US3902991A - Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture - Google Patents

Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture Download PDF

Info

Publication number
US3902991A
US3902991A US355230A US35523073A US3902991A US 3902991 A US3902991 A US 3902991A US 355230 A US355230 A US 355230A US 35523073 A US35523073 A US 35523073A US 3902991 A US3902991 A US 3902991A
Authority
US
United States
Prior art keywords
vacuum
sulfur
withdrawn
hydrodesulfurization
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US355230A
Inventor
Robert I Christensen
George D Gould
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Priority to US355230A priority Critical patent/US3902991A/en
Priority to US05/583,139 priority patent/US4006076A/en
Application granted granted Critical
Publication of US3902991A publication Critical patent/US3902991A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Definitions

  • the present invention relates to the production of hydrocarbon mixtures of low-sulfur content. More particularly, it relates to deep hydrodesulfurization of vacuum gas oils obtained from reduced-crude fractions of sulfur-containing crude oils and the production of hydrocarbon mixtures such as fuel oil, fuel oil blending stock, kerosene, diesel and fluid catalytic cracker feeds having low sulfur contents.
  • fuel oil blends having a low sulfur content are produced in an integrated hydrodesulfurization process from vacuum gas oil and vacuum residuum fractions of sulfur-containing reduced-crude oils.
  • Petroleum hydrocarbons are being used up at an ever increasing rate. New crude discoveries have not been sufficient to maintain the unproduced reserve. As a result, crude oils heretofore avoided where possible because of undesirable properties, especially those with high sulfur contents and those also containing heavy metal contaminations, must now be used as feeds for petroleum refineries. Asphaltenes frequently are found in combination with the metal contaminants and these together with sulfur and the metals are a source of serious processing and cost problems in the refining of such crude oils.
  • a longer operating cycle for the catalyst in the hydrodesulfurization of a vacuum gas oil e.g., a cycle of at least 30 months;
  • a select high activity vacuum gas oil hydrodesulfurization catalyst capable of deeper [item (l) above] sulfur removal and suitable for use with a combined feedstock, i.e., a mixture of vacuum gas oil and of vacuum-residuum gas oil, and the like;
  • a vacuum gas oil hydrodesulfurization process performance permitting integration thereof with concurrent vacuum residuum hydrodesulfurization means for the substantial reduction of fuel oil pool sulfur content levels to new low levels, for example below 1 weight percent, and even to below 0.3 weight percent;
  • the present invention is a process for producing from a sulfur-containing reduced-crude feedstock, for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel.
  • a sulfur-containing reduced-crude feedstock for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel.
  • the reducedcrude is separated into at least one vacuum gas oil fraction, which may boil in the range 600l lOOF., and a vacuum residuum fraction.
  • the vacuum gas oil fraction is contacted with a select high activity desulfurization catalyst and hydrogen gas in a hydrodesulfurization zone at mild hydrodesulfurization conditions, and from the hydrodesulfurizing reaction zone is withdrawn a product having a sulfur content below 0.2 weight percent.
  • a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
  • mild hydrodesulfurization conditions as used herein, is meant the employment of process conditions, including:
  • the vacuum residuum fraction may be subjected to further processing as desired.
  • a reduced-crude feedstock or oil as used herein. is meant the residue or bottoms fraction normally obtained in the topping by distillation of a whole crude, i.e., a topped whole crude.
  • the distillation is an atmospheric distillation, but it may be carried out, if desired, and as known in the art, under a moderately subatmospheric pressure.
  • the reduced-crude feedstocks contemplated for use herein vary widely depending upon the crude oil which is topped to obtain them.
  • reduced-crude feedstocks obtained from whole crude oils having a 1 weight percent sulfur content or higher are satisfactory and reduced-crude feedstocks obtained from these whole crude oils are contemplated for use herein.
  • the whole crude oil may have smaller relative amounts of sulfur and still yield satisfactory reduced-crude feedstocks.
  • sulfur impurity in the whole crude oil becomes less, the economic and process advantages of the present process also become less.
  • asphaltene and metal contents of the whole crude oil from which the reduced-crude feedstock is obtained are low. but these factors are of secondary importance.
  • Reduced-crude feedstocks obtained from whole crude oils which contain relative amounts of asphaltenes, and metals as normally present in a whole crude are satisfactory and contemplated for use herein provided that the amount of sulfur in the whole crude is about 1 weight percent or higher.
  • the form of the sulfur in the reduced crude may vary widely and is dependent upon the natural condition of the sulfur in the whole crude which is topped to produce the feedstock. Sulfur contents, as expressed throughout the description, are calculated as elemental sulfur.
  • the vacuum gas oils satisfactory for use in the present invention are those ordinarily obtained by the fractional distillation at a subatmospheric pressure of a reduced-crude oil having the characteristics as described above and these are contemplated for use herein.
  • the pressures employed for these fractionations are below 1 atmosphere, usually in the range 0.060.25 atmosphere, and the resulting vacuum gas oils and vacuum residua are useful and contemplated for use as described in the present disclosure.
  • the vacuum gas oils preferred herein have an initial boiling point (ASTM- D1 100) between 350F. and about 850F. and an end boiling point in the range 1000to l 100F., preferably above 1000F.
  • the vacuum residua employed herein are the bottoms fractions from the aforementioned fractional distillation of reducedcrudes under vacuum. These are contemplated for use herein.
  • Preferred vacuum residua have an initial boiling point of about 1000F.
  • a hydrocarbon product mixture having a sulfur content in the range, broadly, of 0.005 to 0.2 weight percent, particularly 0.1 to 0.005, and most particularly 0.1 to 0.05;
  • a select high activity hydrodesulfurization catalyst is meant a solid composite comprising a Group Vlll component, a Group Vl component and alumina, having an average pore diameter in the range 65-150 A., and a pore volume in the range 0.3 to 1 cc per gram. Excellent results have been obtained with catalysts of the foregoing description which:
  • the catalyst further contains phosphorus, and in a preferred form of the catalyst titanium also is present.
  • Use of titanium-containing alumina during catalyst preparation is an excellent procedure. Good results may be obtained when nickel is used in place of the cobalt.
  • the density of the catalyst composite should be in the range below about 60 pounds per cubic foot, preferably below 50 pounds.
  • the size of the composite should be in the range one-eighth to one-fortieth inch, preferably one-sixteenth to one-thirty second inch.
  • An especially suitable select high activity hydrodesulfurization catalyst may be prepared by the steps comprising:
  • FIGS. 1-4 are process flow diagrams schematically indicating preferred embodiments of the process of the present invention.
  • a reduced-crude feedstock a 650F.+ Kuwait residuum is fed at a rate of 50,000 barrels per operating day (BPOD) via line 1 to crude oil vacuum fractionation zone 2.
  • BPOD barrels per operating day
  • other sulfur-containing hydrocarbon sources such as shale oils, tar sand oils and oils derived from coal can be fed to fractionation zone 2.
  • Fractionation zone 2 consists basically of a typical vacuum distillation unit, as used in the petroleum refining art.
  • zone 2 the Kuwait residuum is separated into an overhead fraction, a vacuum gas oil, in an amount of 30,000 BPOD and a bottoms fraction, a vacuum residuum (1,050F. plus true boiling point cut) in an amount of 20,000 BPOD.
  • the vacuum gas oil is withdrawn from fractionator 2 via line 3 and passed to mild hydrodesulfurization reactor 4 and the vacuum residuum is withdrawn from fractionator 2 via line 5 and passed to vacuum residuum hydrodesulfurization reactor 13.
  • the respective feeds, vacuum gas oil, or vacuum residuum are mixed with hydrogen and hydrodesulfurized under mild or vacuum residuum hydrodesulfurization conditions, respectively.
  • the hydrogen is obtained from a suitable source.
  • hydrogen is produced in hydrogen plant 7 by steam reforming about 1,800 BPOD of naphtha, which is introduced to hydrogen plant 7 via line 6.
  • the produced hydrogen is withdrawn from hydrogen plant 7 via line 8 in an am c unt of about 34 million standard cubic feet per day (MSCFD).
  • MSCFD standard cubic feet per day
  • the vacuum gas oil is mixed with hydrogen (2000 standard cubic feet (SCF)/barrel of vacuum gas oil) and contacted with a select high activity desulfurization catalyst which is a sulfided solid composite:
  • the contacting is at a hydrogen partial pressure of about 400-500 psig, a total pressure of about 600-800 psig, a temperature of about 700800F., and at a liquid hourly space velocity (LI-ISV) of about 2-3.
  • the contacting of the vacuum gas oil feed, as described above, results in the production of naphtha, a low-sulfur fuel oil having a sulfur content of about 0.15 weight percent, and a light hydrocarbon gasJ-l s mixture.
  • the naphtha is removed from reactor 4 via line 14 at a rate of about 400 BPOD and the fuel oil is removed from 6 reactor 4 via line 19 at a rate of about 29,800 BPOD.
  • the light gas-H 5 mixture is withdrawn from reactor 4 via line 16 and is passed to a conventional gas and sulfur recovery unit, 27, for processing.
  • the vacuum residuum introduced via line 5 and the hydrogen (about 4000 SCF per barrel of vacuum residuum) introduced via line 12 are mixed and contacted with a satisfactory vacuum residuum hydrodesulfurization catalyst, for example a sulfided composite of cobalt, molybdenum, phosphorus, alumina and titania having the nominal (i.e., calculated as the indicated oxides) composition as follows:
  • Suitable vacuum residuum hydrodesulfurization conditions for example a temperature of about 700800F'., a total pressure of about 2000 psig, a hydrogen partial pressure of about 1500 psia, and an LI-ISV of less than 0.5.
  • the treatment of the vacuum residuum in reactor 13 results in the production of naphtha and a sulfur-reduced vacuum residuum as the principal products and a light gas fraction comprising low molecular weight hydrocarbons and hydrogen sulfide,
  • the naphtha is removed from reactor 13 via line 15 at a rate of about BPOD.
  • the light gas stream containing hydrocarbons and hydrogen sulfide is withdrawn from reactor l3-via line 17 and passed to a conventional gas and sulfur recovery unit 27 via lines 17 and 18.
  • the sulfur reduced vacuum residuum produced in reactor 13 is withdrawn via line 23 and is passed to a vacuum fractionator 24 for separation into a bottoms product and an overhead fraction.
  • the bottoms product is withdrawn from fractionator 24 via line 26 at a rate of 14,000 BPOD and comprises a 1,050F. plus boiling residuum which'contains about 1.2 percent sulfur.
  • a fuel oil blend is produced by mixing at least a portion of the 350F.1050F. hydrocarbon mixture obtained by fractionating the hydrodesulfurized vacuum residuum product stream with at least a portion of the 350F.+ efiluent fraction of the product from the vacuum gas oil hydrodesulfurization reactor, the blend having sulfur content below about 0.2 weight percent, or, below about 0.1 weight percent.
