JP4519378B2 - Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same - Google Patents

Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same Download PDF

Info

Publication number
JP4519378B2
JP4519378B2 JP2001300818A JP2001300818A JP4519378B2 JP 4519378 B2 JP4519378 B2 JP 4519378B2 JP 2001300818 A JP2001300818 A JP 2001300818A JP 2001300818 A JP2001300818 A JP 2001300818A JP 4519378 B2 JP4519378 B2 JP 4519378B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
lithium
mass
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001300818A
Other languages
Japanese (ja)
Other versions
JP2003103175A (en
Inventor
英樹 神戸
芳範 加藤
一夫 出井
和彦 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2001300818A priority Critical patent/JP4519378B2/en
Publication of JP2003103175A publication Critical patent/JP2003103175A/en
Application granted granted Critical
Publication of JP4519378B2 publication Critical patent/JP4519378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、間接脱硫装置による減圧軽油(以下、VGOと記す)留分または直接脱硫装置による常圧残油(以下、ARと記す)留分、減圧残油(以下、VRと記す)留分の水素化脱硫において、コーク劣化を抑制し、上記重質油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる重質油の水素化脱硫触媒、そのような水素化脱硫触媒の製造方法およびそのような水素化脱硫触媒を用いる重質油の水素化脱硫方法に関する。
【0002】
【従来の技術】
原油を常圧蒸留装置により処理して得られたARや、ARをさらに減圧蒸留装置で処理することにより得られるVGO、VR等の重質油には多量の硫黄化合物が含有されている。これらの重質油を脱硫処理することなく燃料として用いた場合には、硫黄酸化物(SOx)が大気中に排出される。
【0003】
そこで従来、原油から種々の石油製品を製造する工程の一つとして、間接脱硫装置や直接脱硫装置による重質油留分の水素化脱硫処理が取り入れられ、硫黄化合物の除去が可能となった。
重質油中の硫黄化合物を除去することを目的とする水素化脱硫触媒は、周期律表第VIA族のモリブデン、タングステン、第VIII属のコバルト、ニッケルを活性発現成分とし、これらをアルミナ、マグネシア、シリカ、チタニア等の無機酸化物担体に担持させたものが開発されている。
【0004】
しかしながら、重質油中には水素化脱硫反応の障害となるアスファルテン、あるいは触媒活性を低下させる有機金属化合物や芳香族性に富む巨大分子が存在し、上記した触媒の水素化脱硫活性を長期にわたり維持することは難しい。
【0005】
触媒の水素化脱硫性能を改善する方法について、幾つかの提案がされている。例えば、特開平4-265158号公報では、リンを触媒に添加することにより水素化脱硫性能の向上を図っている。また特開昭58-146445号公報等では、アルミナ担体にゼオライトを加え、水素化脱硫性能の向上を図っている。
【0006】
重質油の水素化脱硫処理において触媒は経時劣化を引き起こすため、脱硫性能を向上させるとともに劣化を抑制することが重要ある。触媒の劣化の要因としては、第一に重質油中のニッケル、バナジウム等の含有金属分によるもの(メタル劣化)、第二には触媒上のコーク析出によるもの(コーク劣化)が挙げられる。
【0007】
特開平7-256106号公報では酸化リチウムを含有させた担体に水素化活性金属を担持させた触媒を用いて水素化分解を行うと、沈殿物を増加することなく優れた添加率が得られることを開示しているが、脱硫活性の面からさらなる改良が求められる。
【0008】
特開2000-8050号公報ではTPD測定による全ブレステッド酸量が50μmol/g以上の触媒担体にアルカリ金属、アルカリ土類金属を添加し、水素化活性金属を担持した触媒を提案している。この方法もコーク劣化の抑制という面からはさらなる改良が求められる。
【0009】
【発明が解決しようとする課題】
本発明の目的は、間接脱硫装置によるVGOや直接脱硫装置によるAR等の水素化脱硫処理において、コーク劣化による触媒活性の低下が少なく、上記重質油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる水素化脱硫触媒を提供すること、さらには該水素化脱硫触媒の製造方法および該水素化脱硫触媒を用いた重質油の水素化脱硫法を提供することにある。
【0010】
【課題を解決する手段】
本発明によれば、下記構成の触媒、その製造方法ならびに接触水素化脱硫方法が提供されて、上記本発明の目的が達成される。
1.周期律表第VIA族から選ばれる少なくとも1種の金属を8〜25質量%、周期律表第VIII族から選ばれる少なくとも1種の金属を1〜8質量%、さらにリチウムを0.05〜0.8質量%(いずれも触媒を基準として酸化物換算で表示)をアルミナ担体に担持してなる水素化脱硫触媒であって、
マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有しており、かつ前記リチウムが含浸法により前記アルミナ担体に担持されたリチウムであり、なおかつ比表面積が180〜330m 2 /g、細孔容積が0.4〜0.7ml/g、平均細孔径が7〜11nmであることを特徴とする水素化脱硫触媒。
2.周期律表第VIA族の金属がモリブデンまたはタングステンであり、周期律表第VIII族の金属がコバルトまたはニッケルであることを特徴とする上記1に記載の水素化脱硫触媒。
.水素分圧が4〜18MPa、温度が320〜410℃および液空間速度が0.1〜4.0h-1の反応条件下に硫黄化合物を含む重質油を上記1または2に記載の触媒と接触させることを特徴とする重質油の水素化脱硫方法。
【0011】
【発明の実施形態】
本発明の触媒は、担体としてアルミナを用い、第VIA族金属および第VIII族金属を活性金属として担持し、さらにリチウムを含浸法により担持した触媒であり、このような本発明の触媒により、重質油中の硫黄化合物を長期間にわたり、高い効率で除去することができる。
【0012】
本発明の触媒に使用するアルミナ担体の製造方法は、特に限定されず、通常の方法を採用することができる。すなわち、水溶性のアルミニウム化合物、例えばアルミニウムの硫酸塩、硝酸塩あるいは塩化物をアンモニアのような塩基で中和するか、またはアルカリ金属アルミン酸塩を酸性アルミニウム塩または酸で中和するなどして、生成したアルミニウムヒドロゲルまたはヒドロゾルを洗浄、熟成、成形、乾燥、焼成等の一般的な処方を施し、製造することができる。
【0013】
触媒担体として好適な構造物性を有するアルミナ担体を得るには、沈殿剤や中和剤などを添加してアルミナゲルを作る際のpH、これら薬剤の濃度、時間、温度等を適宜調整すればよく、例えば、ゲル生成の際のpHを酸性側で行えば、比表面積が大きくなる。本発明では、pHは約4〜8、温度は約15〜90℃の範囲内とすることが好ましい。
【0014】
ゲル生成後に、熟成、不純物の洗浄除去、脱水乾燥を行う。熟成はpH4〜9、約15〜90℃で約1〜25時間の範囲で行うことが好ましい。これらの範囲外では、熟成後にアルミナゲル中の不純物が除去し難くなるのみならず、アルミナゲルの表面積が小さくなる。
また脱水乾燥は、アルミナゲルになるべく熱を加えずに、含有水分量を調整することにより行う。例えば、約15〜90℃、約0.01〜2MPaでの自然濾過、吸引濾過、加圧濾過等による方法で脱水乾燥し、脱水乾燥後の含有水分量が約60〜90質量%となるようにすることが好ましい。アルミナゲルに余分な熱を加えずに含有水分量を調整することで、アルミナの表面構造の制御が可能となり、触媒の水素化脱硫活性を向上させることができる。
【0015】
脱水乾燥後に担体の成形を行う。成形方法は特に限定されず、押出成形、打錠成形あるいは油中造粒等の一般的な方法を用いることができる。なお成形時の圧力や速度を調整することによっても、アルミナの構造物性である細孔容積や細孔分布等を制御することができる。
【0016】
アルミナ担体の形状は重質油留分の触媒層の流通を考慮し、円柱状、三葉柱状、四葉柱状、ダンベル柱状あるいはリング状のペレット形状であることが望ましいが、反応条件下で触媒層の圧力損失(圧力差)が小さい形状が選ばれる。同様にこのペレット径は反応条件下で触媒層の前後で圧力損失が大きくならないように1/10〜1/36インチの範囲にあることが望ましい。なおペレット径とは、ペレットの形状が円柱であるもの以外は、その最も太い部分の断面の長径で表す。
【0017】
成形後、常温〜約150℃で約3〜24時間乾燥し、引き続き約200〜600℃で約3〜24時間焼成することにより、アルミナ担体を得ることができる。
【0018】
本発明の触媒は、第VIA族から選ばれる少なくとも1種の金属、第VIII族から選ばれる少なくとも1種の金属およびリチウム、さらに必要に応じてリン化合物を担持させたものである。
【0019】
上記記載の第VIA族金属としては、クロム、モリブデンまたはタングステンが用いられるが、モリブデンまたはタングステンが好ましい。また、これら第VIA族金属は2種以上組み合わせて用いることができる。これら第VIA族金属の化合物として、種々のものを用いることができる。モリブデン化合物の具体例として、酸化モリブデン、モリブデン酸アンモニウム、モリブデン縮合酸塩等が挙げられるが酸化モリブデン、モリブデン酸アンモニウム、モリブドリン酸が好ましい。また、タングステン化合物の具体例として、酸化タングステン、タングステン酸アンモニウム、タングステン縮合酸塩等が挙げられるが、酸化タングステン、タングステン酸アンモニウム、タングストリン酸が好ましい。
これら化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。勿論、モリブデン化合物とタングステン化合物を組み合わせて用いることができる。
【0020】
上記、第VIII族金属としては、ニッケルまたはコバルトが好ましい。また、ニッケルとコバルトを併用することもできる。これら第VIII族金属の化合物として種々のものを用いることができる。ニッケル化合物の具体例として、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、酢酸ニッケル、シュウ酸ニッケル、塩化ニッケル等が挙げられるが硝酸ニッケル、炭酸ニッケル、酢酸ニッケルが好ましい。またコバルト化合物の具体例として、硝酸コバルト、硫酸コバルト、炭酸コバルト、酢酸コバルト、シュウ酸コバルト、塩化コバルト等が挙げられるが硝酸コバルト、炭酸コバルト、酢酸コバルトが好ましい。
これら化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。勿論、ニッケル化合物とコバルト化合物を組み合わせて用いることができる。
【0021】
上記リチウムとしては、種々のものを用いることができる。具体例として、水酸化リチウム、硝酸リチウム、シュウ酸リチウム、硫酸リチウム、塩化リチウム、炭酸リチウム、酢酸リチウム等が挙げられるが水酸化リチウム、硝酸リチウム、酢酸リチウムが好ましい。
【0022】
また上述した第VIA族金属、第VIII族金属、リチウムの他に、活性金属の分散性を向上させるために、リンを加えてもよい。リン化合物として、種々の化合物を用いることができる。具体例としてオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸が挙げられるがオルトリン酸が好ましい。
【0023】
第VIA族金属の担持量は、触媒を基準として酸化物換算で表示して、8〜25質量%、好ましくは12〜22質量%であり、特に好ましくは12〜20質量%である。また、第VIII族金属の担持量は、触媒を基準として酸化物換算で表示して、1〜8質量%、好ましくは2〜5質量%である。
【0024】
リチウムの担持量は、触媒を基準として酸化物換算で表示して、0.05〜0.8質量%、好ましくは0.07〜0.7、特に好ましくは0.1〜0.4である。この範囲の担持量にすると所望の酸性質、酸量を制御することができ、高い活性を維持した状態でコーク劣化が起こり難い触媒が得られる。リチウムの担持量をあまり減少させると所望の酸性質、酸量を制御できずコーク劣化を引き起こす。またあまり増加すると触媒活性に必要な酸点までをも制御し、触媒活性が低下する。
