JP2003277772A - Method of two-stage hydrotreating of heavy hydrocarbon oil - Google Patents

Method of two-stage hydrotreating of heavy hydrocarbon oil

Info

Publication number
JP2003277772A
JP2003277772A JP2002088655A JP2002088655A JP2003277772A JP 2003277772 A JP2003277772 A JP 2003277772A JP 2002088655 A JP2002088655 A JP 2002088655A JP 2002088655 A JP2002088655 A JP 2002088655A JP 2003277772 A JP2003277772 A JP 2003277772A
Authority
JP
Japan
Prior art keywords
catalyst
pore volume
weight
group
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088655A
Other languages
Japanese (ja)
Other versions
JP3978064B2 (en
Inventor
Satoshi Abe
安部  聡
Katsuhisa Fujita
勝久 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KECCHEN KK
Original Assignee
NIPPON KECCHEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KECCHEN KK filed Critical NIPPON KECCHEN KK
Priority to JP2002088655A priority Critical patent/JP3978064B2/en
Publication of JP2003277772A publication Critical patent/JP2003277772A/en
Application granted granted Critical
Publication of JP3978064B2 publication Critical patent/JP3978064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrotreating method which comprises subjecting a heavy hydrocarbon oil containing a large quantity of impurities comprising e.g. sulfur, residual carbon, a metal, nitrogen and an asphaltene, particularly a heavy oil containing a large quantity of heavy vacuum residual oil to hydrotreating to a high degree while removing it appropriately and which is excellent in reducing or controlling the amount of a sediment formed. <P>SOLUTION: This method of hydrotreating of a heavy hydrocarbon oil comprises: bringing a heavy hydrocarbon oil into contact with a catalyst (1) having a specified specific surface area and pore distribution in the presence of hydrogen in a first reactor filled with the catalyst (1) to effect first-stage hydrotreating; and bringing the hydrotreated oil obtained in the first stage into contact with catalysts (2a) and (2b) each having a specified specific surface area and pore distribution in the presence of hydrogen in a second reactor filled with the catalysts (2a) and (2b) to effect second-stage hydrotreating. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、重質炭化水素油の
水素化処理方法、特に炭化水素油の中でも重質な留分で
ある減圧残渣油の水素化処理において高性能を発揮する
触媒組み合わせ方法に関する。より詳しくは、硫黄、金
属、アスファルテン等の夾雑物(不純物)を多量に含有
する重質炭化水素油の水素化処理において、機能の異な
る触媒同士を組み合わせて用いることにより、目的とす
る水素化脱硫(HDS)、水素化脱金属(HDM)及び
水素化脱アスファルテン(asphaltene removal)を進め
ながら、且つ装置運転時に熱交換器に堆積して運転の障
害となるセディメント生成を抑制できる水素化処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating a heavy hydrocarbon oil, and more particularly to a catalyst combination which exhibits high performance in hydrotreating a vacuum residue oil which is a heavy fraction among hydrocarbon oils. Regarding the method. More specifically, in the hydrotreating of heavy hydrocarbon oils containing large amounts of impurities (impurities) such as sulfur, metals, and asphaltene, by using catalysts with different functions in combination, the desired hydrodesulfurization can be achieved. (HDS), hydrodemetallization (HDM) and hydrodeasphaltene removal (asphaltene removal), and a method for hydrotreating that can suppress the formation of sediments that are deposited on a heat exchanger during the operation of the apparatus and become an obstacle to the operation. .

【0002】[0002]

【従来の技術】石油精製時に生じる、例えば538℃以
上の沸点を有する成分を50重量%以上含むような常圧
残油(Atmospheric residue;AR)や90重量%以上
含む減圧残油(Vacuum Residue;VR)は重質炭化水素
油と呼ばれている。このような重質炭化水素油を水素化
処理して、硫黄等の夾雑物の除去並びに付加価値の高い
軽質油への転換を行って利用に供することが強く求めら
れている。こうした重質留分の分解により生成される軽
質油は、相当する直留留分に比べて高硫黄濃度であるた
め、再度脱硫、水素化処理を必要とする。
2. Description of the Related Art Atmospheric residue (AR) containing 50% by weight or more of a component having a boiling point of 538 ° C. or higher, or a vacuum residue (Vacuum Residue; VR) is called heavy hydrocarbon oil. It is strongly demanded that such a heavy hydrocarbon oil be hydrotreated to remove impurities such as sulfur and be converted into a light oil having a high added value for use. The light oil produced by the cracking of such a heavy distillate has a higher sulfur concentration than the corresponding straight distillate, and therefore requires desulfurization and hydrotreating again.

【0003】水素化・分解処理によって除去される対象
である夾雑物としては、硫黄、残留炭素(Conradson Ca
rbon Residue;CCR)、各種金属、窒素、アスファル
テンが挙げられるが、今日、触媒などの改良によってこ
うした夾雑物を高度に除去できるようになった。しか
し、アスファルテンは縮合芳香族化合物の集合体であ
り、周囲の溶剤成分とバランス良く解け合っているの
で、過度にアスファルテンを分解した場合、凝集して粒
子状物質(スラッジ;sludge)や堆積物(セディメン
ト;sediment)が生成してしまう。
Contaminants to be removed by hydrogenation / cracking treatment include sulfur and residual carbon (Conradson Ca
Rbon Residue (CCR), various metals, nitrogen, asphaltene, etc., but nowadays, such contaminants can be highly removed by improving catalysts and the like. However, since asphaltene is an aggregate of condensed aromatic compounds and dissolves in a well-balanced manner with the surrounding solvent components, when asphaltene is decomposed excessively, it aggregates into particulate matter (sludge) and sediment (sludge). A sediment) is generated.

【0004】かかるセディメントとは、詳しくはShell
Hot Filteration Solid Test(SHFST)により試料を試
験することで測定される沈殿物であり(Van Kerknoort
らの文献、J. Inst. pet. 37 p.596-604(1951)参照)、
通常の含有量は、精製工程中のフラッシュドラム缶出液
から回収される沸点が340℃以上の生成物中において
約0.19〜1重量%程度であると言われている。
The details of the sediment are Shell.
Precipitates measured by testing samples with the Hot Filteration Solid Test (SHFST) (Van Kerknoort
Et al., J. Inst. Pet. 37 p.596-604 (1951)),
The usual content is said to be about 0.19 to 1% by weight in the product having a boiling point of 340 ° C. or higher, which is recovered from the flash drum bottom liquid in the refining process.

【0005】セディメントは、石油精製時に熱交換器や
反応器等の装置内に沈殿し堆積するので、流路を閉塞さ
せ装置の運転に大きな支障をきたす恐れがある。特に減
圧残渣油を多く含む、より重質な炭化水素油の水素化処
理においては、アスファルテン量が多いことによりセデ
ィメントの生成が顕著となる。このため、高度な水素化
処理を達成しつつ、同時にセディメントの生成をできる
だけ少なくすることが水素化処理用触媒の改良において
新たな課題となっている。
Since the sediment is deposited and deposited in a device such as a heat exchanger or a reactor during oil refining, there is a possibility that the flow path will be blocked and the operation of the device will be seriously hindered. In particular, in the hydrotreatment of a heavier hydrocarbon oil containing a large amount of vacuum residue oil, the production of sediment becomes remarkable due to the large amount of asphaltene. For this reason, it is a new subject in the improvement of the hydrotreating catalyst to achieve a high degree of hydrotreating and at the same time minimize the formation of sediment.

【0006】一方、重質留分の分解により生成される軽
質油は、相当する直留留分に比べ硫黄濃度が高いので、
再度脱硫、水素化処理を必要とする。そこで低硫黄の軽
質油を製造するには、重質留分の水素化・分解において
セディメント生成を抑制し、安定運転を行いつつ、分解
軽質留分に対する脱硫性能の高い触媒または触媒の組み
合わせが必要とされる。
On the other hand, the light oil produced by the cracking of the heavy distillate has a higher sulfur concentration than the corresponding straight distillate,
Desulfurization and hydrotreatment are required again. Therefore, in order to produce low-sulfur light oil, it is necessary to suppress the formation of sediment during hydrogenation / cracking of heavy fractions and to perform stable operation, and to use a catalyst or a combination of catalysts with high desulfurization performance for cracked light fractions. It is said that

【0007】本発明者らは、2段階水素化処理における
第1段階と第2段階で異なる機能を持つ触媒を組み合わ
せて使用し、さらに第2段階で特定の触媒組成と細孔径
分布を有する2種類の触媒を混在させて使用することに
より、それぞれの触媒を単独で使用した場合よりもセデ
ィメント生成の抑制に優れ、なおかつ軽質留分に対する
高度な脱硫性能を発揮することを見出した。すなわち、
特定の細孔径を有する異なる触媒を3種類(第1段階で
1種及び第2段階で2種)組み合わせて用いることによ
り、重質な留分を含む減圧残渣油に対し、運転時支障と
なるセディメントの生成を極力抑制しつつ、高度に脱硫
された経済的付加価値の高い白油製品を高収率で生産で
きる方法を見出した。
The present inventors used a combination of catalysts having different functions in the first stage and the second stage in the two-stage hydrotreatment, and further used a catalyst having a specific catalyst composition and pore size distribution in the second stage. It has been found that the mixed use of different types of catalysts is more effective in suppressing the formation of sediment than the case where each catalyst is used alone, and exhibits a high desulfurization performance for light fractions. That is,
The use of three different catalysts having a specific pore size in combination (one in the first stage and two in the second stage) will interfere with the operation of vacuum residue oil containing heavy fractions. We have found a method that can produce highly desulfurized white oil products with high economic value added in high yield while suppressing the formation of sediments as much as possible.

【0008】本発明は、より具体的には、水素化処理の
第1段階でアスファルテン分解、高脱金属用の触媒によ
り、セディメントの生成原因となるアスファルテンを極
力低減し、続いて第2段階(最終段階)に高脱硫性能を
示す触媒を配することで、所望の脱硫生成油を得なが
ら、セディメント生成の少ない運転を行うことができ
る。特に第2段階では、セディメントの生成を抑制しな
がら高度の脱硫を行う必要があるため、特定の触媒組
成、細孔径分布を持つ異なる2種類の触媒を混在させて
使用することにより、これまで困難とされていたセディ
メントの抑制維持と高脱硫・水素化が達成される。
More specifically, the present invention reduces asphaltene, which causes sediment, as much as possible by a catalyst for asphaltene decomposition and high demetallization in the first stage of hydrotreating, and then in the second stage ( By disposing a catalyst exhibiting high desulfurization performance in the final stage), it is possible to carry out an operation with less generation of sediment while obtaining a desired desulfurized product oil. Especially in the second stage, since it is necessary to carry out a high degree of desulfurization while suppressing the formation of sediment, it has been difficult to use two kinds of catalysts having a specific catalyst composition and pore size distribution in a mixed manner. Suppression and maintenance of sediment and high desulfurization / hydrogenation are achieved.

【0009】一方、従来技術においては、以下のとおり
セディメントの抑制維持と水素化高脱硫の両立が十分に
図られていない。特公平7−65055号公報には、硫
黄不純物と金属性不純物を含む炭化水素油の重質分を少
なくとも2段階で変換させる水素化処理方法が開示され
ている。当該公報では、第1段階で水素化脱金属を目的
として0.1〜5重量%の金属酸化物触媒を使用し、続
く第2段階で水素化脱硫を目的として同じく金属酸化物
として7〜30重量%の金属酸化物触媒で水素化処理す
る方法が提案されている。この方法によると第1段階で
脱金属と水素化クラッキングを行い、第2段階で入念な
脱硫を行うことにより残渣分を処理することがよいとさ
れている。特に『ウニ状』の構造を持ったアルミナ凝集
状態の触媒の組み合わせが顕著な結果を示している。
On the other hand, in the prior art, both suppression and maintenance of sedimentation and high hydrodesulfurization have not been sufficiently achieved as described below. Japanese Examined Patent Publication No. 7-65055 discloses a hydrotreating method for converting heavy components of hydrocarbon oil containing sulfur impurities and metallic impurities in at least two stages. In this publication, 0.1 to 5% by weight of a metal oxide catalyst is used for the purpose of hydrodemetallization in the first step, and 7 to 30 as the same metal oxide is used for the purpose of hydrodesulfurization in the subsequent second step. A method of hydrotreating with a metal oxide catalyst in a weight percentage has been proposed. According to this method, it is said that the demetalization and hydrocracking are preferably carried out in the first step, and the desulfurization is carefully carried out in the second step to treat the residue. In particular, the combination of alumina-aggregated catalysts having a "urchin-like" structure shows remarkable results.

