US3730876A - Production of naphthenic oils - Google Patents
Production of naphthenic oils Download PDFInfo
- Publication number
- US3730876A US3730876A US00099644A US3730876DA US3730876A US 3730876 A US3730876 A US 3730876A US 00099644 A US00099644 A US 00099644A US 3730876D A US3730876D A US 3730876DA US 3730876 A US3730876 A US 3730876A
- Authority
- US
- United States
- Prior art keywords
- charge
- zone
- hydrocracking
- oil
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003921 oil Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title description 10
- 238000004517 catalytic hydrocracking Methods 0.000 claims abstract description 46
- 239000010687 lubricating oil Substances 0.000 claims abstract description 22
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 18
- 238000000638 solvent extraction Methods 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims description 58
- 239000001257 hydrogen Substances 0.000 claims description 58
- 229910052739 hydrogen Inorganic materials 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 58
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 52
- 239000011148 porous material Substances 0.000 claims description 44
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- HYBBIBNJHNGZAN-UHFFFAOYSA-N Furfural Chemical group O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000003208 petroleum Substances 0.000 abstract description 14
- 229910052680 mordenite Inorganic materials 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 32
- 239000002184 metal Substances 0.000 description 32
- 230000003197 catalytic Effects 0.000 description 28
- 239000000203 mixture Substances 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 238000009835 boiling Methods 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 20
- 239000010457 zeolite Substances 0.000 description 16
- 239000002253 acid Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 239000011734 sodium Substances 0.000 description 10
- -1 alkali metal alumino silicate Chemical class 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 238000007670 refining Methods 0.000 description 8
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 229910052803 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 6
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- LBFUKZWYPLNNJC-UHFFFAOYSA-N Cobalt(II,III) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N Diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N Nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 4
- 241000282890 Sus Species 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 229910000428 cobalt oxide Inorganic materials 0.000 description 4
- KYYSIVCCYWZZLR-UHFFFAOYSA-N cobalt(2+);dioxido(dioxo)molybdenum Chemical compound [Co+2].[O-][Mo]([O-])(=O)=O KYYSIVCCYWZZLR-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012013 faujasite Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 150000004763 sulfides Chemical class 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N Molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000024881 catalytic activity Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- QUEGLSKBMHQYJU-UHFFFAOYSA-N cobalt;oxomolybdenum Chemical compound [Mo].[Co]=O QUEGLSKBMHQYJU-UHFFFAOYSA-N 0.000 description 2
- KAEHZLZKAKBMJB-UHFFFAOYSA-N cobalt;sulfanylidenenickel Chemical compound [Ni].[Co]=S KAEHZLZKAKBMJB-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000001066 destructive Effects 0.000 description 2
- 230000003292 diminished Effects 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N n-methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- XOROUWAJDBBCRC-UHFFFAOYSA-N nickel;sulfanylidenetungsten Chemical compound [Ni].[W]=S XOROUWAJDBBCRC-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- VRRFSFYSLSPWQY-UHFFFAOYSA-N sulfanylidenecobalt Chemical compound [Co]=S VRRFSFYSLSPWQY-UHFFFAOYSA-N 0.000 description 2
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000011275 tar sand Substances 0.000 description 2
- 239000010723 turbine oil Substances 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
- C10G45/64—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/10—Lubricating oil
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S208/00—Mineral oils: processes and products
- Y10S208/02—Molecular sieve
Abstract
Naphthenic oils are prepared by hydrocracking a petroleum residuum and catalytically dewaxing the lubricating oil so produced. The dewaxed oil is then subjected to solvent extraction or mild hydrogenation.
Description
0 Muted States atent H 1 [111 3,739,876 Sequeira, Jr. 1 51 May 1, 1973 [54] PRODUCTION OF NAPHTHENIC OILS 3,480,539 1l/1969 Voorhies et a]. ..208/111 3,516,925 6/1970 Lawrence et a1. 208/1 1 1 [75] Inventor. lgllmo SequeIra, Jr., Nederland, 2,960,458 1 H1960 Beuther at a]. 208M; 3,607,723 9/1971 Peck et a1 ..208/59 [73] Assignee; Texaco Inc,, New York, N Y 3,442,794 5/1969 Van Helden et 21.... ....208/1 1 1 3,442,795 5/1969 Kerr et a1 ..208/120 [22] med: 1970 3,493,493 2/1970 Henke et a1. ..208/264 2 Appl NO: 99 44 3,562,149 2/1971 Bryson et a1..... 3,579,435 5/1971 Olenzak et a1 .208/59 [52] [1.8. CI ..208/59, 208/D1G. 2, 208/18, Primary Examiner Delbert Gamz 20868 208/95* 208/96 l 252/455 Z Assistant E.\'aminerG. E. Schmitkons [51 1 13/02 Clog 37/04 5 231 Attorney-Thomas H. Whaley, Carl G. Ries and Robert Knox, Jr. [58] Field of Search ..208/59, 111
[56] References Cited [57] ABSTRACT v Naphthenic oils are prepared by hydrocracking a v UNITED STA TES PATENTS petroleum residuum and catalytically dewaxing the 3,663,423 5/1972 Bennett et 211. ..208/59 lubricating oil so produced. The dewaxed oil is then 3,654,133 4/1972 018ml ..208/59 subjected to solvent extraction or mild hydrogenation. 3,663,430 5/1972 Morris ..208/111 3,539,498 1 H1970 Morris et a1 ..208/1 1 1 12 Claims, No Drawings PRODUCTION OF NAPIITIIENIC OILS This invention relates to the hydroconversion of petroleum fractions. More particularly, it is concerned with the conversion of low value stocks such as residuum into valuable oils.
Previously it was customary to use naphthenic oils as bases for specialty oils such as turbine oils, torque fluids, transformer oils and the like. However, recently the supply of crudes from which naphthenic oils are obtained has diminished to such an extent that there is a distinct shortage of naphthenic oils. It is therefore an object of this invention to produce naphthenic oils. Another object is to produce valuable naphthenic oils from petroleum fractions of low value such as petroleum residue. These and other objects will be obvious to those skilled in the art from the following disclosure.
