other versions
JP2005270937A5 (en
JP4503327B2 (en
Inventor
Takayuki Osaki
貴之 大崎
Tomio Fukuda
富雄 福田
Hiroshi Mizutani
洋 水谷
Hideki Kanbe
英樹 神戸
Takashi Fujikawa
貴志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2004092531A priority Critical patent/JP4503327B2/en
Publication of JP2005270937A publication Critical patent/JP2005270937A/en
Publication of JP2005270937A5 publication Critical patent/JP2005270937A5/ja
Application granted granted Critical
Publication of JP4503327B2 publication Critical patent/JP4503327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a hydrogenation treatment catalyst, which shows little decrease in a catalyst activity by a coke degradation, and which enables the highly efficient removal of sulfur compounds in a hydrocarbon oil, particularly, a diesel oil fraction such as a low-pressure gas oil in a long period of time. <P>SOLUTION: The hydrogenation treatment of the hydrocarbon oil is characterized in that, in a catalyst standard, when considered in terms of oxides, 10-30mass % of at least one kind selected from the group VI metals, 1-1mass % at least one kind selected from the group VIII metals, 0.8-8mass % P, 2-14mass % C, and 0.1-0.8mass % Li are carried on an inorganic oxide carrier, its specific surface area is 110-300 m<SP>2</SP>/g, the pore volume is 0.35-0.6 ml/g, and the average pore diameter is about 65-180 Å. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素油の水素化処理触媒及びその製造方法と、この触媒を用いた炭化水素油の水素化処理方法とに関し、詳しくは、炭化水素油、なかでも減圧軽油などの軽油留分を水素化処理する際に、該炭化水素油中の硫黄分及び窒素分を従来のこの種の触媒を使用する場合よりも低減することができる、優れた活性を有する触媒及びその製造方法と、この触媒を用いる水素化処理方法とに関する。   The present invention relates to a hydrotreating catalyst for hydrocarbon oil, a method for producing the same, and a hydrotreating method for hydrocarbon oil using the catalyst, and more particularly to a hydrocarbon oil, particularly a light oil fraction such as vacuum gas oil. A catalyst having excellent activity and a method for producing the same, in which the sulfur content and nitrogen content in the hydrocarbon oil can be reduced as compared with the conventional use of this type of catalyst. The present invention relates to a hydroprocessing method using this catalyst.

原油を常圧蒸留装置により処理して得られた常圧残油や、常圧残油をさらに減圧蒸留装置で処理することにより得られる減圧軽油、減圧残油等の重質油には多量の硫黄化合物が含有されている。これらの重質油を脱硫処理することなく燃料として用いた場合には、硫黄酸化物(SOx)が大気中に排出される。   There is a large amount of heavy oil such as atmospheric residue obtained by treating crude oil with an atmospheric distillation device, heavy oil such as vacuum gas oil and vacuum residue obtained by further treating atmospheric residue with a vacuum distillation device. Contains sulfur compounds. When these heavy oils are used as fuel without being desulfurized, sulfur oxides (SOx) are discharged into the atmosphere.

そこで従来、原油から種々の石油製品を製造する工程の一つとして、間接脱硫装置や直接脱硫装置による重質油留分の水素化脱硫処理が取り入れられ、硫黄化合物の除去が可能となった。重質油中の硫黄化合物を除去することを目的とする水素化脱硫触媒は、周期律表第VIA族のモリブデン、タングステン、第VIII属のコバルト、ニッケルを活性発現成分とし、これらをアルミナ、マグネシア、シリカ、チタニア等の無機酸化物担体に担持させたものが開発されている。
近年、地球環境問題に対する意識が高まり、各種燃料油品質に対する規制も厳しくなっている。主要なガソリン基材の原料油である減圧軽油についてもその硫黄分をさらに低減する脱硫技術の開発が待望されている。減圧軽油中の硫黄分の低減化技術として、通常、水素化脱硫装置の運転条件、例えば、反応温度、液空間速度等を苛酷にすることが考えられる。
しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し(以下、コーク劣化と記す)、また液空間速度を下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。
従って、運転条件を苛酷にすることなく、減圧軽油の超深度脱硫を達成し得る最良の方法は、優れた脱硫活性を有し、かつ炭素質の析出を抑制できる触媒を開発することである。
Therefore, conventionally, hydrodesulfurization treatment of heavy oil fractions by indirect desulfurization equipment and direct desulfurization equipment has been incorporated as one of the processes for producing various petroleum products from crude oil, and sulfur compounds can be removed. The hydrodesulfurization catalyst for the purpose of removing sulfur compounds in heavy oils is composed of molybdenum, tungsten, tungsten of group VIII, cobalt and nickel of the periodic table as active active ingredients, which are alumina, magnesia. Those supported on an inorganic oxide carrier such as silica and titania have been developed.
In recent years, awareness of global environmental issues has increased and regulations on the quality of various fuel oils have become stricter. The development of desulfurization technology that further reduces the sulfur content of vacuum gas oil, which is a major gasoline base stock, is awaited. As a technique for reducing the sulfur content in vacuum gas oil, it is usually considered that the operating conditions of the hydrodesulfurization apparatus, for example, the reaction temperature, the liquid space velocity, etc., are severe.
However, when the reaction temperature is increased, carbonaceous matter is deposited on the catalyst and the activity of the catalyst is rapidly reduced (hereinafter referred to as coke deterioration). Since the processing capacity decreases, it is necessary to expand the scale of the facility.
Therefore, the best way to achieve ultra-deep desulfurization of vacuum gas oil without harsh operating conditions is to develop a catalyst that has excellent desulfurization activity and can suppress carbonaceous deposition.

近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒の細孔構造制御、活性化法等について多くの検討が多方面において進められており、高性能な脱硫触媒の開発成果が報告され、知られている。   In recent years, many studies have been conducted on the types of active metals, impregnation methods of active metals, improvement of catalyst support, control of pore structure of catalysts, activation methods, etc. Is reported and known.

例えば、アルミナやシリカ担体に、錯化剤として含窒素配位子を有する有機化合物と、活性金属とからなる溶液を含浸し、200℃以下で乾燥する方法が知られている(特許文献1参照)。   For example, a method is known in which an alumina or silica carrier is impregnated with a solution comprising an organic compound having a nitrogen-containing ligand as a complexing agent and an active metal and dried at 200 ° C. or lower (see Patent Document 1). ).

また、γ−アルミナ担体に、周期律表第8族金属(以下、単に「8族金属」と記す)化合物と周期律表第6族金属(以下、単に「6族金属」と記す)化合物と、リン酸を含む含浸溶液に、さらにジオールまたはエーテルを添加して得られた含浸溶液を含浸し、これを200℃以下で乾燥させることを特徴とする方法が知られている(特許文献2参照)。   Further, on the γ-alumina support, a Group 8 metal (hereinafter simply referred to as “Group 8 metal”) compound and a Group 6 metal (hereinafter simply referred to as “Group 6 metal”) compound of the Periodic Table; Further, there is known a method characterized by impregnating an impregnating solution containing phosphoric acid with an impregnating solution obtained by further adding a diol or ether and drying the impregnating solution at 200 ° C. or lower (see Patent Document 2). ).

また、担体に6族金属化合物、リン成分、8族金属化合物、クエン酸からなる溶液を含浸し、その後焼成を行う発明が知られている(特許文献3参照)。   Further, an invention is known in which a carrier is impregnated with a solution composed of a Group 6 metal compound, a phosphorus component, a Group 8 metal compound, and citric acid, and then fired (see Patent Document 3).

更に、酸化物担体に、6族金属化合物、8族金属化合物、リン酸からなる溶液を担持し、200℃以下で乾燥させた触媒を得、それに特定の化学式で示される有機酸の溶液を担持し、200℃以下で乾燥する方法が知られている(特許文献4参照)。   Furthermore, a catalyst comprising a group 6 metal compound, a group 8 metal compound, and phosphoric acid is supported on an oxide carrier to obtain a catalyst dried at 200 ° C. or lower, and a solution of an organic acid represented by a specific chemical formula is supported on the catalyst. And the method of drying at 200 degrees C or less is known (refer patent document 4).

一方、有機酸を二度用いて含浸させる触媒の製造方法についても知られている。
例えば、酸化物担体に、6族金属化合物、8族金属化合物、有機酸、リン酸からなる溶液を含浸し、200℃以下で乾燥させた触媒を得、さらに有機酸の溶液を含浸し、200℃以下で乾燥する方法が知られている(特許文献5参照)。
On the other hand, a method for producing a catalyst in which an organic acid is impregnated twice is also known.
For example, an oxide carrier is impregnated with a solution consisting of a Group 6 metal compound, a Group 8 metal compound, an organic acid, and phosphoric acid to obtain a catalyst dried at 200 ° C. or lower, and further impregnated with an organic acid solution. A method of drying at a temperature of 0 ° C. or lower is known (see Patent Document 5).

加えて、8族金属化合物と、6族金属のヘテロポリ酸を無機酸化物支持体に含浸させ、乾燥させて触媒を製造する技術も知られている(特許文献6参照)。   In addition, a technique for manufacturing a catalyst by impregnating an inorganic oxide support with a Group 8 metal compound and a heteropolyacid of a Group 6 metal and drying it is also known (see Patent Document 6).

また、酸化物担体に、モリブデン、タングステン、8族金属化合物、メルカプトカルボン酸、リン酸からなる溶液を含浸させる触媒の製造方法が知られている(特許文献7参照)。
この方法は、メルカプトカルボン酸と、モリブデン、タングステン、8族金属化合物との配位化合物を形成させて、触媒担体上に高分散させることを主目的としている。
しかし、この方法では、モリブデン、タングステンが担体上で高分散化されてしまい、後述する本発明のような二硫化モリブデンの積層化が困難となり、脱硫活性点として特に有効なCoMoS相やNiMoS相のTypeII(二硫化モリブデンの2層目以上のエッジ部に存在するCo,Ni活性点を指し、TypeIは二硫化モリブデンの1層目のエッジ部に存在するCo,Ni活性点を指し、TypeIIよりも活性が低い)の形成はないと推測される。
しかも、メルカプトカルボン酸は、硫黄を含んでおり、8族金属(Co,Ni)の近傍に存在したり、配位化を形成したりすると、脱硫活性点(CoMoS相,NiMoS相)とならずに、不活性なCo9S8種やNi3S2種となる可能性がある。
Further, a method for producing a catalyst is known in which an oxide carrier is impregnated with a solution comprising molybdenum, tungsten, a group 8 metal compound, mercaptocarboxylic acid, and phosphoric acid (see Patent Document 7).
The main purpose of this method is to form a coordination compound of mercaptocarboxylic acid and molybdenum, tungsten, or a group 8 metal compound and highly disperse it on the catalyst support.
However, in this method, molybdenum and tungsten are highly dispersed on the support, making it difficult to laminate molybdenum disulfide as in the present invention described later, and a CoMoS phase or NiMoS phase that is particularly effective as a desulfurization active site. Type II (refers to Co and Ni active points existing in the edge portion of the second layer or more of molybdenum disulfide, Type I refers to Co and Ni active points present in the edge portion of the first layer of molybdenum disulfide, than Type II It is assumed that there is no formation of (low activity).
Moreover, the mercaptocarboxylic acid contains sulfur, and if it exists in the vicinity of the group 8 metal (Co, Ni) or forms a coordination, it does not become a desulfurization active site (CoMoS phase, NiMoS phase). In addition, there is a possibility of becoming an inactive Co9S8 species or Ni3S2 species.