【0025】
なお、金属の担持量に関して、「触媒を基準として酸化物換算で表示する」とは、触媒中に含まれる全ての金属種の質量を金属それぞれの酸化物として算出し、その合計質量を各金属の酸化物質量で割った値で表示することを意味する。なお、アルミニウムは3価、モリブデンは6価、ニッケル、コバルトは2価、そしてリチウムは1価の金属として求めた。
なお、金属担持量の測定方法は、触媒を混酸に溶解した後、ICP分光法(誘導結合高周波プラズマ分光法)により分析し、触媒基準の金属酸化物換算で表示した。
【0026】
また、本発明の触媒には、必要に応じて、活性金属を高分散化するためにリンを加えることができる。その場合、リンの担持量は、触媒を基準として酸化物換算で表示して、好ましくは0.5〜6質量%、より好ましくは2〜5質量%である。ここでリンは5価の金属として算出した。リンの担持により、活性金属の分散性を高め、触媒活性を向上させる効果がある。リンの担持量が上記範囲より多いと、細孔容積の減少を生じ触媒活性が低下するので好ましくない。
【0027】
本発明の触媒において第VIA族金属、第VIII族金属の担持方法は、通常の方法、例えば含浸法、共沈法、混練法、沈着法、イオン交換法など種々の調製方法が採用できる。
一方リチウムの担持方法により、調製された触媒の脱硫活性およびコーク劣化が大きく影響される。含浸法が、触媒表面上の酸量、酸性質を効率よく制御することができるので好ましい。
活性金属及びリチウムはいずれの順序で担持してもよい。すなわち、活性金属とリチウムを同時に担持してもよいし、リチウムを担持後に乾燥・焼成して金属酸化物とした後、活性金属を担持してもよい。あるいは、活性金属を担持後に乾燥・焼成して金属酸化物とした後、リチウムを担持してもよい。
特に好ましくは、活性金属およびリチウムのいずれも含浸法で担持する方法であるが、その際も、活性金属およびリチウムを同時に含浸してもよいし、個々に含浸してもよい。また、個々に含浸する場合、含浸する順序はリチウムを先に含浸し、乾燥・焼成して金属酸化物とした後、活性金属を含浸してもよいし、活性金属を先に含浸し、乾燥・焼成して金属酸化物とした後、リチウムを含浸してもよい。
【0028】
金属を担持させた後、乾燥、焼成の処理を施す。乾燥方法、条件は特に制限されず、例えば、通常の風乾、熱風乾燥、加熱乾燥等の方法で、これらの方法に採用される通常の条件が採用される。乾燥後、焼成が行われるが、その方法は特に制限されない。例えば電気炉、マッフル炉等を使用し、空気流通下、約400〜650℃で約2〜10時間かけて焼成する方法が挙げられる。
【0029】
本発明の触媒は、マイクロカロリメトリー法にて100〜200KJ/molのアンモニア吸着熱を発するような酸点を、触媒1g当たり、270〜380μmol/g、好ましくは290〜380μmol/g、より好ましくは310〜380μmol/gの範囲で有している。
アンモニアが触媒表面の酸点に吸着する際に発生する吸着熱は、酸点の酸性質によって変化する。この吸着熱が100〜200KJ/molである酸点を、上記範囲で有する触媒は重質油の水素化脱硫反応における活性が十分であり、なおかつ経時劣化が非常に少ない。該酸点が270μmol/g未満では触媒活性が十分でなく、380μmol/gを超えると所望のコーク劣化を抑制できないため好ましくない。
なお、上記酸点の量をより良くコントロールするには、リチウムの担持量が、触媒を基準として酸化物換算で表示して、0.05〜0.8質量%であり、かつリチウムを含浸法で担持する。
【0030】
マイクロカロリメトリー法は、試料(ここでは触媒)を所定量、吸着管に充填し、所定温度のもとアンモニアガスを一定量のパルスで導入し、試料に吸着させ、この吸着の際に生じる吸着熱を測定し、酸強度、酸量を特定する方法である。ここで、吸着熱は酸強度を、吸着量(導入量)は酸量に相当する。
本発明において、測定を行ったマイクロカロリメトリー法の測定条件は、次のとおりである。
即ち、測定装置として、東京理工(株)製、高温熱測定法表面解析装置CSA-450Gを使用し、触媒(試料)を400℃で4時間真空乾燥させた後、恒温槽の温度を150℃とし、アンモニアガスを導入して吸着熱をTian-Calvet型熱量計を用いて測定した。
【0031】
本発明の触媒は、その比表面積、細孔容積、平均細孔径は特に限定されるものでないが、重質油中の硫黄分を効率よく取り除くために、比表面積は100〜500m2/gが好ましく、180〜330m2/gがより好ましい。細孔容積は0.3〜0.8ml/gが好ましく、0.4〜0.7ml/gがより好ましい。また平均細孔径は5〜13nmが好ましく7〜11nmがより好ましい。
【0032】
本発明の水素化脱硫触媒を用いて、重質油の接触水素化処理を行うには、例えば、本発明の触媒を間接脱硫装置や直接脱硫装置等の反応器に充填し、反応器に原料油としての重質油を導入し、高温・高圧の水素分圧の条件下で、脱硫処理を行うことができる。好ましい実施態様としては、いわゆる固定床流通反応方式である。触媒を固定床として反応器に維持し、予備硫化処理を行い、担持金属成分の大部分を硫化物に変換した後、原料油をこの固定床の上方から下方に通過させる。触媒は単独の反応器に充填しても良く、直列に連結した複数の反応器のそれぞれに充填しても良い。特に原料油がARやVRの場合は原料油に高濃度のニッケル、バナジウム等の金属分を含んでいるので、脱硫触媒層の前段に(上層部に)脱メタル機能を有する触媒層を組み合わせた多段反応器を用いることが特に好ましい。
【0033】
VGO留分、AR留分やVR留分等を本発明の触媒を用いて接触水素化脱硫する場合の反応条件は、好ましくは水素分圧が4〜18MPa、原料油温度320〜410℃、液空間速度0.1〜4.0h-1の範囲の条件下で、本発明による触媒と接触させる。
【0034】
上記の反応条件で上記の原料油の水素化処理を行うとき、本発明の触媒は、従来の触媒と比較し、経時劣化が少ないため長期間にわたり、低硫黄重油を生産することができる。
なお、本発明の触媒は、原料油がVGO留分、AR留分やVR留分以外に、軽油留分の脱硫用触媒としても使用できる。
【0035】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0036】
[触媒の調製]
実施例1
イオン交換水26gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5g、硝酸リチウム0.18gを溶解させた。この水溶液の全てをナス型フラスコ中で、表面積330m2/gを有するアルミナペレット30gに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、触媒▲1▼を得た。ICP分光法による元素分析の結果、触媒を基準として酸化物換算表示での組成(質量%)は次の通りであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0037】
実施例2
硝酸リチウム量を0.35gとした以外は実施例1と同様の方法にて触媒▲2▼を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.2
【0038】
実施例3
硝酸リチウム量を0.70gとした以外は実施例1と同様の方法にて触媒▲3▼を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.4
【0039】
実施例4
硝酸リチウム量を1.1gとした以外は実施例1と同様の方法にて触媒▲4▼を得た。
また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.7
【0040】
実施例5
まずイオン交換水26gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5gを溶解させ、この水溶液の全てをナス型フラスコ中で、実施例1で使用したアルミナペレット30gに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、触媒Aを得た。次にイオン交換水24gに硝酸リチウムを0.18g溶解させ、この水溶液の全てをナス型フラスコ中で、触媒Aに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下に500℃で焼成し、触媒▲5▼を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0041】
実施例6
まずイオン交換水26gに硝酸リチウムを0.18gを溶解させ、この水溶液の全てをナス型フラスコ中で、実施例1で使用したアルミナペレット30gに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、触媒Bを得た。次にイオン交換水24gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5gを溶解させ、この水溶液の全てをナス型フラスコ中で、触媒Bに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、触媒▲6▼を得た。
また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0042】
実施例7
硝酸リチウム0.18gの代わりに水酸化リチウム0.11gを用いた以外は実施例1と同様の方法にて触媒▲7▼を得た。
また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0043】
実施例8
イオン交換水24gにモリブドリン酸9.1g、炭酸コバルト1.9g、オルトリン酸1.5g、硝酸リチウム0.18gを溶解させた。この水溶液の全てをナス型フラスコ中で、表面積320m2/gを有するアルミナペレット30gに滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、触媒▲8▼を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
CoO/MoO3/P25/Li2O=3/17/3/0.1
【0044】
実施例9
硝酸リチウム量を1.1gとした以外は実施例8と同様の方法にて触媒▲9▼を得た。
また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
CoO/MoO3/P25/Li2O=3/17/3/0.7
【0045】
比較例1
硝酸リチウムを無添加とした以外は実施例1と同様の方法にて触媒▲1▼’を得た。実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25=3/15/3
【0046】
比較例2
モリブドリン酸量を8.0g、炭酸ニッケル量を2.0g、硝酸リチウム量を3.6gとした以外は実施例1と同様の方法にて触媒▲2▼’を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/2
【0047】
比較例3
アルミナゲルに硝酸リチウムを添加し、両者を均一に混練した後、乾燥、焼成を行い、リチウム含有アルミナ担体を得た。この担体30gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5gを溶解させた水溶液(溶媒としてイオン交換水26g使用)をナス型フラスコ中で、滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、リチウム混練法触媒▲3▼’を得た。
また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0048】
比較例4
硝酸リチウムを無添加とした以外は実施例8と同様の方法にて触媒▲4▼’を得た。実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
CoO/MoO3/P25=3/17/3
【0049】
比較例5
硝酸アルミニウム、硝酸リチウムの水溶液に水酸化アンモニウムを加え、沈殿物を生成した。この沈殿物を十分に水洗、濾過し、乾燥、焼成を行い、リチウム含有アルミナ担体を得た。この担体30gにモリブドリン酸7.8g、炭酸ニッケル1.9g、オルトリン酸1.5gを溶解させた水溶液(溶媒としてイオン交換水26g使用)をナス型フラスコ中で、滴下した後、室温にて1時間静置し、風乾後、マッフル炉を用いて空気流通下、500℃で焼成を行い、リチウム共沈法触媒▲5▼’を得た。また、実施例1と同じ分析法にて求めた触媒組成(質量%)は次のとおりであった。
NiO/MoO3/P25/Li2O=3/15/3/0.1
【0050】
[触媒の性状]
実施例1〜9および比較例1〜4で得られた触媒の化学性状を表1に、また、マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点の量(触媒1g当たり)と触媒の構造物性とを併せて表2に示す。
【0051】
【表1】

