JP2000079343A - Catalyst for hydrogenating light oil and hydrogenation of light oil - Google Patents

Catalyst for hydrogenating light oil and hydrogenation of light oil

Info

Publication number
JP2000079343A
JP2000079343A JP10284777A JP28477798A JP2000079343A JP 2000079343 A JP2000079343 A JP 2000079343A JP 10284777 A JP10284777 A JP 10284777A JP 28477798 A JP28477798 A JP 28477798A JP 2000079343 A JP2000079343 A JP 2000079343A
Authority
JP
Japan
Prior art keywords
catalyst
mass
alumina
molybdenum
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10284777A
Other languages
Japanese (ja)
Other versions
JP3445507B2 (en
Inventor
Takashi Fujikawa
貴志 藤川
Tomoyuki Yogo
智之 與語
Nobumasa Nakajima
伸昌 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Original Assignee
COSMO SOGO KENKYUSHO KK
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COSMO SOGO KENKYUSHO KK, Cosmo Oil Co Ltd filed Critical COSMO SOGO KENKYUSHO KK
Priority to JP28477798A priority Critical patent/JP3445507B2/en
Publication of JP2000079343A publication Critical patent/JP2000079343A/en
Application granted granted Critical
Publication of JP3445507B2 publication Critical patent/JP3445507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a low-price hydrogenation catalyst which can reduce sulfur components in light oil remarkably and to provide a method of hydrogenation by the use of the catalyst. SOLUTION: In a catalyst obtained by impregnating an alumina carrier with an aqueous solution containing cobalt, molybdenum, and phosphorus, the specific surface area measured by a nitrogen adsorption method is 170-300 m/g, the pore volume measured by a mercury press fitting method is 0.5-0.7 ml/g, the average pore diameter in pore distribution measured by a mercury press fitting method is 70-120 Å, the pore volume in the range of the average pore diameter ±15 Å is at least 70% of the total pore volume, and the coordination number of sulfur to the molybdenum metal in the sulfurized catalyst by XAFS measurement is 5-6. The catalytic reaction of light oil is carried out in the presence of the catalyst, under hydrogen partial pressure of 3-8 MPa, at a temperature of 300-420 deg.C, and at a liquid space velocity of 0.3-5 hr-1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する利用分野】本発明は、軽油の水素化処理
触媒と、この触媒を用いた軽油の水素化処理方法とに関
し、詳しくは、軽油を水素化処理する際に、軽油中の硫
黄分を従来のこの種の触媒を使用する場合よりも大幅に
低減することができる優れた活性を有する上、低コスト
での提供が可能な触媒と、この触媒を用いる方法とに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for hydrotreating gas oil and a method for hydrotreating gas oil using the catalyst. More specifically, the present invention relates to a method for hydrotreating gas oil. The present invention relates to a catalyst having an excellent activity capable of greatly reducing the above-mentioned value in the case of using a conventional catalyst of this type and capable of being provided at a low cost, and a method using the catalyst.

【0002】[0002]

【技術背景】原油の蒸留や分解によって得られる各油留
分は、一般に、硫黄化合物を含み、これらの油を燃料と
して使用する場合には、この硫黄化合物に起因する硫黄
酸化物等の大気汚染物質が大気中に放出される。特に、
ディ−ゼル機関からの排ガスによる大気汚染が深刻化し
ており、その燃料面からの対策として、軽油中の硫黄分
の低減が強く要望されている。実際に、ディ−ゼル車排
ガス中のNOxと粒子状物質の排出規制に対応して、日
本では、1997年10月から軽油中の硫黄分の規制値
が0.05%に改定され、ヨーロッパでは、軽油中の硫
黄分を2000年までに350ppm、2005年まで
に50ppmとする案が提示されている。
BACKGROUND ART Each oil fraction obtained by distillation or cracking of crude oil generally contains sulfur compounds, and when these oils are used as fuel, air pollution such as sulfur oxides caused by the sulfur compounds. The substance is released into the atmosphere. In particular,
Air pollution due to exhaust gas from diesel engines has become serious, and as a countermeasure from the viewpoint of fuel, there is a strong demand for reduction of the sulfur content in light oil. In fact, in response to the emission regulations of NOx and particulate matter in diesel vehicle exhaust gas, in Japan, the regulation value of sulfur in diesel was revised to 0.05% from October 1997, and in Europe, It has been proposed that the sulfur content in light oil be 350 ppm by 2000 and 50 ppm by 2005.

【0003】このような状況下で、軽油中の硫黄分を大
幅に除去する超深度脱硫技術の開発が重要視されつつあ
る。軽油中の硫黄分の低減化技術として、通常、水素化
脱硫の運転条件、例えば、反応温度、液空間速度等を過
酷にすることが行われている。しかし、反応温度を上げ
ると、触媒上に炭素質が析出して触媒の活性が急速に低
下し、また液空間速度を下げると、脱硫能は向上するも
のの、精製処理能力が低下するため設備の規模を拡張す
る必要が生じる。しかも、このような過酷な運転条件
は、色相や貯蔵安定性等の性状面への悪影響もある。従
って、運転条件を過酷にしないで、軽油の超深度脱硫を
達成し得る最も良い方法は、格段に優れた脱硫活性を有
する触媒を開発することである。
[0003] Under such circumstances, the development of an ultra-deep desulfurization technique for greatly removing the sulfur content in light oil has been gaining importance. As a technique for reducing the sulfur content in gas oil, usually, operating conditions for hydrodesulfurization, for example, reaction temperature, liquid space velocity, and the like are made severe. However, when the reaction temperature is increased, carbonaceous material is precipitated on the catalyst, and the activity of the catalyst is rapidly reduced.When the liquid hourly space velocity is reduced, the desulfurization ability is improved, but the purification treatment capacity is reduced, so that the equipment capacity is reduced. There is a need to scale up. Moreover, such severe operating conditions also have adverse effects on properties such as hue and storage stability. Therefore, the best way to achieve ultra-deep desulfurization of gas oil without severe operating conditions is to develop a catalyst having a remarkably excellent desulfurization activity.

【0004】従来の脱硫レベル(生成油硫黄分0.2〜
0.05質量%)程度であれば、現在の脱硫技術で、容
易に達成することができるが、超深度脱硫領域(生成油
硫黄分0.04質量%以下)は、急激に困難になる。こ
れは、4−メチルジベンゾチオフェンや4,6−ジメチ
ルジベンゾチオフェンのような脱硫活性点への立体障害
を有する硫黄化合物が、脱硫を極めて困難にしているか
らである。
[0004] Conventional desulfurization level (sulfur content of produced oil 0.2 to
(0.05% by mass) can be easily achieved by the current desulfurization technology, but the ultra-deep desulfurization region (sulfur content of the generated oil is 0.04% by mass or less) rapidly becomes difficult. This is because sulfur compounds such as 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene having steric hindrance to the desulfurization active site make desulfurization extremely difficult.

【0005】そこで、深度脱硫領域で効率的に脱硫反応
を行わせるには、これら脱硫活性点への立体障害を有す
る物質の脱硫反応を効率的に進行させるように、触媒の
活性点数を増やすことや、活性金属量当たりの脱硫活性
を上げることが可能な精密化学的触媒調製の技術が必要
となる。
[0005] Therefore, in order to efficiently perform a desulfurization reaction in the deep desulfurization region, the number of active points of the catalyst must be increased so that the desulfurization reaction of a substance having steric hindrance to these desulfurization active points proceeds efficiently. Also, a technique for preparing a fine chemical catalyst capable of increasing the desulfurization activity per active metal amount is required.

【0006】また、触媒担体上の活性金属量と脱硫活性
との間には強い相関があり、活性金属量が多いほど触媒
の活性点が増加し、脱硫活性も向上すると言われてお
り、そのため、活性金属の高担持量化を目的とした研究
も数多く行われている。例えば、特開平4−26515
8号公報では、活性金属の高担持量化触媒として、Co
(酸化物換算で4.5〜7.0質量%)とVIA族金属
(酸化物換算で19.0〜25.0質量%)の含有量を
高くし、リン(酸化物換算で0.3〜3.0質量%)の
含有量を低くしたものを開示しており、この触媒によれ
ば、含硫黄炭化水素油の水素化脱硫能が改善されるとし
ている。しかし、コバルトの価格は高く、コバルトを多
量に担持させると、触媒価格の大幅な向上を招く。
Further, there is a strong correlation between the amount of active metal on the catalyst carrier and the desulfurization activity. It is said that as the amount of active metal increases, the active point of the catalyst increases and the desulfurization activity also improves. Many studies have been conducted to increase the amount of active metals supported. For example, Japanese Patent Application Laid-Open No. 4-26515
No. 8 discloses Co as a catalyst for increasing the amount of active metal supported,
(4.5 to 7.0% by mass in terms of oxide) and the content of VIA group metal (19.0 to 25.0% by mass in terms of oxide) are increased, and phosphorus (0.3% in terms of oxide) is increased. (3.0 mass%) is disclosed, and according to this catalyst, the hydrodesulfurization ability of the sulfur-containing hydrocarbon oil is improved. However, the price of cobalt is high, and when a large amount of cobalt is supported, the cost of the catalyst is significantly increased.

【0007】[0007]

【発明の目的】本発明の目的は、第1には、水素化脱硫
活性点を大幅に増やすことができ、その結果、脱硫活性
を高めることができる、安価な、軽油の水素化処理触媒
を提供することであり、第2には、この触媒を用いた軽
油の水素化処理方法を提供することである。
The object of the present invention is, firstly, to provide an inexpensive gas oil hydrotreating catalyst capable of greatly increasing the hydrodesulfurization active points and consequently enhancing the desulfurization activity. The second is to provide a method for hydrotreating light oil using this catalyst.

【0008】[0008]

【発明の概要】本発明者らは、上記目的の触媒に関し、
調製方法、活性金属担持量、及び活性金属担持比を最適
化して、触媒活性点(Co−Mo−S相)の数、及びM
oの硫化度を精密に制御し、脱硫反応を効率的に行わせ
て、超深度脱硫領域でも反応条件を過酷にせずに、容易
に達成できる高性能脱硫触媒の開発を試みた。具体的に
は、活性金属の高分散化、及び脱硫活性点(Co−Mo
−S相)の増大について検討した。この結果、Co、M
o、リンの各成分を含む水溶液を調製し、この水溶液を
通常の触媒担体として用いられているアルミナに担持さ
せる際に、通常は、脱硫活性点を増やすには活性金属量
を増やすことが考えられるが、逆に、Co量を減らした
ところ、高活性の触媒となり、その水素化脱硫活性が大
幅に向上することを見出し、本発明を提案するに至っ
た。
SUMMARY OF THE INVENTION The present inventors relate to a catalyst of the above object,
The number of catalytic active sites (Co-Mo-S phase) and M
We have attempted to develop a high-performance desulfurization catalyst that precisely controls the degree of sulfidation of o, enables efficient desulfurization reactions, and does not require severe reaction conditions even in the ultra-deep desulfurization region. Specifically, the active metal is highly dispersed and the desulfurization active site (Co-Mo)
-S phase) was examined. As a result, Co, M
When preparing an aqueous solution containing each component of o and phosphorus and loading this aqueous solution on alumina used as a normal catalyst carrier, it is usually considered to increase the amount of active metal to increase the desulfurization active point. However, conversely, when the amount of Co was reduced, it was found that the catalyst became highly active and its hydrodesulfurization activity was significantly improved, and the present invention was proposed.

【0009】本発明の触媒は、上記の知見に基づくもの
で、活性金属(Co及びMo)のうちCo量を減少させ
た特定の担持量及び担持比となるようにCo、Mo、リ
ンの各成分を含む水溶液を、アルミナ担体に含浸させて
得られる触媒であって、触媒基準、酸化物換算で、2〜
4質量%のCo、16〜22質量%のMo、及び0.8
〜4.5質量%のリンを含み、CoとMoの質量比が、
〔CoO〕/〔CoO+MoO〕の値で、0.12〜
0.2、Moとリンの質量比が、〔P〕/〔Mo
〕の値で、0.05〜0.25、窒素吸着法で測定
した比表面積が170〜300m/g、水銀圧入法で
測定した細孔容積が0.5〜0.7ml/g、水銀圧入
法で測定した細孔分布での平均細孔直径が70〜120
Å、平均細孔直径±15Åの範囲の細孔容積が全細孔容
積の少なくとも70%、硫化処理後の触媒中のMo金属
への硫黄の配位数がXAFS測定で5〜6であることを
特徴とする。このとき、CoO、MoO、P
アルミナ以外の金属含有量が1質量%以下であること、
アルミナの純度が98質量%以上であることが好まし
い。
[0009] The catalyst of the present invention is based on the above-mentioned findings. Among the active metals (Co and Mo), each of Co, Mo, and phosphorus is adjusted so that the specific amount and ratio of the supported metal are reduced. A catalyst obtained by impregnating an aqueous solution containing the components with an alumina carrier, the catalyst basis, in terms of oxide, 2 to 2
4 wt% Co, 16-22 wt% Mo, and 0.8
リ ン 4.5% by mass of phosphorus, and the mass ratio of Co and Mo is
The value of [CoO] / [CoO + MoO 3 ] is 0.12 to
0.2, the mass ratio of Mo to phosphorus is [P 2 O 5 ] / [Mo
O 3 ], the specific surface area measured by the nitrogen adsorption method is from 170 to 300 m 2 / g, and the pore volume measured by the mercury intrusion method is from 0.5 to 0.7 ml / g. The average pore diameter in the pore distribution measured by the mercury intrusion method is 70 to 120.
{, The pore volume in the range of the average pore diameter ± 15} is at least 70% of the total pore volume, and the coordination number of sulfur to Mo metal in the catalyst after sulfidation is 5 to 6 as measured by XAFS. It is characterized by. At this time, CoO, MoO 3 , P 2 O 5 ,
Metal content other than alumina is 1% by mass or less,
The purity of alumina is preferably 98% by mass or more.

【0010】また、本発明の水素化処理方法は、上記の
触媒の存在下、水素分圧3〜8MPa、300〜420
℃、液空間速度0.3〜5hr−1で、硫黄分を含む軽
油留分の接触反応を行うことを特徴とする。
[0010] The hydrotreating method of the present invention is characterized in that a hydrogen partial pressure of 3 to 8 MPa, 300 to 420 in the presence of the above-mentioned catalyst.
It is characterized by performing a contact reaction of a gas oil fraction containing a sulfur content at a temperature of 0.3 ° C. and a liquid hourly space velocity of 0.3 to 5 hr −1 .

【0011】本発明の対象油は、例えば、直留軽油、接
触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽
油、減圧蒸留軽油(VGO)等の軽油留分が適してい
る。これら原料油の代表的な性状例として、沸点範囲が
150〜450℃、硫黄分が5質量%以下のものが挙げ
られる。
As the target oil of the present invention, for example, gas oil fractions such as straight-run gas oil, catalytic cracked gas oil, pyrolyzed gas oil, hydrogenated gas oil, desulfurized gas oil, and vacuum distilled gas oil (VGO) are suitable. Typical properties of these feedstocks include those having a boiling range of 150 to 450 ° C. and a sulfur content of 5% by mass or less.

