JP2004358326A - Catalyst for hydrogenation treatment and its using method - Google Patents

Catalyst for hydrogenation treatment and its using method Download PDF

Info

Publication number
JP2004358326A
JP2004358326A JP2003158458A JP2003158458A JP2004358326A JP 2004358326 A JP2004358326 A JP 2004358326A JP 2003158458 A JP2003158458 A JP 2003158458A JP 2003158458 A JP2003158458 A JP 2003158458A JP 2004358326 A JP2004358326 A JP 2004358326A
Authority
JP
Japan
Prior art keywords
catalyst
weight
carrier
group
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003158458A
Other languages
Japanese (ja)
Inventor
Satoshi Abe
聡 安部
Tatsuji Nishijima
達二 西島
Masaya Inada
昌哉 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KECCHEN KK
Japan Petroleum Energy Center JPEC
Original Assignee
NIPPON KECCHEN KK
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KECCHEN KK, Petroleum Energy Center PEC filed Critical NIPPON KECCHEN KK
Priority to JP2003158458A priority Critical patent/JP2004358326A/en
Publication of JP2004358326A publication Critical patent/JP2004358326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for hydrogenation treatment excellent as a catalyst for pretreatment of fluidized catalytic cracking (FCC). <P>SOLUTION: A porous alumina based carrier is carried with (1) 0.1-7 wt% of titanium oxide; (2) 15-25 wt% of oxide of Group 6a metal in the periodic table; (3) 3-7 wt% of oxide of Group 8 metal in the periodic table; and (4) 0.1-7 wt% of phosphorus oxide in terms of P<SB>2</SB>O<SB>5</SB>as catalyst components based on the weight of the catalyst. (a) A specific surface area of the catalyst is 180-300 m<SP>2</SP>/g and (b) a total pore volume is 0.4-0.6 ml/g. In the catalyst for hydrogenation treatment of hydrocarbon oils, in the catalyst manufacturing step, after the carrier is fired/carried with the catalyst component (1), the component (2)-(4) are fired/carried. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素油に含まれる硫黄、窒素、残留炭素等の溶存夾雑物を除去する水素化処理触媒および利用方法に関する。
【0002】
【従来の技術】
一般に、間接脱硫装置(VGO FCC前処理)からの生成油の多くは、FCC(流動接触分解)装置で処理され、FCCガソリンなど製造に供せられる。これまでのFCC前処理用としての間接脱硫触媒には高脱硫性能が求められていたが、近年では脱硫のみならず、FCCガソリンの収率向上並びにFCCボトムの低減化に対する要望が高まってきている。
従来の間接脱硫触媒には、アルミナ等の金属酸化物担体に対してモリブデン、タングステン等の6A族元素やニッケル、コバルト等の8族元素を担持した触媒が広く用いられている。また、担体の化学的性質を変化させることで水素化処理性能を向上させるため、アルミナ−シリカ等の複合酸化物を担体とする試みもなされている。しかしながら、これらの方法を用いても、従来の脱硫性能を満たしつつFCC装置でのガソリン収率の向上、FCCボトムの低減化を同時に図れる間接脱硫触媒の提供には至っていない。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、炭化水素油の水素化処理用触媒として、従来以上に優れた水素化処理(脱硫、脱窒素及び脱残留炭素)性能を有することでFCC装置でのガソリン収率の向上およびFCCボトム収率の低減に寄与する触媒と該触媒の利用方法の提供にある。
【0004】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑みて鋭意研究を重ねた結果、担体に酸化チタンを焼成・担持させた後、他の特定金属触媒成分を焼成・担持させた触媒であって特定の比表面積、全細孔容積を有する水素化処理用触媒が、流動床式接触分解(FCC)の前処理用触媒として優れていることを見出し、本発明の完成に至った。
【0005】
すなわち、本発明は、多孔質のアルミナ系担体に、触媒重量を基準に、触媒成分として
(1) 酸化チタン0.1〜7重量%、
(2) 周期表の第6A族金属の酸化物15〜25重量%、
(3) 周期表第8族金属の酸化物3〜7重量%、及び
(4) リン酸化物をP換算として0.1〜7重量%
が担持され、触媒の
(a) 比表面積が180〜300m/g、及び
(b) 全細孔容積が0.4〜0.6ml/g
であり、触媒製造工程において担体に触媒成分(1)を焼成・担持させた後、成分(2)から(4)を焼成・担持させることを特徴とする炭化水素油の水素化処理用触媒である。
【0006】
また、触媒成分(2)がクロム、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属であり、触媒成分(3)が鉄、コバルト、ニッケルからなる群より選ばれる少なくとも1種の金属であることを特徴とする。