Figure 0004519378
【0052】
【表2】
Figure 0004519378
【0053】
以上の実施例1〜7および比較例1〜3と比較例5で得た触媒の水素化脱硫活性を、原料油にARを用いて、下記に示す方法で評価した。
(水素化脱硫活性の評価方法)
ライトガスオイルとVGOで触媒を予備硫化処理した後、下記の運転条件下、初期劣化(コーク劣化)が落ち着いた700時間後の生成油に含まれる硫黄濃度を測定し、以下に示す計算式〔式1〕により反応速度定数を求めることで評価した。
原料油ならびに生成油の硫黄濃度の分析はニューリー(株)社製、X線硫黄分析計(RX−610SA)で求めた。なお、反応速度定数が高いほど、触媒の水素化脱硫活性が優れていることを示す。
評価結果を比較例1の反応速度定数を100とした場合の相対値で表3に示す。また反応終了後、反応に用いた触媒をソックスレー抽出し、乾燥させた後、(株)柳本株式会社製、CHN分析計(MT-5)を用い、触媒上に析出したコーク量を測定した。結果を併せて表3に示す。
【0054】
<脱硫化活性評価の条件1>
[原料油:常圧残油]
原油:アラビアンライト
密度:0.9713g/cm3(15℃)
硫黄分:3.42質量%
ニッケル、バナジウム分:計50質量ppm
蒸留性状:5容量%(留出温度367℃)、40容量%(留出温度506℃)、50容量%(留出温度537℃)
[反応速度測定装置]
固定床高圧流通式反応装置
[反応条件]
反応温度:380℃
液空間速度:0.4h-1
水素分圧:10.3MPa
水素/油比:1690Nm3/kl
【0055】
〔数式1〕
反応速度定数=[(1/生成油の硫黄濃度)−(1/原料油の硫黄濃度)]×液空間速度
【0056】
【表3】
Figure 0004519378
【0057】
次に実施例8、実施例9および比較例4で得た触媒の水素化脱硫活性を、原料油にVGOを用いて、下記に示す条件で評価した。始めにライトガスオイルで予備硫化処理を行い、下記の運転条件下、400℃で300時間、強制劣化させた後、360℃に降温し、生成油に含まれる硫黄濃度を測定した。
そして各々の触媒は、以下に示す計算式〔式2〕により反応速度定数を求め評価した。評価結果を比較例4の触媒の水素化脱硫活性を100とした場合の相対値で表4に示す。また反応終了後、反応に用いた触媒をソックスレー抽出し、乾燥させた後、CHN分析を行うことで触媒上に析出したコーク量を測定した。結果を併せて表4に示す。
【0058】
<脱硫化活性評価の条件2>
Figure 0004519378
[装置]
固定床高圧流通式反応装置
[反応条件]
反応温度:400℃および360℃
液空間速度:0.7h-1
水素分圧:4.9MPa
水素/油比:420Nm3/kl
【0059】
〔式2〕:
反応速度定数=[(1/生成油の硫黄濃度1/2)−(1/原料油の硫黄濃度1/2)]×液空間速度
【0060】
【表4】
Figure 0004519378
【0061】
表3および表4に示される結果から、本発明の水素化脱硫触媒はコークの析出が多く、活性が高いことが分かる。
一方、リチウムを含まず、しかも100〜200KJ/molのアンモニア吸着熱を発する酸点を過剰に含む比較例1および4の触媒は、コークの析出が多く活性が低い。リチウムを過剰に含み酸点が少ない比較例2の触媒は活性がかなり低い。リチウムを混練法、共沈法により担持した比較例3および5の触媒は触媒上の酸性質を制御できず、コークの析出が多いと共に活性が著しく低い。
【0062】
【発明の効果】
種々の重質油留分の水素化脱硫処理において、本発明の水素化脱硫触媒を用いることにより、コーク劣化による触媒活性の低下を抑制し、重質油留分中の硫黄化合物を長期間にわたり、高い効率で除去することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum gas oil (hereinafter referred to as VGO) fraction obtained by an indirect desulfurization apparatus, or an atmospheric residue (hereinafter referred to as AR) fraction and a vacuum residue (hereinafter referred to as VR) fraction obtained from a direct desulfurization apparatus. In hydrodesulfurization of heavy oil hydrodesulfurization catalyst capable of suppressing coke degradation and removing sulfur compounds in the heavy oil fraction over a long period of time with high efficiency, such hydrodesulfurization The present invention relates to a method for producing a catalyst and a method for hydrodesulfurization of heavy oil using such a hydrodesulfurization catalyst.
[0002]
[Prior art]
A large amount of sulfur compounds are contained in heavy oils such as AR obtained by treating crude oil with an atmospheric distillation apparatus and VGO, VR obtained by further treating AR with a vacuum distillation apparatus. When these heavy oils are used as fuel without being desulfurized, sulfur oxides (SOx) are discharged into the atmosphere.
[0003]
Therefore, conventionally, hydrodesulfurization treatment of heavy oil fractions by indirect desulfurization equipment and direct desulfurization equipment has been incorporated as one of the processes for producing various petroleum products from crude oil, and sulfur compounds can be removed.
Hydrodesulfurization catalysts aimed at removing sulfur compounds in heavy oils have molybdenum, tungsten, group VIII cobalt and nickel as active active ingredients in the periodic table Group VIA, which are alumina, magnesia. Those supported on an inorganic oxide carrier such as silica and titania have been developed.
[0004]
However, heavy oils contain asphaltenes that impede hydrodesulfurization reactions, organometallic compounds that reduce catalytic activity, and macromolecules rich in aromaticity, and the hydrodesulfurization activity of the above-described catalysts over a long period of time. It is difficult to maintain.
[0005]
Several proposals have been made for methods for improving the hydrodesulfurization performance of catalysts. For example, in JP-A-4-265158, hydrodesulfurization performance is improved by adding phosphorus to the catalyst. In JP-A-58-14645, etc., zeolite is added to an alumina carrier to improve hydrodesulfurization performance.
[0006]
In the hydrodesulfurization treatment of heavy oil, the catalyst causes deterioration over time, so it is important to improve the desulfurization performance and suppress the deterioration. Factors for catalyst deterioration include firstly due to metal components such as nickel and vanadium in heavy oil (metal deterioration), and secondly due to coke deposition on the catalyst (coke deterioration).
[0007]
In JP-A-7-256106, when hydrocracking is carried out using a catalyst in which a hydrogenation active metal is supported on a carrier containing lithium oxide, an excellent addition rate can be obtained without increasing the precipitate. However, further improvement is required from the viewpoint of desulfurization activity.
[0008]
Japanese Patent Application Laid-Open No. 2000-8050 proposes a catalyst in which an alkali metal or alkaline earth metal is added to a catalyst carrier having a total Brested acid amount of 50 μmol / g or more by TPD measurement, and a hydrogenation active metal is supported. This method also requires further improvement from the viewpoint of suppressing coke deterioration.
[0009]
[Problems to be solved by the invention]
The object of the present invention is that in hydrodesulfurization treatment such as VGO by indirect desulfurization equipment and AR by direct desulfurization equipment, there is little decrease in catalytic activity due to coke deterioration, and the sulfur compounds in the heavy oil fraction are used for a long period of time. To provide a hydrodesulfurization catalyst that can be removed with high efficiency, and to provide a method for producing the hydrodesulfurization catalyst, and a hydrodesulfurization method for heavy oil using the hydrodesulfurization catalyst. .
[0010]
[Means for solving the problems]
According to the present invention, a catalyst having the following constitution, a production method thereof, and a catalytic hydrodesulfurization method are provided to achieve the object of the present invention.
1. 8 to 25% by mass of at least one metal selected from Group VIA of the periodic table, 1 to 8% by mass of at least one metal selected from Group VIII of the periodic table, and 0.05 to 0 of lithium. .8% by mass (both expressed in terms of oxide based on the catalyst) supported on an alumina carrier,
It has an acid point that generates heat of adsorption of ammonia of 100 to 200 KJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per gram of catalyst , and the lithium is supported on the alumina support by an impregnation method. A hydrodesulfurization catalyst characterized by having a specific surface area of 180 to 330 m 2 / g, a pore volume of 0.4 to 0.7 ml / g, and an average pore diameter of 7 to 11 nm .
2. 2. The hydrodesulfurization catalyst according to 1 above, wherein the metal of Group VIA of the periodic table is molybdenum or tungsten, and the metal of Group VIII of the periodic table is cobalt or nickel.
3 . A heavy oil containing a sulfur compound under reaction conditions of a hydrogen partial pressure of 4 to 18 MPa, a temperature of 320 to 410 ° C., and a liquid space velocity of 0.1 to 4.0 h −1 is combined with the catalyst according to the above 1 or 2. A method for hydrodesulfurization of heavy oil, characterized in that they are brought into contact with each other.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst of the present invention is a catalyst in which alumina is used as a carrier, a Group VIA metal and a Group VIII metal are supported as active metals, and lithium is supported by an impregnation method. Sulfur compounds in quality oil can be removed with high efficiency over a long period of time.
[0012]
The manufacturing method of the alumina support | carrier used for the catalyst of this invention is not specifically limited, A normal method is employable. That is, by neutralizing a water-soluble aluminum compound such as aluminum sulfate, nitrate or chloride with a base such as ammonia, or neutralizing an alkali metal aluminate with an acidic aluminum salt or acid, etc. The produced aluminum hydrogel or hydrosol can be produced by applying a general formulation such as washing, aging, molding, drying, and baking.
[0013]
In order to obtain an alumina carrier having structural properties suitable as a catalyst carrier, it is only necessary to appropriately adjust the pH, concentration, time, temperature, etc. of these chemicals by adding a precipitating agent or a neutralizing agent. For example, if the pH at the time of gel formation is performed on the acidic side, the specific surface area increases. In the present invention, it is preferable that the pH is about 4 to 8 and the temperature is about 15 to 90 ° C.
