JP2609301B2 - Method for producing hydrotreating catalyst - Google Patents

Method for producing hydrotreating catalyst

Info

Publication number
JP2609301B2
JP2609301B2 JP63218198A JP21819888A JP2609301B2 JP 2609301 B2 JP2609301 B2 JP 2609301B2 JP 63218198 A JP63218198 A JP 63218198A JP 21819888 A JP21819888 A JP 21819888A JP 2609301 B2 JP2609301 B2 JP 2609301B2
Authority
JP
Japan
Prior art keywords
nickel
catalyst
alumina
molybdenum
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63218198A
Other languages
Japanese (ja)
Other versions
JPH0268143A (en
Inventor
尚登 金原
昭生 西嶋
利夫 佐藤
雄二 葭村
広道 島田
信行 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63218198A priority Critical patent/JP2609301B2/en
Publication of JPH0268143A publication Critical patent/JPH0268143A/en
Application granted granted Critical
Publication of JP2609301B2 publication Critical patent/JP2609301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素化処理触媒、特に炭化水素油の水素化
処理に好適な触媒の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hydrotreating catalyst, particularly a catalyst suitable for hydrotreating a hydrocarbon oil.

〔従来の技術〕[Conventional technology]

従来、原油や石炭から得られる油状留分等の炭化水素
油の水素化処理工程では、アルミナ担体にニッケル、モ
リブデン等の活性金属を担持した触媒が用いられてい
る。これらの触媒は、通常、アルミナ水和物を成形後、
300〜600℃程度で焼成してγ−アルミナ担体としたもの
にこれら活性金属の塩水溶液を含浸し、再度300〜600℃
程度で焼成することにより製造されている。
BACKGROUND ART Conventionally, in a hydrotreating step of a hydrocarbon oil such as an oily fraction obtained from crude oil or coal, a catalyst in which an active metal such as nickel or molybdenum is supported on an alumina carrier has been used. These catalysts usually form alumina hydrate,
Impregnated with a salt aqueous solution of these active metals into a γ-alumina carrier fired at about 300 to 600 ° C, again at 300 to 600 ° C
It is manufactured by firing at a degree.

こうして得られる触媒においては、ニッケル、モリブ
デン等が酸化状態で担持されているのでそのままでは活
性が示されない。そこで、通常、水素化処理に供する際
には、水素化処理を行う反応器に該触媒を充填した後に
触媒層に水素とともに硫化剤を流通させることにより担
持ニッケルおよびモリブデンを硫化物態に転換する予備
硫化処理を施し、しかる後に水素化処理を実施する。
In the catalyst thus obtained, nickel, molybdenum and the like are supported in an oxidized state, so that the catalyst does not show activity as it is. Therefore, usually, when subjected to the hydrotreating, the supported nickel and molybdenum are converted into a sulfide state by flowing a sulfide agent together with hydrogen through the catalyst layer after filling the catalyst into the reactor for the hydrotreatment. A pre-sulfurization treatment is performed, followed by a hydrogenation treatment.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、上記の製造方法においては、ニッケル、モ
リブデン等の塩水溶液を含浸後にγ−アルミナ担体を焼
成する段階で、担持された活性金属成分、特にニッケル
がγ−アルミナと反応してニッケルアルミネートを形成
する。しかし、ニッケルアルミネートは予備硫化工程に
おいて硫化物態に転換されないため触媒活性に寄与しな
い。したがって、上記の方法によって得られる触媒で
は、ニッケル担持量に見合うだけの触媒活性を引き出す
ことができないという問題がある。特に、ニッケル・モ
リブデン系触媒では、ニッケル硫化物とモリブデン硫化
物との最適な組み合わせ、あるいは両者の相互作用が触
媒活性、選択性の向上に必要不可欠と考えられている
が、ニッケルが担体とアルミネートを形成すると両者の
組み合わせによる活性発現が阻害される。
By the way, in the above-mentioned production method, at the stage of baking the γ-alumina carrier after impregnating with an aqueous salt solution such as nickel and molybdenum, the supported active metal component, particularly nickel, reacts with γ-alumina to form nickel aluminate. Form. However, nickel aluminate does not contribute to the catalytic activity because it is not converted to the sulfide form in the pre-sulfurization step. Therefore, there is a problem that the catalyst obtained by the above-described method cannot bring out the catalytic activity corresponding to the amount of supported nickel. In particular, in nickel-molybdenum-based catalysts, it is considered that the optimal combination of nickel sulfide and molybdenum sulfide, or the interaction between both, is indispensable for improving catalytic activity and selectivity. When a nate is formed, the activity expression by the combination of the two is inhibited.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明の目的は、前記従来の水素化処理触媒
の問題点を解決し、担持される活性金属成分が有する潜
在的な触媒活性を十分に引き出すことができる、高活性
の水素化処理触媒の製造方法を提供することにある。
Therefore, an object of the present invention is to solve the problems of the conventional hydrotreating catalyst, and to fully exploit the potential catalytic activity of the supported active metal component. It is to provide a manufacturing method of.

本発明者らは、従来の製造方法において、ニッケルや
モリブデンを担体に担持させる前にγ−アルミナ担体を
一定温度において焼成することにより、これら活性金属
成分のアルミネート化を抑止でき、触媒活性の向上を達
成できることを見出した。
The present inventors have found that, in a conventional production method, by firing a γ-alumina support at a constant temperature before nickel or molybdenum is supported on the support, aluminate conversion of these active metal components can be suppressed, and catalytic activity can be reduced. It has been found that improvement can be achieved.

すなわち、本発明は、前記の目的を達成する手段とし
て、 γ−アルミナ担体を800〜1,100℃(ただし、1050℃を
除く)で焼成し、 次に、該担体に、ニッケル塩およびモリブデン塩の少
なくとも1種を担持させた後、300〜600℃で焼成するこ
とからなる水素化処理触媒の製造方法を提供するもので
ある。
That is, according to the present invention, as a means for achieving the above object, a γ-alumina carrier is calcined at 800 to 1,100 ° C. (excluding 1050 ° C.), and then the carrier is provided with at least a nickel salt and a molybdenum salt. An object of the present invention is to provide a method for producing a hydrotreating catalyst, which comprises calcining at 300 to 600 ° C. after supporting one type.

本発明の方法に用いられるγ−アルミナ担体は、従来
用いられているものと同様であり、特に限定されず、例
えば、アルミナ水和物を成形後300〜600℃程度で焼成し
て得られるもの、市販のものなど使用できる。
The γ-alumina carrier used in the method of the present invention is the same as that conventionally used, and is not particularly limited.For example, those obtained by firing alumina hydrate at about 300 to 600 ° C. after molding. And commercially available ones.

本発明の方法においては、まず、γ−アルミナ担体が
800〜1,100℃(ただし、1050℃を除く)で焼成される。
雰囲気は、酸素含有ガス、代表的には、空気などの気流
中などであり、時間は温度にもよるが、大体1〜4時間
程度でよい。この焼成処理によりアルミナの結晶形態
は、γ−相からδ−相へ、温度が高いとさらにθ−相
へ、場合によってはさらにα−相へと変化が進行する。
したがって、焼成の温度と時間によって異なるが、一般
に、数種の結晶形態の混成状態となる。しかし、本発明
の条件のもとでは、特にニッケルとアルミネートを形成
しにくいδ−相、θ−相が、通常、約10重量%以上生成
したアルミナ担体が得られる。焼成温度が800℃未満で
あると、δ−相、θ−相の生成が困難であり、1,100℃
を超えると、δ−相、θ−相が減少し、比表面積の小さ
いα−相が大量に生成して触媒担体としての機能を低下
させるので、800〜1,100℃で焼成することが必要であ
る。
In the method of the present invention, first, the γ-alumina support is
Fired at 800-1,100 ° C (excluding 1050 ° C).
The atmosphere is an oxygen-containing gas, typically in a stream of air or the like. The time depends on the temperature, but may be about 1 to 4 hours. By this calcination treatment, the crystal form of alumina progresses from the γ-phase to the δ-phase, further to the θ-phase at a high temperature, and further to the α-phase in some cases.
Therefore, although it depends on the firing temperature and time, generally, it is a hybrid state of several crystal forms. However, under the conditions of the present invention, an alumina support in which a δ-phase and a θ-phase, which are particularly difficult to form nickel and aluminate, are usually formed in an amount of about 10% by weight or more is obtained. If the firing temperature is less than 800 ° C, it is difficult to form a δ-phase and a θ-phase,
When the temperature exceeds δ-phase and θ-phase, α-phase having a small specific surface area is generated in large quantities and deteriorates the function as a catalyst carrier, so it is necessary to calcine at 800 to 1,100 ° C. .

この焼成処理の後、ニッケルおよびモリブデンの少な
くとも1種を担持させ、300〜600℃で焼成する工程は、
従来と同様に行われる。これら金属の担持は、例えば、
硝酸ニッケル、モリブデン酸アンモニウム等の水溶液に
前記焼成処理後の担体を浸漬した後乾燥し、次いで空気
中で300〜600℃で焼成すればよい。焼成温度が、300℃
未満であると、ニッケルやモリブデンが酸化物態に転換
されがたく、600℃を超えると担体と複合酸化物を形成
するため好ましくない。この活性金属担持工程で担持さ
れるニッケルやモリブデンの量は、触媒に対し、2重量
%以上、特に2〜20重量%の範囲が好ましい。2重量%
未満では、得られる触媒活性が不十分である。
After this firing treatment, a step of supporting at least one of nickel and molybdenum and firing at 300 to 600 ° C.
This is performed in the same manner as in the related art. These metals are supported, for example,
The carrier after the calcination treatment may be immersed in an aqueous solution of nickel nitrate, ammonium molybdate or the like, dried, and then calcined at 300 to 600 ° C. in air. Firing temperature is 300 ℃
If it is less than this, nickel or molybdenum is not easily converted to an oxide state, and if it exceeds 600 ° C., a composite oxide is formed with the carrier, which is not preferable. The amount of nickel or molybdenum supported in the active metal supporting step is preferably 2% by weight or more, particularly preferably 2 to 20% by weight, based on the catalyst. 2% by weight
If it is less than 30, the obtained catalyst activity is insufficient.

担持金属は、ニッケルおよびモリブデンのいずれか1
種でもよいが、好ましくはニッケル・モリブデンの組合
せである。それぞれの担持量は酸化物換算で、NiO 2
〜10重量%、M0O3 5〜25重量%の範囲から目的により
選ばれる。
The supported metal is either nickel or molybdenum.
Although it may be a seed, it is preferably a combination of nickel and molybdenum. Each supported amount is NiO 2 in terms of oxide.
10 wt%, selected by the target from M 0 O 3 5 to 25 wt% range.

なお、先の焼成工程において、通常、アルミナ担体の
10重量%以上の部分がアルミネートを形成しにくいδ−
アルミナ、θ−アルミナに転換されているので、このニ
ッケル等の担持工程においてアルミネートに転換するニ
ッケル等は極めて少なく、ニッケル、モリブデンのほと
んどは酸化物態で担持される。
In the firing step, the alumina carrier is usually
10% by weight or more of the δ-
Since it is converted to alumina and θ-alumina, very little nickel or the like is converted to aluminate in the step of supporting nickel or the like, and most of nickel and molybdenum are supported in an oxide state.

次に、本発明を実施例により具体的に説明する。 Next, the present invention will be specifically described with reference to examples.

〔実施例〕〔Example〕

実施例1 市販のγ−アルミナ円筒型押出成形体を1,000℃で2
時間焼成して得られたアルミナ担体100gに、硝酸ニッケ
ル45.6g(酸化ニッケル換算で11.1gのもの)を水に溶解
して調製した含浸液84mlを含浸し、100℃で16時間乾燥
した後、500℃で2時間焼成して酸化物換算で酸化ニッ
ケル10重量%、残部がアルミナの組成を有する触媒を得
た。
Example 1 A commercially available γ-alumina cylindrical extruded product was prepared at 1,000 ° C. for 2 minutes.
After impregnating 84 ml of an impregnating liquid prepared by dissolving 45.6 g of nickel nitrate (11.1 g in terms of nickel oxide) in water, 100 g of an alumina carrier obtained by calcining for an hour, and drying at 100 ° C. for 16 hours, By calcining at 500 ° C. for 2 hours, a catalyst having a composition of nickel oxide 10% by weight in terms of oxide and the remainder being alumina was obtained.

得られた触媒のアルミナ分をX線回折により分析した
ところ、次の組成からなることがわかった。
When the alumina content of the obtained catalyst was analyzed by X-ray diffraction, it was found that the catalyst had the following composition.

δ−アルミナ 10重量% θ−アルミナ 80重量% 比較例1 市販のγ−アルミナ円筒型押出成形体100gを、1,000
℃における焼成に供しないで含浸液84mlを含浸した以外
は上記実施例とまったく同様にして酸化ニッケル10重量
%、残部がアルミナからなる触媒を得た。
δ-alumina 10% by weight θ-alumina 80% by weight Comparative Example 1 100 g of a commercially available γ-alumina cylindrical extruded product was
A catalyst comprising 10% by weight of nickel oxide and the balance being alumina was obtained in exactly the same manner as in the above example, except that the impregnation solution was not impregnated with 84 ml of the impregnating solution without being calcined.

実施例2 実施例1と同様に得られたアルミナ担体100gに炭酸ニ
ッケル4.0g(酸化ニッケル換算で1.8gのもの)、酸化モ
リブデン7.7gを水に溶解して調製した含浸液84mlを含浸
し、100℃で16時間乾燥した後、500℃で2時間焼成して
酸化物換算で酸化ニッケル2重量%、酸化モリブデン7
重量%、残部がアルミナの組成を有する触媒を得た。
Example 2 Into 100 g of an alumina carrier obtained in the same manner as in Example 1, 4.0 g of nickel carbonate (1.8 g in terms of nickel oxide) and 84 ml of an impregnation liquid prepared by dissolving 7.7 g of molybdenum oxide in water were impregnated. After drying at 100 ° C. for 16 hours, it is calcined at 500 ° C. for 2 hours, and is 2% by weight of nickel oxide and 7% of molybdenum oxide in terms of oxide.
A catalyst having a composition of weight%, the balance being alumina was obtained.

比較例2 市販のγ−アルミナ円筒型押出成形体100gを1,000℃
における焼成に供しないで含浸液84mlを含浸した以外上
記実施例2とまったく同様にして酸化物換算で酸化ニッ
ケル2重量%、酸化モリブデン7重量%、残部がアルミ
ナの組成を有する触媒を得た。
Comparative Example 2 100 g of a commercially available γ-alumina cylindrical extruded product was subjected to 1,000 ° C.
A catalyst having a composition of 2% by weight of nickel oxide, 7% by weight of molybdenum oxide in terms of oxide and the balance being alumina was obtained in exactly the same manner as in Example 2 except that the impregnation solution was impregnated with 84 ml of the impregnating solution without being subjected to the calcination.

水素化活性の評価 実施例、比較例で調製した触媒を、下記の条件で予備
硫化に供した後、水素化活性を評価した。
Evaluation of hydrogenation activity After the catalysts prepared in Examples and Comparative Examples were subjected to preliminary sulfurization under the following conditions, the hydrogenation activity was evaluated.

(1)予備硫化 容量10mlの反応管に触媒1.5gを充填し、H2Sを5容量
%含有するH2S/H2混合ガスを、流量100ml/min、温度400
℃、圧力70kg/cm2の条件で2時間流通させた。
(1) Preliminary sulfurization A reaction tube having a capacity of 10 ml was filled with 1.5 g of the catalyst, and a mixed gas of H 2 S / H 2 containing 5% by volume of H 2 S was supplied at a flow rate of 100 ml / min and a temperature of 400.
The mixture was allowed to flow for 2 hours at a temperature of 70 ° C and a pressure of 70 kg / cm 2 .

(2)水素化活性の測定 内容量50mlのマイクロオートクレーブ内に、予備硫化
処理を施した触媒0.5gと、1−メチルナフタレン10mlを
仕込み、さらに水素ガスを初圧70kg/cm2で導入し、実施
例1、比較例1は400℃に、実施例2、比較例2は350℃
に1時間保持した。その後、1−メチルテトラリンおよ
び5−メチルテトラリンの生成量をガスクロマトグラフ
ィーで測定し、1−メチルナフタレンの転化率から触媒
の水素化活性を求めた。
(2) Measurement of hydrogenation activity In a micro autoclave having a content of 50 ml, 0.5 g of a pre-sulfurized catalyst and 10 ml of 1-methylnaphthalene were charged, and hydrogen gas was further introduced at an initial pressure of 70 kg / cm 2 . Example 1 and Comparative Example 1 at 400 ° C., Example 2 and Comparative Example 2 at 350 ° C.
For one hour. Thereafter, the production amounts of 1-methyltetralin and 5-methyltetralin were measured by gas chromatography, and the hydrogenation activity of the catalyst was determined from the conversion of 1-methylnaphthalene.