【0010】しかし当該技術によると、第1段階で必要
とされる脱金属機能は向上するものの、第1段階で使用
される触媒の触媒担持量が低いため、脱硫、水素化機能
が低下し、このため第2段階で高脱硫機能が必要とな
り、どうしても触媒担持量の多い触媒を必要とする。ま
た第2段階で高度な脱硫を行う場合は触媒は高度に発熱
するが、この時、分解率が進むことに伴いアスファルテ
ン分の凝集を起こす。当該発明の実施例を見る限りアス
ファルテン凝集の防止策が十分でなく、その結果、装置
の運転上支障がでる恐れがある。
However, according to the technique, although the demetallizing function required in the first step is improved, the desulfurization and hydrogenation functions are deteriorated because the catalyst loading amount of the catalyst used in the first step is low, Therefore, a high desulfurization function is required in the second stage, and a catalyst with a large amount of supported catalyst is inevitably required. Further, in the case where a high degree of desulfurization is performed in the second stage, the catalyst generates a large amount of heat, but at this time, asphaltene content is aggregated as the decomposition rate advances. As far as the examples of the invention are concerned, asphaltene agglomeration is not sufficiently prevented, and as a result, there is a possibility that the operation of the apparatus may be hindered.

【0011】特開平8−325580号公報には、重質
石油原料の完全な接触水素化転化法が開示されている。
当該方法では、第1段階にアルミナ・シリカ及びこれら
の組み合わせから選ばれる担体物質に、カドミウム、ク
ロム、コバルト、鉄、モリブデン、ニッケル、スズ、タ
ングステン及びこれらの組み合わせからなる選ばれる活
性金属酸化物を合計2〜25重量%担持した触媒を供給
し、反応温度438〜468℃、水素分圧105〜24
5kg/cm2、空間速度0.3〜1.0 (Vf/hr/Vr)の反応
条件で反応させ、次いで第2段階で同様の触媒を供給
し、反応温度371〜427℃、水素分圧105〜24
5kg/cm2、空間速度0.1〜0.8(Vf/hr/Vr)の反応
条件で水素化転換する方法が記載されている。当該方法
は、重質石油原料である「H−Oil(登録商標)」の接
触水素化転化法であり、未反応残留分の処理に対しそれ
らの再循環によって解決を提案するものである。
JP-A-8-325580 discloses a complete catalytic hydroconversion method for heavy petroleum feedstock.
In the method, in the first step, a carrier material selected from alumina / silica and a combination thereof is added with an active metal oxide selected from cadmium, chromium, cobalt, iron, molybdenum, nickel, tin, tungsten and a combination thereof. A catalyst supporting a total of 2 to 25% by weight was supplied, the reaction temperature was 438 to 468 ° C, and the hydrogen partial pressure was 105 to 24.
The reaction is carried out under the reaction conditions of 5 kg / cm 2 and space velocity of 0.3 to 1.0 (Vf / hr / Vr), and then the same catalyst is supplied in the second stage, the reaction temperature is 371 to 427 ° C., the hydrogen partial pressure is 105-24
A method for hydroconversion under the reaction conditions of 5 kg / cm 2 and space velocity 0.1 to 0.8 (Vf / hr / Vr) is described. This method is a catalytic hydroconversion method of "H-Oil (registered trademark)", which is a heavy petroleum raw material, and proposes a solution to the treatment of unreacted residues by recycling them.

【0012】また、原料のより完全な水素化転換及び触
媒の効果的な使用を達成するため、第1段階の反応器
に、より高い反応温度及びより低い触媒活性を与え、第
2段階の反応器に、より低い反応温度及びより高い触媒
活性を与えることによって、反応条件の改良された調和
及び各段階の反応器に必要な触媒活性を備えるとしてい
る。
Also, in order to achieve a more complete hydroconversion of the feedstock and effective use of the catalyst, the first stage reactor is provided with a higher reaction temperature and a lower catalytic activity, while the second stage reaction is carried out. By providing the reactor with a lower reaction temperature and a higher catalytic activity, it is said that the reactor is provided with the improved harmonization of the reaction conditions and the catalytic activity required for the reactor in each stage.

【0013】しかし、当該公報に開示されている第1段
階の高温反応は、アスファルテンの熱縮合を促進させ、
一方で油の熱分解を伴って生成するレジン質などのフラ
グメントを安定化できなくなり、第2段階で触媒の急激
なコーク劣化を引き起こしかねない。
However, the high temperature reaction of the first stage disclosed in this publication accelerates the thermal condensation of asphaltene,
On the other hand, it becomes impossible to stabilize fragments such as resinous substances that are generated by the thermal decomposition of oil, which may cause rapid coke deterioration of the catalyst in the second stage.

【0014】また、当該方法では、第2段階で引き起こ
されるアスファルテンの凝集、セディメント析出を防止
するのに適した触媒を使うことにはなっていないので、
この点で装置の運転時に障害となる恐れがある。
Further, in this method, since a catalyst suitable for preventing the asphaltene aggregation and sedimentation caused by the second step is not used,
In this respect, there is a possibility that it may be an obstacle when the device is operated.

【0015】特公平6−53875号公報には、重質炭
化水素液体供給原料の高転化用多段階接触方法が記載さ
れている。第1段階では固定床または沸騰床反応器で、
反応温度が415〜455℃で水素分圧が70〜211
kg/cm2、空間速度が0.2〜2.0、第2段階が沸騰床
反応器で、反応温度が415〜455℃、同じく水素分
圧が70〜211kg/cm2、空間速度が0.2〜2.0で
ある多段接触水素化処理方法が記載されている。使用で
きる触媒は、アルミナ、シリカ及びこれらの組み合わせ
群から選ばれた担体物質に、カドミウム、クロム、コバ
ルト、鉄、モリブデン、ニッケル、スズ、タングステン
及びこれらの混合物から選ばれた活性金属酸化物を含有
する触媒である。当該方法では、高分解率とするため真
空ボトムズを再循環させて高分解率の達成を図っている
ものの、高分解率運転時に支障となるアスファルテン凝
集に対する防止策は示されておらず、装置の運転時に問
題となる。
Japanese Examined Patent Publication No. 6-53875 describes a multi-step contact method for high conversion of heavy hydrocarbon liquid feedstock. In the first stage, a fixed bed or boiling bed reactor,
The reaction temperature is 415 to 455 ° C. and the hydrogen partial pressure is 70 to 211.
kg / cm 2 , space velocity is 0.2 to 2.0, the second stage is a boiling bed reactor, the reaction temperature is 415 to 455 ° C., the hydrogen partial pressure is 70 to 211 kg / cm 2 , and the space velocity is 0. A multi-stage catalytic hydrotreating method of .2-2.0 is described. The catalyst that can be used contains an active metal oxide selected from cadmium, chromium, cobalt, iron, molybdenum, nickel, tin, tungsten and mixtures thereof in a carrier material selected from the group consisting of alumina, silica and combinations thereof. It is a catalyst that does. In this method, the vacuum bottoms are recirculated in order to achieve a high decomposition rate to achieve a high decomposition rate, but no preventive measures against asphaltene agglomeration, which hinders operation at a high decomposition rate, are shown, It becomes a problem when driving.

【0016】また使用触媒についても触媒に対する記載
は、水素転化反応の促進に対して、あるいは金属含有量
の高い原料油の場合には、脱金属型触媒を第1段階反応
で使用することとの内容があるだけで、実際の触媒の開
示がない。また、触媒の開示に関し、当該公報は不十分
であるので、運転時支障となるセディメントの析出に対
して効果的な結果が期待できるとは判断できない。よっ
て、上記の先行技術による触媒組み合わせでは、重質炭
化水素油の水素化分解で、高度な脱硫、分解を達成しな
がら、且つ装置の運転制約となるセディメント生成を抑
制する効果が十分に図られていない。
Regarding the catalyst to be used, the description on the catalyst means that for the promotion of the hydrogen conversion reaction, or in the case of a feedstock having a high metal content, a demetallization type catalyst is used in the first stage reaction. There is no disclosure of the actual catalyst, only the content. Further, regarding the disclosure of the catalyst, since this publication is insufficient, it cannot be judged that an effective result can be expected with respect to precipitation of sediments which may interfere with the operation. Therefore, in the catalyst combination according to the above-mentioned prior art, the effect of suppressing the formation of sediment, which is an operation constraint of the apparatus, is sufficiently achieved while achieving a high degree of desulfurization and cracking in the hydrocracking of heavy hydrocarbon oil. Not not.

【0017】[0017]

【発明が解決しようとする課題】本発明は、硫黄、残留
炭素、金属、窒素、アスファルテン等の夾雑物を多量に
含有する重質の炭化水素油、特に減圧残油留分を80%
以上含む重質油を高度に水素化処理して適度に除去でき
るよう機能を考慮した触媒を組み合わせ、また第2段階
で特定の細孔径分布、触媒組成を有する2種類の異なる
触媒を混在させることにより効果的な水素化処理方法を
提供することを目的とする。特に、前記従来技術では十
分な解決がなされていない、アスファルテンの高度な分
解除去、転化率の増加に随伴して生成するセディメント
の低減に対し優れた性能を示し、なおかつ脱硫性能を高
くできる触媒組み合わせの提供を目的としている。
DISCLOSURE OF THE INVENTION The present invention provides a heavy hydrocarbon oil containing a large amount of impurities such as sulfur, residual carbon, metals, nitrogen and asphaltene, particularly 80% of a vacuum residue fraction.
Combining catalysts that take into consideration the function so that heavy oil including the above can be highly hydrotreated and appropriately removed, and in the second stage, two different catalysts having a specific pore size distribution and catalyst composition should be mixed. It is an object of the present invention to provide a more effective hydrotreating method. In particular, a catalyst combination which has not been sufficiently solved by the above-mentioned prior art, shows high performance in high-grade decomposition and removal of asphaltene, and reduction in the sedimentation that accompanies an increase in the conversion rate, and can enhance desulfurization performance. The purpose is to provide.

【0018】[0018]

【課題を解決するための手段】本発明者らは、上記問題
点に鑑みて鋭意研究を重ねた結果、接触2段水素化転化
法において、第1段階で特定の細孔径分布を有する触媒
を用いて重質炭化水素油中の夾雑物の低減、特に脱金属
とアスファルテン凝集防止に効果的な脱アスファルテン
を効率的に達成し、次いで第2段階で第1段階とは異な
る特定の細孔径分布、触媒組成を有する触媒を2種類混
在させて用いることにより、これまでに問題とされてき
た水添とセディメントとの関係を改善できることを見出
し、特に高度な脱硫、水添反応を達成しつつ、アスファ
ルテン凝集によるセディメント生成を抑制し、安定した
運転ができる重質油の接触水素化処理方法を見出し、本
発明を完成するに至った。
The inventors of the present invention have conducted extensive studies in view of the above problems, and as a result, in the catalytic two-step hydroconversion method, a catalyst having a specific pore size distribution in the first step was selected. To reduce impurities in heavy hydrocarbon oil, especially to effectively achieve deasphaltenization which is effective for demetalization and prevention of asphaltene coagulation, and then in the second stage a specific pore size distribution different from the first stage , It was found that the use of a mixture of two types of catalysts having a catalyst composition can improve the relationship between hydrogenation and sedimentation, which has been a problem up to now, and while achieving particularly high desulfurization and hydrogenation reactions, The present invention has been completed by finding a method for catalytic hydrotreatment of heavy oil that can suppress the formation of sediment due to agglomeration of asphaltene and perform stable operation.

【0019】すなわち、第1段階で特定の細孔径分布を
有する触媒を用い、続く第2段階で、第1段階とは異な
る特有の細孔径分布、触媒組成を有する2種類の異なる
機能の触媒を混在させて用い、これによる相乗効果によ
って、高度に脱硫、水添は進むが、セディメントの生成
が抑制された安定運転を可能とすることを見出した。本
発明によれば、特に重質な炭化水素油の水素化処理に対
して効果が大きい。
That is, a catalyst having a specific pore size distribution is used in the first stage, and in the subsequent second stage, two kinds of catalysts having different functions having a unique pore size distribution and catalyst composition different from those in the first stage are prepared. The inventors have found that the mixed use allows a stable operation in which the production of sediment is suppressed but the desulfurization and hydrogenation proceed to a high degree by the synergistic effect. According to the present invention, the effect is particularly great for the hydrotreatment of heavy hydrocarbon oils.