  • This fuel oil pool or blend has a good stability and is an excellent synthetic replacement for the virgin low sulfur content fuel oils presently available in the market.
  • At least a portion of the low sulfur product from the mild hydrodesulfurization zone 4 may be used as a charge stock for a fluid catalytic cracker.
  • FIG. 2 a reduced-crude is processed substantially in the manner as described for that portion of the process of FIG. 1 which is enclosed within the dotted lines except:
  • the heavier fraction of the desulfurized vacuum gas oil is fractionated after withdrawal from low pressure separator 62 via line 67.
  • the withdrawn gas oil is passed to fractionator 68 via line 67 for separation into a naphtha fraction, a kerosene plus diesel oil fraction and a desulfurized fuel oil product.
  • a reduced-crude feed a 650F. plus boiling Kuwait residuum is delivered via line 85 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 86 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum.
  • BPOD barrels per operating day
  • Via line 89 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 86 at a rate of about 30,000 BPOD.
  • Via line 87 the vacuum residuum is withdrawn from fractionator 86 at a rate of about 20,000 BPOD and is Average Pore Diameter, 130-190 Pore Volume, cc per gram 0.5 C 2.5 M00 10.0 TiO l P. ,O,-, 10.0 A1 0 Remainder under the following conditions:
  • the coker feed is withdrawn from fractionator 94 via line and passed to delayed coker 96.
  • Delayed coker 96 is a conventional coke-forming unit which converts the feed to a metallurgical grade coke product and a vaporized hydrocarbon, a coker effluent.
  • the coker effluent is withdrawn from the unit 96 via line 97 and passed to the coker fractionator via lines 97 and 98.
  • Coke having a sulfur content below 2 weight percent and a metals content below 150 ppm of vanadium is withdrawn from coker 96 via line 99 at a rate of about 450 short tons per day.
  • Two overhead hydrocarbon fractions are withdrawn from coker fractionator 94, the first a C fraction and the second the C coker gas oil.
  • Via line 100 the C,- light hydrocarbon fraction is withdrawn from fractionator 94 and passed via lines 100, 110 and 111 to gas and sulfur recovery unit 114.
  • Via line 103 the C coker gas oil is withdrawn from fractionator 94 at a rate of about 18,800 BPOD.
  • This gas oil having a sulfur content of about 0.871 sulfur is mixed with the vacuum gas oil by joining lines 103 and 89, is line mixed and passed via line 104 to mild hydrodesulfurization reactor 106.
  • reactor 106 the combined vacuum gas oil and coker gas oil feed is mixed with hydrogen and contacted with a select high activity desulfurization catalyst in the manner described for the process of FIG. 1 with the production of naphtha and low sulfur content fuel oil.
  • the naphtha is separated by fractionation and withdrawn from reactor 106 via line 107 at a rate of 3,200 BPOD.
  • Fuel oil having a sulfur content of 0.15 weight percent is withdrawn from reactor 106 via line 109 at a rate of 46,100 BPOD.
  • the hydrogen sulfide and light hydrocarbon containing gas streams withdrawn from reactors 88 and 106 and from coker fractionator 94 are passed to gas and sulfur recovery unit 114 via the lines indicated in the Figure and in unit 114 using ordinary recovery methods the hydrogen sulfide is converted to sulfur and the light hydrocarbons are separated into a sweet fuel gas product.
  • the former is withdrawn from unit 114 via line 115 at a rate of about 305 short tons per day and the sweet fuel gas is withdrawn from unit 114 via line 116 at a rate of 1,510 BPOD.
  • Delayed cokers or furnace type coking units heat the residuum or other hydrocarbon feedstock to coking temperatures rapidly and little reaction occurs while the charge is in the furnace. Effluent from the furnace discharges at about 850F. to 1000F. (see, for example, U.S. Pat. No. 2,727,853, U.S. Pat. No. 2,727,853).
  • U.S. Pat. No. 2,988,501 and U.S. Pat. No. 3,027,317 disclose coking ahead of hydrodesulfurization and U.S. Pat. No. 3,684,688 disclose coking afterwards.
  • the integrated process of FIG. 3 has many process advantages, including:
  • a practical means for disposing of high sulfur-content by-product e.g., producing metallurgical grade coke and additional fuel oil range gas oil.
  • a reduced-crude feed a 650F. plus boiling Arabian light residuum is delivered via line 124 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 125 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum.
  • BPOD barrels per operating day
  • vacuum residuum having a sulfur content of 4.1 weight percent is withdrawn from fraetionator 125 at a rate of about 15,500 BPOD and is passed to asphalt removal unit 128 for separation of the vacuum into asphalt or tar and an asphalt-reduced residuum, a solvent deasphalted oil.
  • the separation is as phalt removal unit 128 is carried out using conventional solvent deasphalting methods, for example, butane-pentane solvent deasphalting or the like.
  • Asphalt or tar having a sulfur content of about 6.1% is withdrawn from unit 128 via line 144 and passed to gasification unit 145 for gasification and separation into a sulfur-containing fraction comprising hydrogen sulfide and into a synthetic natural gas fraction substantially free of sulfur.
  • the gasification is effected by conventional process methods, for example, by the Texaco Partial Oxidation Process or the Shell Gasification Process.
  • Asphalt-reduced residuum (solvent deasphalted oil) having a sulfur content of about 3.5 weight percent is withdrawn from unit 128 at a rate of about 12,400
  • Asatisfactory vacuum residuum desulfurization catamixed and passed via line 130 to mild hydrodesulfurizalyst for use in the present invention must have ahigh tion reactor 132.
  • the combined vacuum gas oil and asmetals acceptance capability, a good stability. and a phalt reduced residuum feed mixture is mixed with hylow fouling rate.
  • a suitable vacuum residuum desulfurdrogen in reactor 132 and desulfurized under mild hyization catalyst for use herein has an average pore didrodesulfurization conditions in the manner described ameter in the range from about 100 to 200 A., preferafor the corresponding portion of the process of FIG. 1 bly 130 to 190 A., and comprises a composite of the oxto produce naphtha, low-sulfur fuel oil and by-product ides and/or sulfides of a Group VIII metal, preferably streams containing hydrogen sulfide.
  • Naphtha is sepacobalt, of molybdenum and phosphorus and of a refracrated by fractionation and withdrawn via line 133 from ,tory metal or mixed metal oxide, preferably alumina.
  • reactor 132 at a rate of about 380 BPOD.
  • line 134 a catalyst sizing low-sulfur fuel oil having a sulfur content of about 0.05 in the range from about /8 inch to about l/40 inch is weight percent is withdrawn atla rate of 46,700 BPOD. preferable.
  • HAVULFURIZATION CONDITIONS separated into a sweet fuel gas fraction and a sulfur Conditions suitable for use for the hydrodesulfurizafraction.
  • sweet fuel gas is withdrawn from tion of a vacuum residua, as herein, vary widely and dcunit 139 at a rate of about 230 BPOD.
  • line 143 sulpend in the main upon the particular feed. in general, fur is withdrawn from unit 139 at a rate of about 240 satisfactory conditions include the indicated and prishort tons per day.
  • a synthetic natural gas product can be recovered having about a heating Value of about 930 Temperature, F. 600 to 850F.
  • the resulting fuel oil blend has a sulga a ng a hy rogen C nt nt of at least 5 lum fur content of 0.5 weight percent.
  • pe cent can be acceptable d f l f some areas d f Representative reduced-crude feeds suitable for use some purposes.
  • the product from the integrated proherein include those obtained from Middle Eastern cess. the 0.05 weight percent fuel oil, is of course an excrudes. such as Arabian light, Kuwait, Arabian mecellent and highly desirable product having particular i m. Ir ni heavy p i lly f r olventing deasreference to desirable environmental protection re- 40 p a t mut and Egyptian light Crud ils, and the like i m high sulfur content crude oils; others are California
  • the integrated process of FIG, 4 has many process crude, Alaskan North slOpC CI'U(1, and the like, as well advantages, i cl di as blends of crude oils, that is crude oils and crude oil 1.
  • TBP vacuum gas 011 a disposing of high sulfur content asphalt (tar), and from an Arabian medium or a Kuwait-type crude containing 2.8 weight percent sulfur was hydrodesulfurized.
  • the yields and product properties were:
  • a hydrogen rate between 100 and 10,000 SCF per barrel of feed and the use of a catalyst typically comprising a Group VlB and/or Group V111 hydrogenation component and a cracking component, for example amorphous silica-alumina on a crystalline zeolitic molecular sieve.
  • the amount of hydrogen required to produce a lowsulfur content fuel oil under the mild hydrodesulfurization conditions as herein varies depending upon the sulfur content of the vacuum gas oil to be treated. On the basis of sulfur content of the vacuum gas oil, at least about 40 standard cubic feet of hydrogen is required per pound of sulfur to be removed in order to reduced the sulfur content to at least 0.2 weight percent.
  • Table 1 below is given comparative examples illustrat ing sulfur removal, hydrogen consumption and resulting product parameters for the desulfurization of vacuum gas oil from an Arabian light crude oil.
  • vacuum residuum hydrodesulfurization catalyst comprising a composite of oxides and/or sulfides of a Group V111 metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, and said pores having an average pore diameter in the range from to 200A and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the -13 range 600 to 850F.. a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;-
  • a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
  • a fuel oil blend is produced by mixing at least a portion of said 350F.l050F. hydrocarbon mixture with at least a portion of said 350F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
  • a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
  • vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
  • a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
  • At least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone uner vacuum residuum hydrodesulfurization conditions, said conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
  • pores of said catalyst have an average pore diameter of about A.
  • said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group VIII metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, said pores having an average pore diameter in the range from 100 to 200A, and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
  • a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
  • said catalyst also weight percent is withdrawn from said fractionator.
  • a fuel oil blend is produced by mixing at least a portion of said 350F. l()50F. hydrocarbon mixture with at least a portion of said 35()F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
  • vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at leastabout 75 volume percent;
  • a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
  • Col. 13 eliminate lines 18-31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Low-sulfur content hydrocarbon mixture and fuel oil blend below 0.2 or below 0.1 wt. % sulfur are obtained by hydrodesulfurizing vacuum gas oil under a hydrogen partial pressure of 300 - 800 psig. with a select high activity desulfurization catalyst. Further embodiments include the hydrodesulfurization of sulfurcontaining vacuum residuum and (1) mixing portions of the desulfurized hydrocarbon residuum with the vacuum gas oil feed or (2) blending fuel oil from portions of the desulfurized vacuum gas oil and desulfurized vacuum residuum product. Further process steps include (3) deasphalting of vacuum residuum or (4) hydrodesulfurizing vacuum residuum with delayed coking of at least a portion of the product.