また、有機酸を添加し、二硫化モリブデンを積層化し、脱硫性能を高めていることが知られている(特許文献8参照)が、この触媒ではコーク劣化の面に関して更なる改良が求められる。   Further, it is known that organic acid is added and molybdenum disulfide is laminated to improve desulfurization performance (see Patent Document 8). However, this catalyst is required to further improve the coke deterioration.

リチウムに関して、酸化リチウムを含有させた担体に水素化活性金属を担持させた触媒を用いて水素化分解を行うと、沈殿物を増加することなく優れた転化率が得られることが知られている(特許文献9参照)が、この触媒では脱硫活性のさらなる改良が求められる。   Regarding lithium, it is known that when a hydrogenolysis is carried out using a catalyst in which a hydrogenation active metal is supported on a carrier containing lithium oxide, an excellent conversion rate can be obtained without increasing precipitates. (See Patent Document 9) However, this catalyst requires further improvement in desulfurization activity.

また、TPD測定による全ブレンステッド酸量が50μmol/g以上の触媒担体にアルカリ金属、アルカリ土類金属を添加し、水素化活性金属を担持した触媒が知られている(特許文献10参照)。この触媒もコーク劣化の抑制に対してさらなる改良が求められる。   Further, a catalyst is known in which an alkali metal or an alkaline earth metal is added to a catalyst carrier having a total Brnsted acid amount of 50 μmol / g or more by TPD measurement to carry a hydrogenation active metal (see Patent Document 10). This catalyst is also required to be further improved to suppress coke deterioration.

また、リチウムを添加して酸量を制御している触媒も知られている(特許文献11参照)が、この触媒も脱硫活性向上に対してさらなる改良が求められる。   Further, a catalyst in which the amount of acid is controlled by adding lithium is also known (see Patent Document 11), but this catalyst is also required to be further improved to improve the desulfurization activity.

以上の触媒は、減圧軽油に対する脱硫性能が不十分である、触媒寿命が短い等の課題を有している。このようなことから、現在、運転条件を苛酷にせずに減圧軽油の高度な脱硫を実現することができる従来よりも脱硫活性が高く、かつ触媒寿命の長い触媒を開発することが要求されている。   The above catalysts have problems such as insufficient desulfurization performance with respect to vacuum gas oil and short catalyst life. For this reason, it is currently required to develop a catalyst having higher desulfurization activity and longer catalyst life than the conventional one that can realize advanced desulfurization of vacuum gas oil without harsh operating conditions. .

特開昭61−114737号公報JP 61-114737 A 特許第2900771号明細書Japanese Patent No. 2900771 特許第2832033号明細書Japanese Patent No. 2832033 特開平4−244238号公報JP-A-4-244238 特開平6−339635号公報JP-A-6-339635 特開平6−31176号公報JP-A-6-31176 特開平1−228552号公報JP-A-1-228552 特開2003−299960号公報JP 2003-299960 A 特開平7-256106号公報JP-A-7-256106 特開2000-8050号公報JP 2000-8050 A 特開2003−103175号公報JP 2003-103175 A

本発明の目的は、コーク劣化による触媒活性の低下が少なく、炭化水素油、とりわけ減圧軽油などの軽油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる水素化脱硫触媒を提供すること、さらには該水素化脱硫触媒の製造方法および該水素化脱硫触媒を用いた減圧軽油の水素化脱硫法を提供することにある。   An object of the present invention is to provide a hydrodesulfurization catalyst that is less likely to reduce catalyst activity due to coke degradation and can remove sulfur compounds in hydrocarbon oils, particularly gas oil fractions such as vacuum gas oil, over a long period of time and with high efficiency. It is another object of the present invention to provide a method for producing the hydrodesulfurization catalyst and a hydrodesulfurization method for vacuum gas oil using the hydrodesulfurization catalyst.

本発明者らは、上記目的を達成するために検討を行ったところ、無機酸化物担体に、6族金属化合物と8族金属化合物と有機酸とリン酸およびリチウムを含む溶液を含浸させて、これらの成分の所定量を担持し、200℃以下の温度で乾燥することによって、不活性なコバルト、ニッケル種を形成せずに高活性な脱硫活性点(CoMoS相、NiMoS相等)を精密に制御でき、さらに触媒の酸性質を好適な値に制御できたためコーク析出も抑制できた。これらの結果として、脱硫反応が効率的に進行するため、反応条件を苛酷にせずに減圧軽油などの炭化水素油の高度な脱硫を容易に達成することができる高性能脱硫触媒を得ることができるとの知見を得た。   The present inventors have studied to achieve the above object, and impregnated an inorganic oxide carrier with a solution containing a Group 6 metal compound, a Group 8 metal compound, an organic acid, phosphoric acid and lithium, Precise control of highly active desulfurization active sites (CoMoS phase, NiMoS phase, etc.) without forming inactive cobalt and nickel species by supporting predetermined amounts of these components and drying at temperatures below 200 ° C. Furthermore, since the acid property of the catalyst could be controlled to a suitable value, coke deposition could be suppressed. As a result, since the desulfurization reaction proceeds efficiently, it is possible to obtain a high-performance desulfurization catalyst that can easily achieve advanced desulfurization of hydrocarbon oil such as vacuum gas oil without making the reaction conditions severe. And gained knowledge.

すなわち、本発明による炭化水素油の水素化処理触媒は、無機酸化物担体上に触媒基準、酸化物換算で6族金属から選ばれた少なくとも1種を10〜30質量%、8族金属から選ばれた少なくとも1種を1〜15質量%、リンを0.8〜8質量%、リチウムを0.1〜0.8質量%、炭素を2〜14質量%含み、比表面積が110〜300m/g、細孔容積が0.35〜0.6m1/g、平均細孔直径が約65〜180Åであることを特徴とする。この触媒は、マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有していることが好ましく、さらに予備硫化後において、透過型電子顕微鏡により観察される二硫化モリブデン層の積層数の平均値が2.5〜5であることが好ましい。
また、本発明による上記触媒の製造方法は、物性が比表面積160〜500m/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åである無機酸化物担体上に、8族金属から選ばれた少なくとも1種を含む化合物、6族金属から選ばれた少なくとも1種を含む化合物、有機酸、リチウム及びリン酸を含有する溶液を用いて、触媒基準、酸化物換算で6族金属を10〜30質量%、8族金属を1〜15質量%、リンを0.8〜8質量%、リチウム0.1〜0.8質量%、炭素を2〜14質量%となるように担持させ、200℃以下で乾燥させることを特徴とする。
さらに、本発明による上記触媒を使用した水素化脱硫方法は、上記触媒の存在下で水素分圧3〜8MPa、処理温度300〜420℃、液空間速度0.3〜5hr−1の条件で、炭化水素留分の接触反応を行うことを特徴とする。
That is, the hydrocarbon oil hydrotreating catalyst according to the present invention is selected from 10 to 30% by mass of Group 8 metal and at least one selected from Group 6 metal in terms of oxide on the basis of catalyst on the inorganic oxide carrier. 1 to 15% by mass, 0.8 to 8% by mass of phosphorus, 0.1 to 0.8% by mass of lithium, 2 to 14% by mass of carbon, and a specific surface area of 110 to 300 m 2. / G, a pore volume of 0.35 to 0.6 m1 / g, and an average pore diameter of about 65 to 180 mm. This catalyst preferably has an acid point that generates an ammonia adsorption heat of 100 to 200 KJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per 1 g of the catalyst. It is preferable that the average value of the number of laminated molybdenum disulfide layers observed with a transmission electron microscope is 2.5 to 5.
Moreover, the method for producing the catalyst according to the present invention is based on an inorganic oxide carrier having physical properties of a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m1 / g, and an average pore diameter of 60 to 150 mm. And a compound containing at least one selected from Group 8 metals, a compound containing at least one selected from Group 6 metals, a solution containing an organic acid, lithium and phosphoric acid, a catalyst standard, an oxide In terms of conversion, the group 6 metal is 10 to 30% by mass, the group 8 metal is 1 to 15% by mass, the phosphorus is 0.8 to 8% by mass, the lithium is 0.1 to 0.8% by mass, and the carbon is 2 to 14% by mass. It is made to carry | support so that it may become, and it is made to dry at 200 degrees C or less.
Furthermore, the hydrodesulfurization method using the catalyst according to the present invention is performed under the conditions of a hydrogen partial pressure of 3 to 8 MPa, a treatment temperature of 300 to 420 ° C., and a liquid space velocity of 0.3 to 5 hr −1 in the presence of the catalyst. It is characterized by conducting a catalytic reaction of a hydrocarbon fraction.

本発明によれば、上記6族金属および8族金属を活性金属とする特定の組成、特定の物性の触媒を用いて、コーク劣化による触媒活性の低下が少なく、炭化水素油、なかでも減圧軽油などの軽油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる。   According to the present invention, a catalyst having a specific composition and a specific physical property using the group 6 metal and the group 8 metal as an active metal is used, and a decrease in catalytic activity due to coke deterioration is small. The sulfur compound in the gas oil fraction such as can be removed with high efficiency over a long period of time.

本発明は、広く炭化水素油を処理対象油とすることができるが、減圧軽油などの軽油留分の処理に好適に適用することができる。
本発明を好適に適用できる原料油の代表的な性状例として、沸点範囲が150〜550℃、硫黄分が5質量%以下のものが挙げられる。
The present invention can widely use hydrocarbon oils as processing target oils, but can be suitably applied to the processing of light oil fractions such as vacuum gas oils.
Typical examples of the properties of the feedstock to which the present invention can be suitably applied include those having a boiling range of 150 to 550 ° C. and a sulfur content of 5% by mass or less.

本発明の触媒においては、各種の無機酸化物担体を用いることができるが、中でもアルミナ担体が好ましく用いられる。本発明の触媒に好ましく用いられるアルミナ担体の製造方法は、特に限定されず、通常の方法を採用することができる。すなわち、水溶性のアルミニウム化合物、例えばアルミニウムの硫酸塩、硝酸塩あるいは塩化物をアンモニアのような塩基で中和するか、またはアルカリ金属アルミン酸塩を酸性アルミニウム塩または酸で中和するなどして、生成したアルミニウムヒドロゲルまたはヒドロゾルを洗浄、熟成、成形、乾燥、焼成等の一般的な処方を施し、製造することができる。   In the catalyst of the present invention, various inorganic oxide carriers can be used, and among these, an alumina carrier is preferably used. The production method of the alumina carrier preferably used for the catalyst of the present invention is not particularly limited, and a usual method can be adopted. That is, by neutralizing a water-soluble aluminum compound such as aluminum sulfate, nitrate or chloride with a base such as ammonia, or neutralizing an alkali metal aluminate with an acidic aluminum salt or acid, etc. The produced aluminum hydrogel or hydrosol can be produced by applying a general formulation such as washing, aging, molding, drying, and baking.

触媒担体として好適な構造物性を有するアルミナ担体を得るには、沈殿剤や中和剤などを添加してアルミナゲルを作る際のpH、これら薬剤の濃度、時間、温度等を適宜調整すればよく、例えば、ゲル生成の際のpHを酸性側で行えば、比表面積が大きくなる。本発明では、pHは約4〜8、温度は約15〜90℃の範囲内とすることが好ましい。   In order to obtain an alumina carrier having structural properties suitable as a catalyst carrier, it is only necessary to appropriately adjust the pH, concentration, time, temperature, etc. of these chemicals by adding a precipitating agent or a neutralizing agent. For example, if the pH at the time of gel formation is performed on the acidic side, the specific surface area increases. In the present invention, it is preferable that the pH is about 4 to 8 and the temperature is about 15 to 90 ° C.

ゲル生成後に、熟成、不純物の洗浄除去、脱水乾燥を行う。熟成はpH4〜9、約15〜90℃で約1〜25時間の範囲で行うことが好ましい。これらの範囲外では、熟成後にアルミナゲル中の不純物が除去し難くなるのみならず、アルミナゲルの表面積が小さくなる。
また脱水乾燥は、アルミナゲルになるべく熱を加えずに、含有水分量を調整することにより行う。例えば、約15〜90℃、約0.01〜2MPaでの自然濾過、吸引濾過、加圧濾過等による方法で脱水乾燥し、脱水乾燥後の含有水分量が約60〜90質量%となるようにすることが好ましい。アルミナゲルに余分な熱を加えずに含有水分量を調整することで、アルミナの表面構造の制御が可能となり、触媒の水素化脱硫活性を向上させることができる。
After the gel is formed, aging, cleaning and removing impurities, and dehydration drying are performed. The aging is preferably performed at a pH of 4 to 9 and a temperature of about 15 to 90 ° C. for about 1 to 25 hours. Outside these ranges, not only is it difficult to remove impurities in the alumina gel after aging, but the surface area of the alumina gel is reduced.
The dehydration drying is performed by adjusting the water content without applying heat to the alumina gel. For example, it is dehydrated and dried by a method such as natural filtration at about 15 to 90 ° C. and about 0.01 to 2 MPa, suction filtration, pressure filtration, etc., so that the water content after dehydration drying is about 60 to 90% by mass. It is preferable to make it. By adjusting the water content without applying extra heat to the alumina gel, the surface structure of the alumina can be controlled, and the hydrodesulfurization activity of the catalyst can be improved.

脱水乾燥後に担体の成形を行う。成形方法は特に限定されず、押出成形、打錠成形あるいは油中造粒等の一般的な方法を用いることができる。なお成形時の圧力や速度を調整することによっても、アルミナの構造物性である細孔容積や細孔分布等を制御することができる。   The carrier is formed after dehydration and drying. The molding method is not particularly limited, and a general method such as extrusion molding, tableting molding, or granulation in oil can be used. The pore volume and pore distribution, which are structural properties of alumina, can also be controlled by adjusting the pressure and speed during molding.

アルミナ担体の形状は重質油留分の触媒層の流通を考慮し、円柱状、三葉柱状、四葉柱状、ダンベル柱状あるいはリング状のペレット形状であることが望ましいが、反応条件下で触媒層の圧力損失(圧力差)が小さい形状が選ばれる。同様にこのペレット径は反応条件下で触媒層の前後で圧力損失が大きくならないように1〜2mmの範囲にあることが望ましい。なおペレット径とは、ペレットの形状が円柱であるもの以外は、その最も太い部分の断面の長径で表す。   The shape of the alumina support is preferably a cylindrical, trilobal, quadrilobal, dumbbell, or ring pellet in consideration of the distribution of the heavy oil fraction catalyst layer. A shape with a small pressure loss (pressure difference) is selected. Similarly, the pellet diameter is preferably in the range of 1 to 2 mm so that pressure loss does not increase before and after the catalyst layer under the reaction conditions. In addition, a pellet diameter is represented by the long diameter of the cross section of the thickest part except what the shape of a pellet is a cylinder.

成形後、常温〜約150℃で約3〜24時間乾燥し、引き続き約200〜600℃で約3〜24時間焼成することにより、アルミナ担体を得ることができる。   After molding, the alumina support can be obtained by drying at room temperature to about 150 ° C. for about 3 to 24 hours, followed by firing at about 200 to 600 ° C. for about 3 to 24 hours.

本発明の触媒は、後述するように、無機酸化物担体、なかでもアルミナ担体に活性成分を担持させた後は、200℃以下で乾燥するだけで調製するため、後述する触媒の機械的特性(側面破壊強度や最密充填かさ密度等)はアルミナ担体などの無機酸化物担体の焼成で得ることとなるが、アルミナ担体の焼成は、その機械的強度、比表面積、細孔容積、平均細孔径と言った特性を勘案して、約580℃で約1.5時間から約700℃で約3時間までの間で行うことが好ましい。   As will be described later, the catalyst of the present invention is prepared by simply drying at 200 ° C. or lower after the active component is supported on an inorganic oxide carrier, especially an alumina carrier. Side fracture strength, close-packed bulk density, etc.) are obtained by firing an inorganic oxide carrier such as an alumina carrier. The firing of an alumina carrier involves mechanical strength, specific surface area, pore volume, and average pore diameter. In view of the above characteristics, it is preferable to carry out the reaction at about 580 ° C. for about 1.5 hours to about 700 ° C. for about 3 hours.

アルミナ担体などの無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒にするために、比表面積が160〜500m/g、好ましくは175〜450m/g、細孔容積が0.55〜0.9ml/g、好ましくは0.65〜0.8ml/g、平均細孔直径が60〜150Å、好ましくは65〜110Åである必要がある。 The specific surface area, pore volume, and average pore diameter of an inorganic oxide carrier such as an alumina carrier are such that the specific surface area is 160 to 500 m 2 / g, preferably a catalyst having high hydrodesulfurization activity for hydrocarbon oils. 175 to 450 m 2 / g, pore volume of 0.55 to 0.9 ml / g, preferably 0.65 to 0.8 ml / g, average pore diameter of 60 to 150 mm, preferably 65 to 110 mm There is.

この理由は次の通りである。
含浸溶液中で6族金属と8族金属は錯体(6族金属はリン酸と配位してヘテロポリ酸、8族金属は有機酸と配位して有機金属錯体)を形成していると考えられるため、担体の比表面積が160m/g未満では、含浸の際、錯体の嵩高さのために金属の高分散化が困難となり、その結果、得られる触媒を硫化処理しても、上記の活性点(CoMoS相、NiMoS相等)形成の精密な制御が困難になると推測される。
比表面積が500m/gより大きいと、細孔直径が極端に小さくなるため、触媒の細孔直径も小さくなる。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
The reason is as follows.
In the impregnating solution, the group 6 metal and the group 8 metal are considered to form a complex (the group 6 metal is coordinated with phosphoric acid to form a heteropolyacid, and the group 8 metal is coordinated to an organic acid to form an organometallic complex). Therefore, when the specific surface area of the support is less than 160 m 2 / g, it is difficult to highly disperse the metal due to the bulk of the complex during impregnation. Presumably, precise control of the formation of active sites (CoMoS phase, NiMoS phase, etc.) becomes difficult.
When the specific surface area is larger than 500 m 2 / g, the pore diameter becomes extremely small, so that the pore diameter of the catalyst also becomes small. When the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity is lowered.

細孔容積が0.55ml/g未満では、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量となる。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となる。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。
細孔容積が0.9ml/gより大きいと、比表面積が極端に小さくなって、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
When the pore volume is less than 0.55 ml / g, a small amount of solvent enters the pore volume when the catalyst is prepared by the usual impregnation method. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is lowered, and a low activity catalyst is obtained. In order to increase the solubility of the active metal compound, there is a method in which a large amount of acid such as nitric acid is added. However, if too much is added, the support has a low surface area, which is a major cause of desulfurization performance degradation.
When the pore volume is larger than 0.9 ml / g, the specific surface area becomes extremely small, the dispersibility of the active metal is deteriorated, and the catalyst has a low desulfurization activity.

平均細孔直径が60Å未満では、活性金属を担持した触媒の細孔直径も小さくなる。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
平均細孔直径が150Åより大きいと、触媒の比表面積が小さくなる。触媒の比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
When the average pore diameter is less than 60 mm, the pore diameter of the catalyst supporting the active metal is also small. When the pore diameter of the catalyst is small, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, and the desulfurization activity is lowered.
When the average pore diameter is larger than 150 mm, the specific surface area of the catalyst becomes small. When the specific surface area of the catalyst is small, the dispersibility of the active metal is deteriorated and the catalyst has a low desulfurization activity.

本発明の触媒に含有させる6族金属は、モリブデン、タングステンが好ましく、モリブデンが特に好ましい。
6族金属の含有量は、触媒基準、酸化物換算で、10〜30質量%、好ましくは16〜28質量%である。
10質量%未満では、6族金属に起因する効果を発現させるには不十分であり、30質量%を超えると、6族金属の含浸(担持)工程で6族金属化合物の凝集が生じ、6族金属の分散性が悪くなるばかりか、効率的に分散する6族金属含有量の限度を超えたり、触媒表面積が大幅に低下する等により、触媒活性の向上がみられない。
The Group 6 metal contained in the catalyst of the present invention is preferably molybdenum or tungsten, and particularly preferably molybdenum.
The content of the Group 6 metal is 10 to 30% by mass, preferably 16 to 28% by mass in terms of catalyst and oxide.
If it is less than 10% by mass, it is not sufficient for exhibiting the effect due to the Group 6 metal. If it exceeds 30% by mass, the Group 6 metal is agglomerated in the impregnation (supporting) process of the Group 6 metal, and 6 Not only the dispersibility of the group metal is deteriorated, but the catalytic activity is not improved due to exceeding the limit of the content of the group 6 metal to be efficiently dispersed or the surface area of the catalyst being greatly reduced.

8族金属は、コバルト、ニッケルが好ましい。
8族金属の含有量は、触媒基準、酸化物換算で、1〜15質量%、好ましくは3〜8質量%である。
1質量%未満では、8族金属に帰属する活性点が十分に得られず、15質量%を超えると、8族金属の含有(担持)工程で8族金属化合物の凝集が生じ、8族金属の分散性が悪くなることに加え、不活性なコバルト、ニッケル種であるCo9S8種、Ni3S2種の前駆体であるCoO種、NiO種等や、担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が生成すると考えられ、触媒能の向上がみられないばかりか、却って触媒能が低下する。
The group 8 metal is preferably cobalt or nickel.
The content of the group 8 metal is 1 to 15% by mass, preferably 3 to 8% by mass in terms of catalyst and oxide.
If the amount is less than 1% by mass, the active sites attributed to the group 8 metal cannot be obtained sufficiently. If the amount exceeds 15% by mass, the group 8 metal compound is aggregated in the step of containing (supporting) the group 8 metal. In addition to inactive cobalt, nickel species, Co9S8 species, Ni3S2 species, CoO species, NiO species, etc., Co spinel species incorporated into the support lattice, Ni It is considered that spinel species and the like are generated, and not only the catalytic performance is not improved, but also the catalytic performance is lowered.

8族金属、6族金属の上記した含有量において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、〔8族金属〕/〔8族金属+6族金属〕の値で、約0.1〜0.25である。
この値が約0.1未満では、脱硫の活性点と考えられるCoMoS相、NiMoS相等の生成が抑制され、脱硫活性向上の度合いがあまり高くならず、約0.25より大きいと、上記の不活性なコバルト、ニッケル種(Co9S8種、Ni3S2種)の生成が助長され、触媒活性向上を抑制する傾向がある。
In the above-described contents of the Group 8 metal and the Group 6 metal, the optimum mass ratio of the Group 8 metal to the Group 6 metal is preferably [group 8 metal] / [group 8 metal + group 6 metal] in terms of oxide. The value is about 0.1 to 0.25.
If this value is less than about 0.1, the formation of CoMoS phase, NiMoS phase, etc., which are considered as active sites for desulfurization, is suppressed, and the degree of desulfurization activity improvement is not so high. Generation of active cobalt and nickel species (Co9S8 species, Ni3S2 species) is promoted, and there is a tendency to suppress improvement in catalyst activity.

リンの含有量は、触媒基準、酸化物換算で、0.8〜8質量%、好ましくは1.5〜6質量%、より好ましくは2〜5質量%である。リンは混練法によりアルミナ等の酸化物担体調製時に含有させてもよいし、担体を調製した後、含浸法等により担持してもよい。
0.8質量%未満では、触媒表面上で6族金属がヘテロポリ酸を形成できないため、予備硫化工程で高分散なMoS2相が形成せず、上記の脱硫活性点を十分に配置できないと推測される。特に、前述した予備硫化後の触媒に二硫化モリブデンの層を、平均積層数で2.5〜5となるように形成するためには、1.5質量%以上とすることが好ましい。
一方、8質量%より多いと、触媒表面上で6族金属が十分にヘテロポリ酸を形成するため、予備硫化工程で高品質な上記の脱硫活性点が形成されるものの、過剰なリンが被毒物質として脱硫活性点を被覆するため、活性低下の主な原因になると推測される。
The phosphorus content is 0.8 to 8% by mass, preferably 1.5 to 6% by mass, more preferably 2 to 5% by mass in terms of catalyst and oxide. Phosphorus may be contained at the time of preparing an oxide carrier such as alumina by a kneading method, or may be supported by an impregnation method after preparing the carrier.
If it is less than 0.8% by mass, the group 6 metal cannot form a heteropolyacid on the catalyst surface, so it is estimated that the highly dispersed MoS2 phase cannot be formed in the preliminary sulfidation step, and the above desulfurization active sites cannot be sufficiently arranged. The In particular, in order to form the molybdenum disulfide layer on the catalyst after the preliminary sulfidation so that the average number of layers is 2.5 to 5, it is preferably 1.5% by mass or more.
On the other hand, if the amount is more than 8% by mass, the group 6 metal sufficiently forms a heteropolyacid on the catalyst surface, so that the high-quality desulfurization active sites are formed in the preliminary sulfidation step, but excess phosphorus is poisoned. Since desulfurization active sites are coated as a substance, it is presumed to be the main cause of the decrease in activity.

本発明では触媒の酸性質を制御するために塩基性元素を使用する。アルカリ金属およびアルカリ土類金属が好ましく、より好ましくはアルカリ金属、特にリチウムが好ましい。本発明ではリチウムを用いることとし、その担持量は、触媒を基準として酸化物換算で表示して、0.1〜0.8質量%である。上記範囲の担持量にすることで所望の酸性質、酸量に制御することができ、高い活性を維持した状態でコーク劣化が起こり難い触媒が得られる。リチウム担持量が0.1質量%より少ないと所望の酸性質、酸量に制御できずコーク劣化を引き起こす。また、リチウム担持量が0.8質量%を超えると触媒活性に必要な酸点が減少し、触媒活性が低下する。   In the present invention, a basic element is used to control the acid properties of the catalyst. Alkali metals and alkaline earth metals are preferred, more preferably alkali metals, particularly lithium. In the present invention, lithium is used, and the supported amount is 0.1 to 0.8% by mass in terms of oxide based on the catalyst. By setting the loading in the above range, it is possible to control to a desired acid property and acid amount and to obtain a catalyst in which coke deterioration hardly occurs while maintaining high activity. If the amount of lithium supported is less than 0.1% by mass, the desired acid properties and acid amount cannot be controlled, causing coke deterioration. On the other hand, when the amount of lithium supported exceeds 0.8% by mass, the acid sites necessary for the catalytic activity are reduced, and the catalytic activity is lowered.

炭素の含有量は、触媒基準、元素換算で、2〜14質量%、好ましくは3〜10質量%である。
この炭素は、有機酸、好ましくはクエン酸由来の炭素であって、2質量%未満では、触媒表面上で8族金属が有機酸と錯体化合物を十分に形成せず、この場合、予備硫化工程において錯体化されていない8族金属が6族金属の硫化に先立って硫化されることにより、脱硫活性点(CoMoS相、NiMoS相等)が十分に形成されず、不活性なコバルト、ニッケル種であるCo種、Ni種等が形成されると推測される。
14質量%より多いと、触媒表面上で8族金属が有機酸と十分に錯体化合物を形成するため、予備硫化工程において多くの上記脱硫活性点を得ることができるが、過剰な炭素が被毒物質として脱硫活性点を被覆するため、活性低下の原因になると推測される。
The carbon content is 2 to 14% by mass, preferably 3 to 10% by mass in terms of catalyst and element.
This carbon is derived from an organic acid, preferably citric acid, and if it is less than 2% by mass, the group 8 metal does not sufficiently form a complex compound with the organic acid on the catalyst surface. Since the uncomplexed group 8 metal is sulfided prior to the sulfurization of the group 6 metal, desulfurization active sites (CoMoS phase, NiMoS phase, etc.) are not sufficiently formed, and are inactive cobalt and nickel species. It is estimated that Co 9 S 8 species, Ni 3 S 2 species and the like are formed.
If it exceeds 14% by mass, the group 8 metal sufficiently forms a complex compound with the organic acid on the surface of the catalyst, so that many desulfurization active sites can be obtained in the preliminary sulfidation step, but excess carbon is poisoned. Since the desulfurization active site is coated as a substance, it is estimated that it causes a decrease in activity.

なお、金属の担持量に関して、「触媒を基準として酸化物換算で表示する」とは、触媒中に含まれる全ての金属種の質量を金属それぞれの酸化物として算出し、その合計質量を各金属の酸化物質量で割った値で表示することを意味する。なお、アルミニウムは3価、モリブデンは6価、ニッケル、コバルトは2価、そしてリチウムは1価の金属として求めた。また、金属担持量の測定方法は、触媒を混酸に溶解した後、ICP分光法(誘導結合高周波プラズマ分光法)により分析し、触媒基準の金属酸化物換算で表示した。   Regarding the amount of metal supported, “display in terms of oxide based on the catalyst” means that the mass of all metal species contained in the catalyst is calculated as the oxide of each metal, and the total mass is calculated for each metal. It means to display by the value divided by the oxide mass. Aluminum was trivalent, molybdenum was hexavalent, nickel and cobalt were bivalent, and lithium was monovalent metal. The amount of metal supported was measured by ICP spectroscopy (inductively coupled high-frequency plasma spectroscopy) after dissolving the catalyst in a mixed acid and displayed in terms of catalyst-based metal oxide.

本発明の触媒は、炭化水素油、なかでも減圧軽油などの軽油留分に対する水素化脱硫活性を高めるために、上記の組成を有すると共に、その比表面積、細孔容積及び平均細孔径が、以下の値であることが必要である。
比表面積(窒素吸着法(BET法)で測定した比表面積)は、約110〜300m/gとする。
約110m/g未満では、触媒表面上で、錯体を形成していると考えられる6族金属(リン酸と配位してヘテロポリ酸)と8族金属(有機酸と配位して有機金属錯体)が、錯体の嵩高さのために、十分に高分散化しておらず、その結果、硫化処理しても、上記の活性点形成の精密制御が困難となって低脱硫活性の触媒となり、約300m/gより大きいと、細孔直径が極端に小さくなるため、触媒の細孔直径も小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
The catalyst of the present invention has the above composition in order to increase the hydrodesulfurization activity for hydrocarbon oils, particularly gas oil fractions such as vacuum gas oil, and the specific surface area, pore volume and average pore diameter are as follows: Must be the value of.
The specific surface area (specific surface area measured by the nitrogen adsorption method (BET method)) is about 110 to 300 m 2 / g.
Below about 110 m 2 / g, a Group 6 metal (coordinating with phosphoric acid to form a heteropolyacid) and a Group 8 metal (coordinating with an organic acid to form an organic metal are considered to form a complex on the catalyst surface. Complex) is not sufficiently highly dispersed due to the bulk of the complex, and as a result, even if it is subjected to sulfidation treatment, it becomes difficult to precisely control the above-mentioned active site formation, resulting in a catalyst with low desulfurization activity. If it is larger than about 300 m 2 / g, the pore diameter becomes extremely small, so the pore diameter of the catalyst also becomes small, and during the hydrotreatment, the diffusion of sulfur compounds into the catalyst pores becomes insufficient, Desulfurization activity decreases.

水銀圧入法で測定した細孔容積は、約0.35〜0.6m1/g、好ましくは約0.38〜0.55m1/gとする。約0.35m1/g未満では、水素化処理の際、硫黄化合物の触媒細孔内での拡散が不十分となって脱硫活性が不十分となり、約0.6m1/gより大きいと、触媒の比表面積が極端に小さくなって、活性金属の分散性が低下し、低脱硫活性の触媒となる。   The pore volume measured by the mercury intrusion method is about 0.35 to 0.6 m1 / g, preferably about 0.38 to 0.55 m1 / g. If it is less than about 0.35 m1 / g, the diffusion of sulfur compounds in the catalyst pores becomes insufficient during the hydrotreatment, resulting in insufficient desulfurization activity. The specific surface area becomes extremely small, the dispersibility of the active metal is lowered, and the catalyst has a low desulfurization activity.

水銀圧入法で測定した細孔分布での平均細孔直径は、約65〜180Å、好ましくは約70〜145Åとする。約65Å未満では、反応物質が細孔内に拡散し難くなるため、脱硫反応が効率的に進行せず、約180Åより大きいと、細孔内の拡散性は良いものの、細孔内表面積が減少するため、触媒の有効比表面積が減少し、活性が低くなる。
また、上記の細孔条件を満たす細孔の有効数を多くするために、触媒の細孔径分布、すなわち平均細孔径±約15Åの細孔径を有する細孔の割合は、約75%以上、好ましくは約80%以上とする。
しかも、細孔分布は、モノモーダルであることが好ましい。触媒の細孔径分布がスティープなものでないと、活性に関与しない細孔が増大し、脱硫活性が減少する。
The average pore diameter in the pore distribution measured by mercury porosimetry is about 65 to 180 mm, preferably about 70 to 145 mm. If it is less than about 65 mm, the reactant does not easily diffuse into the pores, so the desulfurization reaction does not proceed efficiently. If it is larger than about 180 mm, the diffusibility in the pores is good, but the surface area in the pores decreases. Therefore, the effective specific surface area of the catalyst is reduced and the activity is lowered.
In order to increase the effective number of pores satisfying the above-mentioned pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having an average pore size of about ± 15 mm is preferably about 75% or more, preferably Is about 80% or more.
Moreover, the pore distribution is preferably monomodal. If the pore size distribution of the catalyst is not steep, the pores not involved in the activity increase and the desulfurization activity decreases.

本発明の触媒は、マイクロカロリメトリー法にて100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmol、好ましくは290〜380μmolの範囲で有していることが好ましい。アンモニアが触媒表面の酸点に吸着する際に発生する吸着熱は、酸点の酸性質によって変化する。この吸着熱が100〜200KJ/molである酸点を、上記範囲で有する触媒は減圧軽油の水素化脱硫反応における活性点が十分であり、かつ径時劣化が非常に少ない。該酸点が270μmol/g未満では触媒活性が十分でなく、380μmol/gを超えると所望のコーク生成を抑制できないので好ましくない。   It is preferable that the catalyst of the present invention has an acid point that generates an ammonia adsorption heat of 100 to 200 KJ / mol by a microcalorimetry method in a range of 270 to 380 μmol, preferably 290 to 380 μmol, per 1 g of the catalyst. The heat of adsorption generated when ammonia is adsorbed on the acid sites on the catalyst surface varies depending on the acid properties of the acid sites. A catalyst having an acid point with an adsorption heat of 100 to 200 KJ / mol within the above range has a sufficient active site in hydrodesulfurization reaction of vacuum gas oil and has very little deterioration over time. If the acid point is less than 270 μmol / g, the catalytic activity is not sufficient, and if it exceeds 380 μmol / g, desired coke formation cannot be suppressed, such being undesirable.

また、本発明の触媒は、硫化処理した後に、透過型電子顕微鏡で観察した場合における二硫化モリブデン層の積層数の平均値が2.5〜5であるものが好ましい。
すなわち、この二硫化モリブデンの層は、無機酸化物担体上に形成されて、触媒の接触面積を大きくする役割をなすと共に、該層内にCoMoS相、NiMoS相等の活性点が形成されるが、積層数の平均値が2.5未満の触媒では、低活性なCoMoS相やNiMoS相のタイプIの割合が多くなって高活性を発現せず、5より多い触媒では、高活性なCoMoS相やNiMoS相のタイプIIは形成されるものの、活性点の絶対数が少なくなるため、やはり高活性を発現しない。
The catalyst of the present invention preferably has an average value of the number of laminated molybdenum disulfide layers of 2.5 to 5 when observed with a transmission electron microscope after sulfiding.
That is, this molybdenum disulfide layer is formed on the inorganic oxide support and serves to increase the contact area of the catalyst, and active points such as a CoMoS phase and a NiMoS phase are formed in the layer. In the case of a catalyst having an average number of layers of less than 2.5, the ratio of type I of the low activity CoMoS phase or NiMoS phase is increased, and high activity is not exhibited. Although NiMoS phase type II is formed, the absolute number of active sites is reduced, so that high activity is not exhibited.

以上の特性を有する本発明の触媒を得るには、以下に説明する本発明の方法によることが好ましい。
すなわち、前記した成分からなり、前記した物性を有するアルミナ担体などの無機酸化物担体に、前記した6族金属の少なくとも1種を含む化合物、前記した8族金属の少なくとも1種を含む化合物、有機酸、リチウム、リン酸を含有する溶液を用い、6族金属、8族金属、リン、リチウム、炭素を上記した含有量となるように担持し、乾燥する方法によるが、具体的には、例えば、無機酸化物担体を、これらの化合物等を含有する溶液に含浸し、乾燥する方法により行う。
In order to obtain the catalyst of the present invention having the above characteristics, it is preferable to use the method of the present invention described below.
That is, a compound comprising at least one of the above Group 6 metals, a compound containing at least one of the above Group 8 metals in an inorganic oxide carrier such as an alumina carrier having the above-described properties, and an organic material comprising the above components, organic Depending on the method in which a solution containing acid, lithium, and phosphoric acid is used, the group 6 metal, the group 8 metal, phosphorus, lithium, and carbon are supported so as to have the above-described contents and dried. Specifically, for example, The inorganic oxide carrier is impregnated with a solution containing these compounds and dried.

上記の含浸溶液中に使用する6族金属を含む化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは三酸化モリブデン、モリブドリン酸である。
これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲内で6族金属が含有される量とする。
Examples of the compound containing a Group 6 metal used in the impregnation solution include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and preferably molybdenum trioxide and molybdophosphoric acid.
The amount of these compounds added to the impregnation solution is such that the Group 6 metal is contained in the resulting catalyst within the above-described range.

8族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられ、好ましくは炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物である。特に好ましくは、炭酸コバルト、炭酸ニッケルに比べて分解速度が遅いクエン酸コバルト化合物、クエン酸ニッケル化合物である。
すなわち、分解速度が速いと、二硫化モリブデンの層とは別に、コバルトやニッケルが独自の層を形成してしまい、高活性なCoMoS相やNiMoS相の形成が不十分となるのに対し、分解速度が遅いと、二硫化モリブデンのリム−エッジ部分に、高活性なこれらの相を十分に形成することができる。
Examples of the compound containing a group 8 metal include cobalt carbonate, nickel carbonate, cobalt citrate compound, nickel citrate compound, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and preferably cobalt carbonate and nickel carbonate. , Cobalt citrate compounds and nickel citrate compounds. Particularly preferred are cobalt citrate compounds and nickel citrate compounds, which have a lower decomposition rate than cobalt carbonate and nickel carbonate.
That is, when the decomposition rate is high, apart from the molybdenum disulfide layer, cobalt or nickel forms a unique layer, and the formation of a highly active CoMoS phase or NiMoS phase becomes insufficient. When the speed is low, these highly active phases can be sufficiently formed at the rim-edge portion of molybdenum disulfide.

上記のクエン酸コバルトとしては、クエン酸第一コバルト(Co(C)、クエン酸水素コバルト(CoHC)、クエン酸コバルトオキシ塩(Co(C・CoO)等が挙げられ、クエン酸ニッケルとしては、クエン酸第一ニッケル(Ni(C)、クエン酸水素ニッケル(NiHC)、クエン酸ニッケルオキシ塩(Ni(C・NiO)等が挙げられる。
これらコバルトとニッケルのクエン酸化合物の製法は、例えば、コバルトの場合、クエン酸の水溶液に炭酸コバルトを溶かすことにより得られる。このような製法で得られたクエン酸化合物の水分を、除去しないで、そのまま、触媒調製に用いてもかまわない。
これらの化合物の上記含浸溶液中への添加量は、得られる触媒中に上記した範囲内で8族金属が含有される量とする。
Examples of cobalt citrate include cobalt citrate (Co 3 (C 6 H 5 O 7 ) 2 ), cobalt hydrogen citrate (CoHC 6 H 5 O 7 ), and cobalt citrate oxysalt (Co 3 (C 6 H 5 O 7 ) 2 .CoO) and the like, and as nickel citrate, nickel citrate (Ni 3 (C 6 H 5 O 7 ) 2 ), nickel hydrogen citrate (NiHC 6 H 5 O) 7 ), nickel citrate oxysalt (Ni 3 (C 6 H 5 O 7 ) 2 .NiO), and the like.
For example, in the case of cobalt, this method of producing a citric acid compound of cobalt and nickel can be obtained by dissolving cobalt carbonate in an aqueous solution of citric acid. You may use for the catalyst preparation as it is, without removing the water | moisture content of the citric acid compound obtained by such a manufacturing method.
The amount of these compounds added to the impregnation solution is such that the group 8 metal is contained within the above-described range in the resulting catalyst.

有機酸としては、クエン酸1水和物、無水クエン酸、イソクエン酸、リンゴ酸、酒石酸、シュウ酸、コハク酸、グルタル酸、アジピン酸、安息香酸、フタル酸、イソフタル酸、サリチル酸、マロン酸等が挙げられ、好ましくはクエン酸1水和物である。これらの有機酸は、硫黄を実質的に含まない化合物を使用することが重要である。
有機酸としてクエン酸を使用する場合は、クエン酸単独でもよいし、上記したコバルトやニッケル(8族金属)とのクエン酸化合物であってもよい。
有機酸の添加量は、特に制限はないが、得られる触媒中に前記の炭素含有量で炭素が残る量とすることが重要であり、また8族金属に対し、モル比で、有機酸/8族金属=0.2〜1.2とすることが好ましい。このモル比が0.2未満では、8族金属に帰属する活性点が十分に得られない場合があり、1.2を超えると、含浸液が高粘度となるため、担持工程に時間を要することになる。
なお、8族金属のクエン酸化合物を用いる場合、有機酸量が不足する時は、有機酸をさらに添加する。
Organic acids include citric acid monohydrate, anhydrous citric acid, isocitric acid, malic acid, tartaric acid, oxalic acid, succinic acid, glutaric acid, adipic acid, benzoic acid, phthalic acid, isophthalic acid, salicylic acid, malonic acid, etc. And citric acid monohydrate is preferred. It is important that these organic acids use compounds that are substantially free of sulfur.
When citric acid is used as the organic acid, citric acid alone or a citric acid compound with cobalt or nickel (group 8 metal) described above may be used.
The amount of the organic acid added is not particularly limited, but it is important that the amount of carbon remaining in the obtained catalyst is such that the carbon content remains, and the organic acid / It is preferable to set it as group 8 metal = 0.2-1.2. If this molar ratio is less than 0.2, active sites attributed to Group 8 metals may not be sufficiently obtained, and if it exceeds 1.2, the impregnating solution becomes highly viscous, so that the supporting process takes time. It will be.
When a group 8 metal citrate compound is used, an organic acid is further added when the amount of the organic acid is insufficient.

リン酸は、種々のリン酸、具体的には、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げられ、特にオルトリン酸が好ましい。
リン酸は、6族金属との化合物であるモリブドリン酸を用いることもできる。この場合、得られる触媒中に前記含有量でリンが含有されない場合には、リン酸をさらに添加する。
Examples of phosphoric acid include various phosphoric acids, specifically orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid and the like, and orthophosphoric acid is particularly preferable.
As the phosphoric acid, molybdophosphoric acid which is a compound with a Group 6 metal can also be used. In this case, phosphoric acid is further added when phosphorus is not contained in the obtained catalyst in the above content.

リチウムとしては、種々のものを用いることができる。具体例として、水酸化リチウム、硝酸リチウム、シュウ酸リチウム、硫酸リチウム、塩化リチウム、炭酸リチウム、酢酸リチウム等が挙げられるが水酸化リチウム、硝酸リチウム、酢酸リチウムが好ましい。   Various types of lithium can be used. Specific examples include lithium hydroxide, lithium nitrate, lithium oxalate, lithium sulfate, lithium chloride, lithium carbonate, and lithium acetate, with lithium hydroxide, lithium nitrate, and lithium acetate being preferred.

一方リチウムの担持方法により、調製された触媒の脱硫活性およびコーク劣化が大きく影響される。含浸法が、触媒表面上の酸量、酸性質を効率よく制御することができるので好ましい。
活性金属及びリチウムはいずれの順序で担持してもよい。すなわち、活性金属とリチウムを同時に担持してもよいし、リチウムを担持後に乾燥・焼成して金属酸化物とした後、活性金属を担持してもよい。
特に好ましくは、活性金属およびリチウムのいずれも含浸法で担持する方法であるが、その際も、活性金属およびリチウムを同時に含浸してもよいし、個々に含浸してもよい。また、個々に含浸する場合、含浸する順序はリチウムを先に含浸し、乾燥・焼成して金属酸化物とした後、活性金属を含浸する。
On the other hand, the desulfurization activity and coke deterioration of the prepared catalyst are greatly affected by the lithium loading method. The impregnation method is preferable because the acid amount and acid properties on the catalyst surface can be efficiently controlled.
The active metal and lithium may be supported in any order. That is, the active metal and lithium may be supported simultaneously, or the active metal may be supported after the lithium is supported and then dried and fired to form a metal oxide.
Particularly preferred is a method in which both of the active metal and lithium are supported by the impregnation method. In this case, the active metal and lithium may be impregnated simultaneously or individually. Moreover, when impregnating individually, the impregnation order is impregnated with lithium first, dried and fired to obtain a metal oxide, and then impregnated with an active metal.

なお、上記の6族金属の化合物や、8族金属の化合物が含浸溶液に十分に溶解しない場合には、これらの化合物と共に、酸(硝酸、有機酸《クエン酸、リンゴ酸、酒石酸等》)を使用してもよく、好ましくは有機酸の使用であり、有機酸を用いる場合は、得られる触媒中に、この有機酸による炭素が残存することもあるため、触媒中の炭素含有量が上記範囲内となるようにすることが重要である。   If the above Group 6 metal compound or Group 8 metal compound is not sufficiently dissolved in the impregnation solution, an acid (nitric acid, organic acid << citric acid, malic acid, tartaric acid, etc. >>) together with these compounds May be used, preferably an organic acid is used. When an organic acid is used, carbon from the organic acid may remain in the resulting catalyst. It is important to be within range.

上記の含浸溶液において、上記の各成分を溶解させるために用いる溶媒は、水である。
溶媒の使用量は、少なすぎれば、担体を充分に含浸することができず、多すぎれば、溶解した活性金属が担体上に含浸せず、含浸溶液容器のへりなどに付着してしまい、所望の担持量が得られないため、担体100gに対して、50〜90gであり、好ましくは60〜85gである。
In the above impregnation solution, the solvent used for dissolving each of the above components is water.
If the amount of the solvent used is too small, the support cannot be sufficiently impregnated, and if it is too large, the dissolved active metal does not impregnate on the support and adheres to the edge of the impregnation solution container. Thus, the amount is 50 to 90 g, preferably 60 to 85 g based on 100 g of the carrier.

上記溶媒に上記各成分を溶解させて含浸溶液を調製するが、このときの温度は、0℃を超え100℃以下でよく、この範囲内の温度であれば、上記溶媒に上記各成分を良好に溶解させることができる。   The above components are dissolved in the solvent to prepare an impregnation solution. The temperature at this time may be over 0 ° C. and 100 ° C. or less, and if the temperature is within this range, the above components are good in the solvent. Can be dissolved.

上記含浸溶液のpHは5未満が好ましい。5以上だと水酸イオンが増え、有機酸と8族金属との間の配位能力が弱まり、8族金属の錯体形成が抑制される。その結果、脱硫活性点(CoMoS相、NiMoS相)の数を大幅に増加させることができない。   The pH of the impregnating solution is preferably less than 5. When it is 5 or more, hydroxide ions increase, the coordination ability between the organic acid and the group 8 metal is weakened, and complex formation of the group 8 metal is suppressed. As a result, the number of desulfurization active points (CoMoS phase, NiMoS phase) cannot be increased significantly.

このようにして調製した含浸溶液に、上記の無機酸化物担体を含浸させて、これら溶液中の上記の各成分を上記の無機酸化物担体に担持させる。
含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満、より好ましくは10〜50℃、さらに好ましくは15〜30℃であり、含浸時間は、好ましくは15分〜3時間、より好ましくは20分〜2時間、さらに好ましくは30分〜1時間である。
なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまう。
また、含浸中は、攪拌することが好ましい。
The impregnating solution thus prepared is impregnated with the inorganic oxide carrier, and the components in the solution are supported on the inorganic oxide carrier.
Various conditions can be adopted as the impregnation conditions. Usually, the impregnation temperature is preferably more than 0 ° C. and less than 100 ° C., more preferably 10 to 50 ° C., further preferably 15 to 30 ° C., and the impregnation time. Is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, and even more preferably 30 minutes to 1 hour.
If the temperature is too high, drying occurs during the impregnation and the degree of dispersion becomes uneven.
Moreover, it is preferable to stir during the impregnation.

溶液含浸担持後、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度(LOI《Loss on ignition》約50%以下となるように) 除去し、この後、空気気流中、窒素気流中、あるいは真空中で、200℃以下、好ましくは約80〜200℃で約10分〜24時間、より好ましくは約100〜150℃で約5〜20時間の乾燥を行う。
乾燥を、200℃より高い温度で行うと、金属と錯体化していると思われる有機酸が触媒表面から離脱し、その結果、得られる触媒を硫化処理しても上記の活性点(CoMoS相、NiMoS相等)形成の精密制御が困難となり、不活性なコバルト、ニッケル種であるCo種、Ni種等が形成され、また二硫化モリブデンの平均積層数が2.5よりも少なくなると考えられ、低脱硫活性の触媒となる。
After carrying the solution impregnation, water is removed to some extent (so that the LOI << Loss on ignition >> is about 50% or less) at room temperature to about 80 ° C. in a nitrogen stream, air stream, or vacuum, and then air Drying is performed at 200 ° C. or less, preferably at about 80 to 200 ° C. for about 10 minutes to 24 hours, more preferably at about 100 to 150 ° C. for about 5 to 20 hours in an air stream, a nitrogen stream or in a vacuum.
When drying is performed at a temperature higher than 200 ° C., the organic acid that appears to be complexed with the metal is released from the catalyst surface. As a result, even if the resulting catalyst is subjected to sulfidation treatment, the active sites (CoMoS phase, NiMoS phase, etc.) is difficult to precisely control, and inactive cobalt, nickel species of Co 9 S 8 species, Ni 3 S 2 species, etc. are formed, and the average number of layers of molybdenum disulfide is more than 2.5. It is considered that the amount of the catalyst decreases, and becomes a catalyst with low desulfurization activity.

なお、本発明において、触媒の形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉型、四葉型等を採用することができる。触媒の大きさは、通常、直径が約1〜2mm、長さ約2〜5mmが好ましい。
触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で約2lbs/mm以上が好ましい。SCSをそのようにすることにより、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となることが避けられる。
触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、約0.6〜1.2(g/ml)が好ましい。
また、触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。
In the present invention, the shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a cylindrical shape, a trilobal type, a four-leaf type, and the like can be adopted. The size of the catalyst is usually preferably about 1 to 2 mm in diameter and about 2 to 5 mm in length.
The mechanical strength of the catalyst is preferably about 2 lbs / mm or more in terms of side surface breaking strength (SCS << Side crash strength >>). By doing so, it is avoided that the catalyst charged in the reactor is destroyed, a differential pressure is generated in the reactor, and the hydration operation cannot be continued.
The close-packed bulk density (CBD) of the catalyst is preferably about 0.6 to 1.2 (g / ml).
The distribution state of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

本発明の水素化処理方法は、水素分圧約3〜8MPa、約300〜420℃、及び液空間速度約0.3〜5hr−1の条件で、以上の触媒と硫黄化合物を含む炭化水素油、なかでも減圧軽油などの軽油留分とを接触させて脱硫を行い、該炭化水素油中の難脱硫性硫黄化合物を含む硫黄化合物を減少する方法である。本発明の方法で得られる生成油は、従来技術によるよりもより硫黄分及び窒素分を少なくすることができる。 The hydrotreating method of the present invention includes a hydrocarbon oil containing the above catalyst and a sulfur compound under conditions of a hydrogen partial pressure of about 3 to 8 MPa, a temperature of about 300 to 420 ° C., and a liquid space velocity of about 0.3 to 5 hr −1 . In particular, the desulfurization is performed by contacting a light oil fraction such as vacuum gas oil to reduce sulfur compounds including hardly desulfurizable sulfur compounds in the hydrocarbon oil. The product oil obtained by the process of the present invention can be less sulfur and nitrogen than by the prior art.

本発明の水素化処理方法を商業規模で行うには、本発明の触媒の固定床、移動床、あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を下から上に通過させ、反応装置の上部から生成物を流出させるものである。
また、本発明の触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよいし、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, moving bed or fluidized bed type catalyst layer of the catalyst of the present invention is formed in the reactor, and the feedstock is introduced into the reactor. The hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst layer is formed in the reactor, feedstock is introduced into the top of the reactor, the fixed bed is passed from bottom to top, and the product is drained from the top of the reactor. Is.
Further, it may be a one-stage hydrotreating method in which the catalyst of the present invention is filled in a single reactor, or a multi-stage continuous hydrotreating method in which several reactors are filled. Good.

なお、本発明の触媒は、使用前に(すなわち、本発明の水素化処理方法を行うのに先立って)、反応装置中で硫化処理して活性化する。この硫化処理は、約200〜400℃、好ましくは約250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行う。
この硫化処理により、本発明の触媒は、前述したように、平均積層数で2.5〜5の二硫化モリブデンの層を形成し、この二硫化モリブデンのリム−エッジ部分に、高活性なCoMoS相やNiMoS相の活性点を形成することとなる。
Note that the catalyst of the present invention is activated by sulfiding in a reactor before use (that is, prior to performing the hydrotreatment method of the present invention). This sulfidation treatment is conducted at about 200 to 400 ° C., preferably about 250 to 350 ° C. under a hydrogen atmosphere at normal pressure or higher, and a petroleum distillate containing sulfur compounds, dimethyl disulfide or disulfide. It is performed using a material added with a sulfurizing agent such as carbon or hydrogen sulfide.
By this sulfidation treatment, the catalyst of the present invention forms a molybdenum disulfide layer having an average number of layers of 2.5 to 5 as described above, and a highly active CoMoS is formed on the rim-edge portion of the molybdenum disulfide. The active point of the phase or NiMoS phase is formed.

〔触媒の調製〕
実施例1
硝酸リチウム0.37gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積320m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。さらにイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.8gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。
(Preparation of catalyst)
Example 1
0.37 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant type flask, and then immersed at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and baked for about 4 hours at 500 degreeC in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Furthermore, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.8 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst A.

実施例2
硝酸リチウム量を2.30gにする以外は、全て実施例1と同様に調製して、触媒Bを得た。
Example 2
Except that the amount of lithium nitrate was 2.30 g, everything was prepared in the same manner as in Example 1 to obtain Catalyst B.

実施例3
硝酸リチウム量を2.96gにする以外は、全て実施例1と同様に調製して、触媒Cを得た。
Example 3
A catalyst C was obtained in the same manner as in Example 1 except that the amount of lithium nitrate was changed to 2.96 g.

実施例4
イオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.8g、硝酸リチウム2.30gおよびクエン酸1水和物8.4gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積320m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Dを得た。
Example 4
In 33.0 g of ion-exchanged water, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.8 g of orthophosphoric acid, 2.30 g of lithium nitrate and 8.4 g of citric acid monohydrate were dissolved. All of this aqueous solution was dropped in 50 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst D.

実施例5
硝酸リチウム2.30gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積190m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。さらにイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Eを得た。
Example 5
2.30 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets having a specific surface area of 190 m 2 / g in an eggplant type flask, and then immersed at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and baked for about 4 hours at 500 degreeC in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.80 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst E.

実施例6
使用するアルミナペレットの比表面積を165m/gとする以外は全て実施例5と同様に調整して触媒Fを得た。
Example 6
Except that the specific surface area of the alumina pellet used was 165 m 2 / g, everything was adjusted in the same manner as in Example 5 to obtain Catalyst F.

比較例1
イオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gを溶解させた。この水溶液の全てをナス型フラスコ中で、アルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成させ、触媒gを得た。
Comparative Example 1
In 33.0 g of ion-exchanged water, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, and 3.80 g of orthophosphoric acid were dissolved. All of this aqueous solution was dropped into 50 g of alumina pellets in an eggplant-shaped flask and then immersed for 3 hours at room temperature. Then, it air-dried in nitrogen stream, and baked at 500 degreeC in the muffle furnace for about 4 hours, and obtained the catalyst g.

比較例2
硝酸リチウム2.30gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積320m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。さらにイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成させ、触媒hを得た。
Comparative Example 2
2.30 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant type flask, and then immersed at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and baked for about 4 hours at 500 degreeC in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.80 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 3 hours at room temperature. Then, it air-dried in nitrogen stream, and baked at 500 degreeC in the muffle furnace for about 4 hours, and the catalyst h was obtained.

比較例3
イオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、比表面積320m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒iを得た。
Comparative Example 3
29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.80 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped in 50 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst i.

比較例4
硝酸リチウム2.30gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積150m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。さらにイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒jを得た。
Comparative Example 4
2.30 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets having a specific surface area of 150 m 2 / g in an eggplant type flask, and then immersed at room temperature for 3 hours. Then, it air-dried in nitrogen stream, and baked for about 4 hours at 500 degreeC in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.80 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst j.

比較例5
硝酸リチウム7.56gをイオン交換水41gに溶解させ、ナス型フラスコ中で、比表面積320m/gのアルミナペレット50gに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中500℃で約4時間焼成し、リチウム担持アルミナ担体を得た。さらにイオン交換水33.0gにモリブドリン酸29.81g、炭酸コバルト7.68g、オルトリン酸3.80gおよびクエン酸1水和物8.40gを溶解させた。この水溶液の全てをナス型フラスコ中で、先ほどのリチウム担持アルミナに滴下した後、室温で3時間浸漬した。この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒kを得た。
Comparative Example 5
7.56 g of lithium nitrate was dissolved in 41 g of ion-exchanged water, dropped in 50 g of alumina pellets having a specific surface area of 320 m 2 / g in an eggplant type flask, and then immersed for 3 hours at room temperature. Then, it air-dried in nitrogen stream, and baked for about 4 hours at 500 degreeC in the muffle furnace, and obtained the lithium carrying | support alumina support | carrier. Further, 29.81 g of molybdophosphoric acid, 7.68 g of cobalt carbonate, 3.80 g of orthophosphoric acid, and 8.40 g of citric acid monohydrate were dissolved in 33.0 g of ion-exchanged water. All of this aqueous solution was dropped into the lithium-supported alumina in the eggplant-shaped flask and then immersed for 3 hours at room temperature. Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain catalyst k.

〔触媒の性状〕
実施例1〜5及び比較例1〜5で得た触媒の化学性状を表1に、500℃で4時間焼成後の物理性状および、マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点の量(触媒1g当たり)と触媒の構造物性とを併せて表2に示す。
なお、これらの性状を分析する方法等を以下に示す。
[Catalyst properties]
The chemical properties of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 to 5 are shown in Table 1, the physical properties after calcination at 500 ° C. for 4 hours, and the ammonia adsorption of 100 to 200 KJ / mol measured by the microcalorimetry method. Table 2 shows the amount of acid sites that generate heat (per gram of catalyst) and the structural properties of the catalyst.
A method for analyzing these properties is shown below.

〔化学性状、物理性状の分析〕
・炭素質量は、触媒を乳鉢にて粉砕した後、(株)柳本株式会社製、CHN分析計(MT−5)を用い、950℃で燃焼させ、燃焼生成ガスを差動熱伝導度計で測定した。
・比表面積は、触媒を400℃で1時間真空脱気した後、日本ベル(株)製の表面積測定装置(ベルソープ28)を用い窒素吸着法(BET法)で測定し、細孔容積と平均細孔径は同様に処理した触媒につき(株)島津製作所製(AUTOPORE−9520)を用い水銀圧入法で測定した。
・二硫化モリブデン層の積層数は、透過型電子顕微鏡(TEM)(日本電子社製商品名“JEM−2010”)を用いて、次の要領で測定した。
1.触媒を流通式反応管に詰め、室温で窒素気流中に5分間保持し、雰囲気ガスをHS(5容量%)/Hに切替え、速度5℃/minで昇温し、400℃に達した後、1時間保持した。その後、同雰囲気下で200℃まで降温し、雰囲気ガスを窒素に切替え、常温まで降温し、硫化処理を終了した。
2.この硫化処理後の触媒をメノウ乳鉢で粉砕した。
3.粉砕した触媒の少量をアセトン中に分散させた。
4.得られた懸濁液をマイクログリッド上に滴下し、室温で乾燥して試料とした。
5.試料をTEMの測定部にセットし、加速電圧200kVで測定した。直接倍率は20万倍で、5視野を測定した。
6.写真を200万倍になるように引き延ばし(サイズ16.8cm×16.8cm)、写真上で目視できる二硫化モリブデン層の積層数を測り取った。
・マイクロカロリメトリー法は、試料(ここでは触媒)を所定量、吸着管に充填し、所定温度のもとアンモニアガスを一定量のパルスで導入し、試料に吸着させ、この吸着の際に生じる吸着熱を測定し、酸強度、酸量を特定する方法である。ここで、吸着熱は酸強度を、吸着量(導入量)は酸量に相当する。
本発明において、測定を行ったマイクロカロリメトリー法の測定条件は、次のとおりである。
即ち、測定装置として、東京理工(株)製、高温熱測定法表面解析装置CSA−450Gを使用し、触媒(試料)を400℃で4時間真空乾燥させた後、恒温槽の温度を150℃とし、アンモニアガスを導入して吸着熱をTian-Calvet型熱量計を用いて測定した。
[Analysis of chemical and physical properties]
-The carbon mass was combusted at 950 ° C using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. after grinding the catalyst in a mortar, and the combustion product gas was measured with a differential thermal conductivity meter. It was measured.
The specific surface area was measured by a nitrogen adsorption method (BET method) using a surface area measuring device (Bell Soap 28) manufactured by Nippon Bell Co., Ltd. after vacuum degassing of the catalyst at 400 ° C. for 1 hour. The pore diameter was measured by mercury porosimetry using the same treated catalyst (manufactured by Shimadzu Corp. (AUTOPORE-9520)).
-The lamination | stacking number of the molybdenum disulfide layer was measured in the following way using the transmission electron microscope (TEM) (JEOL company brand name "JEM-2010").
1. The catalyst is packed in a flow-type reaction tube, kept in a nitrogen stream at room temperature for 5 minutes, the atmospheric gas is switched to H 2 S (5% by volume) / H 2 , the temperature is increased at a rate of 5 ° C./min, and the temperature reaches 400 ° C. After reaching, it was held for 1 hour. Thereafter, the temperature was lowered to 200 ° C. under the same atmosphere, the atmosphere gas was switched to nitrogen, the temperature was lowered to room temperature, and the sulfiding treatment was completed.
2. The catalyst after the sulfurization treatment was pulverized in an agate mortar.
3. A small amount of the ground catalyst was dispersed in acetone.
4). The obtained suspension was dropped on a microgrid and dried at room temperature to prepare a sample.
5). The sample was set in the measurement part of TEM and measured at an acceleration voltage of 200 kV. The direct magnification was 200,000 times and 5 fields of view were measured.
6). The photograph was stretched to 2 million times (size: 16.8 cm × 16.8 cm), and the number of laminated molybdenum disulfide layers visible on the photograph was measured.
・ In the microcalorimetry method, a predetermined amount of sample (here, catalyst) is filled in an adsorption tube, ammonia gas is introduced in a certain amount of pulses at a predetermined temperature and adsorbed on the sample, and the adsorption that occurs during this adsorption It is a method of measuring heat and specifying acid strength and acid amount. Here, the heat of adsorption corresponds to the acid strength, and the adsorption amount (introduction amount) corresponds to the acid amount.
In the present invention, the measurement conditions of the microcalorimetry method in which the measurement was performed are as follows.
That is, as a measuring device, a surface analysis device CSA-450G manufactured by Tokyo Riko Co., Ltd. was used, and the catalyst (sample) was vacuum-dried at 400 ° C. for 4 hours, and then the temperature of the thermostatic bath was set to 150 ° C. Then, ammonia gas was introduced and the heat of adsorption was measured using a Tian-Calvet calorimeter.

Figure 2005270937
Figure 2005270937

Figure 2005270937
Figure 2005270937

〔減圧軽油の水素化処理反応〕
以上の実施例1〜6及び比較例1〜5で得た触媒の水素化脱硫活性を、原料油に減圧軽油を用い、下記に示す方法で評価した。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で前処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で脱硫反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
[Hydrolysis reaction of vacuum gas oil]
The hydrodesulfurization activity of the catalysts obtained in Examples 1 to 6 and Comparative Examples 1 to 5 was evaluated by the following method using vacuum gas oil as the raw material oil.
First, the catalyst was filled into a high-pressure flow reactor to form a fixed bed catalyst layer, and pretreated under the following conditions.
Next, a mixed fluid of the raw material oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the desulfurization reaction proceeds under the following conditions. The product oil was separated by a gas-liquid separator.

触媒の前処理条件:
圧力(水素分圧);4.9MPa
硫化剤;上記の〔減圧軽油の水素化処理反応〕における原料油(アラビアンライト減圧軽油)
温度 ;290℃で15hr維持、次いで320℃で15hr維持のステップ昇温(昇温速度は25℃/hr)
Catalyst pretreatment conditions:
Pressure (hydrogen partial pressure); 4.9 MPa
Sulfurizing agent; feedstock oil (Arabyanlite vacuum gas oil) in [Hydrolysis reaction of vacuum gas oil]
Temperature: Step temperature rise of 290 ° C. for 15 hours and then 320 ° C. for 15 hours (temperature rise rate is 25 ° C./hr)

脱硫反応条件:
反応温度 ;360℃
圧力(水素分圧);4.9MPa
液空間速度 ;0.66hr−1
水素/オイル比 ;500m(normal)/Kl
Desulfurization reaction conditions:
Reaction temperature: 360 ° C
Pressure (hydrogen partial pressure); 4.9 MPa
Liquid space velocity; 0.66 hr −1
Hydrogen / oil ratio: 500 m 3 (normal) / Kl

原料油の性状:
油種 ;アラビアンライト減圧軽油
比重(15/4℃);0.9185
蒸留性状 ;初留点が349.0℃、50%点が449.0℃、
90%点が529.0℃、終点が566.0℃
硫黄成分 ;2.45質量%
窒素成分 ;0.065質量%
流動点 ;35℃アスファルテン;<100ppm
アニリン点 ;82℃
Raw oil properties:
Oil type: Arabian light vacuum gas oil Specific gravity (15/4 ° C); 0.9185
Distillation properties: initial boiling point 349.0 ° C, 50% point 449.0 ° C,
90% point is 529.0 ° C, end point is 566.0 ° C
Sulfur component: 2.45% by mass
Nitrogen component: 0.065% by mass
Pour point: 35 ° C. asphaltene; <100 ppm
Aniline point: 82 ° C

脱硫活性については、以下の方法で解析した。
360℃で反応装置を運転し、20日経過した時点で生成油を採取し、生成油中の硫黄分と原料油の硫黄分および液空間速度から、脱硫反応速度定数(Ks)を求めた。このKs値の求め方を以下に示す。
生成油の硫黄分(Sp)の減少量に対して、1.5次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。
脱硫反応速度定数=2×〔1/(Sp)0.5−1/(Sf)0.5〕×(LHSV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(hr−1
脱硫比活性(%)=各脱硫反応速度定数/比較触媒aの脱硫反応速度定数×100
The desulfurization activity was analyzed by the following method.
The reaction apparatus was operated at 360 ° C., and the produced oil was sampled after 20 days. The desulfurization reaction rate constant (Ks) was determined from the sulfur content in the produced oil, the sulfur content of the raw material oil, and the liquid space velocity. The method for obtaining this Ks value is shown below.
The desulfurization reaction rate constant (Ks) is defined as a constant in the reaction rate equation that obtains a reaction order of 1.5 with respect to the amount of reduction in the sulfur content (Sp) of the product oil.
The higher the reaction rate constant, the better the catalytic activity.
Desulfurization reaction rate constant = 2 × [1 / (Sp) 0.5 −1 / (Sf) 0.5 ] × (LHSV)
In formula, Sf: Sulfur content (mass%) in raw material oil
Sp: Sulfur content (mass%) in reaction product oil
LHSV: Liquid space velocity (hr −1 )
Desulfurization specific activity (%) = desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a × 100

原料油並びに生成油の硫黄濃度の分析はニューリー(株)社製、X線硫黄分析計(RX−610SA)で求めた。なお、反応速度定数が高い程、触媒の水素化脱硫活性が優れていることを示す。
触媒A、B、C、D、E、F、g、h、i、j、kの評価結果を、触媒gの反応速度定数を100とした場合の相対値で表3に示す。また評価終了後の触媒上に析出した炭素量を測定した。これらの結果を表4に示す。
Analysis of the sulfur concentration of the raw material oil and the product oil was obtained with an X-ray sulfur analyzer (RX-610SA) manufactured by Newly Corporation. In addition, it shows that the hydrodesulfurization activity of a catalyst is excellent, so that reaction rate constant is high.
The evaluation results of the catalysts A, B, C, D, E, F, g, h, i, j, and k are shown in Table 3 as relative values when the reaction rate constant of the catalyst g is 100. Further, the amount of carbon deposited on the catalyst after the evaluation was measured. These results are shown in Table 4.

Figure 2005270937
Figure 2005270937

Figure 2005270937
Figure 2005270937

表3に示される結果から、本発明の触媒は、水素化脱硫活性が高いことが判る。一方、活性金属のみ担持した触媒fでは、平均層数も低く、また触媒の吸着熱も高いため、脱硫活性が悪い。リチウム担持後、活性金属及び有機酸を含んだ含浸液をアルミナ担体に担持した後に、焼成を行うことで炭素を含まなくなったの触媒gは、二硫化モリブデンの平均積層数が少なく、水素化脱硫活性が低い。またリチウムのみを除いた触媒hも触媒の吸着熱が高いため脱硫活性も低い。また触媒の吸着熱も高いため、触媒上の炭素析出量も多いことも脱硫活性が低いことの要因として考えられる。また比表面積の小さい比較例Iの触媒fにおいても水素化脱硫活性が低いことが判る。最後にリチウム担持量が多い触媒jについても触媒の吸着熱が低すぎるため脱硫活性が低いことがわかる。

From the results shown in Table 3, it can be seen that the catalyst of the present invention has high hydrodesulfurization activity. On the other hand, the catalyst f carrying only the active metal has a low average layer number and a high adsorption heat of the catalyst, so that the desulfurization activity is poor. After supporting lithium, impregnating liquid containing active metal and organic acid is supported on an alumina carrier, and then calcined to remove carbon, catalyst g has less average number of molybdenum disulfide stacks and hydrodesulfurization. Low activity. Further, the catalyst h excluding only lithium also has a low desulfurization activity due to its high adsorption heat. In addition, since the heat of adsorption of the catalyst is high, a large amount of carbon deposited on the catalyst is also considered as a factor of low desulfurization activity. It can also be seen that the hydrodesulfurization activity of the catalyst f of Comparative Example I having a small specific surface area is low. Finally, it can be seen that the catalyst j having a large amount of lithium supported has a low desulfurization activity because the heat of adsorption of the catalyst is too low.

Claims (5)

無機酸化物担体上に触媒基準、酸化物換算で周期律表第6族金属から選ばれた少なくとも1種を10〜30質量%、周期律表第8族金属から選ばれた少なくとも1種を1〜15質量%、リンを0.8〜8質量%、炭素を2〜14質量%含み、さらにリチウムを0.1〜0.8質量%担持してなる、比表面積110〜300m/g、細孔容積0.35〜0.6m1/g、平均細孔直径約65〜180Åであることを特徴とする炭化水素油の水素化処理触媒。 10-30% by mass of at least one selected from Group 6 metals of the Periodic Table on the basis of catalyst on an inorganic oxide support, and 1 at least one selected from Group 8 metals of the Periodic Table on an oxide basis Specific surface area of 110 to 300 m 2 / g, comprising 15 to 15% by mass, 0.8 to 8% by mass of phosphorus, 2 to 14% by mass of carbon, and 0.1 to 0.8% by mass of lithium. Hydrocarbon oil hydrotreating catalyst having a pore volume of 0.35 to 0.6 m1 / g and an average pore diameter of about 65 to 180 mm. マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有していることを特徴とする請求項1記載の炭化水素油の水素化処理触媒。 2. The hydrocarbon oil according to claim 1, wherein the hydrocarbon oil has an acid point which generates an ammonia adsorption heat of 100 to 200 KJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per 1 g of the catalyst. Hydroprocessing catalyst. 触媒が、予備硫化後において、透過型電子顕微鏡により観察される二硫化モリブデン相の積層数の平均値が2.5〜5であることを特徴とする請求項1または2記載の炭化水素油の水素化処理触媒。 3. The hydrocarbon oil according to claim 1, wherein the catalyst has an average value of 2.5 to 5 of the number of laminated molybdenum disulfide phases observed by a transmission electron microscope after preliminary sulfidation. 4. Hydroprocessing catalyst. 比表面積160〜500m/g、細孔容積0.55〜0.9m1/g、平均細孔直径60〜150Åである無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、リン酸、リチウムを含有する溶液を用い、触媒基準、酸化物換算で周期律第6族金属を10〜30質量%、周期律表第8族金属を1〜15質量%、リンを0.8〜8質量%、リチウム0.1〜0.8質量%、炭素を2〜14質量%となるように担持させ、200℃以下で乾燥させることを特徴とする請求項1〜3のいずれかに記載の炭化水素油の水素化処理触媒の製造方法。 On an inorganic oxide support having a specific surface area of 160 to 500 m 2 / g, a pore volume of 0.55 to 0.9 m 1 / g, and an average pore diameter of 60 to 150 mm, at least selected from Group 8 metals of the periodic table A compound containing at least one compound, a compound containing at least one selected from Group 6 metals in the Periodic Table, a solution containing an organic acid, phosphoric acid, and lithium, using a catalyst standard and an oxide equivalent group 6 10-30% by mass of metal, 1-15% by mass of Group 8 metal of the periodic table, 0.8-8% by mass of phosphorus, 0.1-0.8% by mass of lithium, 2-14% by mass of carbon The method for producing a hydrocarbon oil hydrotreating catalyst according to any one of claims 1 to 3, wherein the catalyst is dried at 200 ° C or lower. 請求項1〜3のいずれかに記載の触媒の存在下、水素分圧3〜8MPa、温度300〜420℃、液空間速度0.3〜5hr−1の条件で、炭化水素油留分の接触反応を行うことを特徴とする炭化水素油の水素化処理方法。

Contact of a hydrocarbon oil fraction in the presence of the catalyst according to any one of claims 1 to 3 under conditions of a hydrogen partial pressure of 3 to 8 MPa, a temperature of 300 to 420 ° C, and a liquid space velocity of 0.3 to 5 hr- 1. A method for hydrotreating a hydrocarbon oil, characterized by carrying out a reaction.

JP2004092531A 2004-03-26 2004-03-26 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil Expired - Lifetime JP4503327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092531A JP4503327B2 (en) 2004-03-26 2004-03-26 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092531A JP4503327B2 (en) 2004-03-26 2004-03-26 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil

Publications (3)

Publication Number Publication Date
JP2005270937A true JP2005270937A (en) 2005-10-06
JP2005270937A5 JP2005270937A5 (en) 2006-09-14
JP4503327B2 JP4503327B2 (en) 2010-07-14

Family

ID=35171138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092531A Expired - Lifetime JP4503327B2 (en) 2004-03-26 2004-03-26 Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4503327B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503521A (en) * 2006-09-14 2010-02-04 アルベマール・ネーザーランズ・ベーブイ Method for recovering Group VI-B metal from spent catalyst
CN103160312A (en) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 Application of tooth-spherical distillate hydrogenation catalyst
JP2015059075A (en) * 2013-09-20 2015-03-30 株式会社日本触媒 System for producing hydrogen by decomposing ammonia
CN112705222A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Petroleum resin hydrogenation catalyst and preparation method thereof
CN112705226A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Distillate oil hydrogenation catalyst and preparation method thereof
CN112705225A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Oil silicon capturing agent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256106A (en) * 1994-03-15 1995-10-09 Texaco Dev Corp Catalyst for hydrocracking of heavy hydrocarbon supply raw material
JP2000313890A (en) * 1999-04-02 2000-11-14 Akzo Nobel Nv Method for use in reforming ultradeep hds of hydrocarbon feedstock
JP2003277772A (en) * 2002-03-27 2003-10-02 Nippon Kecchen Kk Method of two-stage hydrotreating of heavy hydrocarbon oil
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256106A (en) * 1994-03-15 1995-10-09 Texaco Dev Corp Catalyst for hydrocracking of heavy hydrocarbon supply raw material
JP2000313890A (en) * 1999-04-02 2000-11-14 Akzo Nobel Nv Method for use in reforming ultradeep hds of hydrocarbon feedstock
JP2003299960A (en) * 2001-06-20 2003-10-21 Cosmo Oil Co Ltd Hydrogenation treatment catalyst and method for light oil, and manufacturing method therefor
JP2003277772A (en) * 2002-03-27 2003-10-02 Nippon Kecchen Kk Method of two-stage hydrotreating of heavy hydrocarbon oil
JP2007507334A (en) * 2003-10-03 2007-03-29 アルベマーレ ネザーランズ ビー.ブイ. Method for activating hydrotreating catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503521A (en) * 2006-09-14 2010-02-04 アルベマール・ネーザーランズ・ベーブイ Method for recovering Group VI-B metal from spent catalyst
KR101434695B1 (en) 2006-09-14 2014-08-26 알베마를 네덜란드 비.브이. Process for recovering group vi-b metals from spent catalysts
CN103160312A (en) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 Application of tooth-spherical distillate hydrogenation catalyst
JP2015059075A (en) * 2013-09-20 2015-03-30 株式会社日本触媒 System for producing hydrogen by decomposing ammonia
CN112705222A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Petroleum resin hydrogenation catalyst and preparation method thereof
CN112705226A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Distillate oil hydrogenation catalyst and preparation method thereof
CN112705225A (en) * 2019-10-25 2021-04-27 中国石油化工股份有限公司 Oil silicon capturing agent and preparation method thereof
CN112705222B (en) * 2019-10-25 2022-10-11 中国石油化工股份有限公司 Petroleum resin hydrogenation catalyst and preparation method thereof
CN112705226B (en) * 2019-10-25 2022-10-11 中国石油化工股份有限公司 Distillate oil hydrogenation catalyst and preparation method thereof
CN112705225B (en) * 2019-10-25 2022-11-08 中国石油化工股份有限公司 Oil silicon capturing agent and preparation method thereof

Also Published As

Publication number Publication date
JP4503327B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
US9987622B2 (en) Hydrodesulfurization catalyst for diesel oil and hydrotreating method for diesel oil
KR102277834B1 (en) Process for preparing a hydrotreating catalyst
JP2008290071A (en) Method for manufacturing catalyst for hydrotreating hydrocarbon oil and regeneration method
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP2006512430A (en) Hydrotreating hydrocarbons using a mixture of catalysts
JP5815321B2 (en) Hydrocarbon oil hydrotreating catalyst, hydrocarbon oil hydrotreating catalyst production method, and hydrocarbon oil hydrotreating method
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4493997B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP2004074148A (en) Carrier containing titanium, its production method, hydrogen treating catalyst for hydrocarbon oil, and hydrogen treating method using it
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
JP2004016975A (en) Carrier containing titanium, its manufacturing method, and catalyst for hydrogenating hydrocarbon oil
JP2005013848A (en) Carrier for hydrogenation catalyst, hydrogenation catalyst of hydrocarbon oil and hydrogenation method using the hydrogenation catalyst
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP5193103B2 (en) Method for producing hydrotreating catalyst

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R150 Certificate of patent or registration of utility model

Ref document number: 4503327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250