また、触媒製造時の焼成温度が450〜600℃であることを特徴とする。
【0007】
さらに、本発明は、炭化水素油を温度350〜450℃、圧力5〜15MPa、液空間速度0.1〜3hr−1の条件で水素存在下で上記水素化処理用触媒と接触させることを特徴とする炭化水素油の水素化処理方法であり、炭化水素油が減圧軽油であることを特徴とする。
【0008】
また、本発明は、上記触媒を流動床式接触分解(FCC)の前処理用触媒として使用する方法である。
【0009】
【発明の実施の形態】
以下、上記発明について詳細に説明する。本発明におけるアルミナ系担体は、担体中のアルミナ成分が80重量%以上存在するものである。アルミナの形態については、α、θ、δ、κ、η、γ、χ型等のアルミナ、バイヤライト、ジブサイト、ベーマイト、擬ベーマイト等のアルミナ水和物などがあるが、これらの単体あるいは混合物を用いることができる。しなしながら、経済性や実用性の観点からはγアルミナが好ましい。アルミナとの複合酸化物を担体とする場合、担体中に20重量%以下の割合で、シリカ、酸化亜鉛、ゼオライト、粘土鉱物等やこれらの混合物を添加することもできる。
【0010】
このアルミナ系担体に対してマグネシウム、ホウ素、チタン、ジルコン、ランタンから選ばれる少なくとも1種の化合物を含浸して焼成担持するが、触媒活性や経済性の観点から、チタンが最もこのましい。含浸時に使用するチタン化合物としては、特に限定はされないが、チタニアゾル、塩化チタン、硫酸チタニル、アルコキシチタン、ペルオキソチタン酸、チタンペルオキソヒドロキシ酸塩、乳酸チタン、酪酸チタンなどが挙げられる。アルミナ系担体への担持量は、触媒基準で0.1〜7重量%が好ましく、特に0.5〜6重量%が好適である。
【0011】
担体表面にチタニナ等の酸化物を形成させた後、周期表第6A族、第8族およびリンを担持させる。第6A族元素としては、クロム、モリブデン、タングステンが挙げられるが、活性および経済性の観点から、モリブデンが好ましい。第8族元素としては、鉄、コバルト、ニッケル等が挙げられるが、活性および経済性の観点から、コバルト、ニッケルを単独または双方を担持することが好ましい。
【0012】
周期表第6A族および第8族元素の担持量は、担体も含めて触媒(酸化物)基準で担体を含め以下のようにするのが好ましい。すなわち、第6A族元素は15〜25重量%であり、好ましくは18〜24重量%である。15重量%未満では必要な触媒性能が発現せず、25重量%を超えた場合、触媒性能に増分は見られない。また、第8族元素は3〜7重量%であり、好ましくは4〜6重量%である。3重量%未満では触媒性能は発現しない傾向となり、一方、7重量%を超えても触媒性能は増加しないためである。
【0013】
これらの元素の担持方法としては、浸漬法、含浸法などの通常用いられる方法で行うことができる。各元素の担持の順序は特に限定されず、逐次、あるいは同時に担持することができる。担持する際に用いる第6A族元素及び第8族元素の溶液は特に限定されないが、通常は水等の溶媒に可溶性の第6A族元素化合物及び第8族元素化合物を溶解したものを用いる。また、溶液の安定化を図るため、硝酸、塩酸、リン酸等の鉱酸やそれらの塩類、蟻酸、酢酸、蓚酸、クエン酸、リンゴ酸、グルコン酸等の有機酸やそれらの塩類、またはエチレンジアミン、EDTA(エチレンジアミン四酢酸)等の各種キレートを添加してもよい。リン酸を用いて第6A族元素化合物及び第8族元素化合物を溶解する場合、完成された触媒上のリンの担持量は、酸化物として0.1〜7重量%、好ましくは0.3〜6重量%である。
【0014】
なお、この水溶液に第6A族元素及び第8族元素を分散させるため、エチレングリコール、プロピレングリコール、グリセリン、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリビニルアルコール等の多価アルコールやそれらのエーテル、エステル類、グルコース、フルクトース、ラクトース、スクロース等の単糖、二糖類等を添加してもよい。
【0015】
第6A族元素、第8族元素およびリンを担持した後は乾燥し、焼成処理を行う。このとき、雰囲気は特に限定されず、通常は空気中で行う。乾燥は30〜200℃で1〜3時間程度、焼成工程は450〜600℃で1〜3時間程度である。
このようにして得られた触媒に、炭化水素油の水素化処理反応において所望の性能を発揮させるには、次のような物性(比表面積、細孔構造)を持たせることが必要である。
【0016】
BET式で得られる比表面積は、180〜300m/gが望ましく、より好ましい範囲は190〜280m/gである。180m/g未満では触媒性能が不十分であり、300m/gを超えた場合、細孔径が小さくなりすぎるため、反応中に細孔閉塞等を起こしやすくなる。水銀圧入法(表面張力480dyn/cm、接触角140°)で得られる細孔容積は、0.4〜0.6ml/gの範囲が好ましい。0.4ml/g未満では、炭化水素油の触媒細孔内拡散が不十分となり、0.6ml/gを超えた場合、触媒充填密度の低下により、触媒活性が低下する。
【0017】
本発明の触媒は、固定床、沸騰床、移動床、流動床等の反応器で、炭化水素油を水素の存在下での水素化、水素化脱硫、水素化脱窒素、脱残留炭素、水素化分解等を行う水素化処理反応に使用するが、次のような反応条件、即ち、350〜450℃の反応温度、5〜15MPaの水素分圧、150〜1500Nl/lの水素原料油比、0.1〜3hr−1の液空間速度(Liquid Hourly Space Velocity;LHSV)で炭化水素油を通油した場合、優れた水素化処理性能を発揮する。好適な反応温度は340〜430℃であり、好適な水素分圧は3〜20MPa、好適な水素原料油比は200〜1000Nl/l、また好適な液空間速度は0.2〜2.0hr−1である。
【0018】
また、本発明における水素化処理の対象となる炭化水素油には原油、常圧蒸留留出油、減圧蒸留軽油、常圧蒸留残渣油、減圧蒸留残渣、コーカー軽油、溶剤脱瀝油、タールサンド油、頁岩油、石炭液化油などであるが、好ましい炭化水素油は常圧蒸留留出油および減圧蒸留軽油である。
【0019】
【実施例】
以下に示す実施例によって、本発明を更に具体的に説明する。ただし、下記実施例は本発明を限定するものではない。
〔I〕触媒の製造
〔実施例1〕
(A)担体の製造
水道水を貯えたタンクに、水ガラス(SiO 成分29%)を一定量加え、アルミン酸ソーダ溶液、硫酸アルミニウム溶液を同時滴下し加混合を行った。混合時のpHを8.0、温度を60℃とした。かかる加混合によってシリカアルミナ水和物のゲルが生じた。
【0020】
前記工程で得られたシリカアルミナ水和物のゲルを溶液から分離した後、温水を用いて洗浄処理を行い、ゲル中の不純物を除去した。
次いで、混練機を用いて20分ほど混練してゲルの成形性を向上させた後、成型機にて直径1.4〜1.6mm、長さが3.5mmの四つ葉形状の粒子に押し出し成形した。
最後に、成形したシリカアルミナ体を600℃で2時間焼成して粒子状のシリカアルミナ担体を得た。得られたシリカアルミナ担体中のシリカ量は、6.0%であった。
【0021】
(B)触媒の製造