According to our invention there is provided a process for the production of naphthenic oils which comprises contacting a residue-containing petroleum fraction having an initial boiling point of at least about 800F. with a catalyst comprising a Group VI metal and a Group VIII metal or their compounds or mixtures thereof on a support having cracking activity under hydrocracking conditions to convert at least a portion of the charge to a fraction boiling in the lubricating oil range, subjecting the lube oil fraction so produced to catalytic dewaxingby contacting same with a catalyst comprising a Group VI metal and a Group VIII metal or their compounds or mixtures thereof supported on a mordenite having a silica-alumina ratio of at least 20:1 in the presence of hydrogen under dewaxing conditions and recovering a naphthenic oil from the dewaxed product.
'The charge stocks used in the process of this invention are heavy residue-containing petroleum fractions having an initial boiling point of at least about 800F. They may be derived from any suitable crude source such as West Texas-New MexicoSour, tar sand oil,
shale oil and the like. Ordinarily they are obtained by distilling the crude to remove all of the materialsboiling below about 800F. Preferred starting materials are residua having an IE? of at least 900F. obtained by vacuum distillation of the crude oil.
' The charge stock is first subjected to hydrocracking by contact in the presence of hydrogen with a hydrocracking catalyst.
The hydrocracking catalyst comprises a Group VI metal or compound thereof in association with a Group VIII metal or compound thereof. Preferred metals are nickel, iron, cobalt, molybdenum and tungsten. Preferred compounds are the oxides and sulfides. The Group VIII metal may be present in an amount based on the entire catalyst composite of about 1-10 percent by weight preferably 2-8 weight percent. The Group VI metal may be present in an amount between about 5 and 40 percent preferably between 6 and 25 percent by weight. The ,catalyst support is composed of an amorphous inorganic oxide such as alumina, silica, magnesia, zirconia or the like. Since the charge stock contains asphaltenes, the catalyst should have a surface area of at least 250 m /g preferably at least 300 mlg, a pore volume of at least 0.6 cc/g and an average pore diameter of less than 100A., preferably between 50A. and 95A. The pore diameter is calculated from the formula 4V/S where V is the pore volume and S is the surtical matter, where the catalyst must withstand the rigorous conditions of commercial operation in large units, the surface area should not exceed 800 m /g and the pore volume should not exceed about 1.0 cc/g. Good results have been obtained using catalysts having a surface area of 280-400 mlg, a pore volume of 0.6-0.8 cc/g and an average pore diameter of -90A.
The catalyst may be shaped as pellets or spheres and may be used in the form of a fixed, moving or fluidized bed. In a preferred embodiment the catalyst is pelletshaped and is used in the form of a fixed bed. The charge stock may be passed upwardly or downwardly through the reactor concurrently with the hydrogen or may be passed downwardly countercurrent to an upflowing stream of hydrogen. In a specific embodiment, the charge stock is introduced into a fixed bed of catalyst at an intermediate point thereof and hydrogen at the rate of at least 3,000 SCF per barrel of charge sufficient to maintain liquid above the point of introduction is introduced at or near the base of the catalyst bed to flow countercurrent to the downwardflowing heavier components of the charge and cocurrent to the upward flowing lighter components of the charge and the products of the hydrocracking reaction. The heavier materials withdrawn from the bottom of the hydrocracking zone may be recycled to the charge and the overhead removed from the upper end of the hydrocracking zone may be sent in all or in part to the catalytic dewaxing zone. In this embodiment the separation of the unconverted residuum charge takes place in the hydrocracking zone. In the other methods where the product is removed in its entirety from one outlet of the hydrocracking zone, then the entire effluent including hydrogen, hydrocracked product and unconverted charge may be sent to the catalytic dewaxing zone or the effluent may be separated into various components and the lube oil fraction sent to the catalytic dewaxing zone with separated hydrogen or with fresh hydrogen.
The hydrogen need not necessarily be pure hydrogen. Hydrogen having a purity of at least 65 percent preferably 70-95 percent may be used. Suitable sources of hydrogen are catalytic reformer by-product hydrogen, hydrogen obtained by partial oxidation of hydrocarbonaeeous material followed by shift conversion and CO removal and electrolytic hydrogen.
Reactipn conditions in the hydrocracking zone include a temperature of 650-950F., a pressure of 500-5000 psig, a space velocity of 0.1-10 volumes of charge per volume of catalyst per hour and a hydrogen rate of l000-l0,000 SCFB. Preferred conditions are a temperature between 750 and 900F., a pressure between 1,000 and 3,000 psig, a space velocity between 0.3 and 1.5 v/v/hr and a hydrogen rate between 3,000 and 10,000 SCFB. Conditions are chosen so that there is a substantial conversion, e.g., at least 30 percent to materials boiling below the initial boiling point of the charge. For example, if the temperature is at the lower end of the above range, then the space velocity should also be low but a low temperature should not be combined with a high space velocity. As mentioned above, the entire effluent from the hydrocracking zone or a selected portion thereof may be sent to the catalytic dewaxing zone.
The oil is then subjected to catalytic dewaxing. In this stage the oil is contacted with a catalyst in the presence of hydrogen at elevated temperatures and pressures. The temperature will range from 450850 F., preferably 550750F. Pressures of from atmospheric to 5,000 p.s.i.g. and higher may be used although a preferred range is from 300 to 2,000 p.s.i.g. A suitable liquid hourly space velocity is from 0.5 to 3.0 volumes of oil per hour per volume of catalyst although space velocities of from 01-10 may'be used. Advantageously, hydrogen in an amount ranging up to 20,000 s.c.f.b. (standard cubic feet per barrel) of charge may be present, preferred rates being SOD-10,000 s.c.f.b.