[0014]
After the gel is formed, aging, cleaning and removing impurities, and dehydration drying are performed. The aging is preferably performed at a pH of 4 to 9 and a temperature of about 15 to 90 ° C. for about 1 to 25 hours. Outside these ranges, not only is it difficult to remove impurities in the alumina gel after aging, but the surface area of the alumina gel is reduced.
The dehydration drying is performed by adjusting the water content without applying heat to the alumina gel. For example, it is dehydrated and dried by a method such as natural filtration at about 15 to 90 ° C. and about 0.01 to 2 MPa, suction filtration, pressure filtration, etc., so that the water content after dehydration drying is about 60 to 90% by mass. It is preferable to make it. By adjusting the water content without applying extra heat to the alumina gel, the surface structure of the alumina can be controlled, and the hydrodesulfurization activity of the catalyst can be improved.
[0015]
The carrier is formed after dehydration and drying. The molding method is not particularly limited, and a general method such as extrusion molding, tableting molding, or granulation in oil can be used. The pore volume and pore distribution, which are structural properties of alumina, can also be controlled by adjusting the pressure and speed during molding.
[0016]
The shape of the alumina support is preferably a cylindrical, trilobal, quadrilobal, dumbbell, or ring pellet in consideration of the distribution of the heavy oil fraction catalyst layer. A shape with a small pressure loss (pressure difference) is selected. Similarly, the pellet diameter is desirably in the range of 1/10 to 1/36 inch so that the pressure loss does not increase before and after the catalyst layer under the reaction conditions. In addition, a pellet diameter is represented by the long diameter of the cross section of the thickest part except what the shape of a pellet is a cylinder.
[0017]
After molding, the alumina support can be obtained by drying at room temperature to about 150 ° C. for about 3 to 24 hours, followed by firing at about 200 to 600 ° C. for about 3 to 24 hours.
[0018]
The catalyst of the present invention is one in which at least one metal selected from Group VIA, at least one metal selected from Group VIII and lithium, and, if necessary, a phosphorus compound are supported.
[0019]
As the Group VIA metal described above, chromium, molybdenum or tungsten is used, but molybdenum or tungsten is preferred. These Group VIA metals can be used in combination of two or more. Various compounds of these Group VIA metals can be used. Specific examples of the molybdenum compound include molybdenum oxide, ammonium molybdate, molybdenum condensed acid salt, etc., but molybdenum oxide, ammonium molybdate, and molybdophosphoric acid are preferable. Specific examples of the tungsten compound include tungsten oxide, ammonium tungstate, and tungsten condensed acid salt. Tungsten oxide, ammonium tungstate, and tungstophosphoric acid are preferable.
These compounds can be used alone or in combination of two or more. Of course, a molybdenum compound and a tungsten compound can be used in combination.
[0020]
The group VIII metal is preferably nickel or cobalt. Moreover, nickel and cobalt can also be used together. Various compounds of these Group VIII metals can be used. Specific examples of the nickel compound include nickel nitrate, nickel sulfate, nickel carbonate, nickel acetate, nickel oxalate, nickel chloride and the like, and nickel nitrate, nickel carbonate, and nickel acetate are preferable. Specific examples of the cobalt compound include cobalt nitrate, cobalt sulfate, cobalt carbonate, cobalt acetate, cobalt oxalate, and cobalt chloride, but cobalt nitrate, cobalt carbonate, and cobalt acetate are preferable.
These compounds can be used alone or in combination of two or more. Of course, a nickel compound and a cobalt compound can be used in combination.
[0021]
Various types of lithium can be used. Specific examples include lithium hydroxide, lithium nitrate, lithium oxalate, lithium sulfate, lithium chloride, lithium carbonate, and lithium acetate, with lithium hydroxide, lithium nitrate, and lithium acetate being preferred.
[0022]
In addition to the Group VIA metal, Group VIII metal, and lithium described above, phosphorus may be added in order to improve the dispersibility of the active metal. Various compounds can be used as the phosphorus compound. Specific examples include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, and tetraphosphoric acid, but orthophosphoric acid is preferred.
[0023]
The amount of the Group VIA metal supported is 8 to 25% by mass, preferably 12 to 22% by mass, and particularly preferably 12 to 20% by mass in terms of oxide based on the catalyst. The amount of the Group VIII metal supported is 1 to 8% by mass, preferably 2 to 5% by mass, expressed in terms of oxide based on the catalyst.
[0024]
The amount of lithium supported is 0.05 to 0.8% by mass, preferably 0.07 to 0.7, particularly preferably 0.1 to 0.4, expressed in terms of oxide based on the catalyst. . When the loading is within this range, the desired acid properties and acid amount can be controlled, and a catalyst in which coke deterioration hardly occurs while maintaining high activity can be obtained. If the amount of lithium supported is reduced too much, the desired acid properties and the amount of acid cannot be controlled, resulting in coke deterioration. Moreover, if it increases too much, even the acid point required for catalyst activity will be controlled, and catalyst activity will fall.
[0025]
Regarding the amount of metal supported, “display in terms of oxide based on the catalyst” means that the mass of all metal species contained in the catalyst is calculated as the oxide of each metal, and the total mass is calculated for each metal. It means to display by the value divided by the oxide mass. Aluminum was trivalent, molybdenum was hexavalent, nickel and cobalt were bivalent, and lithium was monovalent metal.
The metal loading was measured by dissolving the catalyst in a mixed acid and then analyzing it by ICP spectroscopy (inductively coupled high-frequency plasma spectroscopy) and displaying it in terms of catalyst-based metal oxide.
[0026]
In addition, phosphorus can be added to the catalyst of the present invention as needed in order to highly disperse the active metal. In this case, the amount of phosphorus supported is preferably 0.5 to 6% by mass, more preferably 2 to 5% by mass in terms of oxide based on the catalyst. Here, phosphorus was calculated as a pentavalent metal. The loading of phosphorus has the effect of enhancing the dispersibility of the active metal and improving the catalytic activity. When the amount of phosphorus supported is larger than the above range, the pore volume is reduced and the catalytic activity is lowered, which is not preferable.
[0027]
In the catalyst of the present invention, various preparation methods such as an impregnation method, a coprecipitation method, a kneading method, a deposition method, and an ion exchange method can be adopted as a method for supporting the Group VIA metal and the Group VIII metal.
On the other hand, the desulfurization activity and coke deterioration of the prepared catalyst are greatly affected by the lithium loading method. The impregnation method is preferable because the acid amount and acid properties on the catalyst surface can be efficiently controlled.
The active metal and lithium may be supported in any order. That is, the active metal and lithium may be supported simultaneously, or the active metal may be supported after the lithium is supported and then dried and fired to form a metal oxide. Alternatively, lithium may be supported after the active metal is supported and dried and fired to form a metal oxide.
Particularly preferred is a method in which both of the active metal and lithium are supported by the impregnation method. In this case, the active metal and lithium may be impregnated simultaneously or individually. When impregnating individually, the impregnation order may be impregnated with lithium first, dried and fired to obtain a metal oxide, and then impregnated with active metal, or impregnated with active metal first and dried. -After baking to form a metal oxide, it may be impregnated with lithium.