結果を次表に示す。 触媒 水素化活性 実施例1 17.1% 比較例1 11.2% 実施例2 59.4% 比較例2 51.2% 〔発明の効果〕 本発明の水素化処理触媒の製造方法によれば、活性金
属として担持されるニッケル、モリブデン、特にニッケ
ルのアルミネート化が抑制され、その大部分が酸化物態
の形で担持されている。そのため、水素化処理前に施さ
れる予備硫化工程においてほとんどすべてのニッケル分
が活性化されるので、従来の水素化処理用ニッケル系あ
るいはニッケル・モリブデン系触媒に比しより高い活性
を示す。
The results are shown in the following table. Catalytic hydrogenation activity Example 1 17.1% Comparative example 1 11.2% Example 2 59.4% Comparative example 2 51.2% [Effect of the invention] According to the method for producing a hydrotreating catalyst of the present invention, nickel supported as an active metal , Molybdenum, particularly nickel, is suppressed from being aluminated, and most of them are supported in an oxide form. For this reason, almost all nickel components are activated in the pre-sulfurization step performed before the hydrogenation treatment, so that they exhibit higher activity than a conventional nickel-based or nickel-molybdenum-based catalyst for hydrogenation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C10G 45/50 9547−4H C10G 45/50 (72)発明者 葭村 雄二 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 島田 広道 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 松林 信行 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 審査官 新居田 知生 (56)参考文献 特開 昭64−47447(JP,A) 特公 昭34−2675(JP,B1)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication C10G 45/50 9547-4H C10G 45/50 (72) Inventor Yuji Yoshimura 1-chome, Higashi, Tsukuba, Ibaraki Prefecture No. 1 Institute of Chemical Technology, Industrial Technology Institute (72) Inventor Hiromichi Shimada 1-1-1, Higashi, Tsukuba, Ibaraki Pref. Toshio Niida, Examiner, Institute of Chemistry, Gakuin (56) References JP-A-64-47447 (JP, A) JP-B-34-2675 (JP, B1)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】γ−アルミナ担体を800〜1,100℃(ただ
し、1050℃を除く)で焼成し、次に、該担体に、ニッケ
ル塩およびモリブデン塩の少なくとも1種を担持させた
後300〜600℃で焼成することからなる水素化処理触媒の
製造方法。
1. A γ-alumina carrier is calcined at 800 to 1,100 ° C. (excluding 1050 ° C.), and then at least one of a nickel salt and a molybdenum salt is supported on the carrier, and then the carrier is heated to 300 to 600 ° C. A method for producing a hydrotreating catalyst, the method comprising calcining at ℃.
JP63218198A 1988-08-31 1988-08-31 Method for producing hydrotreating catalyst Expired - Lifetime JP2609301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63218198A JP2609301B2 (en) 1988-08-31 1988-08-31 Method for producing hydrotreating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218198A JP2609301B2 (en) 1988-08-31 1988-08-31 Method for producing hydrotreating catalyst

Publications (2)

Publication Number Publication Date
JPH0268143A JPH0268143A (en) 1990-03-07
JP2609301B2 true JP2609301B2 (en) 1997-05-14

Family

ID=16716155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218198A Expired - Lifetime JP2609301B2 (en) 1988-08-31 1988-08-31 Method for producing hydrotreating catalyst

Country Status (1)

Country Link
JP (1) JP2609301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0405568B1 (en) * 2003-12-19 2014-08-26 Shell Internationale Res Maaschappij B V Methods of producing a crude oil and transport fuel, heating fuel, lubricant or chemical product, catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920089A (en) * 1987-05-08 1990-04-24 Unilever Patent Holdings B.V. Hydrogenation catalyst

Also Published As

Publication number Publication date
JPH0268143A (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US2437532A (en) Process for the catalytic reforming of hydrocarbons
US4172809A (en) Alumina, a method for its preparation and said alumina as carrier containing catalysts
US4465790A (en) Hydrotreating catalyst
US4012337A (en) High surface area alpha aluminas
US3830752A (en) Hydrocarbon conversion catalysts
US4153580A (en) CO conversion catalyst
US2967204A (en) Hydrogenation of aromatics with a tungsten and nickel sulfide, supported on alumina, catalyst composite
US3960712A (en) Hydrodesulfurization of asphaltene-containing black oil with a gamma-alumina composite catalyst of specified particle density
US4422959A (en) Hydrocracking process and catalyst
EP0044118A2 (en) A method of preparing a catalyst
JPS6197036A (en) Production of hydrotreating catalyst supported by silica andthus obtained catalyst
PL79529B1 (en) Hydrocarbon conversion catalyst and processes for the manufacture and use thereof[gb1256000a]
US4124490A (en) Hydrocarbon reforming process
US3963601A (en) Hydrocracking of hydrocarbons with a catalyst comprising an alumina-silica support, a group VIII metallic component, a group VI-B metallic component and a fluoride
JP2000051695A (en) Catalyst based on precious metals of viii group including silicon, and boron depending on occasion and usage of the catalyst in hydrogenation treatment of charge stock hydrocarbons
PL81833B1 (en) Hydrocarbon conversion process and platinum-germanium catalytic composite for use therein[us3578584a]
US2447016A (en) Catalytic reforming of hydrocarbons
US2437533A (en) Catalysts
US4305810A (en) Stabilized reforming catalyst
JP2609301B2 (en) Method for producing hydrotreating catalyst
US4501655A (en) Hydrocracking process
US4175056A (en) Activated multimetallic catalytic composite comprising pyrolized ruthenium carbonyl
US4097412A (en) Catalyst carriers and a process for their preparation
US4464481A (en) Hydrocracking catalyst
JP2580278B2 (en) Hydrotreating catalyst and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term