The catalyst used in the dewaxing stage of the process comprises a hydrogenating component supported on a low sodium mordenite. Synthetic-mordenite is usually prepared as the alkali metal alumino silicate which for the purpose of the present invention is an inactive form. To convert the synthetic mordenite to a form active for the hydrocracking of the waxy components of the oil, it is converted to the hydrogen form by removal of the alkali metal ion, usually sodium. The removal of the sodium ion is accomplished by contacting the synthetic mordenite with ammonia or a compound thereof usually in the form of a water solution to incorporate the ammonium ion in the mordenite. Subsequent calcination converts the mordenite to the active or acid form. The mordenite may also be converted to the low sodium or acid form by contact with a dilute acid such as 3N or 6N HCl. However, in addition to converting the mordenite to the acid form, the mordenite is additionally treated with acid to leach out a portion of the alumina thereby to increase the silica-alumina ratio to at least 20:1 and preferably to at least 40:1
Of the various natural and synthetic zeolites now available in the industry only the low sodium or acid form of mordenite is satisfactory for the purposes of the present invention. Other crystalline zeolites such as zeolite A, faujasite, zeolite X and zeolite Y are unsatisfactory whether or not they have a low alkali metal content. This is attributed to the combination of pore size and unusual catalytic activity of the mordenite. Whereas zeolite A and faujasite have pore openings of A. and zeolites X and Y have uniform pore openings of -13 A., the catalyst support used in our process has sorption channels which are parallel to the C-axis of the crystal and are elliptical in cross-section. The dimensions of the sorption channels of sodium mordenite based on crystallographic studies have been reported as a minor diameter of 5.8-5.9 A., a major diameter of 7.0-7.1 A. and an average diameter of 6.6 A. The hydrogen form of the mordenite appears to have somewhat larger pore openings with a minor diameter of not less than 5.8 A. and a major diameter less than 8 A. The effective working pore diameter of the hyrogen mordenite prepared by acid treating synthetic mordenite appears to be in the range of 8 A. to 10A. as indicated by the absorption of aromatic hydrocarbons.
Supported on the hydrogen form of the mordenite is a hydrogenating component which comprises a Group VIII metal or compound thereof, for example the oxide or sulfide, which may be associated with a Group VI metal or compound thereof. Noble metals such as platinum, palladium and rhodium have been found especially useful and may be used in amounts of 0.1-5 percent based on the total catalyst weight with a range of 0.5-2.5 being preferred. Other suitable hydrogenating components comprise nickel, cobalt and iron, particularly when used in conjunction with a Group V1 metal such as molybdenum or tungsten. Suitable combinations include cobalt molybdenum, nickel molybdenum and nickel tungsten. The latter type of hydrogenating component may be present in an amount ranging from 5-40 percent by weight, preferably l0-25 percent. The hydrogenating component may be incorporated into the support by ion exchange or by impregnation, each of these methods being well known in the art.
In the catalytic dewaxing stage of the process, the waxy components are cracked to lighter components having a boiling point considerably lower than the desired lube oil fraction and therefore are easily separated therefrom. The principal byproducts of our catalytic dewaxing process are light hydrocarbons such as ethane, propane, butane and the corresponding olefins.
The following example is submitted for illustrative purposes only.
EXAMPLE In this example the charge is a mixture containing percent West Texas-New Mexico Sour and 10 percent Lafitte Paradis Vacuum Residua having the following characteristics:
The hydrocracking catalyst is in the form of a fixed bed of pelleted cobalt molybdate on alumina catalyst having the following characteristics:
Surface area, mlg 290 Pore volume, cc/g 0.63 Average pore diameter, A 86.9 Cobalt, wt. k 2.0 Molybdenum, wt. 9.0 Silica, wt. 3.9 Alumina, wt. X: 78.9
(i=4 Vg/Sg where 4 average pore diameter Vg pore volume per unit mass and S5 surface area per unit mass.
Hydrocracking is effected under the following conditions with the yields listed below:
Average Operating Conditions Space velocity. v/v/hr 0.4 Pressure, psig 2000 Hydrogen rate, SCFB 7710 Temperature, F. 815 Hydrogen purity, vol. 88 Hydrogen consumption, SCFB 1575 1000F.+ conversion, vol. 1: of feed 61.8
Volume Weight The 600-1000F. lube oil out is separated into four fractions, (1) a heavy gas oil, (2) a spindle oil, (3) a light lube fraction and (4) a heavy lube fraction. They have the following properties:
Fraction 1 2 3 4 Gravity, A:l 29.9 23.9 21.1 Viscosity, SUS,
210F. 33.5 35.6 43.2 72.1 Pourpoint, F. +5 +45 +85 +1 15 Carbon Residue, wt. 0.20 0.06 0.05 0.74 Sulfur, Wt. 0.06 0.06 0.10 0.18 Viscosity Index 78 71 74 69 The four fractions are then catalytically dewaxed by being passed with hydrogen through a fixed bed of particulate dewaxing catalyst composed of 2 weight percent palladium on on acid-leached mordenite having a silicazalumina mole ratio of 53:1. Operating conditions and results are as follows:
Operating Conditions 1 2 3 4 Temperature, F. 650 650 650 650 Pressure, psig 300 300 300 850 Hydrogen rate, SCFB 2000 2000 2000 2000 Space Velocity, v/v/hr 1.0 1.0 0.5 0.5 Yield, vol. 60 88 75 55 Product Gravity, API 29.9 29.7 26.1 23.5 Viscosity, SUS,
210F. 53.5 77.3 177 1200 Viscosity Index 64 70 75 50 Pourpoint, F. -70 +5 nickel, tungsten, chromium, iron, manganese, vanadi- 5 um and mixtures thereof. The catalytic materials may be used alone or may be deposited on or mixed with a support such as alumina, magnesia, silica, zinc oxide, natural and synthetic zeolites or the like. Particularly suitable catalysts are nickel tungsten sulfide, molybdenum oxide on alumina, a mixture of cobalt oxide and molybdenum oxide generally referred to as cobalt molybdate on alumina, molybdenum oxide and nickel oxide on alumina, molybdenum oxide, nickel oxide and cobalt oxide on alumina, nickel sulfide on alumina, molybdenum sulfide, cobalt sulfide and nickel sulfide on alumina.