【0012】本発明の触媒の担体であるアルミナは、α
−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミ
ナ等の種々のアルミナを使用することができるが、多孔
質で高比表面積であるアルミナが好ましく、中でもγ−
アルミナが適している。アルミナの純度は、98質量%
以上、好ましくは99質量%以上のものが適している。
アルミナ中の不純物としては、SO 2−、Cl、Fe
、NaO等が挙げられるが、これらの不純物は
できるだけ少ないことが望ましく、不純物全量で2質量
%以下、好ましくは1質量%以下で、成分毎ではSO
2−<1.5質量%、Cl,Fe,NaO<
0.1質量%であることが好ましい。
Alumina, which is a carrier of the catalyst of the present invention, has α
Various aluminas such as -alumina, β-alumina, γ-alumina and δ-alumina can be used, but porous alumina having a high specific surface area is preferable, and γ-
Alumina is suitable. The purity of alumina is 98% by mass
Above, preferably 99% by mass or more is suitable.
As impurities in alumina, SO 4 2− , Cl, Fe
2 O 3, Na 2 but O, etc., these impurities is desirably as small as possible, 2 wt% of an impurity total amount or less, preferably less than 1 wt%, SO 4 in each component
2- <1.5% by mass, Cl, Fe 2 O 3 , Na 2 O <
It is preferably 0.1% by mass.

【0013】なお、アルミナ以外の無機酸化物で通常担
体として使用されるものには、例えば、シリカ、ボリ
ア、チタニア、ジルコニア、マグネシア、ハフニア、セ
リア、イットリア、ニオビア、クロミア、トリア等の非
結晶性酸化物、ゼオライト、モレキュラシーブ等の結晶
性無機酸化物、モンモリロナイト、カオリン、ベントナ
イト、サポナイト等の粘土鉱物等があるが、これらの無
機酸化物は、本発明の触媒では、特に必要としない。こ
れらの酸化物が担体中に一定量以上存在すると、脱硫活
性低下の主原因となることがある。即ち、上記の非結晶
性酸化物は、活性金属のMo担持の際に必要な水酸基量
がアルミナに比べて極端に少ないため、Moが高分散化
できず、脱硫活性が低下する。これに対し、上記の結晶
性無機酸化物や粘土鉱物等は、表面積はアルミナより高
いものの、細孔直径が極端に小さいため、細孔直径より
も大きい分子直径を有する含浸溶液中のMo化合物を、
細孔内に担持することができない上、上記の結晶性無機
酸化物は、アルミナよりも価格が高く、これらを担体中
に含ませると触媒がコスト高となる。
Inorganic oxides other than alumina which are usually used as carriers include, for example, silica, boria, titania, zirconia, magnesia, hafnia, ceria, yttria, niobia, chromia, thoria, etc. There are oxides, crystalline inorganic oxides such as zeolites and molecular sieves, and clay minerals such as montmorillonite, kaolin, bentonite and saponite. These inorganic oxides are not particularly required in the catalyst of the present invention. When these oxides are present in a carrier in a certain amount or more, they may be the main cause of a decrease in desulfurization activity. That is, in the above-mentioned amorphous oxide, the amount of hydroxyl groups required for supporting Mo on the active metal is extremely smaller than that of alumina, so that Mo cannot be highly dispersed and the desulfurization activity decreases. On the other hand, the above-mentioned crystalline inorganic oxides and clay minerals have a surface area higher than that of alumina, but have extremely small pore diameters, so that Mo compounds in an impregnating solution having a molecular diameter larger than the pore diameters are used. ,
In addition to being unable to be supported in the pores, the above-mentioned crystalline inorganic oxide is more expensive than alumina, and if these are contained in the carrier, the cost of the catalyst will be high.

【0014】アルミナ担体の比表面積、細孔容積、及び
平均細孔直径は、特に制限されないが、軽油に対する水
素化脱硫活性の高い触媒にするためには、比表面積が2
40〜400m/g、好ましくは300〜350m
/g、細孔容積が0.55〜0.9ml/g、好ましく
は0.65〜0.8ml/g、平均細孔径が60〜12
0Å、好ましくは65〜90Åのものが適している。
The specific surface area, pore volume, and average pore diameter of the alumina carrier are not particularly limited. However, in order to obtain a catalyst having a high hydrodesulfurization activity with respect to light oil, the specific surface area is preferably 2%.
40 to 400 m 2 / g, preferably 300 to 350 m 2
/ G, a pore volume of 0.55 to 0.9 ml / g, preferably 0.65 to 0.8 ml / g, and an average pore diameter of 60 to 12
0 °, preferably 65-90 °, is suitable.

【0015】比表面積が240m/g未満では、活性
金属の分散性が悪くなるため、低脱硫活性の触媒とな
る。比表面積が400m/gより大きいと、細孔直径
が極端に小さくなるため、触媒の細孔直径も小さくな
る。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔
内への拡散が不十分となり、脱硫活性が低下する。
If the specific surface area is less than 240 m 2 / g, the dispersibility of the active metal becomes poor, so that the catalyst has a low desulfurization activity. When the specific surface area is larger than 400 m 2 / g, the pore diameter becomes extremely small, so that the pore diameter of the catalyst also becomes small. When the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.

【0016】細孔容積が0.55ml/g未満では、通
常の含浸法で触媒を調製する場合、細孔容積内に入り込
む溶媒が少量となる。溶媒が少量であると、活性金属化
合物の溶解性が悪くなり、金属の分散性が低下し、低活
性の触媒となる。活性金属化合物の溶解性を上げるため
には、硝酸等の酸を多量に加える方法があるが、余り加
えすぎると担体の低表面積化が起こり、脱硫性能低下の
主原因となる。細孔容積が0.9ml/gより大きい
と、比表面積が極端に小さくなって、活性金属の分散性
が悪くなり、脱硫活性の低い触媒となる。
When the pore volume is less than 0.55 ml / g, a small amount of solvent enters the pore volume when preparing a catalyst by a usual impregnation method. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is reduced, and the catalyst has low activity. In order to increase the solubility of the active metal compound, there is a method of adding a large amount of an acid such as nitric acid. However, if it is added too much, the surface area of the carrier is reduced, which is a main cause of a decrease in desulfurization performance. If the pore volume is larger than 0.9 ml / g, the specific surface area becomes extremely small, the dispersibility of the active metal becomes poor, and the catalyst has a low desulfurization activity.

【0017】細孔直径が60Å未満では、活性金属を担
持した触媒の細孔直径も小さくなる。触媒の細孔直径が
小さいと、硫黄化合物の触媒細孔内への拡散が不十分と
なり、脱硫活性が低下する。細孔直径が120Åより大
きいと、比表面積が小さくなる。比表面積が小さいと、
活性金属の分散性が悪くなり、脱硫活性の低い触媒とな
る。
When the pore diameter is less than 60 °, the pore diameter of the catalyst supporting the active metal also becomes small. When the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases. When the pore diameter is larger than 120 °, the specific surface area becomes small. If the specific surface area is small,
The dispersibility of the active metal becomes poor, resulting in a catalyst having low desulfurization activity.

【0018】アルミナ担体のアンモニア−TPD法で測
定される酸量は、0.3〜1mmol/gが好ましい。
0.3mmol/g未満では、水酸基量が少なすぎて、
Moが高分散化できず、脱硫活性の低い触媒となること
があり、1mmol/gより大きいと、酸点上で軽油留
分が急激に過分解し、活性劣化の主原因となる炭素析出
を招くことになる。
The amount of acid of the alumina carrier measured by the ammonia-TPD method is preferably from 0.3 to 1 mmol / g.
If it is less than 0.3 mmol / g, the amount of hydroxyl groups is too small,
Mo may not be highly dispersed and may become a catalyst having a low desulfurization activity. If it is more than 1 mmol / g, the gas oil fraction rapidly over-decomposes on acid sites, and carbon deposition which is a main cause of activity deterioration is caused. Will be invited.

【0019】以上のアルミナ担体に担持させるCo、M
o、リン成分のうち、Co化合物としては、炭酸塩、酢
酸塩、硝酸塩、硫酸塩、塩化物が挙げられ、好ましくは
炭酸塩、酢酸塩、より好ましくは炭酸塩である。Mo化
合物としては、三酸化モリブデン、モリブドリン酸、モ
リブデン酸アンモニウム、モリブデン酸等が挙げられ、
好ましくはモリブドリン酸、三酸化モリブデンである。
リンは、上記の活性成分の化合物として、モリブドリン
酸等のリンを含む化合物を使用する場合には、これらの
化合物に由来するものであってもよいし、リン化合物以
外の化合物を使用する場合や、リン化合物に由来するリ
ンのみでは不足する場合には、この化合物と共に他のリ
ン源を使用する。他のリン源としては、種々のリン酸が
挙げられ、具体的には、オルトリン酸、メタリン酸、ピ
ロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げら
れ、特にオルトリン酸が好ましい。
Co, M supported on the above alumina carrier
Of the o and phosphorus components, examples of the Co compound include carbonate, acetate, nitrate, sulfate, and chloride, and are preferably carbonate, acetate, and more preferably carbonate. Examples of the Mo compound include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like.
Molybdophosphoric acid and molybdenum trioxide are preferred.
Phosphorus may be derived from these compounds when a compound containing phosphorus such as molybdophosphoric acid is used as the compound of the active ingredient, or when a compound other than the phosphorus compound is used. When phosphorus derived from a phosphorus compound alone is insufficient, another phosphorus source is used together with this compound. Examples of other phosphorus sources include various phosphoric acids, and specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and polyphosphoric acid. Orthophosphoric acid is particularly preferable.

【0020】これらの活性成分のうち、Coの含有量
は、触媒基準、酸化物換算で、2〜4質量%、好ましく
は2.5〜3.8質量%とする。Coが2質量%未満で
は、Coに帰属する活性点が十分に得られず、4質量%
を超えると、Co化合物の凝集によって活性金属の分散
性が悪くなるばかりか、不活性な前駆体であるCo
種(触媒硫化後や水素化処理中はCo種として
存在する)や、担体の格子内に取り込まれたCoスピネ
ル種を生成するため、触媒活性の向上がみられない上、
逆に触媒活性が低下する。
Among these active components, the content of Co is 2 to 4% by mass, preferably 2.5 to 3.8% by mass in terms of oxide on a catalyst basis. If the content of Co is less than 2% by mass, the active sites attributed to Co cannot be sufficiently obtained, and 4% by mass
Is exceeded, the dispersibility of the active metal deteriorates due to the aggregation of the Co compound, and the inactive precursor Co 3 O
Since four species (existing as Co 9 S 8 after catalytic sulfurization and during hydrogenation treatment) and Co spinel species incorporated in the lattice of the carrier, no improvement in catalytic activity is observed.
Conversely, the catalytic activity decreases.

【0021】Moの含有量は、触媒基準、酸化物換算
で、16〜22質量%、好ましくは16〜18質量%と
する。Moが16質量%未満では、Moに起因する効果
を発現させるには不十分であり、22質量%を超える
と、Moの凝集によって活性金属の分散性が悪くなるば
かりか、効率的に分散する活性金属含有量の限度を超え
たり、触媒表面積が大幅に低下する等により、触媒活性
の向上がみられない。
The content of Mo is 16 to 22% by mass, preferably 16 to 18% by mass in terms of an oxide as a catalyst. If the Mo content is less than 16% by mass, it is not sufficient to exhibit the effect due to Mo. If the Mo content exceeds 22% by mass, the dispersibility of the active metal is deteriorated due to the aggregation of Mo, and the active metal is efficiently dispersed. There is no improvement in catalytic activity because the active metal content exceeds the limit or the catalyst surface area is significantly reduced.

【0022】リンの含有量は、触媒基準、酸化物換算
で、0.8〜4.5質量%、好ましくは1.0〜4質量
%とする。リンは、触媒の酸性質を向上させる作用をな
す。触媒が好適な酸性質の値を示す場合には、活性成分
の分散性が向上し、担体上の酸点の量が最適値を示し
て、硫黄化合物の吸着を促進し、硫黄化合物の水素化脱
硫活性を向上させる。なお、リンが多すぎると、触媒の
表面積や細孔容積の減少が起こり、脱硫活性が低下す
る。リンが0.8質量%未満では、リン成分を含有させ
る技術的意義が発現せず、軽油留分中の硫黄分を効率的
に除去することができず、4.5質量%を超えても、こ
の効果は飽和し、不経済となる。
The content of phosphorus is from 0.8 to 4.5% by mass, preferably from 1.0 to 4% by mass in terms of oxide on a catalyst basis. Phosphorus acts to improve the acid properties of the catalyst. When the catalyst exhibits a suitable acidity value, the dispersibility of the active ingredient is improved, the amount of acid sites on the carrier shows an optimal value, the adsorption of sulfur compounds is promoted, and the hydrogenation of sulfur compounds is promoted. Improve desulfurization activity. If the amount of phosphorus is too large, the surface area and pore volume of the catalyst decrease, and the desulfurization activity decreases. If the content of phosphorus is less than 0.8% by mass, the technical significance of including a phosphorus component is not exhibited, and the sulfur content in the gas oil fraction cannot be efficiently removed. , This effect becomes saturated and uneconomical.

【0023】Co、Mo、リン各成分の上記した含有量
において、活性金属であるCoとMoの最適質量比は、
〔CoO〕/〔CoO+MoO〕の値で、0.12〜
0.2であり、活性金属であるMoと触媒の酸性質向上
成分であるリンの最適質量比は、〔P〕/〔Mo
〕の値で、0.05〜0.25である。CoとMo
の質量比が上記の値で0.12未満では、脱硫の活性点
と考えられるCo−Mo−S相が十分に生成できず、脱
硫活性が向上しない。0.2より大きいと、活性に関与
しない無駄なCo種(Co種や、担体の格子内に
取り込まれたCoスピネル種)が生成し、触媒活性が低
下する。Moとリンの質量比が上記の値で0.05未満
では、CoとMoの渾然一体化が図れず、最終的に脱硫
の活性点であるCo−Mo−S相が得られ難く、活性の
低い触媒となる。0.25より大きいと、触媒の表面積
及び細孔容積の減少を招き、触媒の活性が低下するのみ
ならず、酸量が増えることとなり、炭素析出を招いて活
性劣化を引き起こし易くなる。
With the above contents of the Co, Mo and phosphorus components, the optimum mass ratio of the active metals Co and Mo is:
The value of [CoO] / [CoO + MoO 3 ] is 0.12 to
The optimum mass ratio of Mo, which is an active metal, to phosphorus, which is a component for improving the acidity of the catalyst, is [P 2 O 5 ] / [Mo
O 3 ] in the range of 0.05 to 0.25. Co and Mo
If the mass ratio is less than 0.12 in the above value, a Co-Mo-S phase, which is considered to be an active point of desulfurization, cannot be sufficiently generated, and the desulfurization activity does not improve. If it is larger than 0.2, useless Co species ( 8 Co 9 S or Co spinel species incorporated in the lattice of the carrier) which are not involved in the activity are generated, and the catalytic activity is reduced. If the mass ratio of Mo and phosphorus is less than 0.05 in the above value, Co and Mo cannot be completely integrated, and a Co-Mo-S phase, which is the active point of desulfurization, is hardly obtained finally, and the activity of Low catalyst. When it is larger than 0.25, the surface area and pore volume of the catalyst are reduced, and not only the activity of the catalyst is reduced, but also the acid amount is increased, and carbon precipitation is caused to easily cause deterioration of the activity.