[0028]
After supporting the metal, drying and firing are performed. The drying method and conditions are not particularly limited. For example, the usual conditions employed in these methods are employed, such as ordinary air drying, hot air drying, and heat drying. After drying, firing is performed, but the method is not particularly limited. For example, an electric furnace, a muffle furnace, etc. are used and the method of baking for about 2 to 10 hours at about 400-650 degreeC under air circulation is mentioned.
[0029]
The catalyst of the present invention has an acid point that generates an ammonia adsorption heat of 100 to 200 KJ / mol by a microcalorimetric method, 270 to 380 μmol / g, preferably 290 to 380 μmol / g, more preferably 310 per gram of the catalyst. It is in the range of ˜380 μmol / g.
The heat of adsorption generated when ammonia is adsorbed on the acid sites on the catalyst surface varies depending on the acid properties of the acid sites. A catalyst having an acid point with an adsorption heat of 100 to 200 KJ / mol in the above range has sufficient activity in the hydrodesulfurization reaction of heavy oil and has very little deterioration over time. If the acid point is less than 270 μmol / g, the catalytic activity is not sufficient, and if it exceeds 380 μmol / g, the desired coke deterioration cannot be suppressed, such being undesirable.
In order to better control the amount of the acid sites, the supported amount of lithium is 0.05 to 0.8% by mass in terms of oxide based on the catalyst, and the lithium impregnation method. in you carrying.
[0030]
In the microcalorimetry method, a predetermined amount of a sample (here a catalyst) is filled in an adsorption tube, ammonia gas is introduced at a predetermined amount with a certain amount of pulse, and adsorbed on the sample, and the heat of adsorption generated during this adsorption. Is a method of measuring acid strength and acid amount. Here, the heat of adsorption corresponds to the acid strength, and the adsorption amount (introduction amount) corresponds to the acid amount.
In the present invention, the measurement conditions of the microcalorimetry method in which the measurement was performed are as follows.
That is, as a measuring device, a high temperature thermal measurement surface analysis device CSA-450G manufactured by Tokyo Riko Co., Ltd. was used, and the catalyst (sample) was vacuum dried at 400 ° C. for 4 hours, and then the temperature of the thermostatic bath was set to 150 ° C. Then, ammonia gas was introduced and the heat of adsorption was measured using a Tian-Calvet calorimeter.
[0031]
The catalyst of the present invention is not particularly limited in specific surface area, pore volume, and average pore diameter, but in order to efficiently remove sulfur content in heavy oil, the specific surface area should be 100 to 500 m 2 / g. Preferably, 180 to 330 m 2 / g is more preferable. The pore volume is preferably 0.3 to 0.8 ml / g, more preferably 0.4 to 0.7 ml / g. The average pore diameter is preferably 5 to 13 nm, more preferably 7 to 11 nm.
[0032]
In order to perform the catalytic hydrotreating of heavy oil using the hydrodesulfurization catalyst of the present invention, for example, the catalyst of the present invention is charged into a reactor such as an indirect desulfurization apparatus or a direct desulfurization apparatus, and the raw material is supplied to the reactor. By introducing heavy oil as oil, desulfurization treatment can be performed under conditions of high temperature and high pressure hydrogen partial pressure. A preferred embodiment is a so-called fixed bed flow reaction system. The catalyst is maintained in the reactor as a fixed bed, a preliminary sulfidation treatment is performed, and most of the supported metal components are converted to sulfides, and then the feedstock is passed downward from above the fixed bed. The catalyst may be charged in a single reactor or in each of a plurality of reactors connected in series. In particular, when the feedstock is AR or VR, the feedstock contains a high concentration of metal such as nickel and vanadium, so a catalyst layer having a demetallizing function is combined in the previous stage (upper layer) of the desulfurization catalyst layer. It is particularly preferred to use a multistage reactor.
[0033]
The reaction conditions for catalytic hydrodesulfurization of the VGO fraction, the AR fraction, the VR fraction, etc. using the catalyst of the present invention are preferably a hydrogen partial pressure of 4 to 18 MPa, a feed oil temperature of 320 to 410 ° C., a liquid Contact with the catalyst according to the invention under conditions in the space velocity range of 0.1 to 4.0 h −1 .
[0034]
When the above raw material oil is hydrotreated under the above reaction conditions, the catalyst of the present invention is less deteriorated with time than conventional catalysts, and can produce low sulfur heavy oil over a long period of time.
In addition, the catalyst of this invention can be used also as a catalyst for desulfurization of a light oil fraction other than a VGO fraction, an AR fraction, and a VR fraction.
[0035]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0036]
[Preparation of catalyst]
Example 1
In 26 g of ion-exchanged water, 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate, 1.5 g of orthophosphoric acid, and 0.18 g of lithium nitrate were dissolved. All of this aqueous solution was dropped into 30 g of alumina pellets having a surface area of 330 m 2 / g in an eggplant-shaped flask, allowed to stand at room temperature for 1 hour, air-dried, and then at 500 ° C. under air circulation using a muffle furnace. Calcination was performed to obtain catalyst (1). As a result of elemental analysis by ICP spectroscopy, the composition (mass%) in oxide conversion display based on the catalyst was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0037]
Example 2
Catalyst (2) was obtained in the same manner as in Example 1 except that the amount of lithium nitrate was changed to 0.35 g. Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.2
[0038]
Example 3
A catalyst (3) was obtained in the same manner as in Example 1 except that the amount of lithium nitrate was changed to 0.70 g. Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.4
[0039]
Example 4
Catalyst (4) was obtained in the same manner as in Example 1 except that the amount of lithium nitrate was changed to 1.1 g.
Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.7
[0040]
Example 5
First, 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate, and 1.5 g of orthophosphoric acid were dissolved in 26 g of ion-exchanged water, and all of this aqueous solution was dropped into 30 g of alumina pellets used in Example 1 in an eggplant type flask. Then, it left still at room temperature for 1 hour, and after air-drying, it baked at 500 degreeC under the air circulation using the muffle furnace, and obtained the catalyst A. Next, 0.18 g of lithium nitrate was dissolved in 24 g of ion-exchanged water, and all of this aqueous solution was added dropwise to the catalyst A in an eggplant-shaped flask, allowed to stand at room temperature for 1 hour, air-dried, and then used in a muffle furnace. The catalyst was calcined at 500 ° C. under air flow to obtain catalyst (5). Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0041]
Example 6
First, 0.18 g of lithium nitrate was dissolved in 26 g of ion-exchanged water, and all of this aqueous solution was dropped into 30 g of alumina pellets used in Example 1 in an eggplant-shaped flask, and then allowed to stand at room temperature for 1 hour. After air drying, calcination was carried out at 500 ° C. under air flow using a muffle furnace to obtain Catalyst B. Next, 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate, and 1.5 g of orthophosphoric acid were dissolved in 24 g of ion-exchanged water, and all of this aqueous solution was added dropwise to the catalyst B in an eggplant type flask. The mixture was allowed to stand for air, air-dried, and then calcined at 500 ° C. in an air stream using a muffle furnace to obtain catalyst (6).
Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0042]
Example 7
Catalyst 7 was obtained in the same manner as in Example 1, except that 0.11 g of lithium hydroxide was used instead of 0.18 g of lithium nitrate.
Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0043]
Example 8
In 24 g of ion-exchanged water, 9.1 g of molybdophosphoric acid, 1.9 g of cobalt carbonate, 1.5 g of orthophosphoric acid, and 0.18 g of lithium nitrate were dissolved. All of this aqueous solution was dropped into 30 g of alumina pellets having a surface area of 320 m 2 / g in an eggplant-shaped flask, allowed to stand at room temperature for 1 hour, air-dried, and then air-circulated using a muffle furnace at 500 ° C. Calcination was performed to obtain catalyst (8). Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
CoO / MoO 3 / P 2 O 5 / Li 2 O = 3/17/3 / 0.1
[0044]
Example 9
Catalyst 9 was obtained in the same manner as in Example 8 except that the amount of lithium nitrate was 1.1 g.
Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
CoO / MoO 3 / P 2 O 5 / Li 2 O = 3/17/3 / 0.7
[0045]
Comparative Example 1
Catalyst {circle around (1)} was obtained in the same manner as in Example 1, except that no lithium nitrate was added. The catalyst composition (mass%) obtained by the same analysis method as in Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 = 3/15/3
[0046]
Comparative Example 2
Catalyst (2) 'was obtained in the same manner as in Example 1, except that the amount of molybdophosphoric acid was 8.0 g, the amount of nickel carbonate was 2.0 g, and the amount of lithium nitrate was 3.6 g. Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3/2
[0047]
Comparative Example 3
Lithium nitrate was added to the alumina gel, and both were uniformly kneaded, then dried and fired to obtain a lithium-containing alumina carrier. An aqueous solution (using 26 g of ion-exchanged water as a solvent) in which 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate and 1.5 g of orthophosphoric acid were dissolved in 30 g of this carrier was added dropwise in an eggplant type flask, and then at room temperature. The mixture was allowed to stand for air, air-dried, and then calcined at 500 ° C. under air flow using a muffle furnace to obtain a lithium kneading method catalyst (3).
Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0048]
Comparative Example 4
Catalyst (4) 'was obtained in the same manner as in Example 8 except that lithium nitrate was not added. The catalyst composition (mass%) obtained by the same analysis method as in Example 1 was as follows.
CoO / MoO 3 / P 2 O 5 = 3/17/3
[0049]
Comparative Example 5
Ammonium hydroxide was added to an aqueous solution of aluminum nitrate and lithium nitrate to form a precipitate. This precipitate was sufficiently washed with water, filtered, dried and fired to obtain a lithium-containing alumina carrier. An aqueous solution (using 26 g of ion-exchanged water as a solvent) in which 7.8 g of molybdophosphoric acid, 1.9 g of nickel carbonate and 1.5 g of orthophosphoric acid were dissolved in 30 g of this carrier was added dropwise in an eggplant type flask, and then at room temperature. The mixture was allowed to stand for air, air-dried, and then calcined at 500 ° C. under air flow using a muffle furnace to obtain a lithium coprecipitation catalyst (5). Moreover, the catalyst composition (mass%) calculated | required by the same analysis method as Example 1 was as follows.
NiO / MoO 3 / P 2 O 5 / Li 2 O = 3/15/3 / 0.1
[0050]
[Catalyst properties]
The chemical properties of the catalysts obtained in Examples 1 to 9 and Comparative Examples 1 to 4 are shown in Table 1, and the amount of acid sites that generate 100-200 KJ / mol ammonia adsorption heat (catalyst measured by the microcalorimetry method). Table 2 shows the structural properties of the catalyst per 1 g).
[0051]
[Table 1]
Figure 0004519378
[0052]
[Table 2]
Figure 0004519378
[0053]
The hydrodesulfurization activity of the catalysts obtained in Examples 1 to 7 and Comparative Examples 1 to 3 and Comparative Example 5 was evaluated by the following method using AR as the raw material oil.
(Method for evaluating hydrodesulfurization activity)
After presulfiding the catalyst with light gas oil and VGO, the sulfur concentration contained in the product oil 700 hours after the initial deterioration (coke deterioration) was settled under the following operating conditions was measured. Evaluation was made by determining the reaction rate constant according to equation (1).
The analysis of the sulfur concentration of the raw material oil and the product oil was obtained with an X-ray sulfur analyzer (RX-610SA) manufactured by Newly Corporation. In addition, it shows that the hydrodesulfurization activity of a catalyst is excellent, so that reaction rate constant is high.
The evaluation results are shown in Table 3 as relative values when the reaction rate constant of Comparative Example 1 is 100. After completion of the reaction, the catalyst used for the reaction was subjected to Soxhlet extraction and dried, and then the amount of coke deposited on the catalyst was measured using a CHN analyzer (MT-5) manufactured by Yanagimoto Co., Ltd. The results are also shown in Table 3.
[0054]
<Condition 1 for desulfurization activity evaluation>
[Raw material: Normal pressure residue]
Crude oil: Arabian light density: 0.9713 g / cm 3 (15 ° C)
Sulfur content: 3.42 mass%
Nickel, vanadium content: 50 mass ppm in total
Distillation properties: 5% by volume (distillation temperature 367 ° C.), 40% by volume (distillation temperature 506 ° C.), 50% by volume (distillation temperature 537 ° C.)
[Reaction rate measuring device]
Fixed bed high pressure flow reactor
[Reaction conditions]
Reaction temperature: 380 ° C
Liquid space velocity: 0.4h -1
Hydrogen partial pressure: 10.3 MPa
Hydrogen / oil ratio: 1690 Nm 3 / kl
[0055]
[Formula 1]
Reaction rate constant = [(1 / Sulfur concentration of product oil) − (1 / Sulfur concentration of feed oil)] × Liquid space velocity
[Table 3]
Figure 0004519378
[0057]
Next, the hydrodesulfurization activity of the catalysts obtained in Example 8, Example 9 and Comparative Example 4 was evaluated using the VGO as the feedstock under the following conditions. First, a preliminary sulfidation treatment was performed with light gas oil. After forced degradation at 400 ° C. for 300 hours under the following operating conditions, the temperature was lowered to 360 ° C., and the concentration of sulfur contained in the product oil was measured.
Each catalyst was evaluated by obtaining a reaction rate constant by the following formula [Formula 2]. The evaluation results are shown in Table 4 as relative values when the hydrodesulfurization activity of the catalyst of Comparative Example 4 is defined as 100. Further, after the reaction was completed, the catalyst used in the reaction was subjected to Soxhlet extraction, dried, and then subjected to CHN analysis to measure the amount of coke deposited on the catalyst. The results are also shown in Table 4.
[0058]
<Condition 2 for desulfurization activity evaluation>
Figure 0004519378
[apparatus]
Fixed bed high pressure flow reactor
[Reaction conditions]
Reaction temperature: 400 ° C and 360 ° C
Liquid space velocity: 0.7h -1
Hydrogen partial pressure: 4.9 MPa
Hydrogen / oil ratio: 420 Nm 3 / kl
[0059]
[Formula 2]:
Reaction rate constant = [(1 / sulfur concentration of the produced oil 1/2 ) − (1 / sulphur concentration of the feedstock 1/2 )] × liquid space velocity
[Table 4]
Figure 0004519378
[0061]
From the results shown in Table 3 and Table 4, it can be seen that the hydrodesulfurization catalyst of the present invention has high coke precipitation and high activity.
On the other hand, the catalysts of Comparative Examples 1 and 4 that do not contain lithium and that contain an excessive amount of acid sites that generate an ammonia adsorption heat of 100 to 200 KJ / mol have high coke deposition and low activity. The catalyst of Comparative Example 2 containing an excessive amount of lithium and having a low acid point has a considerably low activity. The catalysts of Comparative Examples 3 and 5 in which lithium is supported by a kneading method or a coprecipitation method cannot control the acid properties on the catalyst, have a large amount of coke deposition and a very low activity.
[0062]
【The invention's effect】
By using the hydrodesulfurization catalyst of the present invention in the hydrodesulfurization treatment of various heavy oil fractions, it is possible to suppress a decrease in catalytic activity due to coke degradation, and to prevent sulfur compounds in the heavy oil fractions over a long period. Can be removed with high efficiency.