In the hydrorefining zone, pressures and temperatures may range broadly between SOD-5,000 p.s.i.g. and 500-900F., preferred ranges being 800-3,000 p.s.i.g. and 600800F., respectively. Space velocities of 025- may be used although a rate between 0.5
and 1.5 is preferred. The hydrogen rate may range between 200 and 10,000 s.c.f.b. although suitable results are obtained at hydrogen rates between 2,000 and 6,000 s.c.f.b. The hydrorefining treatment conditions are selected so that it results in a hydrogenated product having substantially the same boiling range as the charge to the hydrorefining zone and is termed nondestructive hydrogenation as distinguished from destructive hydrogenation in which a substantial portion of the product boils at a temperature below that of the charge.
In the solvent refining operation the oil undergoing treatment is subjected to liquid-liquid contact with' a selective solvent which preferentially dissolves the more aromatic constituents from the oil undergoing treatment. It is a characteristic of the selective solvent employed that it is partially miscible with the oil undergoing treatment so that during the solvent refining operation there are formed two phases, a raffinate phase containing substantially only a solvent refined oil having a reduced amount or proportion of aromatic hydrocarbons as compared to the oil charged to the solvent refining operation, and an extract phase or mix comprising selective solvent and dissolved therein extract or extracted oil having a relatively increased proportion or amount of more aromatic hydrocarbons as compared with the charge oil. The aforesaid solvent refining operation may be carried out stagewise (combinations or mixer-settler) or continuously in a suitable contacting apparatus, e.g., packed or plate tower, rotating disc contactor, either concurrently or countercurrently. Selective solvents which are suitably employed include furfural, phenols, liquid sulfur dioxide, nitrobenzene, B,B-dichloroethylether, dimethyl-formamide, diethylene glycol, N-methyl pyrrolidine and the like.
If stability to ultraviolet light is not important then the catalytically-dewaxed oil may be finished by the hydrorefining treatment. However, if it is desired to produce an oil which is stable to ultraviolet light, then the catalytically dewaxed oil should be finished with a solvent extraction treatment preferably using furfural or N-methyl pyrrolidone as the solvent.
When mild hydrogenation is used as the finishing step, the entire effluent from the catalytic dewaxing zone may be sent to the hydrorefining zone unless it is desired to recover the low boiling olefins such as 0 ethylene and propylene present in which case these products are removed from the catalytic dewaxing zone effluent prior to the hydrorefining.
1 claim:
1. A process for the production of naphthenic oils 5 which comprises contacting an asphaltene-and residuecontaining petroleum fraction having an initial boiling point of at least about 800F. with a catalyst comprising a Group Vl metal and a Group VIII metal or their compounds or mixtures thereof on an amorphous support having cracking activity and having a surface area of at least 250 m'lg, a pore volume of at least 0.6 cc/g and an average pore diameter of 5095A., under hydrocracking conditions to convert at least a portion of the charge to a fraction boiling in the lubricating oil range, subjecting the lube oil fraction so produced to catalytic dewaxing by contacting same with a catalyst comprising a Group Vl metal and a Group VIII metal or their compounds or mixtures thereof supported on a mordenite having a silica-alumina ratio of at least :1 in the presence of hydrogen under dewaxing conditions and recovering a naphthenic oil from the dewaxed product.
2. The process of claim 1 in which the charge is a vacuum residuum.
3. The process of claim 1 in which the dewaxing catalyst has a silicazalumina ratio of at least 40.
4. The process of claim 1 in which the surface'area is between 280 and 400 m /g, the pore volume is between 0.6 and 1.0 cc/g and the average pore diameter is between 70 and 90A.
5. The process of claim 1 in which the catalytically dewaxed oil is mildly hydrogenated.
6. The process of claim 1 in which the catalytically dewaxed oil is subjected to a solvent extraction treatment.
7. The process of claim 6 in which the solvent is furfural.
8. The process of claim 6 in which the solvent is N- methyl pyrollidone.
9. The process of claim 5 in which the entire effluent of the dewaxing zone is introduced into the mild hydrogenation zone.
10. The process of claim 1 in which the charge is introduced into a fixed bed of hydrocracking catalyst at an intermediate point thereof and at least 3,000 SCF hydrogen per barrel of charge is introduced at the lower end of said bed to flow countercurrently to downwardly flowing heavier components of said charge and concurrently with upwardly flowing lighter components of said charge and the products of the hydrocracking reaction and removing from the hydrocracking zone an overhead product containing a lube oil fraction.
11. The process of claim 10 in which the entire overhead is introduced into the dewaxing zone.
12. The process of claim 11 in which the entire dewaxing zone effluent is introduced into a mild hydrogenation zone.
Claims (11)
- 2. The process of claim 1 in which the charge is a vacuum residuum.
- 3. The process of claim 1 in which the dewaxing catalyst has a silica:alumina ratio of at least 40.
- 4. The process of claim 1 in which the surface area is between 280 and 400 m2/g, the pore volume is between 0.6 and 1.0 cc/g and the average pore diameter is between 70 and 90A.
- 5. The process of claim 1 in which the catalytically dewaxed oil is mildly hydrogenated.
- 6. The process of claim 1 in which the catalytically dewaxed oil is subjected to a solvent extraction treatment.
- 7. The process of claim 6 in which the solvent is furfural.
- 8. The process of claim 6 in which the solvent is N-methyl pyrollidone.
- 9. The process of claim 5 in which the entire effluent of the dewaxing zone is introduced into the mild hydrogenation zone.
- 10. The process of claim 1 in which the charge is introduced into a fixed bed of hydrocracking catalyst at an intermediate point thereof and at least 3,000 SCF hydrogen per barrel of charge is introduced at the lower end of said bed to flow countercurrently to downwardly flowing heavier components of said charge and concurrently with upwardly flowing lighter components of said charge and the products of the hydrocracking reaction and removing from the hydrocracking zone an overhead product containing a lube oil fraction.
- 11. The process of claim 10 in which the entire overhead is introduced into the dewaxing zone.
- 12. The process of claim 11 in which the entire dewaxing zone effluent is introduced into a mild hydrogenAtion zone.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9964470A | 1970-12-18 | 1970-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3730876A true US3730876A (en) | 1973-05-01 |
Family
ID=22275978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00099644A Expired - Lifetime US3730876A (en) | 1970-12-18 | 1970-12-18 | Production of naphthenic oils |
Country Status (1)
Country | Link |
---|---|
US (1) | US3730876A (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870622A (en) * | 1971-09-09 | 1975-03-11 | Texaco Inc | Hydrogenation of a hydrocracked lubricating oil |
US3876522A (en) * | 1972-06-15 | 1975-04-08 | Ian D Campbell | Process for the preparation of lubricating oils |
EP0062985A1 (en) * | 1981-04-02 | 1982-10-20 | Mobil Oil Corporation | Process for making naphthenic lubestocks from raw distillate by combination hydrodewaxing/hydrogenation |
FR2515681A1 (en) * | 1981-11-02 | 1983-05-06 | Hydrocarbon Research Inc | PROCESS FOR CATALYTIC HYDROGENATION CONVERSION OF CERTAIN HEAVY PETROLETS |
US4428825A (en) | 1981-05-26 | 1984-01-31 | Union Oil Company Of California | Catalytic hydrodewaxing process with added ammonia in the production of lubricating oils |
US4500415A (en) * | 1982-02-10 | 1985-02-19 | Metallgesellschaft Aktiengesellschaft | Process of converting non-distillable residues of mixed-base or paraffin-base crude hydrocarbon oils |
US4515680A (en) * | 1983-05-16 | 1985-05-07 | Ashland Oil, Inc. | Naphthenic lube oils |
US4747932A (en) * | 1986-04-10 | 1988-05-31 | Chevron Research Company | Three-step catalytic dewaxing and hydrofinishing |
US4764266A (en) * | 1987-02-26 | 1988-08-16 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
WO1989001506A1 (en) * | 1987-08-17 | 1989-02-23 | Chevron Research Company | Production of low pour point lubricating oils |
US4851109A (en) * | 1987-02-26 | 1989-07-25 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4867862A (en) * | 1987-04-20 | 1989-09-19 | Chevron Research Company | Process for hydrodehazing hydrocracked lube oil base stocks |
US4906350A (en) * | 1988-01-14 | 1990-03-06 | Shell Oil Company | Process for the preparation of a lubricating base oil |
US4911821A (en) * | 1985-11-01 | 1990-03-27 | Mobil Oil Corporation | Lubricant production process employing sequential dewaxing and solvent extraction |
US5372703A (en) * | 1989-12-26 | 1994-12-13 | Nippon Oil Co., Ltd. | Lubricating oils |
US5385663A (en) * | 1992-06-18 | 1995-01-31 | Uop | Integrated hydrocracking-catalytic dewaxing process for the production of middle distillates |
WO1996004354A1 (en) * | 1994-08-01 | 1996-02-15 | Chevron U.S.A. Inc. | Lubricating oil production with vi-selective catalyst |
EP0994173A1 (en) * | 1998-10-15 | 2000-04-19 | Chevron U.S.A. Inc. | Process for making an automatic transmission fluid composition |
US20030211949A1 (en) * | 2002-03-06 | 2003-11-13 | Pierre-Yves Guyomar | Hydrocarbon fluids |
WO2004113473A1 (en) * | 2003-06-23 | 2004-12-29 | Shell Internationale Research Maatschappij B.V. | Process to prepare a lubricating base oil |
US20050133416A1 (en) * | 2003-12-19 | 2005-06-23 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
WO2005063931A2 (en) | 2003-12-19 | 2005-07-14 | Shell International Research Maatschappij B.V. | Systems, methods, and catalysts for producing a crude product |
US20060231457A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US20060231456A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US20060234877A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US20060249430A1 (en) * | 2005-04-06 | 2006-11-09 | Mesters Carolus Matthias A M | Process for reducing the total acid number (TAN) of a liquid hydrocarbonaceous feedstock |
US20070000811A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method and catalyst for producing a crude product with minimal hydrogen uptake |
US20070000808A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method and catalyst for producing a crude product having selected properties |
US20070000810A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method for producing a crude product with reduced tan |
US20070272592A1 (en) * | 2003-06-27 | 2007-11-29 | Germaine Gilbert R B | Process to Prepare a Lubricating Base Oil |
US20070295646A1 (en) * | 2006-06-22 | 2007-12-27 | Bhan Opinder K | Method for producing a crude product with a long-life catalyst |
US20080000806A1 (en) * | 2004-12-23 | 2008-01-03 | Dirkx Jacobus Mathias H | Process to Prepare a Lubricating Base Oil |
US20080083650A1 (en) * | 2006-10-06 | 2008-04-10 | Bhan Opinder K | Methods for producing a crude product |
EP1997868A1 (en) * | 2007-05-30 | 2008-12-03 | Shell Internationale Researchmaatschappij B.V. | Process for producing a naphthenic base oil |
CN1894383B (en) * | 2003-12-19 | 2010-04-28 | 国际壳牌研究有限公司 | Systems, methods, and catalysts for producing a crude product |
US7918992B2 (en) | 2005-04-11 | 2011-04-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20110192763A1 (en) * | 2003-12-19 | 2011-08-11 | Scott Lee Wellington | Crude product composition |
US20110226671A1 (en) * | 2003-12-19 | 2011-09-22 | Opinder Kishan Bhan | Method for producing a crude product |
WO2016109413A1 (en) * | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Catalytic and solvent processing for base oil production |
US10087379B2 (en) | 2014-09-17 | 2018-10-02 | Ergon, Inc. | Process for producing naphthenic base oils |
US10479949B2 (en) | 2014-09-17 | 2019-11-19 | Ergon, Inc. | Process for producing naphthenic bright stocks |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2960458A (en) * | 1957-08-02 | 1960-11-15 | Gulf Research Development Co | Process for preparing a multi-grade lubricating oil and product |
US3442794A (en) * | 1966-03-25 | 1969-05-06 | Shell Oil Co | Hydrocarbon conversion process with a catalyst treated with an acid and an ammonium compound |