【0024】また、本発明の触媒は、硫化処理後におい
て、Mo金属への硫黄の配位数が、XAFS(X−ra
y Absorption Fine Structu
re《X線吸収微細構造》)測定で、5〜6である。硫
黄の配位数が5未満(即ち、Moの硫化度が低い触媒)
では、十分な脱硫活性が得られない。なお、Moへの硫
黄の配位数の理論的上限は6である。
In the catalyst of the present invention, the coordination number of sulfur to Mo metal after the sulfurization treatment is XAFS (X-ra
y Absorption Fine Structu
re << X-ray absorption fine structure >>) is 5 to 6. Coordination number of sulfur is less than 5 (that is, catalyst having low sulfuration degree of Mo)
Does not provide sufficient desulfurization activity. The theoretical upper limit of the coordination number of sulfur to Mo is 6.

【0025】更に、本発明の触媒は、硫化処理後に、N
Oを吸着させ、拡散反射法FT−IRで観察した際に、
Coに吸着したNOスペクトル(1860cm−1)の
強度をICo、Moに吸着したNOスペクトル(169
0cm−1)の強度をIMoとした場合、ICo/(I
Co+IMo)の値が、0.3〜0.55の範囲内にあ
ることが好ましい。0.3未満では、脱硫の活性点であ
ると考えられるCo−Mo−S相が十分に生成しておら
ず、脱硫活性が向上しない。0.55より大きいと、活
性に関与しない無駄なCo種(Co種や、担体の
格子内に取り込まれたCoスピネル種)が生成し、触媒
活性が低下する。
Further, the catalyst of the present invention is characterized in that after sulfuration treatment,
When O was adsorbed and observed by diffuse reflection FT-IR,
The intensity of the NO spectrum (1860 cm −1 ) adsorbed on Co was determined by comparing the intensity of the NO spectrum adsorbed on ICo and Mo (169 cm −1 ).
When the intensity of 0 cm −1 ) is defined as IMo, ICo / (I
The value of (Co + IMo) is preferably in the range of 0.3 to 0.55. If it is less than 0.3, the Co-Mo-S phase, which is considered to be the active point of desulfurization, is not sufficiently generated, and the desulfurization activity is not improved. If it is larger than 0.55, useless Co species ( 8 Co 9 S or Co spinel species incorporated in the lattice of the carrier) which are not involved in the activity are generated, and the catalytic activity is reduced.

【0026】加えて、本発明の触媒は、CoO、MoO
、P、アルミナ以外の金属含有量が1質量%以
下であることが好ましい。これら以外の金属が1質量%
より多く含有されていると、活性点が破壊され、脱硫活
性の低い触媒となる。
[0026] In addition, the catalyst of the present invention comprises CoO, MoO
Preferably, the content of metals other than 3 , P 2 O 5 and alumina is 1% by mass or less. 1% by mass of metals other than these
If it is contained in a larger amount, the active sites are destroyed, resulting in a catalyst having low desulfurization activity.

【0027】本発明の触媒は、上記担体に、水、酸等の
溶媒に上記各成分の化合物を溶解させて調製した溶液を
含浸させて、これら各成分を担持させる含浸法により調
製される。なお、Co、Mo、リンの各成分を担体に含
浸させる方法は、これら各成分を同時に含浸させる一段
含浸法が好ましい。一段含浸法は、脱硫活性点数、酸性
質、細孔等の触媒の特性の面、あるいは操作性の面か
ら、有利と考えられるからである。即ち、一段含浸法に
よれば、CoとMoが渾然一体化して担体に取り込まれ
ることとなるため、最終的に脱硫の活性点であるCo−
Mo−S相を大幅に増加させることができる。このと
き、リン成分が含浸溶液に存在していると、CoとMo
の渾然一体化が促進される。
The catalyst of the present invention is prepared by an impregnation method in which the carrier is impregnated with a solution prepared by dissolving the compound of each of the above components in a solvent such as water or an acid, and the components are supported. In addition, as a method of impregnating each component of Co, Mo, and phosphorus into the carrier, a one-stage impregnation method of simultaneously impregnating these components is preferable. This is because the one-stage impregnation method is considered to be advantageous from the viewpoint of catalyst properties such as desulfurization active points, acid properties, pores, etc., or operability. That is, according to the one-stage impregnation method, Co and Mo are completely integrated and taken into the carrier, so that the active point of desulfurization, Co-
Mo-S phase can be greatly increased. At this time, if the phosphorus component is present in the impregnating solution, Co and Mo
Is promoted.

【0028】これに対し、CoとMoを二段含浸させる
方法では、CoとMoは十分に渾然一体化せず、最終的
に脱硫の活性点であるCo−Mo−S相の形成が困難に
なると考えられる。例えば、Coは、前述した不活性な
前駆体であるCo種や、担体の格子内に取り込ま
れた活性に関与しないCoスピネル種となることがあ
る。
On the other hand, in the method in which Co and Mo are impregnated in two steps, Co and Mo are not sufficiently integrated, and it is difficult to finally form a Co—Mo—S phase, which is an active site of desulfurization. It is considered to be. For example, Co may be Co 3 O 4 species, which is the inactive precursor described above, or Co spinel species, which is not involved in the activity incorporated in the lattice of the carrier.

【0029】CoとMoを担体に担持させる具体的方法
は、次の通りである。Co、Mo、リンの各化合物(M
o化合物にリンが含まれている場合はリン化合物を加え
ないか、適当量のリン化合物を添加する)を含む溶液を
調製する。調製時、これらの化合物の溶解を促進するた
めに、加温(30〜100℃)や、酸(硝酸、有機酸
《クエン酸、酢酸、リンゴ酸、酒石酸等》)の添加を行
ってもよい。調製した溶液を、担体に、均一になるよう
徐々に添加して含浸する。含浸時間は1分〜5時間、好
ましくは5分〜3時間、温度は5〜100℃、好ましく
は10〜80℃、雰囲気は特に限定しないが、大気中、
窒素中、真空中が適している。
A specific method for supporting Co and Mo on a carrier is as follows. Co, Mo and phosphorus compounds (M
o When the compound contains phosphorus, the phosphorus compound is not added or an appropriate amount of the phosphorus compound is added). During preparation, heating (30 to 100 ° C.) or addition of an acid (nitric acid, organic acid << citric acid, acetic acid, malic acid, tartaric acid, etc. &quot;) may be performed to promote the dissolution of these compounds. . The prepared solution is gradually added to the carrier so as to be uniform and impregnated. The impregnation time is 1 minute to 5 hours, preferably 5 minutes to 3 hours, the temperature is 5 to 100 ° C, preferably 10 to 80 ° C, and the atmosphere is not particularly limited.
Suitable in nitrogen and vacuum.

【0030】含浸担持後、常温〜80℃、窒素気流中、
空気気流中、あるいは真空中で、水分をある程度(LO
I《Loss on ignition》50%以下と
なるように)除去し、乾燥炉、空気気流中、80〜15
0℃で、10分〜10時間乾燥する。次いで、焼成炉、
空気気流中、300〜700℃で、10分〜10時間焼
成を行う。
After the impregnation and loading, at room temperature to 80 ° C. in a nitrogen stream,
In a stream of air or vacuum, a certain amount of water (LO
I << Loss on ignition >> so as to be 50% or less), and dry in a drying oven in an air stream at 80 to 15%.
Dry at 0 ° C. for 10 minutes to 10 hours. Next, a firing furnace,
The baking is performed in an air stream at 300 to 700 ° C. for 10 minutes to 10 hours.

【0031】以上のようにして調製される本発明の触媒
は、軽油留分に対する水素化活性及び脱硫活性を高める
ために、その比表面積、細孔容積及び平均細孔径が、以
下の値に制限される。比表面積(BET法)は、170
〜300m/g、好ましくは180〜280m/g
とする。170m/g未満では、活性金属の分散性が
悪くなって低脱硫活性の触媒となり、300m/gよ
り大きいと、細孔直径が極端に小さくなるため、触媒の
細孔直径も小さくなって、水素化処理の際、硫黄化合物
の触媒細孔内への拡散が不十分となり、脱硫活性が低下
する。
The catalyst of the present invention prepared as described above has its specific surface area, pore volume and average pore diameter restricted to the following values in order to enhance the hydrogenation activity and desulfurization activity for the gas oil fraction. Is done. The specific surface area (BET method) is 170
300300 m 2 / g, preferably 180-280 m 2 / g
And If it is less than 170 m 2 / g, the dispersibility of the active metal becomes poor and the catalyst has low desulfurization activity. If it is more than 300 m 2 / g, the pore diameter becomes extremely small, so that the catalyst pore diameter also becomes small. During the hydrogenation, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.

【0032】細孔容積(水銀圧入法)は、0.5〜0.
7ml/g、好ましくは0.51〜0.6ml/gとす
る。0.5ml/g未満では、水素化処理の際、硫黄化
合物の触媒細孔内での拡散が不十分となって脱硫活性が
不十分となり、0.7ml/gより大きいと、触媒の比
表面積が極端に小さくなって、活性金属の分散性が低下
し、低脱硫活性の触媒となる。
The pore volume (mercury intrusion method) is 0.5 to 0.5.
7 ml / g, preferably 0.51 to 0.6 ml / g. If it is less than 0.5 ml / g, during the hydrogenation treatment, the diffusion of sulfur compounds in the pores of the catalyst becomes insufficient, resulting in insufficient desulfurization activity. Becomes extremely small, the dispersibility of the active metal decreases, and the catalyst has a low desulfurization activity.

【0033】平均細孔直径は、70〜120Å、好まし
くは75〜110Åとする。70Å未満では、反応物質
が細孔内に拡散し難くなるため、脱硫反応が効率的に進
行せず、120Åより大きいと、細孔内の拡散性は良い
ものの、細孔内表面積が減少するため、触媒の有効比表
面積が減少し、活性が低くなる。
The average pore diameter is 70-120 °, preferably 75-110 °. If the temperature is less than 70 °, the reactant is less likely to diffuse into the pores, and the desulfurization reaction does not proceed efficiently. If the temperature is more than 120 °, the diffusivity in the pores is good, but the surface area in the pores is reduced. In addition, the effective specific surface area of the catalyst decreases, and the activity decreases.

【0034】また、上記の細孔条件を満たす細孔の有効
数を多くするために、触媒の細孔径分布、即ち平均細孔
径±15Åの細孔径を有する細孔の割合は、70%以
上、好ましくは80%以上とする。しかも、細孔分布
は、モノモーダルであることが好ましい。触媒の細孔径
分布がシャープなものでないと、活性に関与しない細孔
が増大し、脱硫活性が減少する。
In order to increase the effective number of pores satisfying the above pore conditions, the pore size distribution of the catalyst, that is, the proportion of pores having a pore diameter of average pore diameter ± 15 ° is 70% or more. Preferably, it is 80% or more. Moreover, the pore distribution is preferably monomodal. If the pore size distribution of the catalyst is not sharp, the pores not involved in the activity increase, and the desulfurization activity decreases.

【0035】触媒形状は、特に限定されず、通常、この
種の触媒に用いられている種々の形状、例えば、円柱
状、四葉型等を採用することができ、好ましくは拡散の
観点から四つ葉型である。触媒の大きさは、通常、直径
が1〜2mm、長さ2〜5mmが好ましい。触媒の機械
的強度は、側面破壊強度(SCS《Side crus
h strength》)で2lbs/mm以上が好ま
しい。SCSが、2lbs/mm未満では、反応装置に
充填した触媒が破壊され、反応装置内で差圧が発生し、
水素化処理運転の続行が不可能となる。触媒の最密充填
かさ密度(CBD:Compacted Bulk D
ensity)は、0.6〜0.9が好ましい。
The shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape or a four-leaf type, can be adopted. It is a leaf type. Usually, the catalyst preferably has a diameter of 1 to 2 mm and a length of 2 to 5 mm. The mechanical strength of the catalyst is determined by the lateral fracture strength (SCS << Side cruise
h strength >>) is preferably 2 lbs / mm or more. If the SCS is less than 2 lbs / mm, the catalyst charged in the reactor is destroyed, and a differential pressure is generated in the reactor,
The continuation of the hydrotreating operation becomes impossible. The closest packed bulk density (CBD) of the catalyst
(energy) is preferably from 0.6 to 0.9.

【0036】触媒中の活性金属の分布状態は、触媒中で
活性金属が均一に分布しているユニフォーム型が好まし
い。
The distribution of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.

【0037】本発明の水素化処理方法は、水素分圧3〜
8MPa、300〜420℃、及び液空間速度0.3〜
5hr−1の条件で、以上の触媒と硫黄化合物を含む軽
油留分とを接触させて脱硫を行い、軽油留分中の難脱硫
性硫黄化合物分を減少する方法である。
The hydrotreating method of the present invention has a hydrogen partial pressure of 3 to 3.
8MPa, 300-420 ° C, liquid space velocity 0.3-
This is a method in which the above catalyst is brought into contact with a gas oil fraction containing a sulfur compound under the condition of 5 hr -1 to carry out desulfurization, thereby reducing the non-desulfurizable sulfur compound content in the gas oil fraction.

【0038】本発明の水素化処理方法を商業規模で行う
には、本発明の触媒の固定床、移動床、あるいは流動床
式の触媒層を反応装置内に形成し、この反応装置内に原
料油を導入し、上記の条件下で水素化反応を行えばよ
い。最も一般的には、固定床式触媒層を反応装置内に形
成し、原料油を反応装置の上部に導入し、固定床を上か
ら下に通過させ、反応装置の下部から生成物を流出させ
るものか、反対に原料油を反応装置の下部に導入し、固
定床を下から上に通過させ、反応装置の上部から生成物
を流出させるものである。
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, a moving bed or a fluidized bed type catalyst layer of the catalyst of the present invention is formed in a reactor, and the raw material is placed in the reactor. Oil may be introduced and the hydrogenation reaction may be performed under the above conditions. Most commonly, a fixed bed catalyst layer is formed in the reactor, the feedstock is introduced into the upper part of the reactor, the fixed bed is passed from top to bottom, and the product flows out from the lower part of the reactor. Alternatively, the feedstock is introduced into the lower part of the reactor, passes through the fixed bed from bottom to top, and the product flows out of the upper part of the reactor.

【0039】本発明の水素化処理方法は、本発明の触媒
を、単独の反応装置に充填して行う一段の水素化処理方
法であってもよいし、幾つかの反応装置に充填して行う
多段連続水素化処理方法であってもよい。
The hydrotreating method of the present invention may be a single-stage hydrotreating method in which the catalyst of the present invention is charged into a single reactor, or may be charged into several reactors. A multi-stage continuous hydrotreating method may be used.