Claims (3)

周期律表第VIA族から選ばれる少なくとも1種の金属を8〜25質量%、周期律表第VIII族から選ばれる少なくとも1種の金属を1〜8質量%、さらにリチウムを0.05〜0.8質量%(いずれも触媒を基準として酸化物換算で表示)をアルミナ担体に担持してなる水素化脱硫触媒であって、
マイクロカロリメトリー法にて測定した100〜200KJ/molのアンモニア吸着熱を発する酸点を、触媒1g当り、270〜380μmolの範囲で有しており、かつ前記リチウムが含浸法により前記アルミナ担体に担持されたリチウムであり、なおかつ比表面積が180〜330m 2 /g、細孔容積が0.4〜0.7ml/g、平均細孔径が7〜11nmであることを特徴とする水素化脱硫触媒。
8 to 25% by mass of at least one metal selected from Group VIA of the periodic table, 1 to 8% by mass of at least one metal selected from Group VIII of the periodic table, and 0.05 to 0 of lithium. .8% by mass (both expressed in terms of oxide based on the catalyst) supported on an alumina carrier,
It has an acid point that generates heat of adsorption of ammonia of 100 to 200 KJ / mol measured by a microcalorimetry method in a range of 270 to 380 μmol per gram of catalyst , and the lithium is supported on the alumina support by an impregnation method. A hydrodesulfurization catalyst characterized by having a specific surface area of 180 to 330 m 2 / g, a pore volume of 0.4 to 0.7 ml / g, and an average pore diameter of 7 to 11 nm .
周期律表第VIA族の金属がモリブデンまたはタングステンであり、周期律表第VIII族の金属がコバルトまたはニッケルであることを特徴とする請求項1に記載の水素化脱硫触媒。  The hydrodesulfurization catalyst according to claim 1, wherein the Group VIA metal of the periodic table is molybdenum or tungsten, and the Group VIII metal of the periodic table is cobalt or nickel. 水素分圧が4〜18MPa、温度が320〜410℃および液空間速度が0.1〜4.0h-1の反応条件下に硫黄化合物を含む重質油を請求項1または2に記載の触媒と接触させることを特徴とする重質油の水素化脱硫方法。The catalyst according to claim 1 or 2 , wherein a heavy oil containing a sulfur compound under reaction conditions of a hydrogen partial pressure of 4 to 18 MPa, a temperature of 320 to 410 ° C, and a liquid space velocity of 0.1 to 4.0 h -1 is used. A hydrodesulfurization method for heavy oil, characterized in that it is brought into contact with the oil.
JP2001300818A 2001-09-28 2001-09-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same Expired - Lifetime JP4519378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300818A JP4519378B2 (en) 2001-09-28 2001-09-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300818A JP4519378B2 (en) 2001-09-28 2001-09-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same