US3442795A (en) * | 1963-02-27 | 1969-05-06 | Mobil Oil Corp | Method for preparing highly siliceous zeolite-type materials and materials resulting therefrom |
US3480539A (en) * | 1966-10-14 | 1969-11-25 | Exxon Research Engineering Co | Mordenite catalyst compositions |
US3493493A (en) * | 1968-10-01 | 1970-02-03 | Gulf Research Development Co | Process for enhancing lubricating oils and a catalyst for use in the process |
US3516925A (en) * | 1964-03-10 | 1970-06-23 | British Petroleum Co | Catalytic conversion of hydrocarbons |
US3539498A (en) * | 1966-06-20 | 1970-11-10 | Texaco Inc | Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen |
US3562149A (en) * | 1969-08-19 | 1971-02-09 | Gulf Research Development Co | Process for producing lubricating oil by hydrogen treatment |
US3579435A (en) * | 1968-06-20 | 1971-05-18 | Sun Oil Co | Hydrocracking process |
US3607723A (en) * | 1969-03-28 | 1971-09-21 | Texaco Inc | Split flow hydrocracking process |
US3654133A (en) * | 1970-06-23 | 1972-04-04 | Universal Oil Prod Co | Dewaxed lubricating oil production |
US3663423A (en) * | 1968-03-22 | 1972-05-16 | British Petroleum Co | Production of lubricating oils |
US3663430A (en) * | 1967-12-22 | 1972-05-16 | Texaco Inc | Hydrocarbon dewaxing with a mordenite-type alumino-silicate |
-
1970
- 1970-12-18 US US00099644A patent/US3730876A/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2960458A (en) * | 1957-08-02 | 1960-11-15 | Gulf Research Development Co | Process for preparing a multi-grade lubricating oil and product |
US3442795A (en) * | 1963-02-27 | 1969-05-06 | Mobil Oil Corp | Method for preparing highly siliceous zeolite-type materials and materials resulting therefrom |
US3516925A (en) * | 1964-03-10 | 1970-06-23 | British Petroleum Co | Catalytic conversion of hydrocarbons |
US3442794A (en) * | 1966-03-25 | 1969-05-06 | Shell Oil Co | Hydrocarbon conversion process with a catalyst treated with an acid and an ammonium compound |
US3539498A (en) * | 1966-06-20 | 1970-11-10 | Texaco Inc | Catalytic dewaxing with the use of a crystalline alumino zeolite of the mordenite type in the presence of hydrogen |
US3480539A (en) * | 1966-10-14 | 1969-11-25 | Exxon Research Engineering Co | Mordenite catalyst compositions |
US3663430A (en) * | 1967-12-22 | 1972-05-16 | Texaco Inc | Hydrocarbon dewaxing with a mordenite-type alumino-silicate |
US3663423A (en) * | 1968-03-22 | 1972-05-16 | British Petroleum Co | Production of lubricating oils |
US3579435A (en) * | 1968-06-20 | 1971-05-18 | Sun Oil Co | Hydrocracking process |
US3493493A (en) * | 1968-10-01 | 1970-02-03 | Gulf Research Development Co | Process for enhancing lubricating oils and a catalyst for use in the process |
US3607723A (en) * | 1969-03-28 | 1971-09-21 | Texaco Inc | Split flow hydrocracking process |
US3562149A (en) * | 1969-08-19 | 1971-02-09 | Gulf Research Development Co | Process for producing lubricating oil by hydrogen treatment |
US3654133A (en) * | 1970-06-23 | 1972-04-04 | Universal Oil Prod Co | Dewaxed lubricating oil production |
Cited By (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870622A (en) * | 1971-09-09 | 1975-03-11 | Texaco Inc | Hydrogenation of a hydrocracked lubricating oil |
US3876522A (en) * | 1972-06-15 | 1975-04-08 | Ian D Campbell | Process for the preparation of lubricating oils |
JPH0631330B2 (en) | 1981-04-02 | 1994-04-27 | モ−ビル・オイル・コ−ポレ−シヨン | Manufacturing method of low pour point lubricating base oil |
EP0062985A1 (en) * | 1981-04-02 | 1982-10-20 | Mobil Oil Corporation | Process for making naphthenic lubestocks from raw distillate by combination hydrodewaxing/hydrogenation |
JPS57174387A (en) * | 1981-04-02 | 1982-10-27 | Mobil Oil Corp | Manufacture of low pour point lubricant oil |
US4428825A (en) | 1981-05-26 | 1984-01-31 | Union Oil Company Of California | Catalytic hydrodewaxing process with added ammonia in the production of lubricating oils |
FR2515681A1 (en) * | 1981-11-02 | 1983-05-06 | Hydrocarbon Research Inc | PROCESS FOR CATALYTIC HYDROGENATION CONVERSION OF CERTAIN HEAVY PETROLETS |
US4500415A (en) * | 1982-02-10 | 1985-02-19 | Metallgesellschaft Aktiengesellschaft | Process of converting non-distillable residues of mixed-base or paraffin-base crude hydrocarbon oils |
US4515680A (en) * | 1983-05-16 | 1985-05-07 | Ashland Oil, Inc. | Naphthenic lube oils |
US4911821A (en) * | 1985-11-01 | 1990-03-27 | Mobil Oil Corporation | Lubricant production process employing sequential dewaxing and solvent extraction |
US4747932A (en) * | 1986-04-10 | 1988-05-31 | Chevron Research Company | Three-step catalytic dewaxing and hydrofinishing |
US4851109A (en) * | 1987-02-26 | 1989-07-25 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4764266A (en) * | 1987-02-26 | 1988-08-16 | Mobil Oil Corporation | Integrated hydroprocessing scheme for production of premium quality distillates and lubricants |
US4867862A (en) * | 1987-04-20 | 1989-09-19 | Chevron Research Company | Process for hydrodehazing hydrocracked lube oil base stocks |
WO1989001506A1 (en) * | 1987-08-17 | 1989-02-23 | Chevron Research Company | Production of low pour point lubricating oils |
US4906350A (en) * | 1988-01-14 | 1990-03-06 | Shell Oil Company | Process for the preparation of a lubricating base oil |
US5372703A (en) * | 1989-12-26 | 1994-12-13 | Nippon Oil Co., Ltd. | Lubricating oils |
US5385663A (en) * | 1992-06-18 | 1995-01-31 | Uop | Integrated hydrocracking-catalytic dewaxing process for the production of middle distillates |
CN1046544C (en) * | 1994-08-01 | 1999-11-17 | 切夫里昂美国公司 | Lubricating oil production with VI-selective catalyst |
US5543035A (en) * | 1994-08-01 | 1996-08-06 | Chevron U.S.A. Inc. | Process for producing a high quality lubricating oil using a VI selective catalyst |
WO1996004354A1 (en) * | 1994-08-01 | 1996-02-15 | Chevron U.S.A. Inc. | Lubricating oil production with vi-selective catalyst |