【0040】なお、本発明の触媒は、使用前に(即ち、
本発明の水素化処理方法を行うのに先立って)、反応装
置中で硫化処理して活性化する。この硫化処理は、20
0〜400℃、好ましくは250〜350℃、常圧ある
いはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物
を含む石油蒸留物、それにジメチルジスルファイドや二
硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を
用いて行う。
Before use, the catalyst of the present invention (ie,
Prior to carrying out the hydrotreating method of the present invention), it is activated by sulfidation in a reactor. This sulfurization treatment is performed for 20
Under a hydrogen atmosphere at 0 to 400 ° C., preferably 250 to 350 ° C., and a hydrogen partial pressure of normal pressure or higher, a sulfur distillate containing a sulfur compound and a sulfurizing agent such as dimethyl disulfide or carbon disulfide are added thereto. Or using hydrogen sulfide.

【0041】[0041]

【実施例】〔触媒の調製〕以下の実施例及び比較例で使
用した担体についてのアンモニア−TPD法の測定要領
は、次の通りとした。日本ベル(株)製のアンモニア−
TPD装置を使用し、試料(担体)0.1gを吸着管に
充填し、前処理として、He気流中で500℃まで50
分かけて昇温し、同気流中、500℃で1時間保持し、
室温まで11分30秒で降温し、室温、常圧で15分ア
ンモニアを吸着させた後、Heを流した状態で、150
Torrの減圧下、100℃で12分30秒、脱気処理
を行った。この脱気後の試料について、昇温速度10℃
/分、He気流中で、アンモニア脱離スペクトルを観測
し、全アンモニア脱離量を求め、酸量とした。
EXAMPLES [Preparation of Catalyst] The procedure for measuring the carrier used in the following Examples and Comparative Examples by the ammonia-TPD method was as follows. Ammonia manufactured by Nippon Bell Co., Ltd.
Using a TPD device, 0.1 g of a sample (carrier) was filled into an adsorption tube, and as a pretreatment, 50 ° C. to 500 ° C. in a He gas stream.
The temperature was raised over a minute, and the temperature was kept at 500 ° C. for 1 hour in the same air flow.
The temperature was lowered to room temperature in 11 minutes and 30 seconds, and ammonia was adsorbed at room temperature and normal pressure for 15 minutes.
Degassing was performed at 100 ° C. for 12 minutes and 30 seconds under a reduced pressure of Torr. For the degassed sample, the temperature was raised at a rate of 10 ° C.
/ Min, in a He gas flow, the ammonia desorption spectrum was observed, and the total ammonia desorption amount was determined and defined as the acid amount.

【0042】実施例1 ナス型フラスコ中に、細孔容積0.70ml/g、表面
積334m/g、平均細孔直径69Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.52mmol/g、不純物:NaO0.08質量
%、SO 2−0.53質量%、SiO0.04質量
%)50.00gを投入し、そこへイオン交換水38.
5gに炭酸コバルト3.0921gとモリブドリン酸1
5.1161gとオルトリン酸1.9532gを溶解さ
せた溶液をピペットで添加し、約25℃で1時間浸漬
後、窒素気流中で風乾し、マッフル炉中120℃で約1
時間乾燥させ、次いで500℃で4時間焼成し、触媒A
を得た。
Example 1 An alumina (γ) having a pore volume of 0.70 ml / g, a surface area of 334 m 2 / g, and an average pore diameter of 69 ° was placed in an eggplant type flask.
-Al 2 O 3 , 1/16 inch diameter columnar molded product, acid amount 0.52 mmol / g, impurities: Na 2 O 0.08 mass%, SO 4 2 -0.53 mass%, SiO 2 0.04 mass %) Of 50.00 g and ion-exchanged water there.
3.021 g of cobalt carbonate and molybdophosphoric acid 1 in 5 g
A solution in which 5.1161 g and orthophosphoric acid 1.9532 g were dissolved was added with a pipette, immersed at about 25 ° C. for 1 hour, air-dried in a nitrogen stream, and dried in a muffle furnace at 120 ° C. for about 1 hour.
For 4 hours, and then calcined at 500 ° C. for 4 hours.
I got

【0043】実施例2 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.8315gとモリブドリン酸
8.9534gとオルトリン酸0.6258gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Bを得た。
Example 2 Into an eggplant type flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution prepared by dissolving 1.8315 g of cobalt carbonate, 8.9534 g of molybdophosphoric acid and 0.6258 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst B.

【0044】実施例3 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.8083gとモリブドリン酸
8.8401gとオルトリン酸0.0935gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Cを得た。
Example 3 Into an eggplant type flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution prepared by dissolving 1.8083 g of cobalt carbonate, 8.8401 g of molybdophosphoric acid, and 0.0935 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst C.

【0045】実施例4 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.8797gとモリブドリン酸
9.1890gとオルトリン酸1.7324gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Dを得た。
Example 4 Into an eggplant type flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added to the flask.
A solution prepared by dissolving 1.8797 g of cobalt carbonate, 9.1890 g of molybdophosphoric acid and 1.7324 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst D.

【0046】実施例5 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.5461gとモリブドリン酸
9.3364gとオルトリン酸1.1589gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Eを得た。
Example 5 Into an eggplant type flask, 30.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution prepared by dissolving 1.5461 g of cobalt carbonate, 9.3364 g of molybdophosphoric acid and 1.1589 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst E.

【0047】実施例6 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト2.1645gとモリブドリン酸
8.8029gとオルトリン酸1.1849gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Fを得た。
Example 6 Into an eggplant type flask, 30.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added to the flask.
A solution prepared by dissolving 2.1645 g of cobalt carbonate, 8.8029 g of molybdophosphoric acid, and 1.1849 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst F.

【0048】実施例7 ナス型フラスコ中に、細孔容積0.71ml/g、表面
積329m/g、平均細孔直径74Åのアルミナ(γ
−Al、直径1.27mm×1.07mmの四つ
葉型成形物、酸量0.49mmol/g、不純物:Na
O0.07質量%、SO 2−0.48質量%、Si
0.05質量%)50.00gを投入し、そこへイ
オン交換水40.5gに炭酸コバルト3.0921gと
モリブドリン酸15.1161gとオルトリン酸1.9
532gを溶解させた溶液を、実施例1と同じ条件で添
加浸漬、風乾、乾燥、焼成を行い、触媒Gを得た。
Example 7 In an eggplant type flask, alumina (γ) having a pore volume of 0.71 ml / g, a surface area of 329 m 2 / g, and an average pore diameter of 74 ° was used.
-Al 2 O 3 , four-leaf molded product having a diameter of 1.27 mm × 1.07 mm, an acid amount of 0.49 mmol / g, impurity: Na
2 O 0.07% by mass, SO 4 2− 0.48% by mass, Si
(O 2 0.05% by mass) 50.00 g was added thereto, and 3.021 g of cobalt carbonate, 15.1161 g of molybdophosphoric acid and 1.9 g of orthophosphoric acid were added to 40.5 g of ion-exchanged water.
The solution in which 532 g was dissolved was added and dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst G.

【0049】実施例8 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水38.
5gに酢酸コバルト6.4754gとモリブドリン酸1
5.1161gとオルトリン酸1.9532gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒Hを得た。
Example 8 50.00 g of the same alumina as used in Example 1 was charged into an eggplant type flask, and ion-exchanged water was added to the flask.
6.4754 g of cobalt acetate and 1 molybdophosphoric acid in 5 g
A solution prepared by dissolving 5.1161 g of orthophosphoric acid and 1.9532 g of orthophosphoric acid was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst H.

【0050】実施例9 ナス型フラスコ中に、細孔容積0.75ml/g、表面
積254m/g、平均細孔直径85Åのアルミナ(γ
−Al、直径1.27mm×1.07mmの四つ
葉型成形物、酸量0.40mmol/g、不純物:Na
O0.07質量%、SO 2−0.48質量%、Si
0.04質量%)50.00gを投入し、そこへイ
オン交換水40.5gに炭酸コバルト3.0921gと
モリブドリン酸15.1161gとオルトリン酸1.9
532gを溶解させた溶液をピペットで添加し、約25
℃で1時間浸漬後、窒素気流中で風乾し、マッフル炉中
120℃で約1時間乾燥させ、次いで500℃で4時間
焼成し、触媒Iを得た。
Example 9 In an eggplant type flask, alumina (γ) having a pore volume of 0.75 ml / g, a surface area of 254 m 2 / g and an average pore diameter of 85 ° was used.
-Al 2 O 3 , four-leaf molded product having a diameter of 1.27 mm × 1.07 mm, an acid amount of 0.40 mmol / g, and an impurity of Na
2 O 0.07% by mass, SO 4 2− 0.48% by mass, Si
50.0 g of O 2 ( 0.04% by mass) was added thereto, and 3.021 g of cobalt carbonate, 15.1161 g of molybdophosphoric acid, and 1.9 orthophosphoric acid were added to 40.5 g of ion-exchanged water.
The solution in which 532 g was dissolved was added with a pipette, and about 25
After immersion at 1 ° C. for 1 hour, air-dried in a stream of nitrogen, dried in a muffle furnace at 120 ° C. for about 1 hour, and then calcined at 500 ° C. for 4 hours to obtain Catalyst I.

【0051】比較例1 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.9047gとモリブドリン酸
9.3115gとオルトリン酸2.3079gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒aを得た。
Comparative Example 1 Into an eggplant type flask, 30.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added to the flask.
A solution in which 1.9047 g of cobalt carbonate, 9.3115 g of molybdophosphoric acid, and 2.3079 g of orthophosphoric acid were dissolved in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst a.

【0052】比較例2 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ240.00gを投入し、そこへイオン交換水18
4.8gにパラモリブデン酸アンモニウム55.195
3gを溶解させた溶液をピペットを用いて添加し、約2
5℃で1時間浸漬後、窒素気流中風乾し、マッフル炉1
20℃で約1時間乾燥させ、次いで500℃で4時間焼
成し、Mo担持を行った。この後、硝酸コバルト6水和
物58.2580gをイオン交換水184.8gに溶解
した水溶液をピペットを用いて添加し、約25℃で1時
間浸漬後、窒素気流中風乾し、マッフル炉中120℃で
約1時間乾燥させ、次いで500℃で4時間焼成してC
o担持を行い、触媒bを得た。
Comparative Example 2 240.00 g of the same alumina as used in Example 1 was charged into an eggplant-shaped flask, and ion-exchanged water 18 was added thereto.
To 4.8 g of ammonium paramolybdate 55.195
A solution in which 3 g is dissolved is added using a pipette, and about 2 g is added.
After immersion at 5 ° C for 1 hour, air-dry in a stream of nitrogen
It was dried at 20 ° C. for about 1 hour, and then baked at 500 ° C. for 4 hours to carry Mo. Thereafter, an aqueous solution in which 58.2580 g of cobalt nitrate hexahydrate was dissolved in 184.8 g of ion-exchanged water was added using a pipette, immersed at about 25 ° C. for 1 hour, air-dried in a nitrogen stream, and dried in a muffle furnace at 120 ° C. C. for about 1 hour and then calcined at 500.degree.
o was carried out to obtain a catalyst b.

【0053】比較例3 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ240.00gを投入し、そこへイオン交換水18
4.8gにパラモリブデン酸アンモニウム62.554
7gを溶解させた溶液を、比較例2のMo担持の場合と
同じ条件で添加浸漬、風乾、乾燥、焼成して、Mo担持
を行った。この後、硝酸コバルト6水和物34.954
8gをイオン交換水184.8gに溶解した水溶液を、
比較例2のCo担持の場合と同じ条件で添加浸漬、風
乾、乾燥、焼成して、Co担持を行い、触媒cを得た。
Comparative Example 3 240.00 g of the same alumina as used in Example 1 was charged into an eggplant type flask, and ion-exchanged water 18 was added thereto.
Ammonium paramolybdate 62.554 in 4.8 g
The solution in which 7 g was dissolved was added and immersed, air-dried, dried and fired under the same conditions as in the case of supporting Mo in Comparative Example 2 to carry out the supporting of Mo. After this, cobalt nitrate hexahydrate 34.954
An aqueous solution obtained by dissolving 8 g in ion-exchanged water 184.8 g
Under the same conditions as in the case of supporting Co of Comparative Example 2, addition and immersion, air drying, drying, and calcination were performed to carry Co, thereby obtaining a catalyst c.

【0054】比較例4 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.9569gとモリブドリン酸
9.5666gとオルトリン酸3.5060gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒dを得た。
Comparative Example 4 Into an eggplant type flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution in which 1.9569 g of cobalt carbonate, 9.5666 g of molybdophosphoric acid and 3.5060 g of orthophosphoric acid were dissolved in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst d.

【0055】比較例5 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト1.2368gとモリブドリン酸
9.6032gとオルトリン酸1.1459gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒eを得た。
Comparative Example 5 Into an eggplant-shaped flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution prepared by dissolving 1.2368 g of cobalt carbonate, 9.6032 g of molybdophosphoric acid, and 1.159 g of orthophosphoric acid in 1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst e.

【0056】比較例6 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ150.00gを投入し、そこへイオン交換水2
3.1gに炭酸コバルト12.2728gとモリブドリ
ン酸42.3508gとオルトリン酸4.3417gを
溶解させた溶液を、実施例1と同じ条件で添加浸漬、風
乾、乾燥、焼成を行い、触媒fを得た。
Comparative Example 6 Into an eggplant type flask, 150.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water 2 was added thereto.
A solution in which 12.2728 g of cobalt carbonate, 42.3508 g of molybdophosphoric acid and 4.3417 g of orthophosphoric acid were dissolved in 3.1 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain catalyst f. Was.

【0057】比較例7 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水34.
8gに酢酸コバルト10.7923gとモリブドリン酸
13.3378gとオルトリン酸4.3417gを溶解
させた溶液を、実施例1と同じ条件で添加浸漬、風乾、
乾燥、焼成を行い、触媒gを得た。
Comparative Example 7 Into an eggplant-shaped flask, 50.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution obtained by dissolving 10.7923 g of cobalt acetate, 13.3378 g of molybdophosphoric acid and 4.3417 g of orthophosphoric acid in 8 g was added and immersed under the same conditions as in Example 1;
Drying and baking were performed to obtain a catalyst g.

【0058】比較例8 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水34.
8gに酢酸コバルト12.9508gとモリブドリン酸
12.4486gとオルトリン酸2.0832gを溶解
させた溶液を、実施例1と同じ条件で添加浸漬、風乾、
乾燥、焼成を行い、触媒hを得た。
Comparative Example 8 Into an eggplant-shaped flask, 50.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution prepared by dissolving 12.9508 g of cobalt acetate, 12.4486 g of molybdophosphoric acid and 2.0832 g of orthophosphoric acid in 8 g was added and immersed in the same conditions as in Example 1;
Drying and calcination were performed to obtain a catalyst h.