Publications (2)

Publication Number Publication Date
JP2003103175A JP2003103175A (en) 2003-04-08
JP4519378B2 true JP4519378B2 (en) 2010-08-04

Family

ID=19121334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300818A Expired - Lifetime JP4519378B2 (en) 2001-09-28 2001-09-28 Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same

Country Status (1)

Country Link
JP (1) JP4519378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306974A (en) * 2005-04-27 2006-11-09 Petroleum Energy Center Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
JP4519719B2 (en) * 2005-06-10 2010-08-04 財団法人石油産業活性化センター Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP2006342288A (en) * 2005-06-10 2006-12-21 Petroleum Energy Center Method for hydrogenation-treating hydrocarbon oil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146445A (en) * 1982-02-08 1983-09-01 モビル・オイル・コ−ポレ−シヨン Hydrotreating method and catalyst of heavy oil
JPH04265158A (en) * 1990-08-03 1992-09-21 Akzo Nv Hydrogenating catalyst and method for production and use thereof
JPH07256106A (en) * 1994-03-15 1995-10-09 Texaco Dev Corp Catalyst for hydrocracking of heavy hydrocarbon supply raw material
JP2000008050A (en) * 1998-06-19 2000-01-11 Tonen Corp Catalyst for hydrotreatment and hydrotreatment of hydrocarbon oil using the same
JP2000079343A (en) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk Catalyst for hydrogenating light oil and hydrogenation of light oil
JP2000096069A (en) * 1998-09-25 2000-04-04 Jgc Corp Treatment of petroleum and catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146445A (en) * 1982-02-08 1983-09-01 モビル・オイル・コ−ポレ−シヨン Hydrotreating method and catalyst of heavy oil
JPH04265158A (en) * 1990-08-03 1992-09-21 Akzo Nv Hydrogenating catalyst and method for production and use thereof
JPH07256106A (en) * 1994-03-15 1995-10-09 Texaco Dev Corp Catalyst for hydrocracking of heavy hydrocarbon supply raw material
JP2000008050A (en) * 1998-06-19 2000-01-11 Tonen Corp Catalyst for hydrotreatment and hydrotreatment of hydrocarbon oil using the same
JP2000079343A (en) * 1998-06-24 2000-03-21 Cosmo Sogo Kenkyusho:Kk Catalyst for hydrogenating light oil and hydrogenation of light oil
JP2000096069A (en) * 1998-09-25 2000-04-04 Jgc Corp Treatment of petroleum and catalyst

Also Published As

Publication number Publication date
JP2003103175A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
TWI551347B (en) Hydrogenation catalyst and its manufacturing method
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
JP6600912B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and method for producing heavy hydrocarbon oil hydrotreating catalyst
JP6432086B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing heavy hydrocarbon oil hydrotreating catalyst, and method for hydrotreating heavy hydrocarbon oil
JP2016203074A (en) Hydrotreating catalyst for hydrocarbon oil, production method of the same, and hydrotreating method
WO2016189982A1 (en) Hydrotreating catalyst for hydrocarbon oil, process for producing same, and hydrotreating method
JP4519719B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil
JP4805211B2 (en) Heavy hydrocarbon oil hydrotreating catalyst, method for producing the same, and hydrotreating method
TW201427769A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
JP4519378B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil using the same
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP4493997B2 (en) Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same
JP2019177356A (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing hydrotreating catalyst for heavy hydrocarbon oil, and hydrotreating method for heavy hydrocarbon oil
RU2385764C2 (en) Method of preparing catalysts for deep hydrofining oil fractions
JP4503327B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP4916370B2 (en) Process for hydrotreating diesel oil
JP2018167196A (en) Desulfurization catalyst for hydrocarbon oil and method for producing desulfurization catalyst
CN110721738B (en) Hydrofining catalyst and preparation method and application thereof
JP4519379B2 (en) Heavy hydrocarbon oil hydrotreating catalyst
CN110152723B (en) Hydrofining catalyst and preparation method and application thereof
JP2021531962A (en) Comixed catalysts resulting from solutions containing heteropolyanions, methods for their production, and their use in the hydrogenation conversion of heavy hydrocarbon feedstocks.
WO2023033172A1 (en) Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil
JP4673966B2 (en) Hydrocarbon oil hydrotreating catalyst production method and hydrocarbon oil hydrotreating method
JP3875378B2 (en) Method for producing hydrodesulfurization catalyst of heavy hydrocarbon oil
JP5337978B2 (en) Hydrotreating catalyst and hydrotreating method of vacuum gas oil

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4519378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250