EP0994173A1 (en) * | 1998-10-15 | 2000-04-19 | Chevron U.S.A. Inc. | Process for making an automatic transmission fluid composition |
US6187725B1 (en) | 1998-10-15 | 2001-02-13 | Chevron U.S.A. Inc. | Process for making an automatic transmission fluid composition |
EP1571197A2 (en) * | 1998-10-15 | 2005-09-07 | Chevron U.S.A. Inc. | Process for making an automatic transmission fluid composition |
EP1571197A3 (en) * | 1998-10-15 | 2006-11-29 | Chevron U.S.A. Inc. | Process for making an automatic transmission fluid composition |
US20030211949A1 (en) * | 2002-03-06 | 2003-11-13 | Pierre-Yves Guyomar | Hydrocarbon fluids |
US7056869B2 (en) * | 2002-03-06 | 2006-06-06 | Exxonmobil Chemical Patents Inc. | Hydrocarbon fluids |
WO2004113473A1 (en) * | 2003-06-23 | 2004-12-29 | Shell Internationale Research Maatschappij B.V. | Process to prepare a lubricating base oil |
US7815789B2 (en) | 2003-06-23 | 2010-10-19 | Shell Oil Company | Process to prepare a lubricating base oil |
US20070205138A1 (en) * | 2003-06-23 | 2007-09-06 | Wardle Peter J | Process to Prepare a Lubricating Base Oil |
US20070272592A1 (en) * | 2003-06-27 | 2007-11-29 | Germaine Gilbert R B | Process to Prepare a Lubricating Base Oil |
US20070000808A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method and catalyst for producing a crude product having selected properties |
US7959796B2 (en) | 2003-12-19 | 2011-06-14 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20050139520A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050145543A1 (en) * | 2003-12-19 | 2005-07-07 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
WO2005063931A2 (en) | 2003-12-19 | 2005-07-14 | Shell International Research Maatschappij B.V. | Systems, methods, and catalysts for producing a crude product |
US20050155908A1 (en) * | 2003-12-19 | 2005-07-21 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167330A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167328A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167320A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167326A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167332A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167329A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167327A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050167325A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050173303A1 (en) * | 2003-12-19 | 2005-08-11 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050173301A1 (en) * | 2003-12-19 | 2005-08-11 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050139521A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
WO2005063931A3 (en) * | 2003-12-19 | 2005-12-22 | Shell Oil Co | Systems, methods, and catalysts for producing a crude product |
WO2005063929A3 (en) * | 2003-12-19 | 2006-04-27 | Shell Oil Co | Systems, methods, and catalysts for producing a crude product |
US20050139518A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US8764972B2 (en) | 2003-12-19 | 2014-07-01 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8663453B2 (en) | 2003-12-19 | 2014-03-04 | Shell Oil Company | Crude product composition |
US8613851B2 (en) | 2003-12-19 | 2013-12-24 | Shell Oil Company | Crude product composition |
US8608946B2 (en) | 2003-12-19 | 2013-12-17 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20050139522A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20070000811A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method and catalyst for producing a crude product with minimal hydrogen uptake |
US20050133415A1 (en) * | 2003-12-19 | 2005-06-23 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20070000810A1 (en) * | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method for producing a crude product with reduced tan |
US20050133414A1 (en) * | 2003-12-19 | 2005-06-23 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US20050133417A1 (en) * | 2003-12-19 | 2005-06-23 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US8608938B2 (en) | 2003-12-19 | 2013-12-17 | Shell Oil Company | Crude product composition |
US8506794B2 (en) | 2003-12-19 | 2013-08-13 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8475651B2 (en) | 2003-12-19 | 2013-07-02 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8241489B2 (en) | 2003-12-19 | 2012-08-14 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8137536B2 (en) | 2003-12-19 | 2012-03-20 | Shell Oil Company | Method for producing a crude product |
US8070937B2 (en) | 2003-12-19 | 2011-12-06 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8025794B2 (en) | 2003-12-19 | 2011-09-27 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7534342B2 (en) | 2003-12-19 | 2009-05-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20090178953A1 (en) * | 2003-12-19 | 2009-07-16 | Opinder Kishan Bhan | Systems, methods, and catalysts for producing a crude product |
US20110226671A1 (en) * | 2003-12-19 | 2011-09-22 | Opinder Kishan Bhan | Method for producing a crude product |
US20090206005A1 (en) * | 2003-12-19 | 2009-08-20 | Opinder Kishan Bhan | Systems, methods, and catalysts for producing a crude product |
US7588681B2 (en) | 2003-12-19 | 2009-09-15 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7591941B2 (en) | 2003-12-19 | 2009-09-22 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7615196B2 (en) | 2003-12-19 | 2009-11-10 | Shell Oil Company | Systems for producing a crude product |
US20090283444A1 (en) * | 2003-12-19 | 2009-11-19 | Opinder Kishan Bhan | Systems, methods, and catalysts for producing a crude product |
US20090288989A1 (en) * | 2003-12-19 | 2009-11-26 | Opinder Kishan Bhan | Systems, methods, and catalysts for producing a crude product |
US20090288987A1 (en) * | 2003-12-19 | 2009-11-26 | Opinder Kishan Bhan | Systems, methods, and catalysts for producing a crude product |
US7628908B2 (en) | 2003-12-19 | 2009-12-08 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20090308791A1 (en) * | 2003-12-19 | 2009-12-17 | Opinder Kishan Bhan | Systems, methods, and cataylsts for producing a crude product |
US7648625B2 (en) | 2003-12-19 | 2010-01-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20100055005A1 (en) * | 2003-12-19 | 2010-03-04 | Opinder Kishan Bhan | System for producing a crude product |
US7674370B2 (en) | 2003-12-19 | 2010-03-09 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7674368B2 (en) | 2003-12-19 | 2010-03-09 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20110192763A1 (en) * | 2003-12-19 | 2011-08-11 | Scott Lee Wellington | Crude product composition |
CN1894383B (en) * | 2003-12-19 | 2010-04-28 | 国际壳牌研究有限公司 | Systems, methods, and catalysts for producing a crude product |
US7736490B2 (en) | 2003-12-19 | 2010-06-15 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7745369B2 (en) | 2003-12-19 | 2010-06-29 | Shell Oil Company | Method and catalyst for producing a crude product with minimal hydrogen uptake |
US20050139519A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US7780844B2 (en) | 2003-12-19 | 2010-08-24 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7807046B2 (en) | 2003-12-19 | 2010-10-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20050133416A1 (en) * | 2003-12-19 | 2005-06-23 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US7837863B2 (en) | 2003-12-19 | 2010-11-23 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7955499B2 (en) | 2003-12-19 | 2011-06-07 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20080000806A1 (en) * | 2004-12-23 | 2008-01-03 | Dirkx Jacobus Mathias H | Process to Prepare a Lubricating Base Oil |
US20060249430A1 (en) * | 2005-04-06 | 2006-11-09 | Mesters Carolus Matthias A M | Process for reducing the total acid number (TAN) of a liquid hydrocarbonaceous feedstock |
US20060231456A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US7918992B2 (en) | 2005-04-11 | 2011-04-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20060231457A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US7678264B2 (en) | 2005-04-11 | 2010-03-16 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20060234877A1 (en) * | 2005-04-11 | 2006-10-19 | Bhan Opinder K | Systems, methods, and catalysts for producing a crude product |
US20110160044A1 (en) * | 2005-04-11 | 2011-06-30 | Opinder Kishan Bhan | Catalysts for producing a crude product |
US8481450B2 (en) | 2005-04-11 | 2013-07-09 | Shell Oil Company | Catalysts for producing a crude product |
US20070295646A1 (en) * | 2006-06-22 | 2007-12-27 | Bhan Opinder K | Method for producing a crude product with a long-life catalyst |
US20090057197A1 (en) * | 2006-10-06 | 2009-03-05 | Opinder Kishan Bhan | Methods for producing a crude product |
US20080087575A1 (en) * | 2006-10-06 | 2008-04-17 | Bhan Opinder K | Systems and methods for producing a crude product and compositions thereof |
US20080083655A1 (en) * | 2006-10-06 | 2008-04-10 | Bhan Opinder K | Methods of producing a crude product |
US7749374B2 (en) | 2006-10-06 | 2010-07-06 | Shell Oil Company | Methods for producing a crude product |
US20080083650A1 (en) * | 2006-10-06 | 2008-04-10 | Bhan Opinder K | Methods for producing a crude product |
US20090188836A1 (en) * | 2006-10-06 | 2009-07-30 | Opinder Kishan Bhan | Methods for producing a crude product |
EP1997868A1 (en) * | 2007-05-30 | 2008-12-03 | Shell Internationale Researchmaatschappij B.V. | Process for producing a naphthenic base oil |
US10087379B2 (en) | 2014-09-17 | 2018-10-02 | Ergon, Inc. | Process for producing naphthenic base oils |
US10479949B2 (en) | 2014-09-17 | 2019-11-19 | Ergon, Inc. | Process for producing naphthenic bright stocks |
US10557093B2 (en) | 2014-09-17 | 2020-02-11 | Ergon, Inc. | Process for producing naphthenic base oils |
US10800985B2 (en) | 2014-09-17 | 2020-10-13 | Ergon, Inc. | Process for producing naphthenic bright stocks |
WO2016109413A1 (en) * | 2014-12-30 | 2016-07-07 | Exxonmobil Research And Engineering Company | Catalytic and solvent processing for base oil production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3730876A (en) | Production of naphthenic oils | |
US3923636A (en) | Production of lubricating oils | |
US4035285A (en) | Hydrocarbon conversion process | |
US3438887A (en) | Production of lubricating oils | |
US3297563A (en) | Treatment of heavy oils in two stages of hydrotreating | |
US3254017A (en) | Process for hydrocracking heavy oils in two stages | |
US3072560A (en) | Conversion of residual oil to gasoline | |
DK142328B (en) | Process for producing high viscosity lubricating oil. | |
US4022682A (en) | Hydrodenitrogenation of shale oil using two catalysts in series reactors | |
US4202758A (en) | Hydroprocessing of hydrocarbons | |
US3816296A (en) | Hydrocracking process | |
US3617483A (en) | Hydrocracking process | |
US3023158A (en) | Increasing the yield of gasoline boiling range product from heavy petroleum stocks | |
US3897329A (en) | Spit flow hydrodesulfurization of petroleum fraction | |
US3092567A (en) | Low temperature hydrocracking process | |
US3256175A (en) | Production of lubricating oils from aromatic extracts | |
US3816295A (en) | Production of lubricating oils | |
US3055823A (en) | Multi-stage hydrofining-hydrocracking process employing an intermediate treating operation | |
US3331766A (en) | Selective hydrocracking process | |
US3444071A (en) | Process for the hydrogenative cracking of a hydrocarbon oil to produce lubricating oil | |
US2647076A (en) | Catalytic cracking of petroleum hydrocarbons with a clay treated catalyst | |
CA1072904A (en) | Hydrodenitrogenation of shale oil using two catalysts in parallel reactors | |
US3761395A (en) | Jet fuel and motor fuel production by hydrofining and two stage hydrocracking | |
US3562144A (en) | Hydrocracking process | |
US3974063A (en) | Denitrogenating and upgrading of high nitrogen containing hydrocarbon stocks with low molecular weight carbon-hydrogen fragment contributors |