【0059】比較例9 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水34.
8gに酢酸コバルト15.1093gとモリブドリン酸
11.5594gとオルトリン酸2.1266gを溶解
させた溶液を、実施例1と同じ条件で添加浸漬、風乾、
乾燥、焼成を行い、触媒iを得た。
Comparative Example 9 Into an eggplant-shaped flask, 50.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution obtained by dissolving 15.1093 g of cobalt acetate, 11.5594 g of molybdophosphoric acid and 2.1266 g of orthophosphoric acid in 8 g was added and immersed under the same conditions as in Example 1;
Drying and calcination were performed to obtain a catalyst i.

【0060】比較例10 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水34.
8gに酢酸ニッケル6.4904gとモリブドリン酸1
5.1161gとオルトリン酸1.9532gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒jを得た。
Comparative Example 10 Into an eggplant-shaped flask, 50.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added thereto.
6.4904 g of nickel acetate and 1 molybdophosphoric acid in 8 g
A solution prepared by dissolving 5.1161 g of orthophosphoric acid and 1.9532 g of orthophosphoric acid was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst j.

【0061】比較例11 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ50.00gを投入し、そこへイオン交換水34.
8gに酢酸ニッケル4.4423gと酢酸コバルト6.
6481とモリブドリン酸15.5192gとオルトリ
ン酸2.0053gを溶解させた溶液を、実施例1と同
じ条件で添加浸漬、風乾、乾燥、焼成を行い、触媒kを
得た。
Comparative Example 11 Into an eggplant type flask, 50.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
4.4423 g of nickel acetate and cobalt acetate 6.
A solution in which 6481, molybdophosphoric acid (15.5192 g) and orthophosphoric acid (2.553 g) were dissolved was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst k.

【0062】比較例12 ナス型フラスコ中に、細孔容積0.54ml/g、表面
積247m/g、平均細孔直径74Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.36mmol/g、不純物:NaO0.07質量
%、SO 2−0.52質量%、SiO0.04質量
%)30.00gを投入し、そこへイオン交換水18.
0gに炭酸コバルト1.8553gとモリブドリン酸
9.0697gとオルトリン酸1.1719gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒lを得た。
Comparative Example 12 An alumina (γ) having a pore volume of 0.54 ml / g, a surface area of 247 m 2 / g and an average pore diameter of 74 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , 1/16 inch diameter columnar molded product, acid amount 0.36 mmol / g, impurities: Na 2 O 0.07 mass%, SO 4 2 -0.52 mass%, SiO 2 0.04 mass %) Of 30.00 g, and ion-exchanged water there.
A solution prepared by dissolving 1.8553 g of cobalt carbonate, 9.0697 g of molybdophosphoric acid and 1.1719 g of orthophosphoric acid in 0 g was added, immersed, air-dried, dried and calcined under the same conditions as in Example 1 to obtain Catalyst 1.

【0063】比較例13 ナス型フラスコ中に、細孔容積0.54ml/g、表面
積358m/g、平均細孔直径53Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.54mmol/g、不純物:NaO0.08質量
%、SO 2−0.49質量%、SiO0.04質量
%)50.00gを投入し、そこへイオン交換水31.
5gに炭酸コバルト3.0921gとモリブドリン酸1
5.1161gとオルトリン酸1.9532gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒mを得た。
Comparative Example 13 An alumina (γ) having a pore volume of 0.54 ml / g, a surface area of 358 m 2 / g and an average pore diameter of 53 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , 1/16 inch diameter columnar molded product, acid amount 0.54 mmol / g, impurities: Na 2 O 0.08 mass%, SO 4 2 -0.49 mass%, SiO 2 0.04 mass %) Of 50.00 g of ion-exchanged water.
3.021 g of cobalt carbonate and molybdophosphoric acid 1 in 5 g
A solution obtained by dissolving 5.1161 g of orthophosphoric acid and 1.9532 g of orthophosphoric acid was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst m.

【0064】比較例14 ナス型フラスコ中に、細孔容積0.57ml/g、表面
積378m/g、平均細孔直径53Åのアルミナ(γ
−Al、直径1.27×1.07mmの四つ葉型
成形物、酸量0.66mmol/g、不純物:Na
0.09質量%、SO 2−0.53質量%、SiO
0.05質量%)50.00gを投入し、そこへイオン
交換水33.5gに炭酸コバルト3.0921gとモリ
ブドリン酸15.1161gとオルトリン酸1.953
2gを溶解させた溶液を、実施例1と同じ条件で添加浸
漬、風乾、乾燥、焼成を行い、触媒nを得た。
Comparative Example 14 An alumina (γ) having a pore volume of 0.57 ml / g, a surface area of 378 m 2 / g, and an average pore diameter of 53 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , four-leaf shaped product having a diameter of 1.27 × 1.07 mm, acid amount 0.66 mmol / g, impurity: Na 2 O
0.09 mass%, SO 4 2− 0.53 mass%, SiO 2
50.05 g) was added thereto, and 3.021 g of cobalt carbonate, 15.1161 g of molybdophosphoric acid, and 1.953 g of orthophosphoric acid were added to 33.5 g of ion-exchanged water.
The solution in which 2 g was dissolved was added and immersed, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst n.

【0065】比較例15 ナス型フラスコ中に、細孔容積0.71ml/g、表面
積298m/g、平均細孔直径84Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.44mmol/g、不純物:NaO0.08質量
%、SO 2−0.57質量%、SiO0.04質量
%)30.00gを投入し、そこへイオン交換水33.
5gに炭酸コバルト1.8553gとモリブドリン酸
9.0697gとオルトリン酸1.1719gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒oを得た。
Comparative Example 15 An alumina (γ) having a pore volume of 0.71 ml / g, a surface area of 298 m 2 / g, and an average pore diameter of 84 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , 1/16 inch diameter columnar molded product, acid amount 0.44 mmol / g, impurities: Na 2 O 0.08 mass%, SO 4 2 -0.57 mass%, SiO 2 0.04 mass %) Of 30.00 g, and ion-exchanged water was added thereto.
A solution in which 1.8553 g of cobalt carbonate, 9.0697 g of molybdophosphoric acid and 1.1719 g of orthophosphoric acid were dissolved in 5 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst o.

【0066】比較例16 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gに炭酸コバルト3.1746gとモリブドリン酸1
5.2149gとオルトリン酸1.0995gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒pを得た。
Comparative Example 16 Into an eggplant type flask, 30.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added to the flask.
3.1746 g of cobalt carbonate and 1 molybdophosphoric acid per 1 g
A solution in which 5.2149 g and 1.0995 g of orthophosphoric acid were dissolved was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst p.

【0067】比較例17 ナス型フラスコ中に、細孔容積0.68ml/g、表面
積316m/g、平均細孔直径74Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.48mmol/g、不純物:NaO0.09質量
%、SO 2−0.52質量%、SiO0.04質量
%)30.00gを投入し、そこへイオン交換水22.
9gに炭酸コバルト1.8553gとモリブドリン酸
9.0697gとオルトリン酸1.1719gを溶解さ
せた溶液を、実施例1と同じ条件で添加浸漬、風乾、乾
燥、焼成を行い、触媒qを得た。
Comparative Example 17 An alumina (γ) having a pore volume of 0.68 ml / g, a surface area of 316 m 2 / g and an average pore diameter of 74 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , 1/16 inch diameter columnar molded product, acid amount 0.48 mmol / g, impurities: Na 2 O 0.09 mass%, SO 4 2 -0.52 mass%, SiO 2 0.04 mass %) Of 30.00 g of ion-exchanged water.
A solution in which 1.8553 g of cobalt carbonate, 9.0697 g of molybdophosphoric acid, and 1.1719 g of orthophosphoric acid were dissolved in 9 g was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst q.

【0068】比較例18 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにモリブデンリン酸9.3115gとオルトリン酸
2.3079gを溶解させた溶液を、比較例2のMo担
持の場合と同じ条件で添加浸漬、風乾、乾燥、焼成し
て、Mo担持を行った。この後、硝酸コバルト6水和物
4.6606gをイオン交換水23.1gに溶解した水
溶液を、比較例2のCo担持の場合と同じ条件で添加浸
漬、風乾、乾燥、焼成して、Co担持を行い、触媒rを
得た。
Comparative Example 18 30.00 g of the same alumina as that used in Example 1 was charged into an eggplant-shaped flask.
A solution in which 9.3115 g of molybdenum phosphoric acid and 2.3079 g of orthophosphoric acid were dissolved in 1 g was added, immersed, air-dried, dried and calcined under the same conditions as in the case of supporting Mo in Comparative Example 2, and Mo was supported. Thereafter, an aqueous solution in which 4.6606 g of cobalt nitrate hexahydrate was dissolved in 23.1 g of ion-exchanged water was added under the same conditions as in the case of supporting Co in Comparative Example 2, immersed, air-dried, dried, and calcined to obtain a Co-supported solution. Was carried out to obtain a catalyst r.

【0069】比較例19 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにパラモリブデン酸アンモニウム8.5093gを
溶解させた溶液をピペットを、比較例2のMo担持の場
合と同じ条件で添加浸漬、風乾、乾燥、焼成して、Mo
担持を行った。この後、硝酸コバルト6水和物2.18
47gをイオン交換水23.1gに溶解した水溶液を、
比較例2のCo担持の場合と同じ条件で添加浸漬、風
乾、乾燥、焼成して、Co担持を行い、触媒sを得た。
Comparative Example 19 Into an eggplant-shaped flask, 30.00 g of the same alumina as used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution obtained by dissolving 8.5093 g of ammonium paramolybdate in 1 g was added to a pipette under the same conditions as in the case of supporting Mo in Comparative Example 2, and then immersed, air-dried, dried, and calcined to obtain Mo.
Loading was performed. After this, cobalt nitrate hexahydrate 2.18
An aqueous solution obtained by dissolving 47 g in 23.1 g of ion-exchanged water,
Under the same conditions as in the case of supporting Co in Comparative Example 2, addition and immersion, air drying, drying and calcination were carried out to carry Co, thereby obtaining a catalyst s.

【0070】比較例20 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにパラモリブデン酸アンモニウム7.1294gを
溶解させた溶液を、比較例2のMo担持の場合と同じ条
件で添加浸漬、風乾、乾燥、焼成して、Mo担持を行っ
た。この後、硝酸コバルト6水和物6.5540gをイ
オン交換水23.1gに溶解した水溶液を、比較例2の
Co担持の場合と同じ条件で添加浸漬、風乾、乾燥、焼
成して、Co担持を行い、触媒tを得た。
Comparative Example 20 Into an eggplant type flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution in which 7.1294 g of ammonium paramolybdate was dissolved in 1 g was added, immersed, air-dried, dried, and calcined under the same conditions as in the case of supporting Mo in Comparative Example 2, thereby performing Mo supporting. Thereafter, an aqueous solution in which 6.5540 g of cobalt nitrate hexahydrate was dissolved in 23.1 g of ion-exchanged water was added, dipped, air-dried, dried and calcined under the same conditions as in the case of supporting Co in Comparative Example 2 to obtain a Co-supported solution. Was performed to obtain a catalyst t.

【0071】比較例21 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにパラモリブデン酸アンモニウム6.2094gを
溶解させた溶液を、比較例2のMo担持の場合と同じ条
件で添加浸漬、風乾、乾燥、焼成して、Mo担持を行っ
た。この後、硝酸コバルト6水和物9.4669gをイ
オン交換水23.1gに溶解した水溶液を、比較例2の
Co担持の場合と同じ条件で添加浸漬、風乾、乾燥、焼
成して、Co担持を行い、触媒uを得た。
Comparative Example 21 Into an eggplant-shaped flask, 30.00 g of the same alumina as that used in Example 1 was charged.
A solution in which 6.2094 g of ammonium paramolybdate was dissolved in 1 g was added and immersed, air-dried, dried, and calcined under the same conditions as in the case of supporting Mo in Comparative Example 2, thereby carrying out Mo supporting. Thereafter, an aqueous solution obtained by dissolving 9.4669 g of cobalt nitrate hexahydrate in 23.1 g of ion-exchanged water was added under the same conditions as in the case of supporting Co in Comparative Example 2, immersed, air-dried, dried and calcined to obtain a Co-supported solution. Was carried out to obtain a catalyst u.

【0072】比較例22 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにパラモリブデン酸アンモニウム5.2896gを
溶解させた溶液を、比較例2のMo担持の場合と同じ条
件で添加浸漬、風乾、乾燥、焼成して、Mo担持を行っ
た。この後、硝酸コバルト6水和物12.3798gを
イオン交換水23.1gに溶解した水溶液を、比較例2
のCo担持の場合と同じ条件で添加浸漬、風乾、乾燥、
焼成して、Co担持を行い、触媒vを得た。
Comparative Example 22 Into an eggplant-shaped flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution in which 5.2896 g of ammonium paramolybdate was dissolved in 1 g was added, immersed, air-dried, dried, and calcined under the same conditions as in the case of supporting Mo in Comparative Example 2 to carry out the supporting of Mo. Thereafter, an aqueous solution obtained by dissolving 12.3798 g of cobalt nitrate hexahydrate in 23.1 g of ion-exchanged water was added to Comparative Example 2
Dipping, air drying, drying,
It was calcined to carry Co, and a catalyst v was obtained.

【0073】比較例23 ナス型フラスコ中に、実施例1で用いたものと同じアル
ミナ30.00gを投入し、そこへイオン交換水23.
1gにパラモリブデン酸アンモニウム3.6797gを
溶解させた溶液を、比較例2のMo担持の場合と同じ条
件で添加浸漬、風乾、乾燥、焼成して、Mo担持を行っ
た。この後、硝酸コバルト6水和物17.4774gを
イオン交換水23.1gに溶解した水溶液を、比較例2
のCo担持の場合と同じ条件で添加浸漬、風乾、乾燥、
焼成して、Co担持を行い、触媒wを得た。
Comparative Example 23 Into an eggplant-shaped flask, 30.00 g of the same alumina as that used in Example 1 was charged, and ion-exchanged water was added thereto.
A solution in which 3.6797 g of ammonium paramolybdate was dissolved in 1 g was added and immersed, air-dried, dried, and calcined under the same conditions as in the case of supporting Mo in Comparative Example 2, thereby carrying out Mo supporting. Thereafter, an aqueous solution obtained by dissolving 17.4774 g of cobalt nitrate hexahydrate in 23.1 g of ion-exchanged water was added to Comparative Example 2
Dipping, air drying, drying,
It was calcined to carry Co, and a catalyst w was obtained.