Description

United States Patent Christensen et a1. Sept. 2, 1975 [54] HYDRODESULFURIZATION PROCESS FOR 3,658,681 4/1972 Wilson et a1. 208/211 THE PRODUCTION OF LOW SULFUR 3,668.1 16 6/1972 Adams Ct 31... 208/216 3,684,688 8/1972 Roselius 208/216 HYDROCARBON MIXTURE 3,749,664 7 1973 Michelson 208/216 [75] Inventors: Robert I. Christensen, San Rafael; George D. Gould, Orinda, both of Calif.
[73] Assignee: Chevron Research Company, San Francisco, Calif.
[22] Filed: Apr. 27, 1973 [21] Appl. No.: 355,230
US. Cl. 208/211; 208/86; 208/89;
Primary ExaminerDelbert E. Gantz Assistant Examiner-G. J. Crasanakis Attorney, Agent, or Firm-G. F. Magdeburger; R. H. Davies; D. L. Hagmann [5 7] ABSTRACT Low-sulfur content hydrocarbon mixture and fuel oil blend below 0.2 or below 0.1 wt. sulfur are obtained by hydrodesulfurizing vacuum gas oil under a 208mm; 208/218; 1208/50 hydrogen partial pressure of 00 psig. with a se 2 ect high activity desulfurizatlon catalyst. Further em- [51] Int. Cl. C10G 23/02 bodimems include the hydrodesulfurizaflon of Sulfur [58] Field of Search 208/211, 210, 89, 50, 218,
. 2O8/86 216 containing vacuum residuum and (1) mixing portions of the desulfurized hydrocarbon .residuum with the vacuum gas oil feed or (2) blending fuel oil fromv por- [56] References Cited tions of the desulfurized vacuum gas oil and desulfur- UNITED STATES PATENTS ized vacuum residuum product. Further process steps 3,287,254 11/1966 Paterson 208/89 include (3) deasphalting of vacuum residuum or (4) 3,306,845 hydrodesulfurizing acuum residuum delayed 3,531,398 9/1970 Adams et a1 208/21 1 coking of at least a portion of the product 3,544,452 12/1970 Jaffe 203/216 3,577,353 5/1971 White 208/216 7 Claims, 4 Drawing Figures --4- l 4 NAPHTHA I l I I I9 I MlLD I VACUUM GAS HYDRO- ow SULFUR BLENDED LOW SULFUR l DESULFURIZATION FUEL on. I FUEL on. I REACTOR I I 2s 1 5 l I. 2. I
n: GAS AND O SULFUR SWEET l 5'; z w RECOVERY FUEL GAS I D o 8 3 U 3 O B I U l HYDROGEN SULFUR l {f PLANT I ,5 29
72 I NA PHTHA 0! l 5 23 I? I VACUUM RESIDUUM g; 24
HY DRO- 3 o I RESIDUUM A I DESULFURlZATlON u; REACTOR U L lFR VACUUM RESIDUUM B- HYDRODESULFURIZATION PROCESS FOR THE PRODUCTION OF LOW-SULFUR HYDROCARBON MIXTURE BACKGROUND OF THE INVENTION The present invention relates to the production of hydrocarbon mixtures of low-sulfur content. More particularly, it relates to deep hydrodesulfurization of vacuum gas oils obtained from reduced-crude fractions of sulfur-containing crude oils and the production of hydrocarbon mixtures such as fuel oil, fuel oil blending stock, kerosene, diesel and fluid catalytic cracker feeds having low sulfur contents. In an especial aspect of the invention fuel oil blends having a low sulfur content are produced in an integrated hydrodesulfurization process from vacuum gas oil and vacuum residuum fractions of sulfur-containing reduced-crude oils. Other advantages obtained from the use of the present unique hydrodesulfurization process will be evident from the descriptions and examples herein.
Petroleum hydrocarbons are being used up at an ever increasing rate. New crude discoveries have not been sufficient to maintain the unproduced reserve. As a result, crude oils heretofore avoided where possible because of undesirable properties, especially those with high sulfur contents and those also containing heavy metal contaminations, must now be used as feeds for petroleum refineries. Asphaltenes frequently are found in combination with the metal contaminants and these together with sulfur and the metals are a source of serious processing and cost problems in the refining of such crude oils.
The dwindling world supply of crude oil makes it imperative that the refiners secure every last drop of useful hydrocarbon from a crude; and the need to do better in protecting the environment, for example by removing sulfur from combustion fuels, has made it evident that new and better processing methods and more select catalysts are needed. Better yields and reduced sulfur contents must be achieved. In particular, improvements in the processing of a vacuum gas oil from a reduced-crude feedstock are needed which in concert achieve:
1. a deeper desulfurization of vacuum gas oils, especially for the 350F. and higher boiling point hydrocarbon mixtures (atmospheric pressure) to at least to a sulfur content (weight percent) below about 0.2, preferably below 0.1, and most preferably below about 0.05;
2. the use of a hydrodesulfurization process temperature which is less than 850F.;
3. a longer operating cycle for the catalyst in the hydrodesulfurization of a vacuum gas oil, e.g., a cycle of at least 30 months;
4. a select high activity vacuum gas oil hydrodesulfurization catalyst capable of deeper [item (l) above] sulfur removal and suitable for use with a combined feedstock, i.e., a mixture of vacuum gas oil and of vacuum-residuum gas oil, and the like;
5. a vacuum gas oil hydrodesulfurization process performance permitting integration thereof with concurrent vacuum residuum hydrodesulfurization means for the substantial reduction of fuel oil pool sulfur content levels to new low levels, for example below 1 weight percent, and even to below 0.3 weight percent;
2 6. a lower hydrogen gas consumption per unit of processed reduced-crude oil; and
7. fuel oil products having acceptable stabilities.
SUMMARY OF THE INVENTION In a broad embodiment, the present invention is a process for producing from a sulfur-containing reduced-crude feedstock, for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel. In the process the reducedcrude is separated into at least one vacuum gas oil fraction, which may boil in the range 600l lOOF., and a vacuum residuum fraction. The vacuum gas oil fraction is contacted with a select high activity desulfurization catalyst and hydrogen gas in a hydrodesulfurization zone at mild hydrodesulfurization conditions, and from the hydrodesulfurizing reaction zone is withdrawn a product having a sulfur content below 0.2 weight percent.
In a further embodiment:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions;
Y 2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350l050F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 3501050F. hydrocarbon mixture is admixed with said vacuum gas oil.
By mild hydrodesulfurization conditions, as used herein, is meant the employment of process conditions, including:
1. a hydrogen partial pressure in the range 300 to 800, preferably 350650 psig; and
2. a temperature in the range 550 to 850F.
The vacuum residuum fraction may be subjected to further processing as desired.
More specific embodiments of the present invention include:
1. The use of the 350F. plus boiling fraction of the sulfur-reduced vacuum gas oil produced as described above as a blend stock for upgrading a sulfur-reduced vacuum residuum fuel oil;
2. The use of all or a portion of a sulfur-reduced vacuum gas oil produced as described above as a feed for a fluid catalytic cracker (FCC) unit, particularly the 650F. plus boiling fraction;
3. The production of a C plus boiling range sulfurreduced vacuum gas oil produced as described above, separating the resulting sulfur-reduced vacuum gas oil byfractional distillation into:
a. a butane fraction; b. a C -350F. fraction with a sulfur content less than 0.0l, e.g., 0.005, weight percent; and
c. a 350-l050F. fraction with a sulfur content less than 0.1 weight percent, separating 350-l 050F. fraction by fractional distillation into a 350-650F. fraction with a sulfur content less than 0.05 weight percent, separating the 350650F. product by fractional distillation into the g 3 a kerosene plus diesel boiling range fraction with a sulfur content less than 0.05 weight percent, and into a 650F. plus boiling feed for an FCC unit; and
4. Still further embodiments of the present invention will be evident from the Figures below and the description.
By a reduced-crude feedstock or oil, as used herein. is meant the residue or bottoms fraction normally obtained in the topping by distillation of a whole crude, i.e., a topped whole crude. Usually the distillation is an atmospheric distillation, but it may be carried out, if desired, and as known in the art, under a moderately subatmospheric pressure.
The reduced-crude feedstocks contemplated for use herein vary widely depending upon the crude oil which is topped to obtain them. In general, reduced-crude feedstocks obtained from whole crude oils having a 1 weight percent sulfur content or higher are satisfactory and reduced-crude feedstocks obtained from these whole crude oils are contemplated for use herein. The whole crude oil may have smaller relative amounts of sulfur and still yield satisfactory reduced-crude feedstocks. However, as the sulfur impurity in the whole crude oil becomes less, the economic and process advantages of the present process also become less. Preferably, asphaltene and metal contents of the whole crude oil from which the reduced-crude feedstock is obtained are low. but these factors are of secondary importance. Reduced-crude feedstocks obtained from whole crude oils which contain relative amounts of asphaltenes, and metals as normally present in a whole crude, are satisfactory and contemplated for use herein provided that the amount of sulfur in the whole crude is about 1 weight percent or higher. There is no particular prerequisite as to the form of the sulfur in the reduced crude. That is, the form of the sulfur in the reduced crude may vary widely and is dependent upon the natural condition of the sulfur in the whole crude which is topped to produce the feedstock. Sulfur contents, as expressed throughout the description, are calculated as elemental sulfur.
if the meatls content tends to lead to an undesirable catalyst fouling rate, a prior removal in large part may be carried out by ordinary methods (see, for example, US. Pat. No. 3,696,027). Also, see the paper lsomax Process For Residuum and Whole Crude, by S. G. Paradis, G. D. Gould, D. A. Bea and E. M. Reed, Chemical Engineering Progress [Volume No. 67, No. 8, Pages 5762 (1971)].