【0020】より具体的には、2段階からなる水素化処
理方法において、第1段階の反応装置にある特定の細孔
径分布を有する触媒を供給し、セディメントの生成を促
進させるアスファルテンの分解を高度に行ないつつ、適
度な水添反応を行ない、続く第2段階の反応装置では、
脱硫性能を向上させる細孔径分布、触媒組成の触媒と、
適度なアスファルテン分解を行わせる細孔径分布、触媒
組成の触媒を供給することで、高度な脱硫を達成しなが
ら、セディメントを極力生成させない方法を提供するも
のである。また、第1段階で高度にアスファルテンを除
去することにより、第2段階の熱分解で触媒上に堆積す
る好ましくないコーク生成を抑えて触媒性能の低下を防
ぐ効果をもたらす。
More specifically, in a two-stage hydrotreating method, a catalyst having a specific pore size distribution in the reactor of the first stage is supplied to promote the decomposition of asphaltene which promotes the formation of sediment. While carrying out a suitable hydrogenation reaction, in the subsequent second stage reactor,
Pore size distribution to improve desulfurization performance, catalyst of catalyst composition,
By supplying a catalyst having a pore size distribution and a catalyst composition that causes an appropriate asphaltene decomposition, a method is provided in which a high degree of desulfurization is achieved and sediment is not generated as much as possible. Further, by removing asphaltene to a high degree in the first stage, it is possible to suppress the generation of undesired coke deposited on the catalyst in the thermal decomposition in the second stage and prevent the deterioration of the catalyst performance.

【0021】要するに、本発明の水素化処理方法は、重
質炭化水素油を、下記触媒(1)が充填された第1の反
応装置において水素存在下、触媒(1)と接触させて第
1段階の水素化処理を行い、次いで第1段階で得られた
水素化処理油を、下記触媒(2a)及び触媒(2b)が
混在して充填された第2の反応装置において水素存在
下、触媒(2a)及び触媒(2b)と接触させて第2段
階の水素化処理を行うことを特徴とする重質炭化水素油
の水素化処理方法である。
In short, in the hydrotreating method of the present invention, the heavy hydrocarbon oil is brought into contact with the catalyst (1) in the presence of hydrogen in the first reactor filled with the following catalyst (1), Stage hydrotreatment, and then the hydrotreated oil obtained in the first stage was mixed with the following catalyst (2a) and catalyst (2b) in a second reaction apparatus filled with the catalyst in the presence of hydrogen. (2a) and the catalyst (2b) are brought into contact with each other to carry out the second stage hydrotreatment, which is a hydrotreatment method for heavy hydrocarbon oils.

【0022】触媒(1)は多孔質のアルミナ担体に、触
媒重量を基準として周期表の第6A族金属の酸化物が7
〜20重量%、周期表の第8族金属の酸化物が0.5〜
6重量%で担持され、触媒の(a)比表面積が100〜1
80m2/g、(b)全細孔容積が0.55ml/g以上であ
り、触媒の細孔分布径が全細孔容積を基準として(c1)直
径が200Å以上の細孔容積の割合が全細孔容 積の5
0%以上、(c2)直径が2,000Å以上の細孔容積の割
合が全細孔容積の10〜30%、(c3)直径が10,00
0Å以上の細孔容積の割合が全細孔容積の0〜1%であ
る水素化処理用触媒である。
The catalyst (1) is composed of a porous alumina carrier and an oxide of a Group 6A metal in the periodic table based on the catalyst weight.
-20% by weight, 0.5% of Group 8 metal oxide in the periodic table
6% by weight is supported, and the (a) specific surface area of the catalyst is 100 to 1
80 m 2 / g, (b) the total pore volume is 0.55 ml / g or more, and the pore distribution diameter of the catalyst is (c1) the proportion of the pore volume of 200 Å or more based on the total pore volume. 5 of total pore volume
0% or more, (c2) diameter is 2,000 Å or more, the proportion of pore volume is 10 to 30% of the total pore volume, (c3) diameter is 10,000
This is a hydrotreating catalyst in which the proportion of the pore volume of 0Å or more is 0 to 1% of the total pore volume.

【0023】触媒(2a)は多孔質アルミナ担体に触媒
重量を基準として周期表の第6A族金属の酸化物が7〜
20重量%、周期表の第8族金属の酸化物が0.5〜6
重量%の量で担持され、触媒の(a)比表面積が100〜
180m2/g、(b)全細孔容積が0.55ml/g以上であ
り、触媒の細孔分布径が全細孔容積を基準として(d1)直
径が100〜1,200Åの容積の割合が85%以上、
(d2)細孔の直径が4,000Å以上の容積の割合が0〜
2%、(d3)細孔の直径が10,000Å以上の容積の割
合が0〜1%、(d4)直径が200Å以上の細孔容積の割
合が全細孔容積の50%以上である水素化処理触媒であ
る。
The catalyst (2a) contains, on the basis of the catalyst weight, a metal oxide of Group 6A in the periodic table of 7 to 7 based on the catalyst weight.
20% by weight, 0.5 to 6 of oxide of Group 8 metal of the periodic table
The catalyst is supported in an amount of wt%, and the (a) specific surface area of the catalyst is 100 to
180 m 2 / g, (b) the total pore volume is 0.55 ml / g or more, and the catalyst pore distribution diameter is based on the total pore volume (d1) the ratio of the volume of 100 to 1,200Å Is over 85%,
(d2) The ratio of the volume of pores having a diameter of 4,000 Å or more is 0
Hydrogen having a proportion of 2%, (d3) pores having a diameter of 10,000 Å or more and a volume ratio of 0 to 1%, and (d4) having a proportion of pores having a diameter of 200 Å or more of 50% or more of the total pore volume. It is a chemical treatment catalyst.

【0024】触媒(2b)は耐熱性無機多孔質担体に少
なくとも1種の水素化活性成分が担持され、触媒の(a)
比表面積が150m2/g以上、(b)全細孔容積が0.55
ml/g以上であり、触媒の細孔分布径が全細孔容積を基
準として(d1)直径が100〜1,200Åの細孔容積の
割合が全細孔容積の75%以上、(d2)直径が4,000
Å以上の容積の割合が0〜2%、(d3)直径が10,00
0Å以上の細孔容積の割合が全細孔容積の0〜1%、(d
4)直径が200Å以上の細孔容積の割合が全細孔容積の
50%未満である水素化処理用触媒である。
The catalyst (2b) comprises a heat-resistant inorganic porous carrier on which at least one hydrogenation active component is supported, and the catalyst (a)
Specific surface area of 150 m 2 / g or more, (b) total pore volume of 0.55
ml / g or more, and the pore distribution diameter of the catalyst is (d1) based on the total pore volume (d1), and the ratio of the pore volume with a diameter of 100 to 1,200Å is 75% or more of the total pore volume, (d2) Diameter is 4,000
Å volume ratio is 0-2%, (d3) diameter is 10,000
The ratio of the pore volume of 0Å or more is 0 to 1% of the total pore volume, (d
4) A hydrotreating catalyst in which the proportion of the volume of pores having a diameter of 200Å or more is less than 50% of the total volume of pores.

【0025】また、本発明は、触媒(2b)の耐熱性無
機多孔質担体が、シリカ量として3.5重量%以上含む
シリカ−アルミナ担体であることを特徴とする。また、
本発明は、触媒(2b)が、シリカ量として3.5重量
%以上含むシリカ−アルミナ担体に、触媒重量を基準と
して周期表の第6A族金属の酸化物が7〜20重量%、
周期表の第8族金属の酸化物が0.5〜6重量%、周期
表の第1A族金属の酸化物が0.1〜1重量%の量で担
持されている水素化処理用触媒であることを特徴とす
る。
Further, the present invention is characterized in that the heat-resistant inorganic porous carrier of the catalyst (2b) is a silica-alumina carrier containing 3.5% by weight or more of silica. Also,
In the present invention, the catalyst (2b) contains silica-alumina support containing 3.5 wt% or more of silica in an amount of 7 to 20 wt% of a Group 6A metal oxide of the periodic table based on the weight of the catalyst.
A catalyst for hydrotreating, wherein the oxide of a Group 8 metal of the periodic table is supported in an amount of 0.5 to 6% by weight, and the oxide of a Group 1A metal of the periodic table is supported in an amount of 0.1 to 1% by weight. It is characterized by being.

【0026】また、本発明は、触媒(2b)が、シリカ
量として3.5重量%以上含むシリカ−アルミナ担体
に、触媒重量を基準として周期表の第6A族金属の酸化
物が7〜20重量%、周期表の第8族金属の酸化物が
0.5〜6重量%、周期表の第1A族金属の酸化物が0.
1〜1重量%、周期表の第5B族元素の酸化物が0.1
〜2重量%の量で担持されている水素化処理用触媒であ
ることを特徴とする。
Further, according to the present invention, the catalyst (2b) is a silica-alumina carrier containing a silica amount of 3.5% by weight or more, and an oxide of a Group 6A metal of the periodic table is 7 to 20 based on the catalyst weight. % By weight, 0.5 to 6% by weight of oxide of Group 8 metal of the periodic table, and 0.5 of oxide of Group 1A metal of the periodic table.
1 to 1% by weight, 0.1% of Group 5B element oxide in the periodic table
The hydrotreating catalyst is supported in an amount of ˜2% by weight.

【0027】また、本発明は、重質炭化水素油が減圧残
油留分を80重量%以上含む重質油であることを特徴と
し、第1段階及び第2段階において、温度350〜45
0℃、圧力5〜25MPaの条件下で水素化処理を行う
ことを特徴とする。
Further, the present invention is characterized in that the heavy hydrocarbon oil is a heavy oil containing 80% by weight or more of a vacuum residue fraction, and in the first stage and the second stage, the temperature is from 350 to 45.
It is characterized in that the hydrogenation treatment is performed under conditions of 0 ° C. and a pressure of 5 to 25 MPa.

【0028】また、第2段階の反応装置に充填された触
媒における触媒(2b)の混在割合が1重量%以上であ
ることを特徴とし、さらに重質炭化水素油を沸騰床の様
態で水素化処理触媒と接触させることを特徴とする。
Further, the mixture ratio of the catalyst (2b) in the catalyst packed in the second stage reactor is 1% by weight or more, and the heavy hydrocarbon oil is further hydrogenated in the form of a boiling bed. It is characterized by being brought into contact with a treated catalyst.

【0029】[0029]

【発明の実施の形態】〔I〕触 媒 本発明における水素化処理方法の第1段階で使用される
水素化処理用触媒(触媒(1))、及び第2段階で使用
される水素化処理用触媒(触媒(2a)及び触媒(2
b))は、それぞれ水素化活性を有する金属酸化物であ
る触媒物質と当該触媒物質を担持する担体とから構成さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION [I] Catalyst The hydrotreating catalyst (catalyst (1)) used in the first stage of the hydrotreating method of the present invention, and the hydrotreating used in the second stage. Catalyst (catalyst (2a) and catalyst (2
b)) is composed of a catalyst substance, which is a metal oxide having hydrogenation activity, and a carrier carrying the catalyst substance.

【0030】本発明において触媒物質に使用される成分
は、触媒(1)及び触媒(2a)に関しては、周期表
(例えば、「岩波理化学辞典 第4版」、岩波書店(1
987年発行)の見返し掲載の「II 元素の周期表
(a)長周期型」を参照)の第6A族金属及び第8族金属
の酸化物の2成分からなる組成物である。
The components used in the catalyst substance in the present invention are the periodic table (for example, "Iwanami Physics and Chemistry Dictionary 4th Edition", Iwanami Shoten (1) for the catalyst (1) and the catalyst (2a).
Published in 987) in return, "II Periodic Table of Elements"
(a) long-period type ”), which is a composition comprising two components of an oxide of a Group 6A metal and a Group 8 metal.

【0031】触媒(2b)には、少なくとも1種の水素
化活性成分が担持されるが、かかる成分としては、周期
表の第1A族金属(リチウム、ナトリウム等)、第2A
族金属(マグネシウム、カルシウム等)、第6A族金属
(クロム、モリブデン、タングステン等)、第8族金属
(鉄、コバルト、ニッケル、白金、パラジウム等)、第
4B族元素(スズ、鉛等)や第5B族元素(リン、砒
素、アンチモン等)が挙げられる。
The catalyst (2b) carries at least one hydrogenation-active component, and examples of such components include Group 1A metals (lithium, sodium, etc.) and 2A of the periodic table.
Group metals (magnesium, calcium, etc.), Group 6A metals (chromium, molybdenum, tungsten, etc.), Group 8 metals (iron, cobalt, nickel, platinum, palladium, etc.), Group 4B elements (tin, lead, etc.), Examples include Group 5B elements (phosphorus, arsenic, antimony, etc.).

【0032】触媒(2b)に担持される水素化活性成分
は、上記周期表の第6A族金属、第8族金属及び第1A
族金属の3成分からなる組成物が好ましく、特に上記周
期表の第6A族金属、第8族金属、第1A族金属及び第
5B族元素の酸化物の4成分からなる組成物が好まし
い。なお、上記第1A族、第2A族、第4B族、第5B
族、第6A族、第8族は、A、B亜族に分けない18族
長周期型周期表(IUPAC方式)の第1族、第2族、
第14族、第15族、第6族、第8〜10族にそれぞれ
対応する。
The hydrogenation active component supported on the catalyst (2b) is a metal of Group 6A, a metal of Group 8 and a metal of Group 1A in the above periodic table.
A composition consisting of three components of a group metal is preferable, and a composition consisting of four components of an oxide of a Group 6A metal, a Group 8 metal, a Group 1A metal and a Group 5B element of the above periodic table is particularly preferable. In addition, the above-mentioned 1A group, 2A group, 4B group, 5B
Group 6, Group 6A, and Group 8 are Group 1 and Group 2 of Group 18 long-period periodic table (IUPAC system), which are not divided into A and B subgroups.
It corresponds to the 14th group, the 15th group, the 6th group, and the 8th to 10th groups, respectively.