【0074】比較例24 ナス型フラスコ中に、細孔容積0.65ml/g、表面
積382m/g、平均細孔直径62Åのゼオライト
(5質量%)−アルミナ(格子定数が24.39Å、S
iO/Alモル比が6のUSYゼオライトの粉
末とアルミナ水和物を混練し、押出成形後、焼成したも
ので、アルミナは実質的にγ−Alであり、直径
1/16インチの柱状成形物、酸量0.77mmol/
g、ゼオライト−アルミナ中の不純物:NaO0.1
2質量%、SO 2−0.45質量%、SiO3.6
8質量%《ゼオライトに起因するSiOを含む》)5
0.00gを投入し、そこへイオン交換水36.5gに
炭酸コバルト3.0921gとモリブドリン酸15.1
161gとオルトリン酸1.9532gを溶解させた溶
液を、実施例1と同じ条件で添加浸漬、風乾、乾燥、焼
成を行い、触媒xを得た。
Comparative Example 24 Zeolite (5 mass%)-alumina having a pore volume of 0.65 ml / g, a surface area of 382 m 2 / g, and an average pore diameter of 62 ° (a lattice constant of 24.39 °, S
A powder of USY zeolite having an iO 2 / Al 2 O 3 molar ratio of 6 was kneaded with alumina hydrate, extruded, and calcined. The alumina was substantially γ-Al 2 O 3 and had a diameter of 1 / 16 inch columnar molded product, acid amount 0.77 mmol /
g, impurity in zeolite-alumina: Na 2 O 0.1
2% by mass, SO 4 2− 0.45% by mass, SiO 2 3.6
8% by mass << Including SiO 2 originating from zeolite >>) 5
0.00g was charged, and 3.0921 g of cobalt carbonate and 15.1 g of molybdophosphoric acid were added to 36.5 g of ion-exchanged water.
A solution in which 161 g of orthophosphoric acid and 1.9532 g of orthophosphoric acid were dissolved was added, dipped, air-dried, dried and calcined under the same conditions as in Example 1 to obtain a catalyst x.

【0075】比較例25 ナス型フラスコ中に、細孔容積0.68ml/g、表面
積312m/g、平均細孔直径73Åのアルミナ(γ
−Al、直径1/16インチの柱状成形物、酸量
0.32mmol/g、不純物:NaO1.21質量
%、SO 2−0.28質量%、SiO0.07質量
%)50.00gを投入し、そこへイオン交換水40.
5gに炭酸コバルト3.0921gとモリブドリン酸1
5.1161gとオルトリン酸1.9532gを溶解さ
せた溶液をピペットを、実施例1と同じ条件で添加浸
漬、風乾、乾燥、焼成を行い、触媒yを得た。
Comparative Example 25 An alumina (γ) having a pore volume of 0.68 ml / g, a surface area of 312 m 2 / g, and an average pore diameter of 73 ° was placed in an eggplant-shaped flask.
-Al 2 O 3 , columnar molded product having a diameter of 1/16 inch, acid amount 0.32 mmol / g, impurities: 1.21% by mass of Na 2 O, 0.28% by mass of SO 4 2− , 0.07% by mass of SiO 2 %) Of 50.00 g of ion-exchanged water.
3.021 g of cobalt carbonate and molybdophosphoric acid 1 in 5 g
A solution in which 5.1161 g of orthophosphoric acid was dissolved and 1.9532 g of orthophosphoric acid were added to a pipette under the same conditions as in Example 1 and immersed, air-dried, dried and calcined to obtain a catalyst y.

【0076】以上の実施例、及び比較例の触媒の元素分
析値、物性値を表1に示す。なお、表1中の不純物と
は、CoO、MoO、P、アルミナ以外の金属
のことであり、酸化物換算値で示した。触媒の分析に用
いた方法及び分析機器を以下に示す。 〔1〕物理性状の分析 a)測定方法及び使用機器: ・比表面積は、窒素吸着によるBET法により測定し
た。窒素吸着装置は、日本ベル(株)製の表面積測定装
置(ベルソープ28)を使用した。 ・細孔容積、平均細孔直径、及び細孔分布は、水銀圧入
法により測定した。水銀圧入装置は、ポロシメーター
(MICROMERITICS AUTO−PORE
9200:島津製作所製)を使用した。
Table 1 shows the elemental analysis values and physical properties of the catalysts of the above Examples and Comparative Examples. The impurities in Table 1 are metals other than CoO, MoO 3 , P 2 O 5 , and alumina, and are shown in terms of oxide. The method and analytical equipment used for the analysis of the catalyst are shown below. [1] Analysis of physical properties a) Measurement method and equipment used:-The specific surface area was measured by the BET method using nitrogen adsorption. As the nitrogen adsorption device, a surface area measuring device (Bellsoap 28) manufactured by Nippon Bell Co., Ltd. was used. -The pore volume, average pore diameter, and pore distribution were measured by a mercury intrusion method. The mercury intrusion device is a porosimeter (MICROMERITICS AUTO-PORE)
9200: manufactured by Shimadzu Corporation).

【0077】b)測定原理: ・水銀圧入法は、毛細管現象の法則に基づく。水銀と円
筒細孔の場合には、この法則は次式で表される。 D=−(1/P)4γcosθ 式中、Dは細孔直径、Pは掛けた圧力、γは表面張力、
θは接触角である。掛けた圧力Pの関数としての細孔へ
の進入水銀体積を測定する。なお、触媒の細孔水銀の表
面張力は484dyne/cmとし、接触角は130度
とした。 ・細孔容積は、細孔へ進入した触媒グラム当たりの全水
銀体積量である。平均細孔直径は、Pの関数として算出
されたDの平均値である。 ・細孔分布は、Pを関数として算出されたDの分布であ
る。
B) Principle of measurement: The mercury intrusion method is based on the capillary phenomenon law. For mercury and cylindrical pores, this law is: D = − (1 / P) 4γ cos θ where D is the pore diameter, P is the applied pressure, γ is the surface tension,
θ is the contact angle. The volume of mercury entering the pores as a function of the applied pressure P is measured. The surface tension of the pore mercury of the catalyst was 484 dyne / cm, and the contact angle was 130 degrees. Pore volume is the total volume of mercury per gram of catalyst that has entered the pores. The average pore diameter is the average value of D calculated as a function of P. -The pore distribution is the distribution of D calculated as a function of P.

【0078】c)測定手順: 真空加熱脱気装置の電源を入れ、温度400℃、真空
度5×10−2Torr以下になることを確認する。 サンプルビュレットを空のまま真空加熱脱気装置に掛
ける。 真空度が5×10−2Torr以下となったなら、サ
ンプルビュレットを、そのコックを閉じて真空加熱脱気
装置から取り外し、冷却後、重量を測定する。 サンプルビュレットに試料(触媒)を入れる。 試料入りサンプルビュレットを真空加熱脱気装置に掛
け、真空度が5×10 −2Torr以下になってから1
時間以上保持する。 試料入りサンプルビュレットを真空加熱脱気装置から
取り外し、冷却後、重量を測定し、試料重量を求める。 AUTO−PORE 9200用セルに試料を入れ
る。 AUTO−PORE 9200により測定する。
C) Measuring procedure: Turn on the power of the vacuum heating degassing apparatus,
Degree 5 × 10-2Confirm that it is less than Torr. Leave the sample burette empty on the vacuum heating deaerator
I can. The degree of vacuum is 5 × 10-2If the pressure falls below Torr,
Close the cock of the sample burette and heat it with vacuum
Remove from the device, cool down and weigh. Put the sample (catalyst) in the sample buret. Hang the sample burette with sample in the vacuum heating deaerator.
The degree of vacuum is 5 × 10 -21 after Torr
Hold for more than an hour. Sample burette with sample from vacuum heating deaerator
After removal and cooling, the weight is measured to determine the sample weight. Put the sample in the cell for AUTO-PORE 9200
You. It is measured according to AUTO-PORE 9200.

【0079】〔2〕化学組成の分析 a)分析方法及び使用機器: ・触媒中の金属分析は、誘導結合プラズマ発光分析(I
CPS−2000:島津製作所製)を用いて行った。 ・金属の定量は、絶対検量線法にて行った。
[2] Analysis of chemical composition a) Analysis method and equipment used: Metal analysis in the catalyst was performed by inductively coupled plasma emission analysis (I
CPS-2000: manufactured by Shimadzu Corporation).・ Quantification of metals was performed by the absolute calibration curve method.

【0080】b)測定手順: ユニシールに、触媒0.05g、塩酸(50%)1m
l、フッ酸一滴、及び純水1ccを投入し、加熱して溶
解する。 溶解後、ポリプロピレン製メスフラスコ(50ml)
に移し換え、純水を加えて、50mlに秤量する。 この溶液をICPS−2000により測定する。
B) Measurement procedure: Uniseal was charged with 0.05 g of catalyst and 1 m of hydrochloric acid (50%).
l, one drop of hydrofluoric acid, and 1 cc of pure water, and dissolve by heating. After dissolution, polypropylene volumetric flask (50 ml)
Then, add pure water and weigh to 50 ml. This solution is measured by ICPS-2000.

【0081】〔3〕モリブデン金属への硫黄の配位数の
測定 硫化処理後の触媒中のモリブデン金属への硫黄の配位数
をXAFS測定により調べた。 a)触媒の前処理と測定用ディスクの作成:触媒の前処
理は、触媒を流通式反応管に詰め、室温で窒素気流中5
分処理し、雰囲気ガスをHS(5%)/Hに切り換
え、速度5℃/minで昇温し、400℃に達した後、
4時間保持した。その後、同雰囲気下で200℃まで降
温し、雰囲気ガスを窒素に切り換え、常温まで降温し、
前処理(硫化処理)を終了した。測定用ディスクは、上
記の前処理後、反応管に窒素ガスを通気したまま出口、
入口の順でバルブを閉めた反応管をそのまま、窒素置換
したグローブバッグ中に移し、グローブバッグ内で、反
応管内の触媒をメノウ乳鉢に移して粉砕し、直径13m
mのIR用ディスク成型器で、180kg/cmの圧
力で成型した。成型したディスクは、XAFS測定を行
うまで窒素置換したグローブボックス中で保存した。
[3] Measurement of Coordination Number of Sulfur to Molybdenum Metal The coordination number of sulfur to molybdenum metal in the catalyst after the sulfidation treatment was examined by XAFS measurement. a) Pretreatment of catalyst and preparation of measurement disk: For pretreatment of catalyst, the catalyst was packed in a flow-through reaction tube and placed in a nitrogen stream at room temperature.
Minute treatment, the atmosphere gas was switched to H 2 S (5%) / H 2 , the temperature was increased at a rate of 5 ° C./min, and reached 400 ° C.
Hold for 4 hours. Thereafter, the temperature was lowered to 200 ° C. in the same atmosphere, the atmosphere gas was switched to nitrogen, and the temperature was lowered to room temperature.
The pretreatment (sulfurization treatment) was completed. After the above-mentioned pretreatment, the measurement disc is discharged while the nitrogen gas is passed through the reaction tube,
The reaction tube in which the valve was closed in the order of the inlets was directly transferred into a glove bag purged with nitrogen, and in the glove bag, the catalyst in the reaction tube was transferred to an agate mortar and crushed to a diameter of 13 m.
m and a pressure of 180 kg / cm 2 with an IR disk molding machine. The molded disk was stored in a nitrogen-purged glove box until XAFS measurement was performed.

【0082】b)測定:高エネルギー物理学研究所の高
エネルギー加速器研究機構放射光実験施設(KEK−P
F)の硬X線ビームラインを使用し、XAFS測定装置
BL−10Bを用いて、上記のディスクを測定した。
B) Measurement: High Energy Accelerator Research Organization Synchrotron Radiation Facility (KEK-P) of the Institute of High Energy Physics
Using the hard X-ray beam line F), the above disk was measured using an XAFS measuring apparatus BL-10B.

【0083】c)解析:標準試料として二硫化モリブデ
ン結晶(MoS)のXAFS測定を行い、触媒上のモ
リブデン硫化物でのMo−Sのピーク強度をモリブデン
金属への硫黄の配位原子数に対応するものとして、各触
媒のXAFS動径分布関数からモリブデンへの硫黄の平
均配位原子数を算出した。
C) Analysis: XAFS measurement of molybdenum disulfide crystal (MoS 2 ) was performed as a standard sample, and the peak intensity of Mo—S in the molybdenum sulfide on the catalyst was converted to the number of coordinating atoms of sulfur to molybdenum metal. As the corresponding one, the average number of coordinating atoms of sulfur to molybdenum was calculated from the XAFS radial distribution function of each catalyst.

【0084】具体的には、以下の式より算出した。先
ず、結晶構造の明確な標準試料(二硫化モリブデン結
晶)のXAFS測定を行い、(1)、(2)式により、
ΔR、Kを求める。 ΔR=Rr−Robs,r (1) Nr=K・hr・Rr (2) 式中、Rr :結晶学的データによる原子間距離
(Å) Robs,r:動径分布関数における原子間距離(Å) Nr :結晶学的データによる配位数 hr :動径分布関数におけるピーク強度 K :定数
Specifically, it was calculated by the following equation. First, XAFS measurement was performed on a standard sample (molybdenum disulfide crystal) having a clear crystal structure, and the following formulas (1) and (2) were used.
Find ΔR, K. ΔR = Rr−Robs, r (1) Nr = K · hr · Rr 2 (2) where Rr: interatomic distance based on crystallographic data (Å) Robs, r: interatomic distance in the radial distribution function ( Å) Nr: Coordination number based on crystallographic data hr: Peak intensity in radial distribution function K: Constant

【0085】次に、(3)、(4)式にΔR及びKを代
入し、原子間距離(R)を求め、各触媒の平均配位原子
数(N)を求める。 Rr=Robs,s+ΔR (3) Nr=K・hs・R (4) 式中、Robs,s:各触媒の動径分布関数における原
子間距離(Å) hs :各触媒の動径分布関数におけるピーク強
Next, ΔR and K are substituted into the equations (3) and (4), the interatomic distance (R) is obtained, and the average number of coordinating atoms (N) of each catalyst is obtained. Rr = Robs, s + ΔR (3) Nr = K · hs · R 2 (4) where Robs, s: interatomic distance in the radial distribution function of each catalyst (Å) hs: in the radial distribution function of each catalyst Peak intensity

【0086】〔4〕NO吸着FT−IR(フーリエ変換
赤外分光光度)測定 前処理後の触媒中の活性金属(Co、Mo)へのNOガ
ス吸着量を調べるために、前処理後の触媒にNOを吸着
させ、拡散反射法FTIR(FTIR−8100M、島
津製作所製)で観察した。このときの加熱真空型拡散反
射用セル(KBr窓板)は、スペクトラテック社製を使
用した。
[4] Measurement of NO Adsorption FT-IR (Fourier Transform Infrared Spectroscopy) In order to examine the amount of NO gas adsorbed on the active metals (Co, Mo) in the catalyst after the pretreatment, the catalyst after the pretreatment was examined. Was adsorbed to the sample, and observed by a diffuse reflection method FTIR (FTIR-8100M, manufactured by Shimadzu Corporation). At this time, a spectrotech company was used as a heating vacuum type diffuse reflection cell (KBr window plate).