v The vacuum gas oils satisfactory for use in the present invention are those ordinarily obtained by the fractional distillation at a subatmospheric pressure of a reduced-crude oil having the characteristics as described above and these are contemplated for use herein. The pressures employed for these fractionations are below 1 atmosphere, usually in the range 0.060.25 atmosphere, and the resulting vacuum gas oils and vacuum residua are useful and contemplated for use as described in the present disclosure. The vacuum gas oils preferred herein have an initial boiling point (ASTM- D1 100) between 350F. and about 850F. and an end boiling point in the range 1000to l 100F., preferably above 1000F. The vacuum residua, on the other hand, employed herein are the bottoms fractions from the aforementioned fractional distillation of reducedcrudes under vacuum. These are contemplated for use herein. Preferred vacuum residua have an initial boiling point of about 1000F.
The process herein, that is using a select high activity hydrodesulfurization catalyst and mild hydrodesulfurization conditions, is especially satisfactory for the production in good yield of a low-sulfur content fuel oil from a sulfur-containing vacuum gas oil. Surprising advantages include:
1. a hydrocarbon product mixture having a sulfur content in the range, broadly, of 0.005 to 0.2 weight percent, particularly 0.1 to 0.005, and most particularly 0.1 to 0.05;
2. a run cycle, hrs., in the range 8,000 to 30,000, usually greater than 24,000; and
3. a hydrogen consumption which is in general less than required in a conventional process.
Other advantages are the production in excellent yield of a fuel oil of good stability, in an operation which is carried out with substantially reduced costs, operational, catalyst and the like, relative to those for a conventional hydrodesulfurization process. Still further advantages in which the above-described hydrodesulfurization process is integrated with other process steps will be evident from the description and Figures below.
SELECT HIGH ACTIVITY HYDRODESULFURIZATION CATALYSTS By a select high activity hydrodesulfurization catalyst, as used herein, is meant a solid composite comprising a Group Vlll component, a Group Vl component and alumina, having an average pore diameter in the range 65-150 A., and a pore volume in the range 0.3 to 1 cc per gram. Excellent results have been obtained with catalysts of the foregoing description which:
1. comprise cobalt, molybdenum, and alumina;
2. have an average pore diameter in the range l20 A. and with at least 50 percent of the pores having a pore diameter in the range 65-150 A. (see US Pat. No. 3,684,688 for background details with respect to average pore diameter determinations and other references):
3. have an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6, preferably about 0.4;
4. have a pore volume at least 0.5 cc per gram; and
5. are sulfided, either prior to use or during process operation.
Particularly good results have been obtained when the catalyst further contains phosphorus, and in a preferred form of the catalyst titanium also is present. Use of titanium-containing alumina during catalyst preparation is an excellent procedure. Good results may be obtained when nickel is used in place of the cobalt.
Select hydrodesulfurization catalysts, as herein, have a high metals acceptance capability, have especially low fouling rates, and hiwh hydrodesulfurization activity under the mild desulfurization conditions of the process of the present invention. For reasons of cost, the density of the catalyst composite should be in the range below about 60 pounds per cubic foot, preferably below 50 pounds. The size of the composite should be in the range one-eighth to one-fortieth inch, preferably one-sixteenth to one-thirty second inch.
An especially suitable select high activity hydrodesulfurization catalyst, as defined herein, may be prepared by the steps comprising:
1. calcining an alumina (no previous calcination experience above about 1700F.) support at a temperature in the range 1400 to 1700F.;
2. impregnating the calcined alumina with an aqueous solution of a cobalt salt and a heteropolyphosphomolybdic acid; and
3. sulfiding the composite prior to use by ordinary means or in situ in use by contacting of a sulfur containing feed, as herein, with the composite under hydrodesulfurizing conditions.
DESCRIPTION OF THE DRAWINGS FIGS. 1-4 are process flow diagrams schematically indicating preferred embodiments of the process of the present invention.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Referring now to FIG. 1, a reduced-crude feedstock, a 650F.+ Kuwait residuum is fed at a rate of 50,000 barrels per operating day (BPOD) via line 1 to crude oil vacuum fractionation zone 2. In addition to a reduced-crude oil, other sulfur-containing hydrocarbon sources such as shale oils, tar sand oils and oils derived from coal can be fed to fractionation zone 2. Fractionation zone 2 consists basically of a typical vacuum distillation unit, as used in the petroleum refining art. In zone 2 the Kuwait residuum is separated into an overhead fraction, a vacuum gas oil, in an amount of 30,000 BPOD and a bottoms fraction, a vacuum residuum (1,050F. plus true boiling point cut) in an amount of 20,000 BPOD. The vacuum gas oil is withdrawn from fractionator 2 via line 3 and passed to mild hydrodesulfurization reactor 4 and the vacuum residuum is withdrawn from fractionator 2 via line 5 and passed to vacuum residuum hydrodesulfurization reactor 13. In reactor zones 4 and 13 the respective feeds, vacuum gas oil, or vacuum residuum, are mixed with hydrogen and hydrodesulfurized under mild or vacuum residuum hydrodesulfurization conditions, respectively. The hydrogen is obtained from a suitable source. For example, hydrogen is produced in hydrogen plant 7 by steam reforming about 1,800 BPOD of naphtha, which is introduced to hydrogen plant 7 via line 6. The produced hydrogen is withdrawn from hydrogen plant 7 via line 8 in an am c unt of about 34 million standard cubic feet per day (MSCFD). Via lines 8 and 9, l2 ITISCFD of the hydrogen is delivered to reactor 4 and via lines 8 and 12, 22 lTlSCFD of the hydrogen is delivered to reactor zone 13.
In reactor 4, the mild hydrodesulfurization zone, the vacuum gas oil is mixed with hydrogen (2000 standard cubic feet (SCF)/barrel of vacuum gas oil) and contacted with a select high activity desulfurization catalyst which is a sulfided solid composite:
1. containing cobalt, molybdenum, phosphorus and alumina; o
2. having an average pore diameter of about 100 A. with at least 50% of the pores having a pore diameter in the range 65 to 150 A.;
3. having an atomic ratio of cobalt to molybdenum of about 0.4; and
4. having a pore volume of about 0.5 cc per gram.
The contacting is at a hydrogen partial pressure of about 400-500 psig, a total pressure of about 600-800 psig, a temperature of about 700800F., and at a liquid hourly space velocity (LI-ISV) of about 2-3. The contacting of the vacuum gas oil feed, as described above, results in the production of naphtha, a low-sulfur fuel oil having a sulfur content of about 0.15 weight percent, and a light hydrocarbon gasJ-l s mixture. The naphtha is removed from reactor 4 via line 14 at a rate of about 400 BPOD and the fuel oil is removed from 6 reactor 4 via line 19 at a rate of about 29,800 BPOD. The light gas-H 5 mixture is withdrawn from reactor 4 via line 16 and is passed to a conventional gas and sulfur recovery unit, 27, for processing.
In reactor 13, the vacuum residuum introduced via line 5 and the hydrogen (about 4000 SCF per barrel of vacuum residuum) introduced via line 12 are mixed and contacted with a satisfactory vacuum residuum hydrodesulfurization catalyst, for example a sulfided composite of cobalt, molybdenum, phosphorus, alumina and titania having the nominal (i.e., calculated as the indicated oxides) composition as follows:
Weight Percent C0D 2.5 M00, 1 0.0 A120,, 62.5 Tao, 1 5 .0 mo, 10.0
under suitable vacuum residuum hydrodesulfurization conditions, for example a temperature of about 700800F'., a total pressure of about 2000 psig, a hydrogen partial pressure of about 1500 psia, and an LI-ISV of less than 0.5. The treatment of the vacuum residuum in reactor 13 results in the production of naphtha and a sulfur-reduced vacuum residuum as the principal products and a light gas fraction comprising low molecular weight hydrocarbons and hydrogen sulfide, The naphtha is removed from reactor 13 via line 15 at a rate of about BPOD. The light gas stream containing hydrocarbons and hydrogen sulfide is withdrawn from reactor l3-via line 17 and passed to a conventional gas and sulfur recovery unit 27 via lines 17 and 18.
The sulfur reduced vacuum residuum produced in reactor 13 is withdrawn via line 23 and is passed to a vacuum fractionator 24 for separation into a bottoms product and an overhead fraction. The bottoms product is withdrawn from fractionator 24 via line 26 at a rate of 14,000 BPOD and comprises a 1,050F. plus boiling residuum which'contains about 1.2 percent sulfur.
From vacuum fractionator 24 the overhead fraction comprising 350l,050F. boiling range hydrocarbons having a sulfur content of about 0.1 5% is withdrawn via line 20 at a rate of 6,300 BPOD. A low sulfur fuel oil pool is produced by the integrated process, as represented in FIG. 1, in an amount of about 36,100 BPOD. Thus, a fuel oil blend is produced by mixing at least a portion of the 350F.1050F. hydrocarbon mixture obtained by fractionating the hydrodesulfurized vacuum residuum product stream with at least a portion of the 350F.+ efiluent fraction of the product from the vacuum gas oil hydrodesulfurization reactor, the blend having sulfur content below about 0.2 weight percent, or, below about 0.1 weight percent. This fuel oil pool or blend has a good stability and is an excellent synthetic replacement for the virgin low sulfur content fuel oils presently available in the market.
Alternatively, at least a portion of the low sulfur product from the mild hydrodesulfurization zone 4 may be used as a charge stock for a fluid catalytic cracker.
Referring now to FIG. 2, a reduced-crude is processed substantially in the manner as described for that portion of the process of FIG. 1 which is enclosed within the dotted lines except:
l. more detail is given with respect to some of the auxiliary elements, and
2. the heavier fraction of the desulfurized vacuum gas oil is fractionated after withdrawal from low pressure separator 62 via line 67. The withdrawn gas oil is passed to fractionator 68 via line 67 for separation into a naphtha fraction, a kerosene plus diesel oil fraction and a desulfurized fuel oil product.
Referring now to FIG. 3, a reduced-crude feed, a 650F. plus boiling Kuwait residuum is delivered via line 85 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 86 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum. Via line 89 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 86 at a rate of about 30,000 BPOD. Via line 87 the vacuum residuum is withdrawn from fractionator 86 at a rate of about 20,000 BPOD and is Average Pore Diameter, 130-190 Pore Volume, cc per gram 0.5 C 2.5 M00 10.0 TiO l P. ,O,-, 10.0 A1 0 Remainder under the following conditions:
Average Bed Temperature. F. 700-800 Pressure, psig 2000 Space Velocity, V/V/Hr. 0.5 Hydrogen Rate, SCFB 4000 90 Hydrogen Purity, Volume Percent Hydrogen sulfide and light hydrocarbon gases produced by the desulfurization in reactor 88 are withdrawn from the reactor via line 92 and delivered via lines 92, 110 and 111 to gas and sulfur recovery unit 114 for processing. Via line 93 sulfur-reduced vacuum residuum having a sulfur content of about 0.7% is withdrawn from reactor 88 and is delivered via lines 93 and 98 to coker fractionator 94 for separation into a C coker gas oil and a bottoms fraction, a coker feed. The coker feed is withdrawn from fractionator 94 via line and passed to delayed coker 96. Delayed coker 96 is a conventional coke-forming unit which converts the feed to a metallurgical grade coke product and a vaporized hydrocarbon, a coker effluent. The coker effluent is withdrawn from the unit 96 via line 97 and passed to the coker fractionator via lines 97 and 98. Coke having a sulfur content below 2 weight percent and a metals content below 150 ppm of vanadium is withdrawn from coker 96 via line 99 at a rate of about 450 short tons per day.
Two overhead hydrocarbon fractions are withdrawn from coker fractionator 94, the first a C fraction and the second the C coker gas oil. Via line 100 the C,- light hydrocarbon fraction is withdrawn from fractionator 94 and passed via lines 100, 110 and 111 to gas and sulfur recovery unit 114. Via line 103 the C coker gas oil is withdrawn from fractionator 94 at a rate of about 18,800 BPOD. This gas oil having a sulfur content of about 0.871 sulfur is mixed with the vacuum gas oil by joining lines 103 and 89, is line mixed and passed via line 104 to mild hydrodesulfurization reactor 106. In reactor 106 the combined vacuum gas oil and coker gas oil feed is mixed with hydrogen and contacted with a select high activity desulfurization catalyst in the manner described for the process of FIG. 1 with the production of naphtha and low sulfur content fuel oil. The naphtha is separated by fractionation and withdrawn from reactor 106 via line 107 at a rate of 3,200 BPOD. Fuel oil having a sulfur content of 0.15 weight percent is withdrawn from reactor 106 via line 109 at a rate of 46,100 BPOD.
The hydrogen sulfide and light hydrocarbon containing gas streams withdrawn from reactors 88 and 106 and from coker fractionator 94 are passed to gas and sulfur recovery unit 114 via the lines indicated in the Figure and in unit 114 using ordinary recovery methods the hydrogen sulfide is converted to sulfur and the light hydrocarbons are separated into a sweet fuel gas product. The former is withdrawn from unit 114 via line 115 at a rate of about 305 short tons per day and the sweet fuel gas is withdrawn from unit 114 via line 116 at a rate of 1,510 BPOD.
Delayed cokers or furnace type coking units heat the residuum or other hydrocarbon feedstock to coking temperatures rapidly and little reaction occurs while the charge is in the furnace. Effluent from the furnace discharges at about 850F. to 1000F. (see, for example, U.S. Pat. No. 2,727,853, U.S. Pat. No. 2,727,853). U.S. Pat. No. 2,988,501 and U.S. Pat. No. 3,027,317 disclose coking ahead of hydrodesulfurization and U.S. Pat. No. 3,684,688 disclose coking afterwards.
The integrated process of FIG. 3 has many process advantages, including:
1. A practical process by which can be produced at least about a 93 liquid volume percent yield of low sulfur fuel oil product from a high sulfur content reducedcrude oil; and
2. A practical means for disposing of high sulfur-content by-product, e.g., producing metallurgical grade coke and additional fuel oil range gas oil.
Referring now to FIG. 4, a reduced-crude feed, a 650F. plus boiling Arabian light residuum is delivered via line 124 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 125 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum. Via line 126 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 125 at a rate from about 34,500 BPOD. Via line 127 vacuum residuum having a sulfur content of 4.1 weight percent is withdrawn from fraetionator 125 at a rate of about 15,500 BPOD and is passed to asphalt removal unit 128 for separation of the vacuum into asphalt or tar and an asphalt-reduced residuum, a solvent deasphalted oil. The separation is as phalt removal unit 128 is carried out using conventional solvent deasphalting methods, for example, butane-pentane solvent deasphalting or the like.
Asphalt or tar having a sulfur content of about 6.1% is withdrawn from unit 128 via line 144 and passed to gasification unit 145 for gasification and separation into a sulfur-containing fraction comprising hydrogen sulfide and into a synthetic natural gas fraction substantially free of sulfur. The gasification is effected by conventional process methods, for example, by the Texaco Partial Oxidation Process or the Shell Gasification Process.
Asphalt-reduced residuum (solvent deasphalted oil) having a sulfur content of about 3.5 weight percent is withdrawn from unit 128 at a rate of about 12,400
10 b. producing needed synthetic natural gas using ordinary gasification and sulfur recovery means.
VACUUM RESIDUUM HYDRODESULFURIZATION CATALYSTS BPOD and combined with vacuum gas oil by joining 5 lines 129 and 126 and the combined feeds are line Asatisfactory vacuum residuum desulfurization catamixed and passed via line 130 to mild hydrodesulfurizalyst for use in the present invention must have ahigh tion reactor 132. The combined vacuum gas oil and asmetals acceptance capability, a good stability. and a phalt reduced residuum feed mixture is mixed with hylow fouling rate. A suitable vacuum residuum desulfurdrogen in reactor 132 and desulfurized under mild hyization catalyst for use herein has an average pore didrodesulfurization conditions in the manner described ameter in the range from about 100 to 200 A., preferafor the corresponding portion of the process of FIG. 1 bly 130 to 190 A., and comprises a composite of the oxto produce naphtha, low-sulfur fuel oil and by-product ides and/or sulfides of a Group VIII metal, preferably streams containing hydrogen sulfide. Naphtha is sepacobalt, of molybdenum and phosphorus and of a refracrated by fractionation and withdrawn via line 133 from ,tory metal or mixed metal oxide, preferably alumina. reactor 132 at a rate of about 380 BPOD. Via line 134 For reasons of operating convenience, a catalyst sizing low-sulfur fuel oil having a sulfur content of about 0.05 in the range from about /8 inch to about l/40 inch is weight percent is withdrawn atla rate of 46,700 BPOD. preferable.
In gas and sulfur recovery unit 139 hydrogen sulfide and hydrogen sulfide plus light hydrocarbon effluent VACUUM RESIDUUM streams from reactor 132 and gasification unit 145 are HYDRODESULFURIZATION CONDITIONS separated into a sweet fuel gas fraction and a sulfur Conditions suitable for use for the hydrodesulfurizafraction. Via line 140 sweet fuel gas is withdrawn from tion of a vacuum residua, as herein, vary widely and dcunit 139 at a rate of about 230 BPOD. Via line 143 sulpend in the main upon the particular feed. in general, fur is withdrawn from unit 139 at a rate of about 240 satisfactory conditions include the indicated and prishort tons per day. When the gasification unit commary process parameters within the ranges as noted beprises a partial oxidation gasification coupled with a low: methanation stage, a synthetic natural gas product can be recovered having about a heating Value of about 930 Temperature, F. 600 to 850F. preferably 600 (0 s00 5 1; Pressure, psig 1000 to 2500, preferably 1500 10 2200 if the asphalt-reduced vacuum residuum is not mixed LHSV prefcmby with the vacuum gas'oil and the hydrodesulfurized vacuum gas oil is back blended with the asphalt-reduced and the s Ofa hydrogen-Containing gas, preferably a vacuum residuum, the resulting fuel oil blend has a sulga a ng a hy rogen C nt nt of at least 5 lum fur content of 0.5 weight percent. Such a high value pe cent can be acceptable d f l f some areas d f Representative reduced-crude feeds suitable for use some purposes. The product from the integrated proherein include those obtained from Middle Eastern cess. the 0.05 weight percent fuel oil, is of course an excrudes. such as Arabian light, Kuwait, Arabian mecellent and highly desirable product having particular i m. Ir ni heavy p i lly f r olventing deasreference to desirable environmental protection re- 40 p a t mut and Iranian light Crud ils, and the like i m high sulfur content crude oils; others are California The integrated process of FIG, 4 has many process crude, Alaskan North slOpC CI'U(1, and the like, as well advantages, i cl di as blends of crude oils, that is crude oils and crude oil 1. A practical process by which can be produced at blends, in general, which have a sulfur content of at least about a 93 liquid volume percent yield of 'low sulleast about 1 weightpercent. fur fuel oil product from a high sulfur, high asphaltene EXAMPLE 1 crude, for example, an Arabian light atmospheric reduCed-Crude i]; d In the manner described for the process of FIG. 1, en-
2 A practical means for; circled 130111011, 8. 6l5l050F. TBP vacuum gas 011 a. disposing of high sulfur content asphalt (tar), and from an Arabian medium or a Kuwait-type crude containing 2.8 weight percent sulfur was hydrodesulfurized. The yields and product properties were:
Raw Feed Liquid Products Kuwait By-Product K/D Option 7 VGO Butanes C,-,-35()F. 350F. Plus 350650F. 650F. Plus Yield. LV71 0.1 315 97.5 21.5 76.0
Inspections I Gruvity,-API 22.6 48 28 36 26 Aniline Point, F. I73 ASTM Distillation. F. D1160 Dl 160 E D1 160 ST/5 605/ 350/ 385/- 6l5 10/30 685/745 590/690 450/510 670/745 50 815 760 560 805 905 1005 845/960 H 580/625 880/980 /EP /1100 1000/1065 /670 1020/1065 Sulfur, Wt. 2.8 0.005 0.02 0.005 0.05 Nitrogen, ppm 600 l 10 Pour Point, Fl I05 90 O 95 -continued Raw Feed Liquid Products Kuwait By-Product K/D Option" VGO Butancs C,-,350F. 350F. Plus 350650F. 650F. Plus Viscosity. CS at 122F. 40 25 3.0 40
"'Where kerosene and diesel fuel are desired as an option and is separated from the 350F. plus product. the yields oflucl oil. etc. are as listed und The low sulfur oils produced by the process herein, particularly by the hydrodesulfurization of a vacuum gas oil under mild hydrodesulfurization conditions using a select high activity desulfurization catalyst, are advantageous feedstocks for hydrocracking for the production of more valuable lower molecular weight products. Typical operating conditions for catalytic hydrocracking include a temperature between 500 and 900F., a pressure between 100 and 10,000 psig. a hydrogen rate between 100 and 10,000 SCF per barrel of feed, and the use of a catalyst typically comprising a Group VlB and/or Group V111 hydrogenation component and a cracking component, for example amorphous silica-alumina on a crystalline zeolitic molecular sieve.
HYDROGEN CONSUMPTION The amount of hydrogen required to produce a lowsulfur content fuel oil under the mild hydrodesulfurization conditions as herein varies depending upon the sulfur content of the vacuum gas oil to be treated. On the basis of sulfur content of the vacuum gas oil, at least about 40 standard cubic feet of hydrogen is required per pound of sulfur to be removed in order to reduced the sulfur content to at least 0.2 weight percent. In Table 1 below is given comparative examples illustrat ing sulfur removal, hydrogen consumption and resulting product parameters for the desulfurization of vacuum gas oil from an Arabian light crude oil.
er the ivy-product option.
1. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained froma whole crude oil having a sulfur content of at least about 1 weight percent, which comprises:
1. separating said feedstock into a vacuum gas oil fraction and a vacuum residuum fraction;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst comprising a sulfided composite containing cobalt, molybdenum, phosphorus and alumina and a pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least percent of said pores having a diameter in the range to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and I 3. withdrawing from said first hydrodesulfurization zone an effluent, the 350F.+ portion thereof having a sulfur content below 0.2 weight percent, ca1- culated as elemental sulfur.
2. A process as in claim 1 wherein said 350F.+ portion has a sulfur content in the range 0.005 to 0.2.
3. A process as in claim 1 wherein said 350F.+ portion has a sulfur content in the range of 0.005 to 0.1.
4. A process as in claim 1 wherein:
TABLE 1 DESULFURlZATlON OF ARABIAN LIGHT VACUUM GAS 01L VGO FEED PRODUCTS H Consumption. SCF/Bbl 183 240 277 400 H. Consumption, SCF/Lb Sulfur Removed 38.6 39.6 42.5 56.5 Inspections (350F.+ Product Inspections) Sulfur. Wt. "/1 2.3 0.79 0.43 0.16 0.05 Nitrogen, ppm 650 535 500 420 180 AP1 24.6 27.0 27.7 28.5 29.3 Nickel. ppm 0.1 1 0.03 0.02 Nil Nil Vanadium. ppm 0.39 Nil Nil Nil Nil Distillation. ASTM D-] 160. F. 1BP/5 508/599 462/579 51 l/583 464/573 424/549 10/30 635/724 611/707 623/712 614/707 596/700 50 803 780 782 776 763 /90 846/982 860/970 868/963 851/952 848/953 /EP 1009/1044 1012/1037 994/1044 997/1040 998/1041 Product Yields C,-C Wt. /1 0.04 0.12 0.30 0.35 C,-,350F.. LV '7! 0.6 0.7 0.7 0.8 350F.+, 1.V 99.3 99.3 99.4 1001 Although various specific embodiments of the invention have been described and shown, it is to be understood that they are meant to be illustrative only and not limiting. Certain features may be changed without departing from the spirit or essence of the invention. It is apparent that the present invention has broad application to the hydrodemetalization and hydrodesulfurization of hydrocarbons. Accordingly, the invention is not to be construed as limited to the specific embodiments illustrated but only as defined in the following claims.
What is claimed is:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfuxization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group V111 metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, and said pores having an average pore diameter in the range from to 200A and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the -13 range 600 to 850F.. a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;-
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350C.l050F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
4. a fuel oil blend is produced by mixing at least a portion of said 350F.l050F. hydrocarbon mixture with at least a portion of said 350F.+ portion, said blend having a sulfur content below about 0.2 weight percent. I
2.'a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a coker fractionator;
3. a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
4. a metallurgical grade coke is withdrawn from said coker;
5. an overhead fraction is withdrawn from said coker fractionator; and
6. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said overhead fraction withdrawn from said coker fractionator is admixed with said vacuum gas oil.
5. A process as in claim 4 wherein said blend has a sulfur content below about 0.1 weight percent.
6. A process as in claim 1 wherein:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350F.1050F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350F.1050F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
7. A process as in claim 1 wherein:
1. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone uner vacuum residuum hydrodesulfurization conditions, said conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
8. A process as in claim 1 wherein:
l. at least a portion of said vacuum residuum fraction is passed toan asphalt removal unit and separated .into an asphalt fraction and an asphalt-reduced fraction;
2. said asphalt fraction is withdrawn from said unit,
and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil. 1 i
9. A process as in claim 1 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
10. A process as in claim 1 wherein contains titanium.
11. A process in claim 1 wherein the pores of said catalyst have an average pore diameter of about A.
12. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained from a whole crude oil having a sulfur content of at least about 1 weight percent, which'comprises:
1. separating said feedstock into vacuum gas oil fraction and a vacuum residuum fraction;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfuri-, zation zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst consisting essentially of a sulfided composite containing cobalt, molybdenum, phosphorus. titanium and alumina, and having pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to A with at least 50 percent of said pores having a diameter in the range 65 to A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as elemental sulfur.
13. A process as in claim 12 wherein the pores of said catalyst have an average pore diameter of about 100A.
14. A process as in claim 12 wherein:
l at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group VIII metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, said pores having an average pore diameter in the range from 100 to 200A, and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350f.l050F. boiling range hydrocarbon mixture having a sulfur content below about 0.15
said catalyst also weight percent is withdrawn from said fractionator; and
4. a fuel oil blend is produced by mixing at least a portion of said 350F. l()50F. hydrocarbon mixture with at least a portion of said 35()F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
15. A process as in claim 12 wherein:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at leastabout 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
16 3. a 350F.lO5()F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350F.l()50F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
16. A process as in calim 12 wherein:
l. at least a portion of said vacuum residuum fraction is passed to an asphalt removal unit and separated into an asphalt fraction and an asphalt-reduced fraction;
2. said asphalt fraction is withdrawn from said unit,
and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
17. A process as in claim 12 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
UNE'TED STATES PATENT AND TRADEIVZARK QTE FIE PATENT NO. 3,902,991
DATED September 2, 1975 1NVENTOR(S) Robert I. Christensen & George D. Gould it ceriified tha'e; erro: appears in the aboveicentified patent and that said Letters Pateni are hereby corrected as shown beiow;
Col. 3, line 42,
Col. 4, line 53,
C01. 7, line 52,
C01. 8, line 56,
"meatls" should read metals.
"hiwh" should read -high.
"35" should read 95 "vacuum into asphalt" should read vacuum residuum into asphalt--.
Col. 8, lines 57-58, "is asphalt" should read in asphalt.
C01. 9 "3. 5" should read 3.4.
Col. 11, line 31, "reduced" Claim 1, line 22,
line 3,
should read reduce--.
"and a pore" should read and having a pore-.
C01. 13, "350C. should read 350F.-.
Col. 13, eliminate lines 18-31.
line 9,
COL. 13, line 5, "uner" should read -under-.
Col.- 14, line 1, "A process in" should read A process as in.
C01. 14,, line 15, "having pore" should read having a pore-.
3 1 14 line 9, "alumina said" should read alumina oxide, said--.
1 16 line 1, "calim" should read Claim-.
lgned and Scaled thisthirtieth Day of March 1976 [SEAL] Arrest.
RUTH C MASON Arresting Officer C. MARSHALL DANN (ommissl'umr oj'larents and Trademarks

Claims (45)

1. A PROCESS FOR PRODUCING A LOW-SULFUR HYDROCARBON MIXTURE BY DESULFURIZING A HYDROCARBON FEEDSTOCK, SAID FEEDSTOCK BEING A REDUCED-CRUDE OBTAINED FROMA WHOLE CRUDE OIL HAVING A SULFUR OF AT LEAST ABOUT 1 WEIGHT PERCENT, WHICH COMPRISES:
1. SEPARATING SAID FEEDSTOCK INTO A VACUUM GAS OIL FRACTION AND A VACUUM RESIDUUM FRACTION,
2. CONTACTING AT LEAST A PORTION OF SAID VACUUM GAS OIL FRACTION WITH A SELECT HIGH ACTIVITY DESULFURIZATION CATALYST AND HYDROGEN GAS IN A FIRST HYDRODESULFURIZATION ZONE UNDER A HYDROGEN PARTIAL PRESSURE IN THE RANGE 300 TO 800 PSIG, SAID CATALYST COMPRISING A SULFIDED COMPOSITE CONTAINING COBALT, MOLYBDENUM, PHOSPHORUS AND ALUMINA AND A PORE VOLUME OF AT LEAST 0.5 CC PER GRAM OF SAID COMPOSITE, SAID PORES HAVING AN AVERAGE PORE DIAMETER IN THE RANGE 80 TO 120A WITH AT LEAST 50 PERCENT OF SAID PORES HAVING A DIAMETER IN THE RANGE 65 TO 150A, AND SAID COMPOSITE HAVING AN ATOMIC RATIO OF COBALT TO MOLYBDENUM RANGE 0.3 TO 0.6., AND
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst comprising a sulfided composite containing cobalt, molybdenum, phosphorus and alumina and a pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least 50 percent of said pores having a diameter in the range 65 to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
2. A process as in claim 1 wherein said 350*F.+ portion has a sulfur content in the range 0.005 to 0.2.
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a coker fractionator;
2. said asphalt fraction is withdrawn from said unit, and
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst consisting essentially of a sulfided composite containing cobalt, molybdenum, phosphorus, titanium and alumina, and having pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least 50 percent of said pores having a diameter in the range 65 to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
2. said asphalt fraction is withdrawn from said unit, and
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350*F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as elemental sulfur.
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
3. a 350*f.-1050*F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
3. a 350*F.-1050*F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
3. a 350*C.-1050*F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
3. a 350*F.-1050*F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
3. a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
3. A process as in claim 1 wherein said 350*F.+ portion has a sulfur content in the range of 0.005 to 0.1.
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350*F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as Elemental sulfur.
3. WITHDRAWING FROM SAID FIRST HYDRODESULFURIZATION ZONE AN EFFLUENT, THE 350*F.+ PORTION THEREOF HAVING A SULFUR CONTENT BELOW 0.2 WEIGHT PERCENT, CALCULATED AS ELEMENTAL SULFUR.
4. A process as in claim 1 wherein:
4. a metallurgical grade coke is withdrawn from said coker;
4. a fuel oil blend is produced by mixing at least a portion of said 350*F.-1050*F. hydrocarbon mixture with at least a portion of said 350*F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350*F.-1050*F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
4. a fuel oil blend is produced by mixing at least a portion of said 350*F. -1050*F. hydrocarbon mixture with at least a portion of said 350*F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350*F.-1050*F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
5. A process as in claim 4 wherein said blend has a sulfur content below about 0.1 weight percent.
5. an overhead fraction is withdrawn from said coker fractionator; and
6. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said overhead fraction withdrawn from said coker fractionator is admixed with said vacuum gas oil.
6. A process as in claim 1 wherein:
7. A process as in claim 1 wherein:
8. A process as in claim 1 wherein:
9. A process as in claim 1 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
10. A process as in claim 1 wherein said catalyst also contains titanium.
11. A process in claim 1 wherein the pores of said catalyst have an average pore diameter of about 100A.
12. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained from a whole crude oil having a sulfur content of at least about 1 weight percent, which comprises:
13. A process as in claim 12 wherein the pores of said catalyst have an average pore diameter of about 100A.
14. A process as in claim 12 wherein:
15. A process as in claim 12 wherein:
16. A process as in calim 12 wherein:
17. A process as in claim 12 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
US355230A 1973-04-27 1973-04-27 Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture Expired - Lifetime US3902991A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US355230A US3902991A (en) 1973-04-27 1973-04-27 Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US05/583,139 US4006076A (en) 1973-04-27 1975-06-02 Process for the production of low-sulfur-content hydrocarbon mixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US355230A US3902991A (en) 1973-04-27 1973-04-27 Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/583,139 Continuation-In-Part US4006076A (en) 1973-04-27 1975-06-02 Process for the production of low-sulfur-content hydrocarbon mixtures

Publications (1)

Publication Number Publication Date
US3902991A true US3902991A (en) 1975-09-02

Family

ID=23396708

Family Applications (1)

Application Number Title Priority Date Filing Date
US355230A Expired - Lifetime US3902991A (en) 1973-04-27 1973-04-27 Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture

Country Status (1)

Country Link
US (1) US3902991A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4048060A (en) * 1975-12-29 1977-09-13 Exxon Research And Engineering Company Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4051021A (en) * 1976-05-12 1977-09-27 Exxon Research & Engineering Co. Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst
US4069139A (en) * 1975-12-29 1978-01-17 Exxon Research & Engineering Co. Hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4075084A (en) * 1977-02-17 1978-02-21 Union Oil Company Of California Manufacture of low-sulfur needle coke
US4145189A (en) * 1976-09-08 1979-03-20 Energy Conversion Systems Limited Process for preparing a clean-burning, low sulphur liquid fuel from coal
US4302323A (en) * 1980-05-12 1981-11-24 Mobil Oil Corporation Catalytic hydroconversion of residual stocks
US4385984A (en) * 1980-09-09 1983-05-31 Shell Oil Company Lubricating base oil compositions
JPS6065093A (en) * 1983-09-21 1985-04-13 Res Assoc Petroleum Alternat Dev<Rapad> Treatment of oil sand oil and residual oil
US4556480A (en) * 1984-08-23 1985-12-03 Phillips Petroleum Company Removal of topped crude demineralization sediment by backwashing filter to crude oil desalting process
US4615789A (en) * 1984-08-08 1986-10-07 Chevron Research Company Hydroprocessing reactors and methods
US4885080A (en) * 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US4913797A (en) * 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5543036A (en) * 1993-07-22 1996-08-06 Mobil Oil Corporation Process for hydrotreating
US6217748B1 (en) * 1998-10-05 2001-04-17 Nippon Mitsubishi Oil Corp. Process for hydrodesulfurization of diesel gas oil
US6838060B1 (en) * 1996-09-24 2005-01-04 Institut Francais Dupetrole Process and apparatus for the production of catalytic cracking gasoline with a low sulphur content
US20050139522A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
WO2005061670A3 (en) * 2003-12-19 2006-03-23 Shell Oil Co Systems, methods, and catalysts for producing a crude product
US20070246399A1 (en) * 2006-04-24 2007-10-25 Florent Picard Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps
WO2009126974A2 (en) * 2008-04-10 2009-10-15 Shell Oil Company Diluents, method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8137536B2 (en) 2003-12-19 2012-03-20 Shell Oil Company Method for producing a crude product
US8450538B2 (en) 2008-04-10 2013-05-28 Shell Oil Company Hydrocarbon composition
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
WO2014120491A1 (en) * 2013-02-01 2014-08-07 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
FR3013722A1 (en) * 2013-11-28 2015-05-29 IFP Energies Nouvelles METHOD FOR HYDROPROCESSING A GASOLINE IN SERIES REACTORS WITH HYDROGEN RECYCLING
WO2015161937A1 (en) * 2014-04-25 2015-10-29 IFP Energies Nouvelles Hydrotreating process in cocurrent upflow reactors having an overall countercurrent
WO2016089590A1 (en) * 2014-12-04 2016-06-09 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
WO2019053323A1 (en) 2017-09-14 2019-03-21 Neste Oyj Low sulfur fuel oil bunker composition and process for producing the same
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US12025435B2 (en) 2017-02-12 2024-07-02 Magēmã Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US12071592B2 (en) 2017-02-12 2024-08-27 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287254A (en) * 1964-06-03 1966-11-22 Chevron Res Residual oil conversion process
US3306845A (en) * 1964-08-04 1967-02-28 Union Oil Co Multistage hydrofining process
US3531398A (en) * 1968-05-03 1970-09-29 Exxon Research Engineering Co Hydrodesulfurization of heavy petroleum distillates
US3544452A (en) * 1968-07-08 1970-12-01 Chevron Res Fluorine and metal phosphate-containing catalysts and preparation and use thereof
US3577353A (en) * 1968-11-22 1971-05-04 Chevron Res Preparation of a cogelled catalyst of alumina and a group vi hydrogenating component
US3658681A (en) * 1970-02-24 1972-04-25 Texaco Inc Production of low sulfur fuel oil
US3668116A (en) * 1970-10-16 1972-06-06 Exxon Research Engineering Co Slurry hydrodesulfurization of a heavy petroleum oil
US3684688A (en) * 1971-01-21 1972-08-15 Chevron Res Heavy oil conversion
US3749664A (en) * 1971-04-01 1973-07-31 Union Oil Co Hydrogenative denitrogenation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287254A (en) * 1964-06-03 1966-11-22 Chevron Res Residual oil conversion process
US3306845A (en) * 1964-08-04 1967-02-28 Union Oil Co Multistage hydrofining process
US3531398A (en) * 1968-05-03 1970-09-29 Exxon Research Engineering Co Hydrodesulfurization of heavy petroleum distillates
US3544452A (en) * 1968-07-08 1970-12-01 Chevron Res Fluorine and metal phosphate-containing catalysts and preparation and use thereof
US3577353A (en) * 1968-11-22 1971-05-04 Chevron Res Preparation of a cogelled catalyst of alumina and a group vi hydrogenating component
US3658681A (en) * 1970-02-24 1972-04-25 Texaco Inc Production of low sulfur fuel oil
US3668116A (en) * 1970-10-16 1972-06-06 Exxon Research Engineering Co Slurry hydrodesulfurization of a heavy petroleum oil
US3684688A (en) * 1971-01-21 1972-08-15 Chevron Res Heavy oil conversion
US3749664A (en) * 1971-04-01 1973-07-31 Union Oil Co Hydrogenative denitrogenation

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US4048060A (en) * 1975-12-29 1977-09-13 Exxon Research And Engineering Company Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4069139A (en) * 1975-12-29 1978-01-17 Exxon Research & Engineering Co. Hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
US4051021A (en) * 1976-05-12 1977-09-27 Exxon Research & Engineering Co. Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst
US4145189A (en) * 1976-09-08 1979-03-20 Energy Conversion Systems Limited Process for preparing a clean-burning, low sulphur liquid fuel from coal
US4075084A (en) * 1977-02-17 1978-02-21 Union Oil Company Of California Manufacture of low-sulfur needle coke
US4302323A (en) * 1980-05-12 1981-11-24 Mobil Oil Corporation Catalytic hydroconversion of residual stocks
US4385984A (en) * 1980-09-09 1983-05-31 Shell Oil Company Lubricating base oil compositions
JPS6065093A (en) * 1983-09-21 1985-04-13 Res Assoc Petroleum Alternat Dev<Rapad> Treatment of oil sand oil and residual oil
JPS6359440B2 (en) * 1983-09-21 1988-11-18
US4615789A (en) * 1984-08-08 1986-10-07 Chevron Research Company Hydroprocessing reactors and methods
US4556480A (en) * 1984-08-23 1985-12-03 Phillips Petroleum Company Removal of topped crude demineralization sediment by backwashing filter to crude oil desalting process
US4913797A (en) * 1985-11-21 1990-04-03 Mobil Oil Corporation Catalyst hydrotreating and dewaxing process
US4885080A (en) * 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5543036A (en) * 1993-07-22 1996-08-06 Mobil Oil Corporation Process for hydrotreating
US6838060B1 (en) * 1996-09-24 2005-01-04 Institut Francais Dupetrole Process and apparatus for the production of catalytic cracking gasoline with a low sulphur content
US6217748B1 (en) * 1998-10-05 2001-04-17 Nippon Mitsubishi Oil Corp. Process for hydrodesulfurization of diesel gas oil
US8475651B2 (en) 2003-12-19 2013-07-02 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7736490B2 (en) 2003-12-19 2010-06-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20050173303A1 (en) * 2003-12-19 2005-08-11 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
WO2005061670A3 (en) * 2003-12-19 2006-03-23 Shell Oil Co Systems, methods, and catalysts for producing a crude product
US8608938B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Crude product composition
US7534342B2 (en) 2003-12-19 2009-05-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7588681B2 (en) 2003-12-19 2009-09-15 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7591941B2 (en) 2003-12-19 2009-09-22 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8764972B2 (en) 2003-12-19 2014-07-01 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7615196B2 (en) 2003-12-19 2009-11-10 Shell Oil Company Systems for producing a crude product
US7628908B2 (en) 2003-12-19 2009-12-08 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7648625B2 (en) 2003-12-19 2010-01-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8608946B2 (en) 2003-12-19 2013-12-17 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7674368B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7674370B2 (en) 2003-12-19 2010-03-09 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8506794B2 (en) 2003-12-19 2013-08-13 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20050167332A1 (en) * 2003-12-19 2005-08-04 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US8613851B2 (en) 2003-12-19 2013-12-24 Shell Oil Company Crude product composition
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
US20050139522A1 (en) * 2003-12-19 2005-06-30 Bhan Opinder K. Systems, methods, and catalysts for producing a crude product
US7780844B2 (en) 2003-12-19 2010-08-24 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7807046B2 (en) 2003-12-19 2010-10-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7837863B2 (en) 2003-12-19 2010-11-23 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8663453B2 (en) 2003-12-19 2014-03-04 Shell Oil Company Crude product composition
US7955499B2 (en) 2003-12-19 2011-06-07 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7959796B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8025794B2 (en) 2003-12-19 2011-09-27 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8070937B2 (en) 2003-12-19 2011-12-06 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8137536B2 (en) 2003-12-19 2012-03-20 Shell Oil Company Method for producing a crude product
US8241489B2 (en) 2003-12-19 2012-08-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7918992B2 (en) 2005-04-11 2011-04-05 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US8481450B2 (en) 2005-04-11 2013-07-09 Shell Oil Company Catalysts for producing a crude product
US7678264B2 (en) 2005-04-11 2010-03-16 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US7651606B2 (en) * 2006-04-24 2010-01-26 Institut Francais Du Petrole Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps
US20070246399A1 (en) * 2006-04-24 2007-10-25 Florent Picard Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps
US7749374B2 (en) 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
US8734634B2 (en) 2008-04-10 2014-05-27 Shell Oil Company Method for producing a crude product, method for preparing a diluted hydrocarbon composition, crude products, diluents and uses of such crude products and diluents
WO2009126974A3 (en) * 2008-04-10 2010-03-18 Shell Oil Company Method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions
WO2009126974A2 (en) * 2008-04-10 2009-10-15 Shell Oil Company Diluents, method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions
US8450538B2 (en) 2008-04-10 2013-05-28 Shell Oil Company Hydrocarbon composition
US9725661B2 (en) 2013-02-01 2017-08-08 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
WO2014120491A1 (en) * 2013-02-01 2014-08-07 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
US9080113B2 (en) 2013-02-01 2015-07-14 Lummus Technology Inc. Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels
FR3013722A1 (en) * 2013-11-28 2015-05-29 IFP Energies Nouvelles METHOD FOR HYDROPROCESSING A GASOLINE IN SERIES REACTORS WITH HYDROGEN RECYCLING
WO2015078674A1 (en) * 2013-11-28 2015-06-04 IFP Energies Nouvelles Method for hydrotreating diesel fuel in reactors in series, comprising hydrogen recirculation
RU2666589C1 (en) * 2013-11-28 2018-09-18 Ифп Энержи Нувелль Method for hydrotreating gas oil in reactors in series with hydrogen recirculation
US10072221B2 (en) 2013-11-28 2018-09-11 IFP Energies Nouvelles Process for the hydrotreatment of a gas oil in a series of reactors with recycling of hydrogen
FR3020373A1 (en) * 2014-04-25 2015-10-30 IFP Energies Nouvelles HYDROTREATING PROCESS IN ASCENDING CO-CURRENT REACTORS HAVING AN OVERCURRENT CURRENT
WO2015161937A1 (en) * 2014-04-25 2015-10-29 IFP Energies Nouvelles Hydrotreating process in cocurrent upflow reactors having an overall countercurrent
CN107001959A (en) * 2014-12-04 2017-08-01 埃克森美孚研究工程公司 Low-sulfur marine fuel and preparation method thereof
JP2018501342A (en) * 2014-12-04 2018-01-18 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Low sulfur marine bunker fuel and method for producing the same
US9920270B2 (en) 2014-12-04 2018-03-20 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
AU2015355397B2 (en) * 2014-12-04 2018-06-14 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
WO2016089590A1 (en) * 2014-12-04 2016-06-09 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
US10501699B2 (en) 2014-12-04 2019-12-10 Exxonmobil Research And Engineering Company Low sulfur marine bunker fuels and methods of making same
RU2692483C2 (en) * 2014-12-04 2019-06-25 ЭкссонМобил Рисерч энд Энджиниринг Компани Low-sulfur ship bunker fuels and methods for production thereof
US10533141B2 (en) 2017-02-12 2020-01-14 Mag{tilde over (e)}mã Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US11441084B2 (en) 2017-02-12 2022-09-13 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US10563132B2 (en) 2017-02-12 2020-02-18 Magēmā Technology, LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US10563133B2 (en) 2017-02-12 2020-02-18 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US10584287B2 (en) 2017-02-12 2020-03-10 Magēmā Technology LLC Heavy marine fuel oil composition
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US10655074B2 (en) 2017-02-12 2020-05-19 Mag{hacek over (e)}m{hacek over (a)} Technology LLC Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil
US10836966B2 (en) 2017-02-12 2020-11-17 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US11136513B2 (en) 2017-02-12 2021-10-05 Magëmä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11203722B2 (en) 2017-02-12 2021-12-21 Magëmä Technology LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization
US11345863B2 (en) 2017-02-12 2022-05-31 Magema Technology, Llc Heavy marine fuel oil composition
US12071592B2 (en) 2017-02-12 2024-08-27 Magēmā Technology LLC Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil
US11447706B2 (en) 2017-02-12 2022-09-20 Magēmā Technology LLC Heavy marine fuel compositions
US11492559B2 (en) 2017-02-12 2022-11-08 Magema Technology, Llc Process and device for reducing environmental contaminates in heavy marine fuel oil
US11530360B2 (en) 2017-02-12 2022-12-20 Magēmā Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US11560520B2 (en) 2017-02-12 2023-01-24 Magēmā Technology LLC Multi-stage process and device for treatment heavy marine fuel oil and resultant composition and the removal of detrimental solids
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US11795406B2 (en) 2017-02-12 2023-10-24 Magemä Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11884883B2 (en) 2017-02-12 2024-01-30 MagêmãTechnology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
US11912945B2 (en) 2017-02-12 2024-02-27 Magēmā Technology LLC Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit
US12025435B2 (en) 2017-02-12 2024-07-02 Magēmã Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil
WO2019053323A1 (en) 2017-09-14 2019-03-21 Neste Oyj Low sulfur fuel oil bunker composition and process for producing the same

Similar Documents

Publication Publication Date Title
US3902991A (en) Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US4006076A (en) Process for the production of low-sulfur-content hydrocarbon mixtures
US4302323A (en) Catalytic hydroconversion of residual stocks
US4067799A (en) Hydroconversion process
US7214308B2 (en) Effective integration of solvent deasphalting and ebullated-bed processing
US5158668A (en) Preparation of recarburizer coke
US5286371A (en) Process for producing needle coke
US3684688A (en) Heavy oil conversion
US3816298A (en) Hydrocarbon conversion process
US4686028A (en) Upgrading of high boiling hydrocarbons
US4695369A (en) Catalytic hydroconversion of heavy oil using two metal catalyst
US3891538A (en) Integrated hydrocarbon conversion process
US3287254A (en) Residual oil conversion process
US4151070A (en) Staged slurry hydroconversion process
US6620311B2 (en) Process for converting petroleum fractions, comprising an ebullated bed hydroconversion step, a separation step, a hydrodesulphurization step and a cracking step
US3671419A (en) Upgrading of crude oil by combination processing
US3172842A (en) Hydrocarbon conversion process includ- ing a hydrocracking stage, two stages of catalytic cracking, and a reform- ing stage
US4176048A (en) Process for conversion of heavy hydrocarbons
CA1169841A (en) Process for upgrading residual oil and catalyst for use therein
US3862899A (en) Process for the production of synthesis gas and clean fuels
WO2020123374A1 (en) Upgrading polynucleararomatic hydrocarbon-rich feeds
US4992163A (en) Cat cracking feed preparation
US3321395A (en) Hydroprocessing of metal-containing asphaltic hydrocarbons
US4272357A (en) Desulfurization and demetalation of heavy charge stocks
US5362382A (en) Resid hydrocracking using dispersed metal catalysts