【0033】本発明の触媒に使用される第8族金属は、
鉄、コバルト、ニッケルから選ばれる少なくとも1種で
あるが、性能及び経済性の観点からコバルト、ニッケル
が好ましく、中でもニッケルが好ましい。また第6A族
金属は、クロム、モリブデン、タングステンから選ばれ
る少なくとも1種であるが、性能及び経済性の観点から
モリブデンが好ましい。
The Group 8 metal used in the catalyst of the present invention is
At least one selected from iron, cobalt, and nickel is preferable, and cobalt and nickel are preferable from the viewpoint of performance and economy, and nickel is particularly preferable. The Group 6A metal is at least one selected from chromium, molybdenum, and tungsten, and molybdenum is preferable from the viewpoint of performance and economy.

【0034】また、触媒(2b)の好適な態様として、
担体がシリカを含有するシリカ−アルミナ担体である場
合に、第6A族金属及び第8族金属に加えて使用される
第1A族金属としては、リチウム、ナトリウムやカリウ
ム等が挙げられるが、性能の点からナトリウムが好まし
い。
As a preferred embodiment of the catalyst (2b),
When the carrier is a silica-alumina carrier containing silica, examples of the Group 1A metal used in addition to the Group 6A metal and the Group 8 metal include lithium, sodium, potassium and the like. From the point of view, sodium is preferable.

【0035】また、触媒(2b)の特に好適な態様とし
て第6A族金属、第8族金属及び第1A族金属に加えて
さらに担持される第5B族元素は、リン、ヒ素、アンチ
モン、ビスマスから選ばれる少なくとも1種であるが、
性能の点からリンが好ましい。
Further, as a particularly preferred embodiment of the catalyst (2b), the Group 5A element to be further supported in addition to the Group 6A metal, the Group 8 metal and the Group 1A metal is phosphorus, arsenic, antimony or bismuth. At least one selected,
Phosphorus is preferable in terms of performance.

【0036】前述のとおり重質炭化水素油の水素化処理
においては水素化を高めるに伴ってセディメント生成も
上昇する傾向にあるが、本発明においては、第2段階に
特定の細孔構造と活性成分を有する触媒を一部混在させ
ることによって、より高度な水素化とセディメント生成
抑制とをバランス良く達成することができるのである。
As described above, in the hydrotreatment of heavy hydrocarbon oils, the production of sediment tends to increase as the hydrogenation increases, but in the present invention, in the second step, a specific pore structure and activity are specified. By mixing a part of the catalyst having the components, it is possible to achieve a higher degree of hydrogenation and suppression of the formation of sediment in a well-balanced manner.

【0037】完成後の触媒重量を基準(100重量%)
とした場合における上記の各金属酸化物の担持量は次の
通りである。すなわち、触媒(1)、触媒(2a)及び
触媒(2b)に共通して担持される第6A族金属の酸化
物は、7〜20重量%であり、8〜16重量%が好まし
い。かかる金属酸化物が7重量%未満では触媒性能の発
現が不十分となり、一方、20重量%を超えても触媒性
能の増分はない。
Based on catalyst weight after completion (100% by weight)
The amount of each metal oxide supported in the above case is as follows. That is, the oxide of the Group 6A metal commonly supported by the catalyst (1), the catalyst (2a), and the catalyst (2b) is 7 to 20% by weight, and preferably 8 to 16% by weight. When the amount of such metal oxide is less than 7% by weight, the catalyst performance is insufficiently expressed, while when it exceeds 20% by weight, there is no increase in the catalyst performance.

【0038】また、触媒(1)、触媒(2a)及び触媒
(2b)に共通して担持される第8族金属酸化物は0.
5〜6重量%であり、1〜5重量%が好ましい。0.5
重量%未満では触媒性能の発現が不十分で、一方、6重
量%を超えても触媒性能の増分はない。
Further, the Group 8 metal oxide commonly supported by the catalyst (1), the catalyst (2a) and the catalyst (2b) was 0.1.
It is 5 to 6% by weight, preferably 1 to 5% by weight. 0.5
If it is less than 6% by weight, the catalyst performance is insufficiently expressed, while if it exceeds 6% by weight, there is no increase in the catalyst performance.

【0039】さらに、第1A族金属酸化物が触媒(2
b)に担持される場合の量は、0.1〜1重量%であ
り、好ましくは0.1〜0.5重量%である。0.1重量
%未満では表面活性を制御するのに十分でなく、セディ
メント生成が増加し好ましくない。1重量%を超える
と、触媒性能の発現が不十分となる。
Further, the Group 1A metal oxide is a catalyst (2
The amount when supported on b) is 0.1 to 1% by weight, preferably 0.1 to 0.5% by weight. If it is less than 0.1% by weight, it is not sufficient to control the surface activity, and the production of sediment is increased, which is not preferable. If it exceeds 1% by weight, the catalyst performance will be insufficiently exhibited.

【0040】また、第5B族元素酸化物が触媒(2b)
に担持される場合の量は、0.1〜2重量%であり、好
ましくは0.1〜1.0重量%である。2重量%超過で
は、アスファルテン以外への水素化が進みすぎ、その結
果セディメントの急激な増加を招く。一方、0.1重量
%未満では効率的な水素化が図られない。
Further, the Group 5B element oxide is a catalyst (2b).
In the case of being supported on the substrate, the amount is 0.1 to 2% by weight, preferably 0.1 to 1.0% by weight. If it exceeds 2% by weight, hydrogenation other than asphaltene will proceed too much, resulting in a rapid increase in sedimentation. On the other hand, if it is less than 0.1% by weight, efficient hydrogenation cannot be achieved.

【0041】次に触媒を構成する担体について説明す
る。触媒(1)及び触媒(2a)の担体は、工業的に生
成される方法で得ることができる多孔質アルミナで、そ
の代表としてアルミン酸ソーダ(アルミン酸ナトリウ
ム)と硫酸アルミニウムを共沈させることにより得られ
るものを用いることができる。この際得られるゲル(擬
ベーマイト)を、乾燥、成形、焼成してアルミナ担体と
して得る。
Next, the carrier constituting the catalyst will be described. The carrier of the catalyst (1) and the catalyst (2a) is a porous alumina that can be obtained by an industrially produced method, and by representatively coprecipitating sodium aluminate (sodium aluminate) and aluminum sulfate. What is obtained can be used. The gel (pseudo-boehmite) obtained at this time is dried, molded and fired to obtain an alumina carrier.

【0042】一方、触媒(2b)の担体として用いる耐
熱性無機多孔質担体は、アルミナ、シリカ、シリカ−ア
ルミナ、マグネシア、酸化亜鉛、チタニア、ジルコニ
ア、ゼオライト、粘土鉱物やこれらの複合酸化物が例示
されるが、中でも経済性及び性能上の観点からシリカ−
アルミナが好ましい。触媒(2b)の担体がシリカ−ア
ルミナ担体である場合は、シリカ源として水ガラス(ケ
イ酸ソーダ)を使用してアルミナ沈殿時に同時に共沈す
る方法で得ることもできるし、次工程の浸漬時に水溶性
シリカ源の溶液を浸漬することでも良い。
On the other hand, examples of the heat-resistant inorganic porous carrier used as a carrier for the catalyst (2b) include alumina, silica, silica-alumina, magnesia, zinc oxide, titania, zirconia, zeolite, clay minerals and their composite oxides. However, from the viewpoint of economy and performance, silica-
Alumina is preferred. When the carrier of the catalyst (2b) is a silica-alumina carrier, water glass (sodium silicate) can be used as a silica source to co-precipitate at the same time as the precipitation of alumina, or at the time of immersion in the next step. It is also possible to immerse a solution of a water-soluble silica source.

【0043】担体の具体的な製造方法は以下のとおりで
ある。まず、水道水または温水を蓄えたタンクに、アル
ミン酸ソーダ、水酸化アンモニウムや水酸化ナトリウム
等のアルカリ溶液を入れ、次いで硫酸アルミニウムや硝
酸アルミニウム等の酸性アルミニウム溶液を用いて加混
合を行う。触媒(2b)がシリカ−アルミナ担体である
場合の製造法としては、シリカ源として、予め水ガラス
を蓄えたタンクとしてもよい。
The specific method for producing the carrier is as follows. First, an alkaline solution such as sodium aluminate, ammonium hydroxide or sodium hydroxide is put into a tank storing tap water or warm water, and then an acidic aluminum solution such as aluminum sulfate or aluminum nitrate is used for mixing. When the catalyst (2b) is a silica-alumina carrier, a tank in which water glass is previously stored may be used as a silica source.

【0044】混合溶液中の 水素イオン濃度(pH)は
反応が進むにつれて変化するが、酸性アルミニウム溶液
の添加が終了する時のpHが7〜9、混合時の温度は第
1段階の触媒(1)には70〜85℃、第2段階の触媒
(2a)、触媒(2b)には60〜75℃であることが
好ましい。また適当な大きさの細孔を得るため、保持時
間は約0.5〜1.5時間が好ましく、特に40分〜80
分が好ましい。かかる加混合の諸条件を適宜調整するこ
とで所望のアルミナ水和物、またはシリカ−アルミナの
ゲルが得られる。
The hydrogen ion concentration (pH) in the mixed solution changes as the reaction proceeds, but the pH at the end of the addition of the acidic aluminum solution is 7 to 9, and the temperature at the time of mixing is the first stage catalyst (1 It is preferable that the temperature is 70 to 85 ° C. for the second stage catalyst, and the temperature is 60 to 75 ° C. for the second stage catalyst (2a) and the catalyst (2b). In order to obtain pores of an appropriate size, the holding time is preferably about 0.5 to 1.5 hours, especially 40 minutes to 80 hours.
Minutes are preferred. A desired alumina hydrate or silica-alumina gel can be obtained by appropriately adjusting various conditions of such addition and mixing.

【0045】次に、得られたアルミナ水和物またはシリ
カ−アルミナゲルを溶液から分離した後、工業的に広く
用いられている洗浄方法、例えば水道水や温水を用いて
洗浄処理を行い、ゲル中の不純物を除去する。次に混練
機を用いてゲルの成形性を向上させた後、成型器にて所
望の形状に成形する。触媒活性成分を担持する前に、所
望の形状に成形しておくことが好ましく、直径が0.9
〜1mm、例えば0.95mm、長さが2.5〜10mm、例え
ば3.5mmの円柱形状の粒子が好適である。
Next, after separating the obtained alumina hydrate or silica-alumina gel from the solution, a washing method which is widely used in industry, for example, tap water or warm water is applied to perform the washing treatment. Remove the impurities in it. Next, after improving the moldability of the gel using a kneader, the gel is molded into a desired shape by a molding machine. Before loading the catalytically active component, it is preferable to shape it into a desired shape, and the diameter is 0.9.
Cylindrical particles of ˜1 mm, for example 0.95 mm and a length of 2.5-10 mm, for example 3.5 mm, are suitable.

【0046】最後に、成形されたアルミナゲル、または
シリカ−アルミナゲルに乾燥及び焼成処理を施す。乾燥
条件は、空気存在下で常温から200℃の温度で、また
焼成条件は、空気存在下で300〜950℃、好ましく
は600〜900℃の温度条件で、30分間から2時間
程度行う。また焼成処理時には水蒸気を導入して、アル
ミナ粒子、シリカ−アルミナ結晶の成長をコントロール
することもできる。
Finally, the formed alumina gel or silica-alumina gel is dried and calcined. The drying condition is a temperature of room temperature to 200 ° C. in the presence of air, and the baking condition is a temperature condition of 300 to 950 ° C., preferably 600 to 900 ° C. in the presence of air, and is performed for about 30 minutes to 2 hours. It is also possible to control the growth of alumina particles and silica-alumina crystals by introducing water vapor during the firing treatment.

【0047】以上の製造方法によって、後述する完成触
媒の比表面積や細孔分布とほぼ一致する性状を備えたア
ルミナ担体、またはシリカ−アルミナ担体を得ることが
できる。なお、前述の混練し成形する工程において、成
形助剤として酸、例えば硝酸、酢酸、蟻酸を添加し、あ
るいは水を添加してアルミナゲル、シリカ−アルミナゲ
ル中の水分量を調整することにより、細孔分布の調整を
適宜行うこともできる。
By the above-mentioned production method, an alumina carrier or a silica-alumina carrier having properties that substantially match the specific surface area and pore distribution of the finished catalyst described later can be obtained. In the kneading and molding step described above, an acid as a molding aid, for example, nitric acid, acetic acid, formic acid is added, or water is added to adjust the amount of water in the alumina gel and silica-alumina gel. The pore size distribution can be adjusted as appropriate.