【0087】a)触媒の前処理(硫化処理):触媒は、
粉砕後拡散反射用セルに入れ、He気流中で昇温し、4
00℃に達した後、30分保持し、次いでHS(5
%)/Hガスに切り替え、2時間保持し、続いてHe
ガスに切り替え、30分フラッシュイングした後、同気
流中で常温まで降温し、前処理を終了した。
A) Pretreatment of catalyst (sulfurization treatment):
After pulverization, the mixture was placed in a diffuse reflection cell and heated in a He gas stream,
After reaching 00 ° C., the temperature was maintained for 30 minutes, and then H 2 S (5
%) / H 2 gas and hold for 2 hours, followed by He
After switching to gas and flashing for 30 minutes, the temperature was lowered to room temperature in the same airflow, and the pretreatment was terminated.

【0088】b)FT−IR測定:常温で、NOガス気
流中で30分保持した後、Heガスに切り替え、30分
排気処理後、FT−IR測定を行った。
B) FT-IR measurement: After holding at room temperature in a NO gas stream for 30 minutes, switching to He gas was performed, and after 30 minutes of exhaust treatment, FT-IR measurement was performed.

【0089】c)測定結果の解析:Coに吸着したNO
スペクトル(1860cm−1)、及びMoに吸着した
NOスペクトル(1690cm−1)のそれぞれの強度
を調べ、以下の式で示す値で、各触媒を比較した。 ICoMoS=ICo/(ICo+IMo) 式中、ICo:コバルトに吸着したNOスペクトルの強
度 IMo:モリブデンに吸着したNOスペクトルの強度
C) Analysis of measurement result: NO adsorbed on Co
Spectrum (1860 cm -1), and examines the respective intensities of the adsorbed NO spectrum (1690 cm -1) to Mo, a value indicated by the following equation, comparing each catalyst. ICoMoS = ICo / (ICo + IMo) where ICo: intensity of NO spectrum adsorbed on cobalt IMo: intensity of NO spectrum adsorbed on molybdenum

【0090】なお、代表例として、触媒GについてのN
O吸着FT−IRスペクトルを、図1に示す。
As a representative example, N in catalyst G
FIG. 1 shows the O-adsorption FT-IR spectrum.

【0091】[0091]

【表1の1】 [Table 1-1]

【0092】[0092]

【表1の2】 [Table 1-2]

【0093】表1中の略語は、次の通りを意味する。 SA :比表面積 PV :細孔容積 MPD:平均細孔直径 PSD:細孔分布 CBD:細密充填嵩密度 MoS配位数:XAFSで測定したMoに対する硫黄の
配位数 ICoMoS:IR測定による相対的NO吸着量
The abbreviations in Table 1 mean the following. SA: specific surface area PV: pore volume MPD: average pore diameter PSD: pore distribution CBD: densely packed bulk density MoS coordination number: coordination number of sulfur to Mo measured by XAFS ICoMoS: relative NO by IR measurement Adsorption amount

【0094】〔直留軽油の水素化処理反応〕 実施例1〜8、比較例1〜25 上記の実施例及び比較例で調製した触媒A〜H、a〜y
を用い、以下の要領にて、下記性状の直留軽油の水素化
処理を行った。先ず、触媒を高圧流通式反応装置に充填
して固定床式触媒層を形成し、下記の条件で前処理し
た。次に、反応温度に加熱した原料油と水素含有ガスと
の混合流体を、反応装置の上部より導入して、下記の条
件で水素化反応を進行させ、生成油とガスの混合流体
を、反応装置の下部より流出させ、気液分離器で生成油
を分離した。
[Hydrogenation reaction of straight-run gas oil] Examples 1 to 8, Comparative Examples 1 to 25 Catalysts A to H and a to y prepared in the above Examples and Comparative Examples
, A straight-run gas oil having the following properties was hydrotreated in the following manner. First, the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following conditions. Next, a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the top of the reactor, and the hydrogenation reaction proceeds under the following conditions, and the mixed fluid of the produced oil and the gas is reacted. It was discharged from the lower part of the device, and the generated oil was separated by a gas-liquid separator.

【0095】触媒の前処理条件: 圧力 ;常圧 雰囲気;硫化水素(5%)/水素ガス流通下 温度 ;150℃にて0.5hr維持、次いで350℃
にて1hr維持のステップ昇温
Catalyst pretreatment conditions: pressure; normal pressure atmosphere; hydrogen sulfide (5%) / hydrogen gas flow temperature: maintained at 150 ° C. for 0.5 hr, then 350 ° C.
Step temperature rise for 1 hour at

【0096】水素化反応条件: 反応温度 ;340℃ 圧力(水素分圧);4.9MPa 液空間速度 ;1.5hr−1 水素/オイル比 ;560m/m Hydrogenation reaction conditions: Reaction temperature; 340 ° C. Pressure (hydrogen partial pressure); 4.9 MPa Liquid hourly space velocity; 1.5 hr -1 hydrogen / oil ratio; 560 m 3 / m 3

【0097】原料油の性状: 油種 ;中東系直留軽油 比重(15/4℃);0.8567 蒸留性状 ;初留点が203.0℃、50%点
が315.5℃、90%点が371.0℃、終点が38
9.0℃ 硫黄成分 ;1.364質量% 窒素成分 ;150ppm 動粘度(@30℃);6.608cSt 流動点 ;5.0℃ くもり点 ;6.0℃ セタン指数 ;57.1 セイボルトカラー ;−10 ASTM色 ;0.5 アニリン点 ;74.3℃
Properties of feed oil: Oil type; Middle eastern straight-run gas oil Specific gravity (15/4 ° C); 0.8567 Distillation properties: Initial boiling point: 203.0 ° C, 50% point: 315.5 ° C, 90% The point is 371.0 ° C and the end point is 38
9.0 ° C. Sulfur component; 1.364% by mass Nitrogen component; 150 ppm Kinematic viscosity (℃ 30 ° C.); 6.608 cSt Pour point; 5.0 ° C. Cloudy point; 6.0 ° C. cetane index; 57.1 Seybolt color -10 ASTM color; 0.5 aniline point; 74.3 ° C

【0098】反応結果については、以下の方法で解析し
た。340℃で反応装置を運転し、6日経過した時点で
生成油を採取し、その性状を分析した。 〔1〕脱硫率(HDS)(%):原料中の硫黄分を脱硫
反応によって硫化水素に転換することにより、原料油か
ら消失した硫黄分の割合を脱硫率と定義し、原料油及び
生成油の硫黄分析値から以下の式により算出した。 〔2〕脱硫反応速度定数(Ks):生成油の硫黄分(S
p)の減少量に対して、1.5次の反応次数を得る反応
速度式の定数を脱硫反応速度定数(Ks)とする。な
お、反応速度定数が高い程、触媒活性が優れていること
を示している。これらの結果は、表2の通りであった。
The reaction results were analyzed by the following method. The reactor was operated at 340 ° C., and after 6 days had passed, the product oil was collected and its properties were analyzed. [1] Desulfurization rate (HDS) (%): The ratio of sulfur lost from the feedstock oil by converting the sulfur content in the feedstock to hydrogen sulfide by a desulfurization reaction is defined as the desulfurization rate, and the feedstock oil and product oil Was calculated by the following equation from the sulfur analysis value. [2] Desulfurization reaction rate constant (Ks): sulfur content (S
The constant of the reaction rate equation for obtaining the 1.5-order reaction order with respect to the decrease in p) is defined as the desulfurization reaction rate constant (Ks). The higher the reaction rate constant, the better the catalytic activity. These results were as shown in Table 2.

【0099】[0099]

【数1】 脱硫率(%)=〔(Sf−Sp)/Sf〕×100 脱硫反応速度定数=〔1/√(Sp)−1/√(S
f)〕×(LHSV) 式中、Sf:原料油中の硫黄分(質量%) Sp:反応生成油中の硫黄分(質量%) LHSV:液空間速度(hr−1) 比活性(%)=各脱硫反応速度定数/比較触媒aの脱硫
反応速度定数×100
## EQU1 ## Desulfurization rate (%) = [(Sf-Sp) / Sf] × 100 Desulfurization reaction rate constant = [1 / = (Sp) −1 / √ (S
f)] × (LHSV) where Sf: sulfur content in feed oil (% by mass) Sp: sulfur content in reaction product oil (% by mass) LHSV: liquid hourly space velocity (hr −1 ) Specific activity (%) = Each desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a x 100

【0100】[0100]

【表2の1】 [1 of Table 2]

【0101】[0101]

【表2の2】 [Table 2-2]

【0102】従来の脱硫領域(硫黄分0.2〜0.05
質量%)であれば、既存の触媒(比較触媒a〜y)でも
容易に脱硫することができるが、深度脱硫領域(硫黄分
0.05質量%以下)では、4,6−ジメチルジベンゾ
チオフェンや4−メチルジベンゾチオフェン等の難脱硫
性硫黄化合物の存在により、桁違いに脱硫が困難とな
る。これに対し、表2から判るように、本発明の触媒A
〜Hを用いれば、0.05質量%以下の深度脱硫領域を
容易にクリアーできることがわかる。これは、本発明の
触媒が、従来の軽油水素化処理の場合とほぼ同じ水素分
圧や反応温度等の条件下で、深度脱硫領域での軽油の脱
硫反応に対して、極めて優れた活性を有することを示し
ている。
Conventional desulfurization zone (sulfur content 0.2 to 0.05)
Mass%), the existing catalysts (comparative catalysts a to y) can be easily desulfurized, but in the deep desulfurization region (sulfur content 0.05 mass% or less), 4,6-dimethyldibenzothiophene or Due to the presence of a non-desulfurizable sulfur compound such as 4-methyldibenzothiophene, desulfurization becomes extremely difficult. In contrast, as can be seen from Table 2, the catalyst A of the present invention
It can be seen that when ~ H is used, the depth desulfurization region of 0.05% by mass or less can be easily cleared. This means that the catalyst of the present invention has extremely excellent activity against the desulfurization reaction of light oil in the deep desulfurization region under the same conditions such as hydrogen partial pressure and reaction temperature as in the conventional gas oil hydrotreatment. It shows that it has.

【0103】〔減圧軽油の水素化処理反応〕 実施例7,9、比較例1,14 上記の実施例7,9及び比較例1,14で調製した触媒
G,I、a,nを用い、以下の要領にて、下記性状の減
圧軽油の水素化処理を行った。先ず、触媒を高圧流通式
反応装置に充填して固定床式触媒層を形成し、下記の条
件で前処理した。次に、反応温度に加熱した原料油と水
素含有ガスとの混合流体を、反応装置の上部より導入し
て、下記の条件で脱硫反応と分解反応の水素化反応を進
行させ(脱硫運転モードで反応を行った後、mild
hydrocracking運転モードで反応を行っ
た)、生成油とガスの混合流体を、反応装置の下部より
流出させ、気液分離器で生成油を分離した。
[Hydrogenation Reaction of Vacuum Gas Oil] Examples 7, 9 and Comparative Examples 1 and 14 Using the catalysts G, I, a and n prepared in Examples 7 and 9 and Comparative Examples 1 and 14, Hydrogenation of the vacuum gas oil having the following properties was performed in the following manner. First, the catalyst was filled in a high-pressure flow reactor to form a fixed-bed catalyst layer, which was pretreated under the following conditions. Next, a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction of the desulfurization reaction and the decomposition reaction proceeds under the following conditions (in the desulfurization operation mode). After performing the reaction, mild
(The reaction was performed in a hydrocracking operation mode.) A mixed fluid of produced oil and gas was discharged from the lower part of the reactor, and the produced oil was separated by a gas-liquid separator.

【0104】触媒の前処理条件: 圧力(水素分圧);4.9MPa 硫化剤;上記の〔直留軽油の水素化処理反応〕における
原料油(中東系直留軽油) 温度 ;290℃にて1.5hr維持、次いで320℃
にて15hr維持のステップ昇温(昇温速度は25℃/
hr)
Conditions for pretreatment of catalyst: pressure (hydrogen partial pressure); 4.9 MPa sulphidating agent; feed oil (Middle Eastern straight-run gas oil) in the above [hydrotreating reaction of straight-run gas oil] Temperature: 290 ° C. Maintain 1.5 hr, then 320 ° C
At a step temperature of 15 hours maintained at a rate of 25 ° C. /
hr)

【0105】脱硫反応(脱硫運転モード)条件: 反応温度 ;360℃ 圧力(水素分圧);4.9MPa 液空間速度 ;0.66hr−1 水素/オイル比 ;560m/m 分解反応(mild hydrocracking運転
モード)条件: 反応温度 ;400℃ 圧力(水素分圧);4.9MPa 液空間速度 ;0.66hr−1 水素/オイル比 ;560m/m
Desulfurization reaction (desulfurization operation mode) conditions: reaction temperature; 360 ° C. pressure (hydrogen partial pressure); 4.9 MPa liquid space velocity; 0.66 hr -1 hydrogen / oil ratio; 560 m 3 / m 3 decomposition reaction (mild) hydrocracking operation mode) conditions: reaction temperature; 400 ° C. pressure (hydrogen partial pressure); 4.9 MPa liquid hourly space velocity; 0.66 hr -1 hydrogen / oil ratio; 560 m 3 / m 3

【0106】原料油の性状: 油種 ;アラビアンライト減圧軽油 比重(15/4℃);0.9185 蒸留性状 ;初留点が349.0℃、50%点
が449.0℃、90%点が529.0℃、終点が56
6.0℃ 硫黄成分 ;2.45質量% 窒素成分 ;0.065質量% 流動点 ;35℃ アスファルテン ;<100ppm アニリン点 ;82℃
Properties of feed oil: Oil type; Arabian light vacuum gas oil Specific gravity (15/4 ° C.); 0.9185 Distillation properties: Initial boiling point: 349.0 ° C., 50% point: 449.0 ° C., 90% point 529.0 ° C., endpoint 56
6.0 ° C Sulfur component; 2.45% by mass Nitrogen component; 0.065% by mass Pour point; 35 ° C Asphaltene; <100 ppm Aniline point; 82 ° C

【0107】脱硫活性については、以下の方法で解析し
た。360℃で反応装置を運転し、10日経過した時点
で生成油を採取し、その性状(脱硫率(HDS)
(%)、脱硫反応速度定数(Ks)、比活性(%))を
上記の〔直留軽油の水素化処理反応〕の場合と同様に分
析し、また触媒活性の劣化度(%)を後述するようにし
て分析した。
The desulfurization activity was analyzed by the following method. The reactor was operated at 360 ° C., and after 10 days had passed, the produced oil was collected and its properties (desulfurization rate (HDS)
(%), Desulfurization reaction rate constant (Ks), specific activity (%)) are analyzed in the same manner as in the case of the above [hydrotreating reaction of straight-run gas oil], and the degree of deterioration of catalyst activity (%) is described later. And analyzed.