シリカアルミナ担体100gを、チタン原料としてチタンラクテート(別名:酪酸チタン;TiOとして約15%)30gを溶解した水溶液に含浸し、次いで120℃で30分間乾燥した後、580℃で1.5時間焼成し、チタンが担持された担体を得た。
次にモリブデン酸アンモニウム四水和物226.5g、炭酸ニッケル六水和物3.0g及び炭酸コバルト9.2gを溶解したクエン酸溶液100mlにオルトリン酸溶液(75%品)7.2gを添加した溶液を調製した。上記チタンが担持された担体を該溶液に含浸し、モリブデン、ニッケル及びコバルトの触媒成分が担持された担体を得た。
次いで該担持担体を、乾燥機を使用して120℃で30分間乾燥した後、580℃で1.5時間、キルンで焼成して触媒を完成させた。
製造した触媒中の各成分の量及び性状は下記の表1に示す通りである。
【0022】
〔実施例2〕
(A)担体の製造
水道水を貯えたタンクに、アルミン酸ソーダ溶液、硫酸アルミニウム溶液を同時滴下し加混合を行った。混合時のpHを8.0、温度を60℃とした。かかる加混合によってアルミナ水和物のゲルが生じた。
【0023】
前記工程で得られたアルミナ水和物のゲルを溶液から分離した後、温水を用いて洗浄処理を行い、ゲル中の不純物を除去した。
次いで、混練機を用いて約20分間混練してゲルの成形性を向上させた後、成型機にて直径1.4〜1.6mm、長さが3.5mmの四つ葉形状の粒子に押し出し成形した。
最後に、成形したアルミナ体を600℃で2時間焼成して粒子状のアルミナ担体を得た。
【0024】
(B)触媒の製造
アルミナ担体100gに、チタン原料としてチタンラクテート(別名:酪酸チタン;TiOとして約15%)30gを溶解し水溶液として含浸し、120℃で30分乾燥した後、580℃で焼成し、チタン担持担体を得た。
次にモリブデン酸アンモニウム四水和物226.5g、炭酸ニッケル六水和物 3.0g、炭酸コバルト9.2gを添加したクエン酸溶液100mlにオルトリン酸溶液(75%品)7.2gを添加した溶液を調製した。該溶液に上記チタンが担持された担体を含浸し、モリブデン、ニッケル及びコバルトの触媒成分が担持された担体を得た。
次いで該担持担体を、乾燥機を使用して120℃で30分間乾燥した後、580℃で1.5時間、キルンで焼成して触媒を完成させた。
製造した触媒中の各成分の量及び性状は下記の表1に示す通りである。
【0025】
〔比較例1〕
(A)担体の製造
実施例1(A)の担体の製造において、実施例1と同様の成形、焼成を行い、粒子状のシリカアルミナ担体を得た。得られた担体中のシリカ含有量は10重量%であった。
【0026】
(B)触媒の製造
モリブデン酸アンモニウム四水和物226.5g、炭酸ニッケル六水和物3.0g、炭酸コバルト9.2gを溶解したクエン酸溶液100mlを調製し、かかる溶液にシリカアルミナ担体100gを含浸した。
次いで該担持担体を、乾燥機を使用して120℃で30分間乾燥した後、580℃で1.5時間、キルンで焼成して触媒を完成させた。
製造した触媒中の各成分の量及び性状は下記の表1に示す通りである。
【0027】
〔比較例2〕
(A)担体の製造
実施例1(A) の担体の製造において、実施例1と同様の成形、焼成を行って粒子状シリカアルミナ担体を得た。得られた担体中のシリカ含有量は10重量%であった。
【0028】
(B)触媒の製造
モリブデン酸アンモニウム四水和物226.5g、炭酸ニッケル六水和物3.0g及び炭酸コバルト9.2gを溶解したクエン酸溶液100mlにオルトリン酸溶液(75%品)7.2g加えた溶液を調製し、これにシリカアルミナ担体100gを含浸した。
次いで該担持担体を、乾燥機を使用して120℃で30分間乾燥した後、580℃で1.5時間、キルンで焼成して触媒を完成させた。
製造した触媒中の各成分の量及び性状は下記の表1に示す通りである。
【0029】
【表1】

Figure 2004358326
【0030】
〔II〕水素化処理
水素化処理を行う炭化水素油として、下記の表2に記載された性状の原油を分留して得られた減圧軽油(VGO) を原料油として使用した。
この原料油は硫黄含有量が約2.5重量%、全窒素含有量が約1600重量ppm含有するものである。
【0031】
【表2】
Figure 2004358326
【0032】
上記実施例1〜2、比較例1〜2で製造した触媒それぞれについて水素化処理を行った。触媒を固定床に備えた反応装置に充填した。
表2に記載した性状の原料油を液相中、5.0MPaで、全液空間速度(Liquid Hourly Space Velocity : LHSV) 2.0hr−1及び平均温度360及び380℃で、供給する水素と原料油の比(H/Oil)を300Nl/lとして固定床に導入し、生成油を得た。
生成油を捕集し分析して水素化によって脱離された硫黄(Sulfur)、及び窒素(Nitrogen)重量比を算出し、下記計算式に基づいて比活性(Relative Volume Activity; RVA)を求め、表3に示した。
比活性(RVA)は、比較例1の触媒の水素化脱硫(HDS)、水素化脱窒素反応にて、反応次数を用いて計算される反応速度定数kと実施例との比とした。
【0033】
【数1】
Figure 2004358326
ここで、k=(LHSV/r)×(1/y(r−1)−1/X(r−1))(r≠1)
k=LHSV×ln(x/y)(r≠1)
上記式中、kは反応速度定数
rは反応次数
xは原料油中の硫黄、または窒素の重量割合
yは生成油中の硫黄、または窒素の重量割合
なお、lnは自然対数の表記である。
【0034】
【表3】
Figure 2004358326
【0035】
〔III〕FCC評価
本実施例及び比較例で得られた処理油を用いて、改良MAT(マイクロアクティビティテスト)装置(大倉理研製)を用いて、流動床式接触分解(FCC)の評価を行った。評価条件を表4に、評価結果を表5に示した。
【0036】
【表4】
Figure 2004358326
【0037】
【表5】
Figure 2004358326
【0038】
ガソリン:沸点範囲;C5−180℃
LCO (Light Circle Oil):沸点範囲;180〜360℃
ボトム:沸点範囲;360℃以上
コーク:硫黄炭素分析計による測定
【0039】
【発明の効果】
以上述べたように、本発明は、流動床式接触分解(FCC)の前処理で実施例1または2で示される触媒を間接脱硫触媒として使用することにより、FCC運転にて経済的付加価値の高いガソリンを従来の触媒を使用した場合よりも1〜1.4重量%増加の高収率とすることができ、FCCボトム量を相当量低減できることにより、効率的な石油精製を実現することが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hydrotreating catalyst for removing dissolved impurities such as sulfur, nitrogen, and residual carbon contained in a hydrocarbon oil, and a method for using the same.
[0002]
[Prior art]
In general, most of the oil produced from an indirect desulfurization unit (VGO FCC pretreatment) is treated by an FCC (fluid catalytic cracking) unit and supplied to production of FCC gasoline and the like. Until now, indirect desulfurization catalysts for FCC pretreatment have been required to have high desulfurization performance. In recent years, however, there has been an increasing demand for not only desulfurization but also for improving the yield of FCC gasoline and reducing the FCC bottom. .
As a conventional indirect desulfurization catalyst, a catalyst in which a group 6A element such as molybdenum and tungsten or a group 8 element such as nickel and cobalt is supported on a metal oxide carrier such as alumina is widely used. Further, in order to improve the hydrotreating performance by changing the chemical properties of the carrier, attempts have been made to use a composite oxide such as alumina-silica as the carrier. However, even if these methods are used, an indirect desulfurization catalyst capable of simultaneously improving the gasoline yield in an FCC device and reducing the FCC bottom while satisfying the conventional desulfurization performance has not been provided.
[0003]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that a catalyst for hydrotreating hydrocarbon oils has better hydrotreating (desulfurization, denitrification, and residual carbon) performance than ever before, so that gasoline recovery in FCC units can be improved. An object of the present invention is to provide a catalyst that contributes to an improvement in the yield and a reduction in the FCC bottom yield, and a method for using the catalyst.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above problems, and as a result, after calcining and supporting titanium oxide on a carrier, the catalyst was calcined and supported with another specific metal catalyst component, and a specific ratio was obtained. The present inventors have found that a hydrotreating catalyst having a surface area and a total pore volume is excellent as a pretreatment catalyst for fluidized bed catalytic cracking (FCC), and have completed the present invention.
[0005]
That is, according to the present invention, (1) 0.1 to 7% by weight of titanium oxide is used as a catalyst component on a porous alumina carrier based on the weight of the catalyst.
(2) 15 to 25% by weight of an oxide of a metal of Group 6A of the periodic table;
(3) 3 to 7% by weight of an oxide of a metal belonging to Group 8 of the periodic table, and (4) 0.1 to 7% by weight of phosphorus oxide in terms of P 2 O 5.
And (a) the specific surface area of the catalyst is 180 to 300 m 2 / g, and (b) the total pore volume is 0.4 to 0.6 ml / g.
A catalyst for hydrotreating hydrocarbon oils, characterized in that the catalyst component (1) is calcined and supported on the carrier in the catalyst production step, and then the components (2) to (4) are calcined and supported. is there.
[0006]
The catalyst component (2) is at least one metal selected from the group consisting of chromium, molybdenum and tungsten, and the catalyst component (3) is at least one metal selected from the group consisting of iron, cobalt and nickel. There is a feature.
Further, the calcination temperature during the production of the catalyst is 450 to 600 ° C.
[0007]
Further, the present invention is characterized in that the hydrocarbon oil is brought into contact with the hydrotreating catalyst in the presence of hydrogen under the conditions of a temperature of 350 to 450 ° C., a pressure of 5 to 15 MPa, and a liquid hourly space velocity of 0.1 to 3 hr −1. Wherein the hydrocarbon oil is a vacuum gas oil.
[0008]
Further, the present invention is a method for using the above catalyst as a catalyst for pretreatment of fluidized bed catalytic cracking (FCC).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the above invention will be described in detail. The alumina-based carrier in the present invention has an alumina component in the carrier of 80% by weight or more. Examples of the form of alumina include alumina such as α, θ, δ, κ, η, γ, and χ-type, alumina hydrate such as bayerite, gibbsite, boehmite, and pseudo-boehmite. Can be used. However, gamma alumina is preferred from the viewpoint of economy and practicality. When a composite oxide with alumina is used as a carrier, silica, zinc oxide, zeolite, clay mineral, or the like, or a mixture thereof can be added to the carrier at a ratio of 20% by weight or less.
[0010]
The alumina-based carrier is impregnated with at least one compound selected from magnesium, boron, titanium, zircon, and lanthanum and calcined and supported. Titanium is most preferable from the viewpoint of catalytic activity and economy. The titanium compound used at the time of impregnation is not particularly limited, and includes, for example, titania sol, titanium chloride, titanyl sulfate, alkoxytitanium, peroxotitanic acid, titanium peroxohydroxy acid salt, titanium lactate, and titanium butyrate. The loading amount on the alumina-based carrier is preferably from 0.1 to 7% by weight, more preferably from 0.5 to 6% by weight, based on the catalyst.
[0011]
After an oxide such as titanina is formed on the surface of the carrier, Group 6A, Group 8 and phosphorus of the periodic table are supported. Examples of the Group 6A element include chromium, molybdenum, and tungsten, and molybdenum is preferable from the viewpoint of activity and economy. Examples of the Group VIII element include iron, cobalt, and nickel. From the viewpoints of activity and economy, it is preferable to support cobalt or nickel alone or both.
[0012]
It is preferable that the carrying amount of the Group 6A and Group 8 elements of the periodic table including the carrier and the carrier (oxide) is as follows, including the carrier. That is, the Group 6A element is 15 to 25% by weight, preferably 18 to 24% by weight. If the amount is less than 15% by weight, the required catalytic performance is not exhibited. If the amount exceeds 25% by weight, no increase is seen in the catalytic performance. The Group 8 element is 3 to 7% by weight, preferably 4 to 6% by weight. If the amount is less than 3% by weight, the catalyst performance tends not to be exhibited, while if it exceeds 7% by weight, the catalyst performance does not increase.
[0013]
As a method for supporting these elements, a method generally used such as an immersion method or an impregnation method can be used. The order of loading of each element is not particularly limited, and the elements can be loaded sequentially or simultaneously. The solution of the Group 6A element and the Group 8 element used for loading is not particularly limited, but usually a solution of a soluble Group 6A element compound and a Group 8 element compound dissolved in a solvent such as water is used. Also, in order to stabilize the solution, mineral acids such as nitric acid, hydrochloric acid and phosphoric acid and salts thereof, organic acids such as formic acid, acetic acid, oxalic acid, citric acid, malic acid and gluconic acid and salts thereof, or ethylenediamine And various chelates such as EDTA (ethylenediaminetetraacetic acid). When dissolving the Group 6A element compound and the Group VIII element compound using phosphoric acid, the supported amount of phosphorus on the completed catalyst is 0.1 to 7% by weight as an oxide, preferably 0.3 to 7% by weight. 6% by weight.
[0014]
In order to disperse the Group 6A element and the Group 8 element in this aqueous solution, polyhydric alcohols such as ethylene glycol, propylene glycol, glycerin, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, and polyvinyl alcohol, and the like are used. Monosaccharides and disaccharides such as ethers, esters, glucose, fructose, lactose and sucrose may be added.
[0015]
After carrying the Group 6A element, the Group VIII element and phosphorus, it is dried and baked. At this time, the atmosphere is not particularly limited, and is usually performed in the air. Drying is performed at 30 to 200 ° C. for about 1 to 3 hours, and the firing step is performed at 450 to 600 ° C. for about 1 to 3 hours.
In order for the catalyst thus obtained to exhibit desired performance in the hydrotreating reaction of hydrocarbon oil, it is necessary to have the following physical properties (specific surface area, pore structure).
[0016]
The specific surface area obtained by the BET equation, 180~300m 2 / g is desirable, more preferred range is 190~280m 2 / g. If it is less than 180 m 2 / g, the catalytic performance is insufficient, and if it exceeds 300 m 2 / g, the pore diameter becomes too small, so that pore clogging or the like tends to occur during the reaction. The pore volume obtained by the mercury intrusion method (surface tension: 480 dyn / cm, contact angle: 140 °) is preferably in the range of 0.4 to 0.6 ml / g. If it is less than 0.4 ml / g, the diffusion of hydrocarbon oil into the pores of the catalyst becomes insufficient, and if it exceeds 0.6 ml / g, the catalytic activity decreases due to a decrease in the packing density of the catalyst.
[0017]
The catalyst of the present invention can be used for hydrogenation of hydrocarbon oil in the presence of hydrogen, hydrodesulfurization, hydrodenitrogenation, hydrodenitrification, decarbonization, hydrogen in a fixed bed, boiling bed, moving bed, fluidized bed or other reactor. It is used in a hydrotreating reaction for performing cracking and the like. The following reaction conditions are used: a reaction temperature of 350 to 450 ° C., a hydrogen partial pressure of 5 to 15 MPa, a hydrogen feed oil ratio of 150 to 1500 Nl / l, When a hydrocarbon oil is passed at a liquid hourly space velocity (LHSV) of 0.1 to 3 hr- 1 , excellent hydrotreating performance is exhibited. The preferred reaction temperature is 340 to 430 ° C., the preferred hydrogen partial pressure is 3 to 20 MPa, the preferred hydrogen feedstock ratio is 200 to 1000 Nl / l, and the preferred liquid hourly space velocity is 0.2 to 2.0 hr − 1.
[0018]
The hydrocarbon oils to be subjected to the hydrotreating in the present invention include crude oil, atmospheric distillate, vacuum distilled light oil, atmospheric distillation residue oil, vacuum distillation residue, coker gas oil, solvent deasphalted oil, tar sands Oils, shale oils, coal liquefied oils and the like, but preferred hydrocarbon oils are atmospheric distillates and vacuum distilled gas oils.
[0019]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the following examples do not limit the present invention.
[I] Production of catalyst [Example 1]
(A) Production of Carrier To a tank containing tap water, a certain amount of water glass (29% of SiO 2 component) was added, and a sodium aluminate solution and an aluminum sulfate solution were simultaneously dropped and mixed. The pH during mixing was 8.0, and the temperature was 60 ° C. A gel of silica-alumina hydrate was formed by such mixing.
[0020]
After separating the silica-alumina hydrate gel obtained in the above step from the solution, a washing treatment was performed using warm water to remove impurities in the gel.
Next, the mixture is kneaded for about 20 minutes using a kneader to improve the gel moldability, and then into a four-leaf shaped particle having a diameter of 1.4 to 1.6 mm and a length of 3.5 mm using a molding machine. Extruded.
Finally, the formed silica-alumina body was fired at 600 ° C. for 2 hours to obtain a particulate silica-alumina support. The amount of silica in the obtained silica-alumina support was 6.0%.
[0021]
(B) Preparation of Catalyst 100 g of a silica-alumina carrier was impregnated with an aqueous solution in which 30 g of titanium lactate (also called titanium butyrate; about 15% as TiO 2 ) was dissolved as a titanium raw material, and then dried at 120 ° C. for 30 minutes. Calcination was performed at 1.5 ° C. for 1.5 hours to obtain a carrier on which titanium was supported.
Next, 7.2 g of an orthophosphoric acid solution (75% product) was added to 100 ml of a citric acid solution in which 226.5 g of ammonium molybdate tetrahydrate, 3.0 g of nickel carbonate hexahydrate and 9.2 g of cobalt carbonate were dissolved. A solution was prepared. The carrier loaded with titanium was impregnated with the solution to obtain a carrier loaded with molybdenum, nickel and cobalt catalyst components.
Next, the carrier was dried at 120 ° C. for 30 minutes using a dryer, and then calcined at 580 ° C. for 1.5 hours in a kiln to complete the catalyst.
The amounts and properties of each component in the produced catalyst are as shown in Table 1 below.
[0022]
[Example 2]
(A) Production of Carrier A sodium aluminate solution and an aluminum sulfate solution were simultaneously added dropwise to a tank storing tap water, followed by mixing. The pH during mixing was 8.0, and the temperature was 60 ° C. This addition and mixing produced a gel of alumina hydrate.
[0023]
After separating the alumina hydrate gel obtained in the above step from the solution, a washing treatment was performed using warm water to remove impurities in the gel.
Next, the mixture is kneaded using a kneader for about 20 minutes to improve the gel moldability, and then into a four-leaf-shaped particle having a diameter of 1.4 to 1.6 mm and a length of 3.5 mm using a molding machine. Extruded.
Finally, the formed alumina body was fired at 600 ° C. for 2 hours to obtain a particulate alumina support.
[0024]
(B) Preparation of Catalyst 30 g of titanium lactate (also known as titanium butyrate; about 15% as TiO 2 ) was dissolved in 100 g of an alumina carrier, impregnated as an aqueous solution, dried at 120 ° C. for 30 minutes, and then dried at 580 ° C. It was calcined to obtain a titanium-supported carrier.
Next, 7.2 g of an orthophosphoric acid solution (75% product) was added to 100 ml of a citric acid solution to which 226.5 g of ammonium molybdate tetrahydrate, 3.0 g of nickel carbonate hexahydrate, and 9.2 g of cobalt carbonate were added. A solution was prepared. The solution was impregnated with the carrier on which titanium was supported to obtain a carrier on which molybdenum, nickel and cobalt catalyst components were supported.
Next, the carrier was dried at 120 ° C. for 30 minutes using a dryer, and then calcined at 580 ° C. for 1.5 hours in a kiln to complete the catalyst.
The amounts and properties of each component in the produced catalyst are as shown in Table 1 below.
[0025]
[Comparative Example 1]
(A) Production of Carrier In the production of the carrier of Example 1 (A), the same molding and firing as in Example 1 were performed to obtain a particulate silica-alumina carrier. The silica content in the obtained carrier was 10% by weight.
[0026]
(B) Preparation of Catalyst 226.5 g of ammonium molybdate tetrahydrate, 3.0 g of nickel carbonate hexahydrate and 9.2 g of cobalt carbonate were prepared to prepare 100 ml of citric acid solution, and 100 g of silica-alumina carrier was added to the solution. Was impregnated.
Next, the carrier was dried at 120 ° C. for 30 minutes using a dryer, and then calcined at 580 ° C. for 1.5 hours in a kiln to complete the catalyst.
The amounts and properties of each component in the produced catalyst are as shown in Table 1 below.
[0027]
[Comparative Example 2]
(A) Production of Carrier In the production of the carrier of Example 1 (A), the same molding and firing as in Example 1 were performed to obtain a particulate silica-alumina carrier. The silica content in the obtained carrier was 10% by weight.
[0028]
(B) Preparation of Catalyst Orthophosphoric acid solution (75% product) in 100 ml of citric acid solution in which 226.5 g of ammonium molybdate tetrahydrate, 3.0 g of nickel carbonate hexahydrate and 9.2 g of cobalt carbonate were dissolved. A solution to which 2 g was added was prepared, and this was impregnated with 100 g of a silica-alumina carrier.
Next, the carrier was dried at 120 ° C. for 30 minutes using a dryer, and then calcined at 580 ° C. for 1.5 hours in a kiln to complete the catalyst.
The amounts and properties of each component in the produced catalyst are as shown in Table 1 below.
[0029]
[Table 1]
Figure 2004358326
[0030]
[II] Hydrotreating As a hydrocarbon oil to be subjected to hydrotreating, vacuum gas oil (VGO) obtained by fractionating crude oil having the properties shown in Table 2 below was used as a feedstock oil.
This feedstock has a sulfur content of about 2.5% by weight and a total nitrogen content of about 1600 ppm by weight.
[0031]
[Table 2]
Figure 2004358326
[0032]
Hydrogenation treatment was performed on each of the catalysts produced in Examples 1 and 2 and Comparative Examples 1 and 2. The catalyst was charged to a reactor provided in a fixed bed.
In the liquid phase, a raw material oil having the properties described in Table 2 was supplied at 5.0 MPa at a total liquid hourly space velocity (LHSV) of 2.0 hr -1 and at average temperatures of 360 and 380 ° C. with hydrogen and a raw material. oil ratio of (H 2 / oil) were introduced into a fixed bed as 300 Nl / l, to obtain a product oil.
The product oil is collected and analyzed to calculate the weight ratio of sulfur (Sulfur) and nitrogen (Nitrogen) desorbed by hydrogenation, and to determine a specific activity (Relative Volume Activity; RVA) based on the following formula. The results are shown in Table 3.
The specific activity (RVA) was defined as the ratio between the reaction rate constant k calculated using the reaction order in the hydrodesulfurization (HDS) and hydrodenitrogenation reactions of the catalyst of Comparative Example 1 and the example.
[0033]
(Equation 1)
Figure 2004358326
Here, k = (LHSV / r) × (1 / y (r−1) −1 / X (r−1) ) (r ≠ 1)
k = LHSV × ln (x / y) (r ≠ 1)
In the above formula, k is a reaction rate constant r is a reaction order x is a weight ratio of sulfur or nitrogen in the feed oil y is a weight ratio of sulfur or nitrogen in the produced oil, and ln is a notation of natural logarithm.
[0034]
[Table 3]
Figure 2004358326
[0035]
[III] Evaluation of FCC Using the treated oil obtained in this example and the comparative example, the fluidized bed catalytic cracking (FCC) was evaluated using an improved MAT (micro activity test) device (manufactured by Okura Riken). Was. Table 4 shows the evaluation conditions and Table 5 shows the evaluation results.
[0036]
[Table 4]
Figure 2004358326
[0037]
[Table 5]
Figure 2004358326
[0038]
Gasoline: Boiling range; C5-180 ° C
LCO (Light Circuit Oil): boiling point range: 180 to 360 ° C
Bottom: Boiling range; 360 ° C. or higher Coke: Measured by sulfur carbon analyzer
【The invention's effect】
As described above, the present invention provides economical added value in FCC operation by using the catalyst shown in Example 1 or 2 as an indirect desulfurization catalyst in the pretreatment of fluidized bed catalytic cracking (FCC). High gasoline can be obtained at a high yield of 1 to 1.4% by weight higher than when a conventional catalyst is used, and the amount of FCC bottom can be considerably reduced, thereby realizing efficient petroleum refining. It becomes possible.

Claims (6)

多孔質のアルミナ系担体に、触媒重量を基準に、触媒成分として
(1) 酸化チタン0.1〜7重量%、
(2) 周期表の第6A族金属の酸化物15〜25重量%、
(3) 周期表第8族金属の酸化物3〜7重量%、及び
(4) リン酸化物をP換算として0.1〜7重量%
が担持され、触媒の
(a) 比表面積が180〜300m/g、及び
(b) 全細孔容積が0.4〜0.6ml/g
であり、触媒製造工程において担体に触媒成分(1)を焼成・担持させた後、成分(2)から(4)を焼成・担持させることを特徴とする炭化水素油の水素化処理用触媒。
(1) 0.1 to 7% by weight of titanium oxide as a catalyst component, based on the catalyst weight, on a porous alumina-based carrier;
(2) 15 to 25% by weight of an oxide of a metal of Group 6A of the periodic table;
(3) 3 to 7% by weight of an oxide of a metal belonging to Group 8 of the periodic table; and (4) 0.1 to 7% by weight of phosphorus oxide in terms of P 2 O 5.
Is supported, and the catalyst has (a) a specific surface area of 180 to 300 m 2 / g, and (b) a total pore volume of 0.4 to 0.6 ml / g.
A catalyst for hydrotreating hydrocarbon oils, wherein the catalyst component (1) is calcined and supported on a carrier in the catalyst production step, and then the components (2) to (4) are calcined and supported.
触媒成分(2)がクロム、モリブデン及びタングステンからなる群より選ばれる少なくとも1種の金属であり、触媒成分(3)が鉄、コバルト、ニッケルからなる群より選ばれる少なくとも1種の金属である請求項1記載の触媒。The catalyst component (2) is at least one metal selected from the group consisting of chromium, molybdenum and tungsten, and the catalyst component (3) is at least one metal selected from the group consisting of iron, cobalt and nickel. Item 7. The catalyst according to Item 1. 焼成温度が450〜600℃である請求項1記載の触媒。The catalyst according to claim 1, wherein the calcination temperature is 450 to 600C. 炭化水素油を温度350〜450℃、圧力5〜15MPa、液空間速度0.1〜3hr−1の条件で水素存在下、請求項1記載の水素化処理用触媒と接触させることを特徴とする炭化水素油の水素化処理方法。The hydrocarbon oil is brought into contact with the hydrotreating catalyst according to claim 1 in the presence of hydrogen at a temperature of 350 to 450 ° C., a pressure of 5 to 15 MPa, and a liquid hourly space velocity of 0.1 to 3 hr −1. Hydroprocessing of hydrocarbon oil. 炭化水素油が減圧軽油である請求項4記載の方法。The method according to claim 4, wherein the hydrocarbon oil is a vacuum gas oil. 請求項1記載の触媒を流動床式接触分解(FCC)の前処理用触媒として使用する方法。Use of the catalyst according to claim 1 as a catalyst for pretreatment of fluidized bed catalytic cracking (FCC).
JP2003158458A 2003-06-03 2003-06-03 Catalyst for hydrogenation treatment and its using method Pending JP2004358326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003158458A JP2004358326A (en) 2003-06-03 2003-06-03 Catalyst for hydrogenation treatment and its using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003158458A JP2004358326A (en) 2003-06-03 2003-06-03 Catalyst for hydrogenation treatment and its using method

Publications (1)

Publication Number Publication Date
JP2004358326A true JP2004358326A (en) 2004-12-24

Family

ID=34051859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003158458A Pending JP2004358326A (en) 2003-06-03 2003-06-03 Catalyst for hydrogenation treatment and its using method

Country Status (1)

Country Link
JP (1) JP2004358326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509472A (en) * 2006-11-15 2010-03-25 エニ、ソシエタ、ペル、アチオニ Process for producing a hydrocarbon fraction from a biological mixture
WO2011122387A1 (en) * 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
JP2013249385A (en) * 2012-05-31 2013-12-12 Idemitsu Kosan Co Ltd Hydrotreatment method of heavy oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509472A (en) * 2006-11-15 2010-03-25 エニ、ソシエタ、ペル、アチオニ Process for producing a hydrocarbon fraction from a biological mixture
WO2011122387A1 (en) * 2010-03-30 2011-10-06 千代田化工建設株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
JP2011206695A (en) * 2010-03-30 2011-10-20 Chiyoda Kako Kensetsu Kk Catalyst for hydrogenation of hydrocarbon oil, method for manufacturing the same, and method for hydrogenation of hydrocarbon oil using the same
CN102781584A (en) * 2010-03-30 2012-11-14 千代田化工建设株式会社 Hydrotreating catalyst for hydrocarbon oil and method for producing same, and hydrocarbon oil hydrotreating method using same
JP2013249385A (en) * 2012-05-31 2013-12-12 Idemitsu Kosan Co Ltd Hydrotreatment method of heavy oil

Similar Documents

Publication Publication Date Title
JP4638610B2 (en) Hydrotreating catalyst and hydrotreating method
JP4839311B2 (en) Catalyst combination and two-stage hydroprocessing method for heavy hydrocarbon oils
JP6506430B2 (en) Improved resid hydroprocessing catalyst containing titania
EP2750792B1 (en) Catalyst support and catalysts prepared therefrom
JP6842428B2 (en) High HDN selective hydrogenation catalyst
JP2000210565A (en) Catalyst for hydrogenation and hydrogenation method
JP2006512430A (en) Hydrotreating hydrocarbons using a mixture of catalysts
JP2004010857A (en) Method for hydrogenating hydrocarbon heavy oil
JP4369871B2 (en) Heavy material HPC process using a mixture of catalysts
JP4773634B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP4612229B2 (en) Catalyst for hydrotreating heavy hydrocarbon oil and hydrotreating method
JP4773633B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
JP4571885B2 (en) Hydrotreating catalyst, method for producing the same, and hydrotreating method
JP2004358326A (en) Catalyst for hydrogenation treatment and its using method
JP3978064B2 (en) Two-stage hydroprocessing method for heavy hydrocarbon oil
JP2005169232A (en) Hydrogenating/desulfurizing catalyst for hydrocarbon oil and its manufacturing method
JP3924364B2 (en) Hydrodesulfurization catalyst
JP5660672B2 (en) Regeneration method for hydroprocessing catalyst of hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707