【0048】触媒物質の金属成分を担持する前の担体の
比表面積は、完成後の触媒において特定範囲の比表面積
や細孔分布をもたらすために、触媒(1)のアルミナ担
体は100〜200m2/g、特に130〜170m2/g
が好ましく、また全細孔容積が0.5〜1.2ml/g、特
に0.7〜1.1ml/gが好ましい。一方、触媒(2a)
のアルミナ担体、及び触媒(2b)のシリカ−アルミナ
担体の比表面積は、完成後の触媒において特定範囲の比
表面積や細孔分布をもたらすために180〜300m2
g、特に185〜250m2/gが好ましく、また全細孔
容積が0.5〜1.0ml/g、特に0.6〜0.9ml/gが
好ましい。
Since the specific surface area of the carrier before supporting the metal component of the catalyst substance brings the specific surface area and the pore distribution in a specific range in the completed catalyst, the alumina carrier of the catalyst (1) has a specific surface area of 100 to 200 m 2. / G, especially 130-170 m 2 / g
Is preferred, and the total pore volume is preferably 0.5 to 1.2 ml / g, particularly preferably 0.7 to 1.1 ml / g. On the other hand, catalyst (2a)
The specific surface area of the alumina carrier of No. 2 and the silica-alumina carrier of catalyst (2b) is 180 to 300 m 2 / in order to bring the specific surface area and the pore distribution of a specific range in the completed catalyst.
g, especially 185 to 250 m 2 / g, and the total pore volume of 0.5 to 1.0 ml / g, particularly 0.6 to 0.9 ml / g.

【0049】触媒(2b)の耐熱性無機多孔質単体がシ
リカ−アルミナ担体である場合のシリカ含有量は、触媒
物質を含めた完成された触媒を基準として(100重量
%)として、3.5重量%以上、好ましくは4.5〜10
重量%である。3.5重量%未満では触媒性能の発現が
不十分である。
When the heat-resistant inorganic porous simple substance of the catalyst (2b) is a silica-alumina carrier, the silica content is 3.5 based on the completed catalyst including the catalyst substance (100% by weight). % By weight or more, preferably 4.5 to 10
% By weight. If it is less than 3.5% by weight, the catalyst performance is not sufficiently exhibited.

【0050】本発明の触媒は以下に述べる方法で製造さ
れ完成する。前記の触媒物質用の各種金属成分をアルカ
リ性または酸性の金属塩とし、この金属塩を水に溶解し
た浸漬液に、触媒(1)、触媒(2a)、触媒(2b)
の担体を浸漬し担持させる。この場合、複数の金属塩か
らなる混合水溶液に浸漬して同時に担持させても良い
し、あるいは個別に金属塩水溶液を調製して浸漬担持さ
せても良い。また、浸漬液の安定化のために少量のアン
モニア水、過酸化水素水、グルコン酸、洒石酸、クエン
酸、リンゴ酸、EDTA(エチレンジアミン四酢酸)等
を添加することが好ましい。
The catalyst of the present invention is manufactured and completed by the method described below. The various metal components for the above-mentioned catalyst substance are alkaline or acidic metal salts, and the catalyst (1), the catalyst (2a), and the catalyst (2b) are immersed in an immersion liquid obtained by dissolving the metal salts in water.
The carrier is immersed and supported. In this case, it may be immersed in a mixed aqueous solution of a plurality of metal salts to be simultaneously supported, or may be prepared by individually preparing an aqueous solution of metal salts and supported by immersion. Further, in order to stabilize the immersion liquid, it is preferable to add a small amount of ammonia water, hydrogen peroxide solution, gluconic acid, plosic acid, citric acid, malic acid, EDTA (ethylenediaminetetraacetic acid) or the like.

【0051】第8族金属の金属水溶液は、通常水溶性の
炭酸塩または硝酸塩を使用し、例えば硝酸ニッケルの1
0〜40重量%水溶液であり、好ましくは 25重量%
水溶液が使用される。また、第6A族金属は水溶性のア
ンモニウム塩を使用でき、例えばモリブデン酸アンモニ
ウムの10〜25重量%水溶液であり、好ましくは15
重量%水溶液が使用される。
The aqueous metal solution of the Group 8 metal usually uses a water-soluble carbonate or nitrate.
0-40% by weight aqueous solution, preferably 25% by weight
An aqueous solution is used. Further, as the Group 6A metal, a water-soluble ammonium salt can be used, for example, a 10 to 25 wt% aqueous solution of ammonium molybdate, preferably 15
A weight% aqueous solution is used.

【0052】触媒(2b)に特有な水素化活性成分であ
る第1A族金属は、水溶性の炭酸塩または硝酸塩を使用
でき、例えば硝酸ナトリウムが使用される。同様に触媒
(2b)に特有な水素化活性成分である第5B族元素
は、リン化合物が使用でき、例えば正リン酸(オルトリ
ン酸)が使用される。
The Group 1A metal, which is a hydrogenation active component specific to the catalyst (2b), may be a water-soluble carbonate or nitrate, for example, sodium nitrate is used. Similarly, a phosphorus compound can be used as the Group 5B element which is a hydrogenation active component unique to the catalyst (2b), and for example, orthophosphoric acid (orthophosphoric acid) is used.

【0053】30〜60分間程度の時間、担体を金属塩
水溶液に浸漬した後、空気気流下で常温〜200℃の温
度で、0.5〜16時間程度乾燥を行い、次いで空気気
流下で200〜800℃、好ましくは450〜650℃
の加熱条件で1〜3時間程度焼成(か焼)を行って各金
属酸化物が担持された触媒が完成する。
After immersing the carrier in the aqueous metal salt solution for about 30 to 60 minutes, it is dried at room temperature to 200 ° C. for about 0.5 to 16 hours under an air stream, and then dried under an air stream for 200 hours. ~ 800 ° C, preferably 450-650 ° C
By carrying out calcination for about 1 to 3 hours under the above heating conditions, the catalyst supporting each metal oxide is completed.

【0054】上述の製法により完成した細孔を多数有す
る多孔質触媒が、それらを組み合わせることによって所
望の目的を達成するためには、以下の比表面積や細孔径
分布を有することが重要である。
It is important that the porous catalyst having a large number of pores completed by the above-mentioned production method has the following specific surface area and pore size distribution in order to achieve a desired object by combining them.

【0055】触媒(1)の比表面積は100〜180m2
/g、好ましくは150〜170m2/gである。比表面
積が100m2/g未満では触媒性能が不十分となる。一
方180m2/gを超えると、所望の細孔径分布が得られ
ないことが多く、仮に添加物などにより得られたとして
も高い比表面積による水添活性の増加により、セディメ
ントの増加を引き起こすことになる。
The specific surface area of the catalyst (1) is 100 to 180 m 2
/ G, preferably 150 to 170 m 2 / g. If the specific surface area is less than 100 m 2 / g, the catalytic performance will be insufficient. On the other hand, if it exceeds 180 m 2 / g, the desired pore size distribution is often not obtained, and even if it is obtained by an additive or the like, an increase in hydrogenation activity due to a high specific surface area causes an increase in sedimentation. Become.

【0056】触媒(2a)の比表面積は100〜180
m2/g、好ましくは150〜170m2/gである。比表
面積が100m2/g未満では触媒性能が不十分となる。
また180m2/gを超えても触媒性能の増分はない。触
媒(2b)の比表面積は150m2/g以上、好ましくは
185〜250m2/gである。比表面積が150m2/g
未満では触媒性能が不十分となる。ここで比表面積は窒
素(N2)吸着によるBET式で求められる比表面積で
ある。
The specific surface area of the catalyst (2a) is 100 to 180.
m 2 / g, preferably from 150~170m 2 / g. If the specific surface area is less than 100 m 2 / g, the catalytic performance will be insufficient.
Further, even if it exceeds 180 m 2 / g, there is no increase in catalyst performance. The specific surface area of the catalyst (2b) is 150 meters 2 / g or more, preferably 185~250m 2 / g. Specific surface area of 150m 2 / g
If it is less than the above range, the catalyst performance will be insufficient. Here, the specific surface area is a specific surface area obtained by the BET formula by nitrogen (N 2 ) adsorption.

【0057】さらに、水銀圧入法で測定される全細孔容
積は触媒(1)、触媒(2a)、触媒(2b)に共通し
て0.55ml/g以上、好ましくは0.6〜0.9ml/g
である。0.55ml/g未満では触媒性能が不十分とな
る。ここで水銀圧入法による測定とは、例えばマイクロ
メリティクス(Micromeritics)社製の水銀多孔度測定
機器「オートポア(Autopore)II」(商品名)を使用し
接触角140°、表面張力480dyne/cmの条件下で測
定して得られる値である。
Further, the total pore volume measured by mercury porosimetry is 0.55 ml / g or more, preferably 0.6 to 0.5, common to the catalyst (1), the catalyst (2a) and the catalyst (2b). 9 ml / g
Is. If it is less than 0.55 ml / g, the catalyst performance will be insufficient. Here, the measurement by the mercury intrusion method is, for example, using a mercury porosity measuring device “Autopore II” (trade name) manufactured by Micromeritics Co., with a contact angle of 140 ° and a surface tension of 480 dyne / cm. It is a value obtained by measuring under the conditions.

【0058】また、触媒(1)では直径が200Å以上
の容積の割合が全細孔容積の50%以上、好ましくは6
0〜80%の範囲である。(ここで本明細書において記
号「Å」は長さの単位であるオングストロームを表し1
Å=10-10mである)。直径が200Å以上の細孔の容
積割合が全細孔容積の50%未満では、触媒性能、特に
アスファルテン分解性能の低下を招き、セディメントの
生成の抑制が十分でない。なお、金属酸化物が担持され
る前の担体においては、該細孔の総容積割合は全細孔容
積の43%以上、好ましくは45〜70%の範囲であ
る。
In the catalyst (1), the ratio of the volume having a diameter of 200Å or more is 50% or more of the total pore volume, preferably 6
It is in the range of 0 to 80%. (Here, in the present specification, the symbol “Å” represents angstrom, which is a unit of length.
Å = 10 -10 m). When the volume ratio of the pores having a diameter of 200Å or more is less than 50% of the total pore volume, the catalyst performance, particularly the asphaltene decomposition performance is deteriorated, and the suppression of the formation of the sediment is insufficient. In the carrier before the metal oxide is supported, the total volume ratio of the pores is 43% or more, preferably 45 to 70% of the total pore volume.

【0059】また、触媒(1)では、直径が2,000
Å以上の細孔の容積割合が、全細孔容積の10〜30%
である。かかる割合が10%未満では、反応装置の最終
出口で脱アスファルテン性能の低下を招き、セディメン
トの生成が多くなり、30%を超えると触媒の機械強度
が極端に低くなってもろくなり、商業使用において十分
耐えることができない。
The catalyst (1) has a diameter of 2,000.
Volume ratio of pores Å or more is 10 to 30% of total pore volume
Is. If the proportion is less than 10%, the deasphaltenizing performance is deteriorated at the final outlet of the reactor, and the generation of sediment is increased, and if it exceeds 30%, the mechanical strength of the catalyst becomes brittle even if it becomes extremely low, and it is not suitable for commercial use. I can't stand enough.

【0060】また、特に減圧残油の多い原料油を処理す
る場合、触媒(1)では、直径が100〜1,200Åの
細孔の総容積割合は、前記全細孔容積を基準とした場合
に82%以下、特に80%以下とすることが好ましい。
かかる割合が82%を超えると2,000Å以上の細孔
の総容積の割合が相対的に減少し、第1段階に必要とさ
れる超重質留分の触媒細孔内拡散が不十分となることで
減圧残油留分の分解率の低下を招きやすくなるからであ
る。
Further, in the case of treating a stock oil having a large amount of vacuum residual oil, in the catalyst (1), the total volume ratio of pores having a diameter of 100 to 1,200Å is based on the total pore volume. It is preferably 82% or less, and particularly preferably 80% or less.
If the ratio exceeds 82%, the ratio of the total volume of pores of 2,000 Å or more is relatively decreased, and the diffusion of the extra heavy fraction required in the first stage in the catalyst pores becomes insufficient. This is because it tends to cause a reduction in the decomposition rate of the vacuum residue fraction.

【0061】触媒(1)では、その細孔の直径が500
〜1,500Åの細孔容積は0.2ml/g未満が好まし
い、0.2ml/gを超えた場合、脱硫、脱金属反応に有
効な直径300Å以下の細孔が相対的に減少すること
で、触媒性能が低下しやすくなるからである。さらに、
直径300Å以下の細孔が超重質成分で閉塞されやすく
なることから触媒寿命の短命化も懸念されるからであ
る。また、触媒(1)の細孔径分布として、直径が10
0Å以下の細孔容積の割合が全細孔容積の25%以下が
好ましい。25%を超える場合には、アスファルテン以
外の成分への水添が高度に進み、セディメントの生成が
増える傾向がある。
In the catalyst (1), the diameter of the pores is 500.
The pore volume of ~ 1,500 Å is preferably less than 0.2 ml / g. When it exceeds 0.2 ml / g, pores with a diameter of 300 Å or less, which are effective for desulfurization and demetallization, are relatively decreased. This is because the catalytic performance is likely to be lowered. further,
This is because pores with a diameter of 300 Å or less are likely to be clogged with the super-heavy component, which may shorten the catalyst life. The catalyst (1) has a pore diameter distribution of 10
The proportion of the pore volume of 0 Å or less is preferably 25% or less of the total pore volume. If it exceeds 25%, hydrogenation to components other than asphaltene will be highly advanced, and the production of sediment tends to increase.

【0062】触媒(2a)は、細孔径分布が全細孔容積
を基準として直径が100〜1,200Åの細孔容積の
割合が85%以上、より望ましくは87%以上である。
100〜1,200Åの容積割合が85%未満である
と、脱硫、分解等の水素化反応が十分発揮されない。
The catalyst (2a) has a pore volume distribution of 85% or more, and more desirably 87% or more, of the pore volume having a diameter of 100 to 1,200Å based on the total pore volume.
If the volume ratio of 100 to 1,200 Å is less than 85%, hydrogenation reactions such as desulfurization and decomposition will not be sufficiently exhibited.

【0063】触媒(2b)は、細孔径分布が全細孔容積
を基準として直径が100〜1,200Åの細孔容積の
割合が75%以上、より望ましくは78%以上であるこ
とが好ましい。100〜1,200Åの細孔容積の割合
が75%未満であると、脱硫、分解等の水素化反応が十
分発揮されない。
In the catalyst (2b), it is preferable that the ratio of the volume of pores having a diameter distribution of 100 to 1,200Å is 75% or more, more preferably 78% or more, based on the total pore volume. If the proportion of the pore volume of 100 to 1,200 Å is less than 75%, hydrogenation reactions such as desulfurization and decomposition cannot be sufficiently exhibited.

【0064】触媒(2a)及び触媒(2b)共に、直径
4,000Å以上の細孔容積の割合が0〜2%、直径が
10,000Å以上の細孔容積の割合が0〜1%とする
ことにより脱硫や水素化活性、特に減圧残渣油留分の分
解率の極端な低下を防ぐことが可能となる。
In both the catalyst (2a) and the catalyst (2b), the proportion of pore volume having a diameter of 4,000 Å or more is 0 to 2%, and the proportion of pore volume having a diameter of 10,000 Å or more is 0 to 1%. This makes it possible to prevent desulfurization and hydrogenation activity, particularly, an extreme reduction in the decomposition rate of the vacuum residue oil fraction.

【0065】さらに触媒(2a)及び触媒(2b)共
に、細孔分布として、直径が100Å以下の細孔容積の
割合が全細孔容積の25%以下が好ましい。25%を越
える場合には、アスファルテン以外の成分への水添が高
度に進み、セディメントの生成が増える傾向がある。
Further, in both the catalyst (2a) and the catalyst (2b), it is preferable that the proportion of the pore volume having a diameter of 100 Å or less is 25% or less of the total pore volume as the pore distribution. If it exceeds 25%, hydrogenation to components other than asphaltene will be highly advanced, and the production of sediment tends to increase.

【0066】また、触媒(2a)は直径が200Å以上
の細孔容積の割合が全細孔容積の50%以上、好ましく
は60〜80%である。直径が200Å以上の細孔容積
の割合が全細孔容積の50%未満であると、アスファル
テン分解性能が不十分となり、セディメント生成の抑制
が不十分となる。
In the catalyst (2a), the ratio of the volume of pores having a diameter of 200Å or more is 50% or more, preferably 60 to 80% of the total volume of pores. If the ratio of the volume of pores having a diameter of 200Å or more is less than 50% of the total volume of pores, the asphaltene decomposition performance becomes insufficient and the suppression of the formation of sediment becomes insufficient.

【0067】一方、触媒(2b)は、直径が200Å以
上の細孔容積の割合が全細孔容積の50%未満、好まし
くは40%以下である。直径が200Å以上の細孔容積
の割合が全細孔容積の50%以上であると水素化活性の
低下を招くため触媒(2a)によって分解されたアスフ
ァルテンの適度な水素化ができずセディメントの生成を
抑制できない。また、脱硫性能も低下するため触媒(2
a)に対する添加効果もなくなる。
On the other hand, in the catalyst (2b), the ratio of the volume of pores having a diameter of 200Å or more is less than 50% of the total volume of pores, preferably 40% or less. When the ratio of the volume of pores with a diameter of 200Å or more is 50% or more of the total volume of pores, the hydrogenation activity is lowered, so that proper hydrogenation of the asphaltene decomposed by the catalyst (2a) cannot be performed and the formation of sediment occurs. Cannot be suppressed. In addition, the desulfurization performance also deteriorates, so the catalyst (2
The effect of addition to a) is also lost.

【0068】水素化処理の第2段階において、触媒(2
a)と混在させる触媒(2b)の割合、すなわち(2b)
/〔(2a)+(2b)〕は、1重量%以上であるが、好ま
しい割合は1〜50重量%、より好ましくは10〜30
重量%である。混在割合が50重量%を超えた場合は、
第2段階での水添が過度に進行するため、セディメント
生成が顕著となる傾向を示す。一方、1重量%未満では
脱硫性能が不十分となる。
In the second stage of hydrotreating, the catalyst (2
Ratio of catalyst (2b) mixed with a), ie (2b)
/ [(2a) + (2b)] is 1% by weight or more, but a preferable ratio is 1 to 50% by weight, and more preferably 10 to 30%.
% By weight. If the mixing ratio exceeds 50% by weight,
Since the hydrogenation in the second stage progresses excessively, there is a tendency that the formation of sediment becomes remarkable. On the other hand, if it is less than 1% by weight, the desulfurization performance will be insufficient.

【0069】〔II〕水素化処理方法 本発明の水素化処理の対象である重質炭化水素油は、石
油系残渣油、溶剤脱瀝油、石炭液化油、頁岩油、タール
サンド油、典型的には常圧残油(AR)や減圧残油(V
R)やそれらの混合物、特に減圧残(渣)油である。
[II] Hydrotreatment Method The heavy hydrocarbon oil that is the object of the hydrotreatment of the present invention is a petroleum-based residual oil, solvent deasphalted oil, coal liquefied oil, shale oil, tar sand oil, typical Atmospheric pressure residual oil (AR) and reduced pressure residual oil (V
R) and mixtures thereof, especially vacuum residue.

【0070】特に、538℃以上で沸騰する成分(減圧
残油留分)を80重量%以上、硫黄を3重量%以上、残
留炭素を10重量%以上、その他高濃度の金属が存在す
る夾雑物を含む重質油が、本発明の水素化処理の対象と
して好適であり、上記触媒の組み合わせることにより、
夾雑物の除去や軽質油への転換を行うことができる。
In particular, a component boiling at 538 ° C. or higher (vacuum residual oil fraction) is 80% by weight or more, sulfur is 3% by weight or more, residual carbon is 10% by weight or more, and other impurities containing high-concentration metals are present. A heavy oil containing a is suitable as an object of the hydrotreatment of the present invention, and by combining the above catalysts,
It is possible to remove impurities and convert to light oil.

【0071】水素化処理における第1及び第2の反応装
置は、固定床、移動床あるいは沸騰床を備えた一般的な
ものを使用できるが、反応温度を均一に保持できる点か
ら沸騰床の様態で水素化処理を行うことが好ましい。
As the first and second reactors in the hydrotreating, general ones having a fixed bed, a moving bed or a boiling bed can be used. However, since the reaction temperature can be kept uniform, the mode of the boiling bed can be used. It is preferable to carry out the hydrotreatment.

【0072】具体的には、直径0.9〜1.0mmで長さ
3.5mmの円柱形状の触媒を反応装置に充填し、炭化水
素油を液相中、全液空間速度(LHSV)0.1〜3hr
-1、好ましくは0.3〜2.0hr-1で導入し、一方、水素
は炭化水素油との流量比(H2/Oil)300〜1,5
00Nl/L、好ましくは600〜1,000Nl/Lで導入
し、圧力5〜25MPa、好ましくは14〜19MPa、温度
350〜450℃、好ましくは400〜440℃の条件
下にて反応させる。
Specifically, a cylindrical catalyst having a diameter of 0.9 to 1.0 mm and a length of 3.5 mm is charged in a reactor, and hydrocarbon oil is in a liquid phase at a total liquid space velocity (LHSV) of 0. .1 to 3 hours
-1 , preferably at 0.3 to 2.0 hr -1 , while hydrogen is in a flow ratio (H 2 / Oil) of hydrocarbon oil of 300 to 1.5.
The reaction is carried out at a pressure of 5 to 25 MPa, preferably 14 to 19 MPa, and a temperature of 350 to 450 ° C, preferably 400 to 440 ° C.

【0073】第2の反応装置での触媒(2a)及び触媒
(2b)の混在の様態としては、固定床においては均一
に混在するように充填するが、移動床や沸騰床の場合は
触媒(2a)を装入後、触媒(2b)を徐々に装入する
方法を用いてもよい。また、第1の反応装置と第2の反
応装置は、直列に連結してもよいが双方の装置の途中に
硫化水素を除くストリッピング工程や水素を供給するク
エンチラインを設けてもよい。
As a mode of mixing the catalyst (2a) and the catalyst (2b) in the second reaction device, the catalyst (2a) and the catalyst (2b) are packed so as to be mixed uniformly in the fixed bed, but in the case of a moving bed or a boiling bed, the catalyst (2a) is mixed. ) May be charged and then the catalyst (2b) may be gradually charged. Further, the first reactor and the second reactor may be connected in series, but a stripping step for removing hydrogen sulfide and a quench line for supplying hydrogen may be provided in the middle of both the reactors.

【0074】[0074]

【実施例】以下に示す実施例によって、本発明を更に具
体的に説明する。ただし、下記実施例は本発明を限定す
るものではない。 〔I〕触媒の製造 触媒A(上記の触媒(1)に相当)の製造 (i) 担体の製造 水道水を貯えたタンクに、アルミン酸ソーダ溶液、硫酸
アルミニウム溶液を同時滴下し加混合を行った。混合時
のpHを8.5、温度を77℃、保持時間は70分とし
た。かかる加混合によってアルミナ水和物のゲルが生じ
た。前記工程で得られたアルミナ水和物のゲルを溶液か
ら分離した後、温水を用いて洗浄処理を行い、ゲル中の
不純物を除去した。次いで、混練機を用いて20分ほど
混練してゲルの成形性を向上させた後、成型機にて直径
0.9〜1mm、長さが3.5mmの円柱形状の粒子に押し出
し成形した。最後に、成形したアルミナゲルを空気存在
下120℃で16時間かけて乾燥した後、800℃で2
時間焼成してアルミナ担体を得た。
The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the present invention. [I] Manufacture of catalyst Manufacture of catalyst A (corresponding to catalyst (1) above) (i) Manufacture of carrier A sodium aluminate solution and an aluminum sulfate solution were added dropwise at the same time to a tank containing tap water to carry out mixing. It was The pH during mixing, the temperature was 77 ° C., and the holding time was 70 minutes. Such an admixture resulted in a gel of alumina hydrate. The alumina hydrate gel obtained in the above step was separated from the solution, and then washed with warm water to remove impurities in the gel. Then, after kneading for about 20 minutes using a kneading machine to improve the moldability of the gel, extrusion molding was performed using a molding machine into cylindrical particles having a diameter of 0.9 to 1 mm and a length of 3.5 mm. Finally, the formed alumina gel was dried in the presence of air at 120 ° C for 16 hours, and then dried at 800 ° C for 2 hours.
It was calcined for an hour to obtain an alumina carrier.

【0075】(ii) 触媒の製造 モリブデン酸アンモニウム四水和物17.5g、硝酸ニ
ッケル六水和物9.8gを添加したクエン酸溶液100m
lに上記のアルミナ担体100gを25℃、45分間浸
漬し、金属成分担持担体を得た。次いで担持担体を、乾
燥機を使用して120℃で30分間乾燥した後、620
℃で1.5時間、キルンでか焼して触媒を完成させた。
製造した触媒A中の各成分の量及び性状は下記の表1に
示す通りである。
(Ii) Preparation of catalyst 100 m of citric acid solution to which 17.5 g of ammonium molybdate tetrahydrate and 9.8 g of nickel nitrate hexahydrate were added.
100 g of the above alumina carrier was immersed in l at 25 ° C. for 45 minutes to obtain a metal component-supporting carrier. Then, the carrier was dried at 120 ° C. for 30 minutes using a dryer, and then 620
The catalyst was completed by calcining in a kiln at 1.5 ° C. for 1.5 hours.
The amounts and properties of each component in the produced catalyst A are as shown in Table 1 below.

【0076】 触媒B(上記の触媒(2a)に相当)の
製造 (i) 担体の製造 水道水を貯えたタンクに、アルミン酸ソーダ溶液、硫酸
アルミニウム溶液を同時滴下し加混合を行った。混合時
のpHを8.5、温度を65℃、保持時間は70分とし
た。かかる加混合によってアルミナ水和物のゲルが生じ
た。前記工程で得られたアルミナ水和物のゲルを溶液か
ら分離した後、温水を用いて洗浄処理を行い、ゲル中の
不純物を除去した。次いで、混練機を用いて20分ほど
混練してゲルの成形性を向上させた後、成型機にて直径
0.9〜1mm、長さが3.5mmの円柱形状の粒子に押し出
し成形した。最後に、成形したアルミナゲルを空気存在
下120℃で16時間かけて乾燥した後、900℃で2
時間焼成してアルミナ担体を得た。
Production of catalyst B (corresponding to the above catalyst (2a)) (i) Production of carrier A sodium aluminate solution and an aluminum sulfate solution were simultaneously added dropwise to a tank containing tap water to carry out addition mixing. The pH at the time of mixing was 8.5, the temperature was 65 ° C., and the holding time was 70 minutes. Such an admixture resulted in a gel of alumina hydrate. The alumina hydrate gel obtained in the above step was separated from the solution, and then washed with warm water to remove impurities in the gel. Then, after kneading for about 20 minutes using a kneading machine to improve the moldability of the gel, extrusion molding was performed using a molding machine into cylindrical particles having a diameter of 0.9 to 1 mm and a length of 3.5 mm. Finally, the formed alumina gel was dried in the presence of air at 120 ° C for 16 hours, and then at 900 ° C for 2 hours.
It was calcined for an hour to obtain an alumina carrier.

【0077】(ii) 触媒の製造 モリブデン酸アンモニウム四水和物16.4g、硝酸ニ
ッケル六水和物9.8gを添加したクエン酸溶液100m
lに上記のアルミナ担体100gを25℃、45分間浸
漬し、金属成分担持担体を得た。次いで担持担体を、乾
燥機を使用して120℃で30分間乾燥した後、600
℃で1.5時間、キルンでか焼して触媒を完成させた。
製造した触媒B中の各成分の量及び性状は下記の表1に
示す通りである。
(Ii) Preparation of catalyst 100 m of citric acid solution to which 16.4 g of ammonium molybdate tetrahydrate and 9.8 g of nickel nitrate hexahydrate were added.
100 g of the above alumina carrier was immersed in l at 25 ° C. for 45 minutes to obtain a metal component-supporting carrier. Then, the carrier is dried at 120 ° C. for 30 minutes using a dryer, and then 600
The catalyst was completed by calcining in a kiln at 1.5 ° C. for 1.5 hours.
The amounts and properties of each component in the produced catalyst B are as shown in Table 1 below.

【0078】 触媒C(上記の触媒(2b)に相当)
の製造方法 (i) 担体の製造 水道水を貯えたタンクに、アルミン酸ソーダ溶液を入
れ、硫酸アルミニウム溶液を用いて加混合を行った。硫
酸アルミニウム溶液の添加終了時にpHが8.5となる
ように添加し、混合時の温度を64℃、保持時間は1.
5時間とした。次にシリカ源の水ガラス(ケイ酸ソー
ダ)を混合した。水ガラスは、硫酸アルミニウム溶液と
共に前記タンクに入れておいた。このときのアルミナゲ
ル中のケイ酸ソーダの濃度を1.6重量%に設定した。
前記工程により得られたシリカ−アルミナ水和物のゲル
を溶液から分離した後、温水を用いて洗浄処理を行い、
ゲル中の不純物を除去した。次いで、混練機を用いて1
時間混練してゲルの成型性を向上させた後、成型機にて
直径が0.9〜1mm、長さが3.5mmの円柱形状の粒子に
押出成型した。最後に成型したシリカ−アルミナ粒子を
空気存在下120℃で16時間かけて乾燥させた後、8
00℃の温度で2時間焼成し、シリカ−アルミナ担体を
得た。得られた担体中のシリカ含有量は7重量%であっ
た。
Catalyst C (corresponding to catalyst (2b) above)
(I) Production of carrier A sodium aluminate solution was placed in a tank containing tap water, and the mixture was mixed using an aluminum sulfate solution. At the end of the addition of the aluminum sulfate solution, the pH was adjusted to 8.5, the mixing temperature was 64 ° C, and the holding time was 1.
It was set to 5 hours. Next, silica glass water glass (sodium silicate) was mixed. Water glass was placed in the tank with the aluminum sulfate solution. The concentration of sodium silicate in the alumina gel at this time was set to 1.6% by weight.
After separating the silica-alumina hydrate gel obtained by the step from the solution, a washing treatment is performed using warm water,
The impurities in the gel were removed. Then, using a kneader 1
After kneading for a long time to improve the moldability of the gel, it was extrusion-molded by a molding machine into cylindrical particles having a diameter of 0.9 to 1 mm and a length of 3.5 mm. The finally molded silica-alumina particles were dried in the presence of air at 120 ° C. for 16 hours, and then 8
It was calcined at a temperature of 00 ° C. for 2 hours to obtain a silica-alumina carrier. The silica content in the obtained carrier was 7% by weight.

【0079】(ii) 触媒の製造 モリブデン酸アンモニウム四水和物16.2g、炭酸ニ
ッケル4.7g、硝酸ナトリウム 0.66g、正リン酸
2.1gに上記のシリカ−アルミナ担体100gを25
℃、45分間浸漬し、金属成分担持担体を得た。次いで
担持担体を、乾燥機を使用して120℃で30分間乾燥
した後、540℃で1.5時間、キルンでか焼して触媒
を完成させた。製造した触媒C中の各成分の量及び性状
は下記の表1に示す通りである。
(Ii) Preparation of catalyst 16.2 g of ammonium molybdate tetrahydrate, 4.7 g of nickel carbonate, 0.66 g of sodium nitrate, 2.1 g of orthophosphoric acid and 25 g of 100 g of the above silica-alumina carrier.
By immersing at 45 ° C. for 45 minutes, a metal component-supporting carrier was obtained. Then, the carrier was dried using a dryer at 120 ° C. for 30 minutes and then calcined in a kiln at 540 ° C. for 1.5 hours to complete a catalyst. The amounts and properties of each component in the produced catalyst C are as shown in Table 1 below.

【0080】 触媒Dの製造 (i) 担体の製造 水道水を張ったタンクに、硫酸アルミニウム、アルミン
酸ソーダ溶液を同時滴下し加混合を行った。混合時の温
度は70℃とし、滴下時pHを7.5とした後、最終p
Hを9.5とするまで更にアルミン酸ソーダを加えた。
保持時間は70分間である。得られたアルミナゲルを実
施例1と同様の成形、焼成を行い、アルミナ粒子を得
た。
Manufacture of catalyst D (i) Manufacture of carrier Aluminum sulfate and sodium aluminate solutions were simultaneously added dropwise to a tank filled with tap water and mixed. The temperature at the time of mixing was 70 ° C., the pH at the time of dropping was 7.5, and the final p
More sodium aluminate was added until H was 9.5.
The holding time is 70 minutes. The obtained alumina gel was molded and fired in the same manner as in Example 1 to obtain alumina particles.

【0081】(ii)触媒の製造 モリブデン酸アンモニウム四水和物17.2g、硝酸ニ
ッケル六水和物9.8gを添加したクエン酸水溶液10
0mlにアルミナ担体100gを25℃、45分間浸漬
し、実施例1と同様の条件で乾燥並びに焼成を行い、金
属成分担持担体を得た。製造した触媒D中の各成分の量
及び性状は下記の表1に示す通りである。
(Ii) Preparation of catalyst Aqueous citric acid solution 10 to which 17.2 g of ammonium molybdate tetrahydrate and 9.8 g of nickel nitrate hexahydrate were added.
100 g of the alumina carrier was immersed in 0 ml at 25 ° C. for 45 minutes, dried and baked under the same conditions as in Example 1 to obtain a metal component-supported carrier. The amounts and properties of each component in the produced catalyst D are as shown in Table 1 below.

【0082】[0082]

【表1】 [Table 1]

【0083】(II)水素化処理 表2に通油した原料油の性状を示した。この原料油は5
38℃を越える沸点を有する成分を約93重量%含有
し、硫黄含有量が約4.9重量%、全窒素含有量が約3
300重量ppm、バナジウム含有量が109重量ppm及び
ニッケル含有量が46重量ppm、ノルマルヘプタン不溶
解分で示されるアスファルテン分を約8重量%含有する
ものである。
(II) Hydrotreatment Table 2 shows the properties of the feedstock oil. This raw oil is 5
Containing about 93% by weight of components having a boiling point above 38 ° C, sulfur content of about 4.9% by weight, total nitrogen content of about 3%
It contains 300 wt ppm, a vanadium content of 109 wt ppm, a nickel content of 46 wt ppm, and an asphaltene content represented by a normal heptane insoluble content of about 8 wt%.

【0084】[0084]

【表2】 [Table 2]

【0085】上記触媒A、触媒B、触媒C及び触媒D
を、表3及び表4に示した組み合わせで反応装置の固定
床に充填し、それぞれについて水素化処理を行った。表
2に記載した性状の原料油を圧力16.0MPa、全液空間
速度(Liquid Hourly Space Velocity :LHSV)1.
5hr-1、平均温度427℃、供給する水素と原料油の比
(H2/Oil)を800Nl/Lとして固定床に導入し、
生成油を得た。生成油を捕集し分析して水素化によって
脱離された硫黄(Sulfur)、金属(バナジウム+ニッケ
ル)及びアスファルテン(Asp.)量を算出し、下記計算式
に基づいて比活性(Relative Volume Activity;RV
A)を求め、表3、表4に示した。比活性は、比較例1
の触媒の水素化脱硫(HDS)、水素化脱金属(HD
M)、及び水素化脱アスファルテン(HDAsp.)の各指数で
ある
Catalyst A, Catalyst B, Catalyst C and Catalyst D
Was packed in the fixed bed of the reactor with the combinations shown in Tables 3 and 4, and hydrotreated for each. The raw material oil having the properties shown in Table 2 was used at a pressure of 16.0 MPa and a total liquid space velocity (LHSV) of 1.
5 hr −1 , average temperature 427 ° C., introduce hydrogen into the fixed bed at a ratio of hydrogen to feed oil (H 2 / Oil) of 800 Nl / L,
A product oil was obtained. The produced oil is collected and analyzed to calculate the amount of sulfur (Sulfur), metal (vanadium + nickel) and asphaltene (Asp.) Desorbed by hydrogenation, and the specific activity (Relative Volume Activity) is calculated based on the following formula. ; RV
A) was determined and shown in Tables 3 and 4. Specific activity is shown in Comparative Example 1
Hydrodesulfurization (HDS), hydrodemetalization (HD
M) and hydrodeasphalten (HDAsp.) Indices.

【0086】[0086]

【数1】 [Equation 1]

【0087】[0087]

【表3】 [Table 3]

【0088】[0088]

【表4】 [Table 4]

【0089】上記の表3及び表4の結果から、実施例1
及び実施例2は、重質留分を含む減圧残油の処理におい
て、種々の組み合わせの比較例と比べて、石油精製工程
で問題となるセディメント生成を抑制しつつ、高度な脱
硫、脱金属、アスファルテン分解を達成していることが
理解される。
From the results of Tables 3 and 4 above, Example 1
In Example 2, in the treatment of a vacuum residue containing a heavy fraction, compared with Comparative Examples of various combinations, advanced desulfurization, demetalization, while suppressing the generation of sediment which is a problem in the petroleum refining process, It is understood that asphaltene degradation has been achieved.

【0090】[0090]

【発明の効果】本発明によれば、硫黄、残留炭素、金
属、窒素、アスファルテン等の夾雑物を大量に含有する
重質の炭化水素油、特に減圧残油留分を80重量%以上
含む重質油の水素化処理において、装置運転上の支障と
なるセディメントの生成を抑制しながら、高度な夾雑物
の除去および付加価値の高い留出油の製造を可能とす
る。また、水素化処理の第1段階で高度にアスファルテ
ンを除去することにより、第2段階の熱分解で触媒上に
堆積する好ましくないコーク生成を抑えて触媒性能の低
下を防ぐ効果をもたらす。
According to the present invention, a heavy hydrocarbon oil containing a large amount of impurities such as sulfur, residual carbon, metal, nitrogen and asphaltene, particularly a heavy oil containing a vacuum residue fraction of 80% by weight or more. In the hydrotreatment of a heavy oil, it is possible to produce a distillate with a high degree of removal of contaminants and a high added value while suppressing the formation of a sediment that hinders the operation of the equipment. Further, by removing asphaltene to a high degree in the first stage of the hydrotreatment, it is possible to suppress the generation of undesired coke deposited on the catalyst in the thermal decomposition in the second stage and prevent the deterioration of the catalyst performance.

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA03A BA03B BB04A BB04B BC01A BC02B BC25A BC26A BC27A BC57A BC59B BC65A BC68B BC69A BD06A BD07A BD07B CC02 CC03 CC16 DA05 EA06 EC03X EC03Y EC07X EC07Y EC15X EC15Y EC16X EC16Y EC17X EC17Y EC18 FA01 FB08 FB14 FB67 FC08 4H029 CA00 DA00 DA09 Continued front page    F-term (reference) 4G069 AA03 AA08 BA01A BA01B                       BA03A BA03B BB04A BB04B                       BC01A BC02B BC25A BC26A                       BC27A BC57A BC59B BC65A                       BC68B BC69A BD06A BD07A                       BD07B CC02 CC03 CC16                       DA05 EA06 EC03X EC03Y                       EC07X EC07Y EC15X EC15Y                       EC16X EC16Y EC17X EC17Y                       EC18 FA01 FB08 FB14 FB67                       FC08                 4H029 CA00 DA00 DA09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重質炭化水素油を、下記触媒(1)が充
填された第1の反応装置において水素存在下、触媒
(1)と接触させて第1段階の水素化処理を行い、次い
で第1段階で得られた水素化処理油を、下記触媒(2
a)及び触媒(2b)が混在して充填された第2の反応
装置において水素存在下、触媒(2a)及び触媒(2
b)と接触させて第2段階の水素化処理を行うことを特
徴とする重質炭化水素油の水素化処理方法。 触媒(1):多孔質のアルミナ担体に、触媒重量を基準
として周期表の第6A族金属の酸化物が7〜20重量
%、周期表の第8族金属の酸化物が0.5〜6重量%で
担持され、触媒の (a)比表面積が100〜180m2/g、 (b)全細孔容積が0.55ml/g以上であり、 触媒の細孔分布径が全細孔容積を基準として (c1)直径が200Å以上の細孔容積の割合が全細孔容積
の50%以上、 (c2)直径が2,000Å以上の細孔容積の割合が全細孔
容積の10〜30%、 (c3)直径が10,000Å以上の細孔容積の割合が全細
孔容積の0〜1%である水素化処理用触媒; 触媒(2a):多孔質アルミナ担体に触媒重量を基準と
して周期表の第6A族金属の酸化物が7〜20重量%、
周期表の第8族金属の酸化物が0.5〜6重量%の量で
担持され、触媒の (a)比表面積が100〜180m2/g、 (b)全細孔容積が0.55ml/g以上であり、 触媒の細孔分布径が全細孔容積を基準として (d1)直径が100〜1,200Åの容積の割合が85%
以上、 (d2)細孔の直径が4,000Å以上の容積の割合が0〜
2%、 (d3)細孔の直径が10,000Å以上の容積の割合が0
〜1%、 (d4)直径が200Å以上の細孔容積の割合が全細孔容積
の50%以上である水素化処理触媒; 触媒(2b):耐熱性無機多孔質担体に少なくとも1種
の水素化活性成分が担持され、触媒の (a)比表面積が150m2/g以上、 (b)全細孔容積が0.55ml/g以上であり、 触媒の細孔分布径が全細孔容積を基準として (d1)直径が100〜1,200Åの細孔容積の割合が全
細孔容積の75%以上、 (d2)直径が4,000Å以上の容積の割合が0〜2%、 (d3)直径が10,000Å以上の細孔容積の割合が全細
孔容積の0〜1%、 (d4)直径が200Å以上の細孔容積の割合が全細孔容積
の50%未満である水素化処理用触媒。
1. A heavy hydrocarbon oil is contacted with a catalyst (1) in the presence of hydrogen in a first reactor filled with the following catalyst (1) to carry out a first stage hydrotreatment, and then, The hydrotreated oil obtained in the first stage was treated with the catalyst (2
a) and the catalyst (2b) are mixed and packed in the second reactor in the presence of hydrogen, the catalyst (2a) and the catalyst (2)
A method for hydrotreating a heavy hydrocarbon oil, comprising carrying out a second stage hydrotreatment in contact with b). Catalyst (1): 7 to 20% by weight of an oxide of a Group 6A metal of the periodic table and 0.5 to 6 of an oxide of a Group 8 metal of the periodic table on the basis of the catalyst weight on a porous alumina carrier. % Of the catalyst, (a) the specific surface area of the catalyst is 100 to 180 m 2 / g, (b) the total pore volume is 0.55 ml / g or more, and the pore distribution diameter of the catalyst is the total pore volume. As a standard, (c1) the proportion of pore volume of 200 Å or more is 50% or more of the total pore volume, and (c2) proportion of pore volume of 2,000 Å or more is 10 to 30% of the total pore volume. , (C3) Hydrotreating catalyst in which the proportion of pore volume having a diameter of 10,000 Å or more is 0 to 1% of the total pore volume; Catalyst (2a): Periodic on a porous alumina carrier based on the catalyst weight. 7 to 20% by weight of Group 6A metal oxide in the table,
Oxide of Group 8 metal of the periodic table is supported in an amount of 0.5 to 6% by weight, (a) specific surface area of the catalyst is 100 to 180 m 2 / g, (b) total pore volume is 0.55 ml. / G or more, the pore distribution diameter of the catalyst is based on the total pore volume (d1) the proportion of the volume of 100 to 1,200 Å is 85%
As mentioned above, (d2) the ratio of the volume of pores having a diameter of 4,000 Å or more is 0 to
2%, (d3) Percentage of pores with a diameter of 10,000 Å or more is 0
~ 1%, (d4) hydrotreating catalyst in which the proportion of pore volume having a diameter of 200Å or more is 50% or more of the total pore volume; catalyst (2b): at least one hydrogen in a heat-resistant inorganic porous carrier Of the catalyst, (a) the specific surface area of the catalyst is 150 m 2 / g or more, (b) the total pore volume is 0.55 ml / g or more, and the pore distribution diameter of the catalyst is less than the total pore volume. As a standard, (d1) the proportion of the pore volume of 100 to 1,200 Å is 75% or more of the total pore volume, (d2) the proportion of the volume of 4,000 Å or more is 0 to 2%, (d3) Hydrotreating in which the proportion of pore volume having a diameter of 10,000 Å or more is 0 to 1% of the total pore volume, and (d4) the proportion of pore volume of 200 Å or more in diameter is less than 50% of the total pore volume. Catalyst.
【請求項2】 触媒(2b)の耐熱性無機多孔質担体
が、シリカ量として3.5重量%以上含むシリカ−アル
ミナ担体である請求項1記載の方法。
2. The method according to claim 1, wherein the heat-resistant inorganic porous carrier of the catalyst (2b) is a silica-alumina carrier containing 3.5% by weight or more of silica.
【請求項3】 触媒(2b)が、シリカ量として3.5
重量%以上含むシリカ−アルミナ担体に、触媒重量を基
準として周期表の第6A族金属の酸化物が7〜20重量
%、周期表の第8族金属の酸化物が0.5〜6重量%、
周期表の第1A族金属の酸化物が0.1〜1重量%の量
で担持されている水素化処理用触媒である請求項1記載
の方法。
3. The catalyst (2b) has a silica content of 3.5.
Silica-alumina carrier containing more than 10 wt% of the oxide of Group 6A metal of the periodic table is 7 to 20 wt% and oxide of Group 8 metal of the periodic table is 0.5 to 6 wt% based on the weight of the catalyst. ,
The process according to claim 1, which is a hydrotreating catalyst in which an oxide of a Group 1A metal of the periodic table is supported in an amount of 0.1 to 1% by weight.
【請求項4】 触媒(2b)が、シリカ量として3.5
重量%以上含むシリカ−アルミナ担体に、触媒重量を基
準として周期表の第6A族金属の酸化物が7〜20重量
%、周期表の第8族金属の酸化物が0.5〜6重量%、
周期表の第1A族金属の酸化物が0.1〜1重量%、周
期表の第5B族元素の酸化物が0.1〜2重量%の量で
担持されている水素化処理用触媒である請求項1記載の
方法。
4. The catalyst (2b) has a silica content of 3.5.
Silica-alumina carrier containing more than 10 wt% of the oxide of Group 6A metal of the periodic table is 7 to 20 wt% and oxide of Group 8 metal of the periodic table is 0.5 to 6 wt% based on the weight of the catalyst. ,
A hydrotreating catalyst comprising 0.1 to 1% by weight of an oxide of a Group 1A metal of the periodic table and 0.1 to 2% by weight of an oxide of a Group 5B element of the periodic table. The method of claim 1, wherein:
【請求項5】 重質炭化水素油が、減圧残油留分を80
重量%以上含む重質油である請求項1〜4のいずれか1
項に記載の方法。
5. The heavy hydrocarbon oil comprises a vacuum residue fraction of 80%.
It is a heavy oil containing at least 5% by weight.
The method described in the section.
【請求項6】 第1段階及び第2段階において、温度3
50〜450℃、圧力5〜25MPaの条件下で水素化
処理を行う請求項1〜5のいずれか1項に記載の方法。
6. A temperature of 3 in the first step and the second step.
The method according to any one of claims 1 to 5, wherein the hydrogenation treatment is performed under the conditions of 50 to 450 ° C and a pressure of 5 to 25 MPa.
【請求項7】 第2段階の反応装置に充填された触媒に
おける触媒(2b)の混在割合が1重量%以上である請
求項1〜6のいずれか1項に記載の方法。
7. The method according to claim 1, wherein the mixture ratio of the catalyst (2b) in the catalyst packed in the second stage reactor is 1% by weight or more.
【請求項8】 重質炭化水素油を沸騰床の様態で水素化
処理触媒と接触させる請求項1〜7のいずれか1項に記
載の方法。
8. The process according to claim 1, wherein the heavy hydrocarbon oil is contacted with the hydrotreating catalyst in the form of a boiling bed.
JP2002088655A 2002-03-27 2002-03-27 Two-stage hydroprocessing method for heavy hydrocarbon oil Expired - Lifetime JP3978064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088655A JP3978064B2 (en) 2002-03-27 2002-03-27 Two-stage hydroprocessing method for heavy hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088655A JP3978064B2 (en) 2002-03-27 2002-03-27 Two-stage hydroprocessing method for heavy hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2003277772A true JP2003277772A (en) 2003-10-02
JP3978064B2 JP3978064B2 (en) 2007-09-19

Family

ID=29234455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088655A Expired - Lifetime JP3978064B2 (en) 2002-03-27 2002-03-27 Two-stage hydroprocessing method for heavy hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP3978064B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270937A (en) * 2004-03-26 2005-10-06 Petroleum Energy Center Hydrogenation treatment catalyst for hydrocarbon oil and production method therefor, and hydrogenation treatment method for hydrocarbon oil
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
JP2008093493A (en) * 2006-10-05 2008-04-24 Idemitsu Kosan Co Ltd Demetallization catalyst and method for hydrotreating heavy oil by using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103789004B (en) * 2012-11-01 2015-07-22 中国石油化工股份有限公司 Hydrodemetalization process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270937A (en) * 2004-03-26 2005-10-06 Petroleum Energy Center Hydrogenation treatment catalyst for hydrocarbon oil and production method therefor, and hydrogenation treatment method for hydrocarbon oil
JP4503327B2 (en) * 2004-03-26 2010-07-14 財団法人石油産業活性化センター Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2006181562A (en) * 2004-12-24 2006-07-13 Catalysts & Chem Ind Co Ltd Catalyst composition for hydrotreating heavy hydrocarbon oil
JP2008093493A (en) * 2006-10-05 2008-04-24 Idemitsu Kosan Co Ltd Demetallization catalyst and method for hydrotreating heavy oil by using the same

Also Published As

Publication number Publication date
JP3978064B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
EP1773969B1 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
US7922894B2 (en) HPC process using a mixture of catalysts
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP4773634B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP2008513201A (en) Highly active hydrodesulfurization catalyst, process for producing said catalyst, and process for producing ultra-low sulfur middle distillate fuel
RU2656594C2 (en) Preparation of hydrocarbon conversion catalyst
JP2004010857A (en) Method for hydrogenating hydrocarbon heavy oil
CA2508630C (en) Hydro processing of hydrocarbon using a mixture of catalysts
JP4773633B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JP2003277772A (en) Method of two-stage hydrotreating of heavy hydrocarbon oil
JP2004115581A (en) Method for demetallating petroleum heavy oil
JP2004358326A (en) Catalyst for hydrogenation treatment and its using method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3978064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term