【0108】分解活性については、以下の方法で解析し
た。脱硫活性評価終了後、反応温度を400℃に昇温し
同温度で反応装置を運転し、20日経過した時点で生成
油を採取し、その性状を分析した。 〔1〕分解率(HYC)(%):触媒の水素化分解率
は、ASTM D2887準拠のガスクロマトグラフィ
ー蒸留にで得られる生成油全留分中の343℃以下の留
分が占める割合で示した。触媒の分解活性が高い程、3
43℃以下の軽質留分の得率が高くなる。 〔2〕分解反応速度定数(Kc):分解率に対して、1
次の反応次数を得る反応速度式の定数を分解反応速度定
数(Kc)とする。反応速度定数が高い程、触媒活性が
優れていることを示している。 〔3〕劣化度:脱硫活性の劣化速度に関しては、運転初
期(反応10日目)と運転後期(反応40日目)の反応
速度の減少率を劣化度と定義し、以下の式により算出し
た。なお、運転後期の反応速度は、反応40日目の生成
油を採取し、運転初期と同様の手順で求めた。これらの
結果は、表3の通りであった。表3から明らかなよう
に、触媒の平均細孔径を100〜120Åとすることに
より、分解活性を向上させることができる。
The decomposition activity was analyzed by the following method. After the evaluation of the desulfurization activity, the reaction temperature was raised to 400 ° C., and the reactor was operated at the same temperature. After 20 days had passed, the produced oil was sampled and its properties were analyzed. [1] Cracking rate (HYC) (%): The hydrocracking rate of the catalyst is represented by a ratio of a fraction of 343 ° C. or less in a total fraction of a product oil obtained by gas chromatography distillation according to ASTM D2887. Was. The higher the decomposition activity of the catalyst, the more
The yield of light fractions of 43 ° C. or less is increased. [2] Decomposition reaction rate constant (Kc): 1
The constant of the reaction rate equation for obtaining the next reaction order is defined as the decomposition reaction rate constant (Kc). The higher the reaction rate constant, the better the catalytic activity. [3] Deterioration degree: Regarding the rate of deterioration of the desulfurization activity, the rate of decrease in the reaction rate in the early stage of the operation (day 10 of the reaction) and the late stage of the operation (day 40 of the reaction) was defined as the degree of deterioration, and was calculated by the following equation. . In addition, the reaction rate in the latter half of the operation was obtained by sampling the oil produced on the 40th day of the reaction and following the same procedure as in the early stage of the operation. These results are shown in Table 3. As is clear from Table 3, the decomposition activity can be improved by setting the average pore diameter of the catalyst to 100 to 120 °.

【0109】[0109]

【数2】分解率(%)=〔生成油中343℃の量/生
成油全留分の量〕×100 分解反応速度定数=−(LHSV)・ln(1−分解率
/100) 比活性(%)=〔各分解反応速度定数/比較触媒aの分
解反応速度定数〕×100 劣化度(%)=〔{(反応10日目の反応速度)−(反
応40日目の反応速度)}/(反応10日目の反応速
度)〕×100
[Number 2] decomposition rate (%) = [the product oil in 343 ° C. - the amount / quantity of product oil total distillate] × 100 decomposition reaction rate constant = - (LHSV) · ln (1-decomposition rate / 100) ratio Activity (%) = [decomposition reaction rate constant / decomposition reaction rate constant of comparative catalyst a] × 100 Deterioration degree (%) = [{(reaction rate on reaction day 10) − (reaction rate on reaction day 40) } / (Reaction rate on the 10th day of reaction)] × 100

【0110】[0110]

【表3】 [Table 3]

【0111】[0111]

【発明の効果】以上詳述したように、本発明によれば、
次のような効果を奏することができる。 (1)高い脱硫活性を有するため、軽油中の硫黄分の含
有率を、大幅に低減させることができる。 (2)硫黄含有量の少ない軽油基材を、低コストで供給
することができる。 (3)反応条件を従来の水素化処理の際の反応条件とほ
ぼ同じとすることがきるため、従来の装置を大幅改造す
ることなく転用できる。
As described in detail above, according to the present invention,
The following effects can be obtained. (1) Since it has a high desulfurization activity, the sulfur content in light oil can be significantly reduced. (2) A light oil base material having a low sulfur content can be supplied at low cost. (3) Since the reaction conditions can be made substantially the same as the reaction conditions in the conventional hydrotreating, the conventional apparatus can be diverted without significant modification.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の触媒GについてのNO吸着FT−IR
スペクトルである。
FIG. 1 NO adsorption FT-IR for catalyst G of the present invention
It is a spectrum.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 與語 智之 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 (72)発明者 中嶋 伸昌 埼玉県幸手市権現堂1134−2 株式会社コ スモ総合研究所研究開発センター内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoyuki Yogo 1134-2, Gondogendo, Satte City, Saitama Prefecture Inside the R & D Center, Cosmo Research Institute, Inc. (72) Nobumasa Nakajima 1134- 2 Research and Development Center, Cosmo Research Institute, Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ担体に、コバルト、モリブデ
ン、及びリンを含む水溶液を含浸して得られる触媒であ
って、 触媒基準、酸化物換算で、2〜4質量%のコバルト、1
6〜22質量%のモリブデン、及び0.8〜4.5質量
%のリンを含み、 コバルトとモリブデンの質量比が、〔酸化コバルト〕/
〔酸化コバルト+三酸化モリブデン〕の値で、0.12
〜0.2、 モリブデンとリンの質量比が、〔五酸化二リン〕/〔三
酸化モリブデン〕の値で、0.05〜0.25、 窒素吸着法で測定した比表面積が170〜300m
g、 水銀圧入法で測定した細孔容積が0.5〜0.7ml/
g、 水銀圧入法で測定した細孔分布での平均細孔直径70〜
120Å、平均細孔直径±15Åの範囲の細孔容積が全
細孔容積の少なくとも70%、 硫化処理後の触媒中のモリブデン金属への硫黄の配位数
が、XAFS測定で、5〜6であることを特徴とする軽
油の水素化処理触媒。
1. A catalyst obtained by impregnating an alumina carrier with an aqueous solution containing cobalt, molybdenum, and phosphorus, comprising 2 to 4% by mass of cobalt, expressed as an oxide, on a catalyst basis.
6 to 22% by mass of molybdenum and 0.8 to 4.5% by mass of phosphorus, wherein the mass ratio of cobalt to molybdenum is [cobalt oxide] /
The value of [cobalt oxide + molybdenum trioxide] is 0.12
The mass ratio of molybdenum to phosphorus is 0.05 to 0.25 in terms of [phosphorus pentoxide] / [molybdenum trioxide], and the specific surface area measured by the nitrogen adsorption method is 170 to 300 m 2. /
g, the pore volume measured by the mercury intrusion method is 0.5 to 0.7 ml /
g, average pore diameter 70- in pore distribution measured by mercury intrusion method
The pore volume in the range of 120 °, average pore diameter ± 15 ° is at least 70% of the total pore volume, and the coordination number of sulfur to molybdenum metal in the catalyst after the sulfidation treatment is 5 to 6 by XAFS measurement. A catalyst for hydrotreating light oil, which is characterized in that:
【請求項2】 酸化コバルト、三酸化モリブデン、五酸
化二リン、アルミナ以外の金属含有量が1質量%以下で
あることを特徴とする請求項1記載の軽油の水素化処理
触媒。
2. The catalyst for hydrotreating light oil according to claim 1, wherein the content of metals other than cobalt oxide, molybdenum trioxide, phosphorus pentoxide and alumina is 1% by mass or less.
【請求項3】 アルミナの純度が98質量%以上である
ことを特徴とする請求項1又は2記載の軽油の水素化処
理触媒。
3. The catalyst for hydrotreating light oil according to claim 1, wherein the purity of the alumina is 98% by mass or more.
【請求項4】 請求項1〜3のいずれかに記載の触媒の
存在下、水素分圧3〜8MPa、300〜420℃、液
空間速度0.3〜5hr−1で、硫黄分を含む軽油留分
の接触反応を行うことを特徴とする軽油の水素化処理方
法。
4. Gas oil containing sulfur at a hydrogen partial pressure of 3 to 8 MPa, 300 to 420 ° C. and a liquid hourly space velocity of 0.3 to 5 hr −1 in the presence of the catalyst according to claim 1. A method for hydrotreating light oil, comprising performing a catalytic reaction of a fraction.
JP28477798A 1998-06-24 1998-09-21 Gas oil hydrotreatment catalyst and gas oil hydrotreatment method Expired - Fee Related JP3445507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28477798A JP3445507B2 (en) 1998-06-24 1998-09-21 Gas oil hydrotreatment catalyst and gas oil hydrotreatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-193732 1998-06-24
JP19373298 1998-06-24
JP28477798A JP3445507B2 (en) 1998-06-24 1998-09-21 Gas oil hydrotreatment catalyst and gas oil hydrotreatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003045858A Division JP2003230837A (en) 1998-06-24 2003-02-24 Catalyst for hydrogenation treatment of light oil and method for hydrogenation treatment of light oil

Publications (2)

Publication Number Publication Date
JP2000079343A true JP2000079343A (en) 2000-03-21
JP3445507B2 JP3445507B2 (en) 2003-09-08

Family

ID=26508055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28477798A Expired - Fee Related JP3445507B2 (en) 1998-06-24 1998-09-21 Gas oil hydrotreatment catalyst and gas oil hydrotreatment method

Country Status (1)

Country Link
JP (1) JP3445507B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000410A1 (en) * 2001-06-20 2003-01-03 Cosmo Oil Co., Ltd. Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
JP2003103175A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenating desulfurization catalyst of heavy oil, producing method thereof and hydrogenating desulfurization method of heavy oil using the same
JP2005238113A (en) * 2004-02-26 2005-09-08 Japan Energy Corp Catalyst for hydrogenation, method for hydrogenating hydrocarbon oil, method for manufacturing low-sulfur light oil and environment-friendly light oil
EP1702682A1 (en) * 2004-01-09 2006-09-20 Nippon Oil Corporation Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
US7393807B2 (en) * 2004-05-19 2008-07-01 National Institute Of Advanced Industrial Science And Technology Hydrotreating catalyst of catalytic cracking gasoline
JP2008173640A (en) * 2002-12-18 2008-07-31 Cosmo Oil Co Ltd Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
US7759505B2 (en) 2006-01-27 2010-07-20 Kao Corporation Method of producing fatty acid ester
CN102879372A (en) * 2012-10-12 2013-01-16 中国航空工业集团公司北京航空材料研究院 Method for determining arsenic, antimony and bismuth content of pure chromium by using atomic fluorescence spectrometry
JP2018521837A (en) * 2015-05-29 2018-08-09 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー High HDN selective hydrotreating catalyst
WO2021193617A1 (en) * 2020-03-26 2021-09-30 コスモ石油株式会社 Hydroprocessing catalyst for heavy hydrocarbon oil, method for producing hydroprocessing catalyst for heavy hydrocarbon oil, and method for hydroprocessing heavy hydrocarbon oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268285B (en) * 2011-07-08 2013-12-04 中国石油天然气股份有限公司 Pre-hydrotreatment method of reforming feedstocks

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000410A1 (en) * 2001-06-20 2003-01-03 Cosmo Oil Co., Ltd. Catalyst for hydrogenation treatment of gas oil and method for preparation thereof, and process for hydrogenation treatment of gas oil
US7361624B2 (en) 2001-06-20 2008-04-22 Cosmo Oil Co., Ltd. Catalyst for hydrotreating gas oil, process for producing the same, and method for hydrotreating gas oil
JP2003103175A (en) * 2001-09-28 2003-04-08 Petroleum Energy Center Hydrogenating desulfurization catalyst of heavy oil, producing method thereof and hydrogenating desulfurization method of heavy oil using the same
JP4519378B2 (en) * 2001-09-28 2010-08-04 財団法人石油産業活性化センター Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same
JP2008173640A (en) * 2002-12-18 2008-07-31 Cosmo Oil Co Ltd Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
EP1702682A1 (en) * 2004-01-09 2006-09-20 Nippon Oil Corporation Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
EP1702682A4 (en) * 2004-01-09 2009-06-10 Nippon Oil Corp Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JP4680520B2 (en) * 2004-02-26 2011-05-11 Jx日鉱日石エネルギー株式会社 Low sulfur gas oil production method and environmentally friendly gas oil
JP2005238113A (en) * 2004-02-26 2005-09-08 Japan Energy Corp Catalyst for hydrogenation, method for hydrogenating hydrocarbon oil, method for manufacturing low-sulfur light oil and environment-friendly light oil
US7393807B2 (en) * 2004-05-19 2008-07-01 National Institute Of Advanced Industrial Science And Technology Hydrotreating catalyst of catalytic cracking gasoline
US7759505B2 (en) 2006-01-27 2010-07-20 Kao Corporation Method of producing fatty acid ester
JP2007222751A (en) * 2006-02-22 2007-09-06 Idemitsu Kosan Co Ltd Hydrodesulfurization catalyst and hydrodesulfurization method for kerosene fraction
CN102879372A (en) * 2012-10-12 2013-01-16 中国航空工业集团公司北京航空材料研究院 Method for determining arsenic, antimony and bismuth content of pure chromium by using atomic fluorescence spectrometry
JP2018521837A (en) * 2015-05-29 2018-08-09 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー High HDN selective hydrotreating catalyst
US10518251B2 (en) 2015-05-29 2019-12-31 Advanced Refining Technologies Llc High HDN selectivity hydrotreating catalyst
JP2021087953A (en) * 2015-05-29 2021-06-10 アドバンスド・リフアイニング・テクノロジーズ・エルエルシー High hdn selectivity hydrotreating catalyst
WO2021193617A1 (en) * 2020-03-26 2021-09-30 コスモ石油株式会社 Hydroprocessing catalyst for heavy hydrocarbon oil, method for producing hydroprocessing catalyst for heavy hydrocarbon oil, and method for hydroprocessing heavy hydrocarbon oil

Also Published As

Publication number Publication date
JP3445507B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
CA2509847C (en) Catalyst for hydrotreating gas oil, process for producing the same, and process for hydrotreating gas oil
US7544285B2 (en) Catalyst composition preparation and use
US7491313B2 (en) Two-step hydroprocessing method for heavy hydrocarbon oil
CA2433324C (en) Hydroprocessing catalyst and use thereof
EP1402948B1 (en) Catalyst for hydrogenation treatment of gas oil and method for preparation thereof; and process for hydrogenation treatment of gas oil
EP1060794B1 (en) Catalyst for hydrofining and method for preparation thereof
JP3445507B2 (en) Gas oil hydrotreatment catalyst and gas oil hydrotreatment method
CA2449637C (en) Two-stage heavy feed hpc process
EP1567262A1 (en) Heavy feed hydroprocessing using a mixture of catalysts
JP2003230837A (en) Catalyst for hydrogenation treatment of light oil and method for hydrogenation treatment of light oil
JP2002239385A (en) Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
JP3553429B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4174265B2 (en) Depressurized gas oil hydrotreating catalyst, its production method, and depressurized gas oil hydrotreating method
JP4245226B2 (en) Hydrotreating catalyst and hydrocarbon oil hydrotreating method using the same
CN112742441B (en) Hydrocracking catalyst, and preparation method and application thereof
JPH07256106A (en) Catalyst for hydrocracking of heavy hydrocarbon supply raw material
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil
JP2014111233A (en) Hydrodesulfurization catalyst of hydrocarbon oil
JPH083568A (en) Mild hydrocracking of heavy hydrocarbon feedstock using silica/alumina catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees