US3902991A - Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture - Google Patents
Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture Download PDFInfo
- Publication number
- US3902991A US3902991A US355230A US35523073A US3902991A US 3902991 A US3902991 A US 3902991A US 355230 A US355230 A US 355230A US 35523073 A US35523073 A US 35523073A US 3902991 A US3902991 A US 3902991A
- Authority
- US
- United States
- Prior art keywords
- vacuum
- sulfur
- withdrawn
- hydrodesulfurization
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011593 sulfur Substances 0.000 title claims abstract description 139
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 80
- 239000000203 mixture Substances 0.000 title claims abstract description 62
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 54
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 134
- 239000007789 gas Substances 0.000 claims abstract description 102
- 239000003921 oil Substances 0.000 claims abstract description 90
- 239000003054 catalyst Substances 0.000 claims abstract description 54
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 49
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 48
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 42
- 239000001257 hydrogen Substances 0.000 claims abstract description 42
- 239000000295 fuel oil Substances 0.000 claims abstract description 35
- 230000000694 effects Effects 0.000 claims abstract description 17
- 238000006477 desulfuration reaction Methods 0.000 claims abstract description 16
- 230000023556 desulfurization Effects 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 claims abstract description 10
- 239000011148 porous material Substances 0.000 claims description 49
- 239000002131 composite material Substances 0.000 claims description 27
- 239000010426 asphalt Substances 0.000 claims description 25
- 238000009835 boiling Methods 0.000 claims description 25
- 239000010779 crude oil Substances 0.000 claims description 25
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 22
- 239000011733 molybdenum Substances 0.000 claims description 22
- 229910052750 molybdenum Inorganic materials 0.000 claims description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- 229910017052 cobalt Inorganic materials 0.000 claims description 16
- 239000010941 cobalt Substances 0.000 claims description 16
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 239000011574 phosphorus Substances 0.000 claims description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- 239000000571 coke Substances 0.000 claims description 5
- 230000003009 desulfurizing effect Effects 0.000 claims description 4
- 238000004939 coking Methods 0.000 abstract description 6
- 230000003111 delayed effect Effects 0.000 abstract description 5
- 239000000047 product Substances 0.000 description 29
- 239000002184 metal Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 10
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 9
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- 238000002309 gasification Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 238000004821 distillation Methods 0.000 description 6
- 238000005194 fractionation Methods 0.000 description 6
- 235000009508 confectionery Nutrition 0.000 description 5
- 239000002737 fuel gas Substances 0.000 description 5
- 239000003350 kerosene Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 238000004508 fractional distillation Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000004517 catalytic hydrocracking Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 241000532370 Atla Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000011959 amorphous silica alumina Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- PJSDPKGKXZOTCP-UHFFFAOYSA-N butane pentane Chemical compound CCCC.CCCCC.CCCCC PJSDPKGKXZOTCP-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 102200118166 rs16951438 Human genes 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/107—Atmospheric residues having a boiling point of at least about 538 °C
Definitions
- the present invention relates to the production of hydrocarbon mixtures of low-sulfur content. More particularly, it relates to deep hydrodesulfurization of vacuum gas oils obtained from reduced-crude fractions of sulfur-containing crude oils and the production of hydrocarbon mixtures such as fuel oil, fuel oil blending stock, kerosene, diesel and fluid catalytic cracker feeds having low sulfur contents.
- fuel oil blends having a low sulfur content are produced in an integrated hydrodesulfurization process from vacuum gas oil and vacuum residuum fractions of sulfur-containing reduced-crude oils.
- Petroleum hydrocarbons are being used up at an ever increasing rate. New crude discoveries have not been sufficient to maintain the unproduced reserve. As a result, crude oils heretofore avoided where possible because of undesirable properties, especially those with high sulfur contents and those also containing heavy metal contaminations, must now be used as feeds for petroleum refineries. Asphaltenes frequently are found in combination with the metal contaminants and these together with sulfur and the metals are a source of serious processing and cost problems in the refining of such crude oils.
- a longer operating cycle for the catalyst in the hydrodesulfurization of a vacuum gas oil e.g., a cycle of at least 30 months;
- a select high activity vacuum gas oil hydrodesulfurization catalyst capable of deeper [item (l) above] sulfur removal and suitable for use with a combined feedstock, i.e., a mixture of vacuum gas oil and of vacuum-residuum gas oil, and the like;
- a vacuum gas oil hydrodesulfurization process performance permitting integration thereof with concurrent vacuum residuum hydrodesulfurization means for the substantial reduction of fuel oil pool sulfur content levels to new low levels, for example below 1 weight percent, and even to below 0.3 weight percent;
- the present invention is a process for producing from a sulfur-containing reduced-crude feedstock, for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel.
- a sulfur-containing reduced-crude feedstock for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel.
- the reducedcrude is separated into at least one vacuum gas oil fraction, which may boil in the range 600l lOOF., and a vacuum residuum fraction.
- the vacuum gas oil fraction is contacted with a select high activity desulfurization catalyst and hydrogen gas in a hydrodesulfurization zone at mild hydrodesulfurization conditions, and from the hydrodesulfurizing reaction zone is withdrawn a product having a sulfur content below 0.2 weight percent.
- a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
- mild hydrodesulfurization conditions as used herein, is meant the employment of process conditions, including:
- the vacuum residuum fraction may be subjected to further processing as desired.
- a reduced-crude feedstock or oil as used herein. is meant the residue or bottoms fraction normally obtained in the topping by distillation of a whole crude, i.e., a topped whole crude.
- the distillation is an atmospheric distillation, but it may be carried out, if desired, and as known in the art, under a moderately subatmospheric pressure.
- the reduced-crude feedstocks contemplated for use herein vary widely depending upon the crude oil which is topped to obtain them.
- reduced-crude feedstocks obtained from whole crude oils having a 1 weight percent sulfur content or higher are satisfactory and reduced-crude feedstocks obtained from these whole crude oils are contemplated for use herein.
- the whole crude oil may have smaller relative amounts of sulfur and still yield satisfactory reduced-crude feedstocks.
- sulfur impurity in the whole crude oil becomes less, the economic and process advantages of the present process also become less.
- asphaltene and metal contents of the whole crude oil from which the reduced-crude feedstock is obtained are low. but these factors are of secondary importance.
- Reduced-crude feedstocks obtained from whole crude oils which contain relative amounts of asphaltenes, and metals as normally present in a whole crude are satisfactory and contemplated for use herein provided that the amount of sulfur in the whole crude is about 1 weight percent or higher.
- the form of the sulfur in the reduced crude may vary widely and is dependent upon the natural condition of the sulfur in the whole crude which is topped to produce the feedstock. Sulfur contents, as expressed throughout the description, are calculated as elemental sulfur.
- the vacuum gas oils satisfactory for use in the present invention are those ordinarily obtained by the fractional distillation at a subatmospheric pressure of a reduced-crude oil having the characteristics as described above and these are contemplated for use herein.
- the pressures employed for these fractionations are below 1 atmosphere, usually in the range 0.060.25 atmosphere, and the resulting vacuum gas oils and vacuum residua are useful and contemplated for use as described in the present disclosure.
- the vacuum gas oils preferred herein have an initial boiling point (ASTM- D1 100) between 350F. and about 850F. and an end boiling point in the range 1000to l 100F., preferably above 1000F.
- the vacuum residua employed herein are the bottoms fractions from the aforementioned fractional distillation of reducedcrudes under vacuum. These are contemplated for use herein.
- Preferred vacuum residua have an initial boiling point of about 1000F.
- a hydrocarbon product mixture having a sulfur content in the range, broadly, of 0.005 to 0.2 weight percent, particularly 0.1 to 0.005, and most particularly 0.1 to 0.05;
- a select high activity hydrodesulfurization catalyst is meant a solid composite comprising a Group Vlll component, a Group Vl component and alumina, having an average pore diameter in the range 65-150 A., and a pore volume in the range 0.3 to 1 cc per gram. Excellent results have been obtained with catalysts of the foregoing description which:
- the catalyst further contains phosphorus, and in a preferred form of the catalyst titanium also is present.
- Use of titanium-containing alumina during catalyst preparation is an excellent procedure. Good results may be obtained when nickel is used in place of the cobalt.
- the density of the catalyst composite should be in the range below about 60 pounds per cubic foot, preferably below 50 pounds.
- the size of the composite should be in the range one-eighth to one-fortieth inch, preferably one-sixteenth to one-thirty second inch.
- An especially suitable select high activity hydrodesulfurization catalyst may be prepared by the steps comprising:
- FIGS. 1-4 are process flow diagrams schematically indicating preferred embodiments of the process of the present invention.
- a reduced-crude feedstock a 650F.+ Kuwait residuum is fed at a rate of 50,000 barrels per operating day (BPOD) via line 1 to crude oil vacuum fractionation zone 2.
- BPOD barrels per operating day
- other sulfur-containing hydrocarbon sources such as shale oils, tar sand oils and oils derived from coal can be fed to fractionation zone 2.
- Fractionation zone 2 consists basically of a typical vacuum distillation unit, as used in the petroleum refining art.
- zone 2 the Kuwait residuum is separated into an overhead fraction, a vacuum gas oil, in an amount of 30,000 BPOD and a bottoms fraction, a vacuum residuum (1,050F. plus true boiling point cut) in an amount of 20,000 BPOD.
- the vacuum gas oil is withdrawn from fractionator 2 via line 3 and passed to mild hydrodesulfurization reactor 4 and the vacuum residuum is withdrawn from fractionator 2 via line 5 and passed to vacuum residuum hydrodesulfurization reactor 13.
- the respective feeds, vacuum gas oil, or vacuum residuum are mixed with hydrogen and hydrodesulfurized under mild or vacuum residuum hydrodesulfurization conditions, respectively.
- the hydrogen is obtained from a suitable source.
- hydrogen is produced in hydrogen plant 7 by steam reforming about 1,800 BPOD of naphtha, which is introduced to hydrogen plant 7 via line 6.
- the produced hydrogen is withdrawn from hydrogen plant 7 via line 8 in an am c unt of about 34 million standard cubic feet per day (MSCFD).
- MSCFD standard cubic feet per day
- the vacuum gas oil is mixed with hydrogen (2000 standard cubic feet (SCF)/barrel of vacuum gas oil) and contacted with a select high activity desulfurization catalyst which is a sulfided solid composite:
- the contacting is at a hydrogen partial pressure of about 400-500 psig, a total pressure of about 600-800 psig, a temperature of about 700800F., and at a liquid hourly space velocity (LI-ISV) of about 2-3.
- the contacting of the vacuum gas oil feed, as described above, results in the production of naphtha, a low-sulfur fuel oil having a sulfur content of about 0.15 weight percent, and a light hydrocarbon gasJ-l s mixture.
- the naphtha is removed from reactor 4 via line 14 at a rate of about 400 BPOD and the fuel oil is removed from 6 reactor 4 via line 19 at a rate of about 29,800 BPOD.
- the light gas-H 5 mixture is withdrawn from reactor 4 via line 16 and is passed to a conventional gas and sulfur recovery unit, 27, for processing.
- the vacuum residuum introduced via line 5 and the hydrogen (about 4000 SCF per barrel of vacuum residuum) introduced via line 12 are mixed and contacted with a satisfactory vacuum residuum hydrodesulfurization catalyst, for example a sulfided composite of cobalt, molybdenum, phosphorus, alumina and titania having the nominal (i.e., calculated as the indicated oxides) composition as follows:
- Suitable vacuum residuum hydrodesulfurization conditions for example a temperature of about 700800F'., a total pressure of about 2000 psig, a hydrogen partial pressure of about 1500 psia, and an LI-ISV of less than 0.5.
- the treatment of the vacuum residuum in reactor 13 results in the production of naphtha and a sulfur-reduced vacuum residuum as the principal products and a light gas fraction comprising low molecular weight hydrocarbons and hydrogen sulfide,
- the naphtha is removed from reactor 13 via line 15 at a rate of about BPOD.
- the light gas stream containing hydrocarbons and hydrogen sulfide is withdrawn from reactor l3-via line 17 and passed to a conventional gas and sulfur recovery unit 27 via lines 17 and 18.
- the sulfur reduced vacuum residuum produced in reactor 13 is withdrawn via line 23 and is passed to a vacuum fractionator 24 for separation into a bottoms product and an overhead fraction.
- the bottoms product is withdrawn from fractionator 24 via line 26 at a rate of 14,000 BPOD and comprises a 1,050F. plus boiling residuum which'contains about 1.2 percent sulfur.
- a fuel oil blend is produced by mixing at least a portion of the 350F.1050F. hydrocarbon mixture obtained by fractionating the hydrodesulfurized vacuum residuum product stream with at least a portion of the 350F.+ efiluent fraction of the product from the vacuum gas oil hydrodesulfurization reactor, the blend having sulfur content below about 0.2 weight percent, or, below about 0.1 weight percent.
- This fuel oil pool or blend has a good stability and is an excellent synthetic replacement for the virgin low sulfur content fuel oils presently available in the market.
- At least a portion of the low sulfur product from the mild hydrodesulfurization zone 4 may be used as a charge stock for a fluid catalytic cracker.
- FIG. 2 a reduced-crude is processed substantially in the manner as described for that portion of the process of FIG. 1 which is enclosed within the dotted lines except:
- the heavier fraction of the desulfurized vacuum gas oil is fractionated after withdrawal from low pressure separator 62 via line 67.
- the withdrawn gas oil is passed to fractionator 68 via line 67 for separation into a naphtha fraction, a kerosene plus diesel oil fraction and a desulfurized fuel oil product.
- a reduced-crude feed a 650F. plus boiling Kuwait residuum is delivered via line 85 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 86 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum.
- BPOD barrels per operating day
- Via line 89 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 86 at a rate of about 30,000 BPOD.
- Via line 87 the vacuum residuum is withdrawn from fractionator 86 at a rate of about 20,000 BPOD and is Average Pore Diameter, 130-190 Pore Volume, cc per gram 0.5 C 2.5 M00 10.0 TiO l P. ,O,-, 10.0 A1 0 Remainder under the following conditions:
- the coker feed is withdrawn from fractionator 94 via line and passed to delayed coker 96.
- Delayed coker 96 is a conventional coke-forming unit which converts the feed to a metallurgical grade coke product and a vaporized hydrocarbon, a coker effluent.
- the coker effluent is withdrawn from the unit 96 via line 97 and passed to the coker fractionator via lines 97 and 98.
- Coke having a sulfur content below 2 weight percent and a metals content below 150 ppm of vanadium is withdrawn from coker 96 via line 99 at a rate of about 450 short tons per day.
- Two overhead hydrocarbon fractions are withdrawn from coker fractionator 94, the first a C fraction and the second the C coker gas oil.
- Via line 100 the C,- light hydrocarbon fraction is withdrawn from fractionator 94 and passed via lines 100, 110 and 111 to gas and sulfur recovery unit 114.
- Via line 103 the C coker gas oil is withdrawn from fractionator 94 at a rate of about 18,800 BPOD.
- This gas oil having a sulfur content of about 0.871 sulfur is mixed with the vacuum gas oil by joining lines 103 and 89, is line mixed and passed via line 104 to mild hydrodesulfurization reactor 106.
- reactor 106 the combined vacuum gas oil and coker gas oil feed is mixed with hydrogen and contacted with a select high activity desulfurization catalyst in the manner described for the process of FIG. 1 with the production of naphtha and low sulfur content fuel oil.
- the naphtha is separated by fractionation and withdrawn from reactor 106 via line 107 at a rate of 3,200 BPOD.
- Fuel oil having a sulfur content of 0.15 weight percent is withdrawn from reactor 106 via line 109 at a rate of 46,100 BPOD.
- the hydrogen sulfide and light hydrocarbon containing gas streams withdrawn from reactors 88 and 106 and from coker fractionator 94 are passed to gas and sulfur recovery unit 114 via the lines indicated in the Figure and in unit 114 using ordinary recovery methods the hydrogen sulfide is converted to sulfur and the light hydrocarbons are separated into a sweet fuel gas product.
- the former is withdrawn from unit 114 via line 115 at a rate of about 305 short tons per day and the sweet fuel gas is withdrawn from unit 114 via line 116 at a rate of 1,510 BPOD.
- Delayed cokers or furnace type coking units heat the residuum or other hydrocarbon feedstock to coking temperatures rapidly and little reaction occurs while the charge is in the furnace. Effluent from the furnace discharges at about 850F. to 1000F. (see, for example, U.S. Pat. No. 2,727,853, U.S. Pat. No. 2,727,853).
- U.S. Pat. No. 2,988,501 and U.S. Pat. No. 3,027,317 disclose coking ahead of hydrodesulfurization and U.S. Pat. No. 3,684,688 disclose coking afterwards.
- the integrated process of FIG. 3 has many process advantages, including:
- a practical means for disposing of high sulfur-content by-product e.g., producing metallurgical grade coke and additional fuel oil range gas oil.
- a reduced-crude feed a 650F. plus boiling Arabian light residuum is delivered via line 124 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 125 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum.
- BPOD barrels per operating day
- vacuum residuum having a sulfur content of 4.1 weight percent is withdrawn from fraetionator 125 at a rate of about 15,500 BPOD and is passed to asphalt removal unit 128 for separation of the vacuum into asphalt or tar and an asphalt-reduced residuum, a solvent deasphalted oil.
- the separation is as phalt removal unit 128 is carried out using conventional solvent deasphalting methods, for example, butane-pentane solvent deasphalting or the like.
- Asphalt or tar having a sulfur content of about 6.1% is withdrawn from unit 128 via line 144 and passed to gasification unit 145 for gasification and separation into a sulfur-containing fraction comprising hydrogen sulfide and into a synthetic natural gas fraction substantially free of sulfur.
- the gasification is effected by conventional process methods, for example, by the Texaco Partial Oxidation Process or the Shell Gasification Process.
- Asphalt-reduced residuum (solvent deasphalted oil) having a sulfur content of about 3.5 weight percent is withdrawn from unit 128 at a rate of about 12,400
- Asatisfactory vacuum residuum desulfurization catamixed and passed via line 130 to mild hydrodesulfurizalyst for use in the present invention must have ahigh tion reactor 132.
- the combined vacuum gas oil and asmetals acceptance capability, a good stability. and a phalt reduced residuum feed mixture is mixed with hylow fouling rate.
- a suitable vacuum residuum desulfurdrogen in reactor 132 and desulfurized under mild hyization catalyst for use herein has an average pore didrodesulfurization conditions in the manner described ameter in the range from about 100 to 200 A., preferafor the corresponding portion of the process of FIG. 1 bly 130 to 190 A., and comprises a composite of the oxto produce naphtha, low-sulfur fuel oil and by-product ides and/or sulfides of a Group VIII metal, preferably streams containing hydrogen sulfide.
- Naphtha is sepacobalt, of molybdenum and phosphorus and of a refracrated by fractionation and withdrawn via line 133 from ,tory metal or mixed metal oxide, preferably alumina.
- reactor 132 at a rate of about 380 BPOD.
- line 134 a catalyst sizing low-sulfur fuel oil having a sulfur content of about 0.05 in the range from about /8 inch to about l/40 inch is weight percent is withdrawn atla rate of 46,700 BPOD. preferable.
- HAVULFURIZATION CONDITIONS separated into a sweet fuel gas fraction and a sulfur Conditions suitable for use for the hydrodesulfurizafraction.
- sweet fuel gas is withdrawn from tion of a vacuum residua, as herein, vary widely and dcunit 139 at a rate of about 230 BPOD.
- line 143 sulpend in the main upon the particular feed. in general, fur is withdrawn from unit 139 at a rate of about 240 satisfactory conditions include the indicated and prishort tons per day.
- a synthetic natural gas product can be recovered having about a heating Value of about 930 Temperature, F. 600 to 850F.
- the resulting fuel oil blend has a sulga a ng a hy rogen C nt nt of at least 5 lum fur content of 0.5 weight percent.
- pe cent can be acceptable d f l f some areas d f Representative reduced-crude feeds suitable for use some purposes.
- the product from the integrated proherein include those obtained from Middle Eastern cess. the 0.05 weight percent fuel oil, is of course an excrudes. such as Arabian light, Kuwait, Arabian mecellent and highly desirable product having particular i m. Ir ni heavy p i lly f r olventing deasreference to desirable environmental protection re- 40 p a t mut and Egyptian light Crud ils, and the like i m high sulfur content crude oils; others are California
- the integrated process of FIG, 4 has many process crude, Alaskan North slOpC CI'U(1, and the like, as well advantages, i cl di as blends of crude oils, that is crude oils and crude oil 1.
- TBP vacuum gas 011 a disposing of high sulfur content asphalt (tar), and from an Arabian medium or a Kuwait-type crude containing 2.8 weight percent sulfur was hydrodesulfurized.
- the yields and product properties were:
- a hydrogen rate between 100 and 10,000 SCF per barrel of feed and the use of a catalyst typically comprising a Group VlB and/or Group V111 hydrogenation component and a cracking component, for example amorphous silica-alumina on a crystalline zeolitic molecular sieve.
- the amount of hydrogen required to produce a lowsulfur content fuel oil under the mild hydrodesulfurization conditions as herein varies depending upon the sulfur content of the vacuum gas oil to be treated. On the basis of sulfur content of the vacuum gas oil, at least about 40 standard cubic feet of hydrogen is required per pound of sulfur to be removed in order to reduced the sulfur content to at least 0.2 weight percent.
- Table 1 below is given comparative examples illustrat ing sulfur removal, hydrogen consumption and resulting product parameters for the desulfurization of vacuum gas oil from an Arabian light crude oil.
- vacuum residuum hydrodesulfurization catalyst comprising a composite of oxides and/or sulfides of a Group V111 metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, and said pores having an average pore diameter in the range from to 200A and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the -13 range 600 to 850F.. a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;-
- a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
- a fuel oil blend is produced by mixing at least a portion of said 350F.l050F. hydrocarbon mixture with at least a portion of said 350F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
- a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
- vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
- a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
- At least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone uner vacuum residuum hydrodesulfurization conditions, said conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
- pores of said catalyst have an average pore diameter of about A.
- said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group VIII metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, said pores having an average pore diameter in the range from 100 to 200A, and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
- a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
- said catalyst also weight percent is withdrawn from said fractionator.
- a fuel oil blend is produced by mixing at least a portion of said 350F. l()50F. hydrocarbon mixture with at least a portion of said 35()F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
- vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at leastabout 75 volume percent;
- a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
- Col. 13 eliminate lines 18-31.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Low-sulfur content hydrocarbon mixture and fuel oil blend below 0.2 or below 0.1 wt. % sulfur are obtained by hydrodesulfurizing vacuum gas oil under a hydrogen partial pressure of 300 - 800 psig. with a select high activity desulfurization catalyst. Further embodiments include the hydrodesulfurization of sulfurcontaining vacuum residuum and (1) mixing portions of the desulfurized hydrocarbon residuum with the vacuum gas oil feed or (2) blending fuel oil from portions of the desulfurized vacuum gas oil and desulfurized vacuum residuum product. Further process steps include (3) deasphalting of vacuum residuum or (4) hydrodesulfurizing vacuum residuum with delayed coking of at least a portion of the product.
Description
United States Patent Christensen et a1. Sept. 2, 1975 [54] HYDRODESULFURIZATION PROCESS FOR 3,658,681 4/1972 Wilson et a1. 208/211 THE PRODUCTION OF LOW SULFUR 3,668.1 16 6/1972 Adams Ct 31... 208/216 3,684,688 8/1972 Roselius 208/216 HYDROCARBON MIXTURE 3,749,664 7 1973 Michelson 208/216 [75] Inventors: Robert I. Christensen, San Rafael; George D. Gould, Orinda, both of Calif.
[73] Assignee: Chevron Research Company, San Francisco, Calif.
[22] Filed: Apr. 27, 1973 [21] Appl. No.: 355,230
US. Cl. 208/211; 208/86; 208/89;
Primary ExaminerDelbert E. Gantz Assistant Examiner-G. J. Crasanakis Attorney, Agent, or Firm-G. F. Magdeburger; R. H. Davies; D. L. Hagmann [5 7] ABSTRACT Low-sulfur content hydrocarbon mixture and fuel oil blend below 0.2 or below 0.1 wt. sulfur are obtained by hydrodesulfurizing vacuum gas oil under a 208mm; 208/218; 1208/50 hydrogen partial pressure of 00 psig. with a se 2 ect high activity desulfurizatlon catalyst. Further em- [51] Int. Cl. C10G 23/02 bodimems include the hydrodesulfurizaflon of Sulfur [58] Field of Search 208/211, 210, 89, 50, 218,
. 2O8/86 216 containing vacuum residuum and (1) mixing portions of the desulfurized hydrocarbon .residuum with the vacuum gas oil feed or (2) blending fuel oil fromv por- [56] References Cited tions of the desulfurized vacuum gas oil and desulfur- UNITED STATES PATENTS ized vacuum residuum product. Further process steps 3,287,254 11/1966 Paterson 208/89 include (3) deasphalting of vacuum residuum or (4) 3,306,845 hydrodesulfurizing acuum residuum delayed 3,531,398 9/1970 Adams et a1 208/21 1 coking of at least a portion of the product 3,544,452 12/1970 Jaffe 203/216 3,577,353 5/1971 White 208/216 7 Claims, 4 Drawing Figures --4- l 4 NAPHTHA I l I I I9 I MlLD I VACUUM GAS HYDRO- ow SULFUR BLENDED LOW SULFUR l DESULFURIZATION FUEL on. I FUEL on. I REACTOR I I 2s 1 5 l I. 2. I
n: GAS AND O SULFUR SWEET l 5'; z w RECOVERY FUEL GAS I D o 8 3 U 3 O B I U l HYDROGEN SULFUR l {f PLANT I ,5 29
72 I NA PHTHA 0! l 5 23 I? I VACUUM RESIDUUM g; 24
HY DRO- 3 o I RESIDUUM A I DESULFURlZATlON u; REACTOR U L lFR VACUUM RESIDUUM B- HYDRODESULFURIZATION PROCESS FOR THE PRODUCTION OF LOW-SULFUR HYDROCARBON MIXTURE BACKGROUND OF THE INVENTION The present invention relates to the production of hydrocarbon mixtures of low-sulfur content. More particularly, it relates to deep hydrodesulfurization of vacuum gas oils obtained from reduced-crude fractions of sulfur-containing crude oils and the production of hydrocarbon mixtures such as fuel oil, fuel oil blending stock, kerosene, diesel and fluid catalytic cracker feeds having low sulfur contents. In an especial aspect of the invention fuel oil blends having a low sulfur content are produced in an integrated hydrodesulfurization process from vacuum gas oil and vacuum residuum fractions of sulfur-containing reduced-crude oils. Other advantages obtained from the use of the present unique hydrodesulfurization process will be evident from the descriptions and examples herein.
Petroleum hydrocarbons are being used up at an ever increasing rate. New crude discoveries have not been sufficient to maintain the unproduced reserve. As a result, crude oils heretofore avoided where possible because of undesirable properties, especially those with high sulfur contents and those also containing heavy metal contaminations, must now be used as feeds for petroleum refineries. Asphaltenes frequently are found in combination with the metal contaminants and these together with sulfur and the metals are a source of serious processing and cost problems in the refining of such crude oils.
The dwindling world supply of crude oil makes it imperative that the refiners secure every last drop of useful hydrocarbon from a crude; and the need to do better in protecting the environment, for example by removing sulfur from combustion fuels, has made it evident that new and better processing methods and more select catalysts are needed. Better yields and reduced sulfur contents must be achieved. In particular, improvements in the processing of a vacuum gas oil from a reduced-crude feedstock are needed which in concert achieve:
1. a deeper desulfurization of vacuum gas oils, especially for the 350F. and higher boiling point hydrocarbon mixtures (atmospheric pressure) to at least to a sulfur content (weight percent) below about 0.2, preferably below 0.1, and most preferably below about 0.05;
2. the use of a hydrodesulfurization process temperature which is less than 850F.;
3. a longer operating cycle for the catalyst in the hydrodesulfurization of a vacuum gas oil, e.g., a cycle of at least 30 months;
4. a select high activity vacuum gas oil hydrodesulfurization catalyst capable of deeper [item (l) above] sulfur removal and suitable for use with a combined feedstock, i.e., a mixture of vacuum gas oil and of vacuum-residuum gas oil, and the like;
5. a vacuum gas oil hydrodesulfurization process performance permitting integration thereof with concurrent vacuum residuum hydrodesulfurization means for the substantial reduction of fuel oil pool sulfur content levels to new low levels, for example below 1 weight percent, and even to below 0.3 weight percent;
2 6. a lower hydrogen gas consumption per unit of processed reduced-crude oil; and
7. fuel oil products having acceptable stabilities.
SUMMARY OF THE INVENTION In a broad embodiment, the present invention is a process for producing from a sulfur-containing reduced-crude feedstock, for example, an Arabian crude having a sulfur content above 1 weight percent, calculated as elemental sulfur, various valuable products, including a low sulfur 350F.+ material suitable for use as a fuel oil or fuel oil blend stock, an FCC charge stock, kerosene or diesel fuel. In the process the reducedcrude is separated into at least one vacuum gas oil fraction, which may boil in the range 600l lOOF., and a vacuum residuum fraction. The vacuum gas oil fraction is contacted with a select high activity desulfurization catalyst and hydrogen gas in a hydrodesulfurization zone at mild hydrodesulfurization conditions, and from the hydrodesulfurizing reaction zone is withdrawn a product having a sulfur content below 0.2 weight percent.
In a further embodiment:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions;
Y 2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350l050F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 3501050F. hydrocarbon mixture is admixed with said vacuum gas oil.
By mild hydrodesulfurization conditions, as used herein, is meant the employment of process conditions, including:
1. a hydrogen partial pressure in the range 300 to 800, preferably 350650 psig; and
2. a temperature in the range 550 to 850F.
The vacuum residuum fraction may be subjected to further processing as desired.
More specific embodiments of the present invention include:
1. The use of the 350F. plus boiling fraction of the sulfur-reduced vacuum gas oil produced as described above as a blend stock for upgrading a sulfur-reduced vacuum residuum fuel oil;
2. The use of all or a portion of a sulfur-reduced vacuum gas oil produced as described above as a feed for a fluid catalytic cracker (FCC) unit, particularly the 650F. plus boiling fraction;
3. The production of a C plus boiling range sulfurreduced vacuum gas oil produced as described above, separating the resulting sulfur-reduced vacuum gas oil byfractional distillation into:
a. a butane fraction; b. a C -350F. fraction with a sulfur content less than 0.0l, e.g., 0.005, weight percent; and
c. a 350-l050F. fraction with a sulfur content less than 0.1 weight percent, separating 350-l 050F. fraction by fractional distillation into a 350-650F. fraction with a sulfur content less than 0.05 weight percent, separating the 350650F. product by fractional distillation into the g 3 a kerosene plus diesel boiling range fraction with a sulfur content less than 0.05 weight percent, and into a 650F. plus boiling feed for an FCC unit; and
4. Still further embodiments of the present invention will be evident from the Figures below and the description.
By a reduced-crude feedstock or oil, as used herein. is meant the residue or bottoms fraction normally obtained in the topping by distillation of a whole crude, i.e., a topped whole crude. Usually the distillation is an atmospheric distillation, but it may be carried out, if desired, and as known in the art, under a moderately subatmospheric pressure.
The reduced-crude feedstocks contemplated for use herein vary widely depending upon the crude oil which is topped to obtain them. In general, reduced-crude feedstocks obtained from whole crude oils having a 1 weight percent sulfur content or higher are satisfactory and reduced-crude feedstocks obtained from these whole crude oils are contemplated for use herein. The whole crude oil may have smaller relative amounts of sulfur and still yield satisfactory reduced-crude feedstocks. However, as the sulfur impurity in the whole crude oil becomes less, the economic and process advantages of the present process also become less. Preferably, asphaltene and metal contents of the whole crude oil from which the reduced-crude feedstock is obtained are low. but these factors are of secondary importance. Reduced-crude feedstocks obtained from whole crude oils which contain relative amounts of asphaltenes, and metals as normally present in a whole crude, are satisfactory and contemplated for use herein provided that the amount of sulfur in the whole crude is about 1 weight percent or higher. There is no particular prerequisite as to the form of the sulfur in the reduced crude. That is, the form of the sulfur in the reduced crude may vary widely and is dependent upon the natural condition of the sulfur in the whole crude which is topped to produce the feedstock. Sulfur contents, as expressed throughout the description, are calculated as elemental sulfur.
if the meatls content tends to lead to an undesirable catalyst fouling rate, a prior removal in large part may be carried out by ordinary methods (see, for example, US. Pat. No. 3,696,027). Also, see the paper lsomax Process For Residuum and Whole Crude, by S. G. Paradis, G. D. Gould, D. A. Bea and E. M. Reed, Chemical Engineering Progress [Volume No. 67, No. 8, Pages 5762 (1971)].
v The vacuum gas oils satisfactory for use in the present invention are those ordinarily obtained by the fractional distillation at a subatmospheric pressure of a reduced-crude oil having the characteristics as described above and these are contemplated for use herein. The pressures employed for these fractionations are below 1 atmosphere, usually in the range 0.060.25 atmosphere, and the resulting vacuum gas oils and vacuum residua are useful and contemplated for use as described in the present disclosure. The vacuum gas oils preferred herein have an initial boiling point (ASTM- D1 100) between 350F. and about 850F. and an end boiling point in the range 1000to l 100F., preferably above 1000F. The vacuum residua, on the other hand, employed herein are the bottoms fractions from the aforementioned fractional distillation of reducedcrudes under vacuum. These are contemplated for use herein. Preferred vacuum residua have an initial boiling point of about 1000F.
The process herein, that is using a select high activity hydrodesulfurization catalyst and mild hydrodesulfurization conditions, is especially satisfactory for the production in good yield of a low-sulfur content fuel oil from a sulfur-containing vacuum gas oil. Surprising advantages include:
1. a hydrocarbon product mixture having a sulfur content in the range, broadly, of 0.005 to 0.2 weight percent, particularly 0.1 to 0.005, and most particularly 0.1 to 0.05;
2. a run cycle, hrs., in the range 8,000 to 30,000, usually greater than 24,000; and
3. a hydrogen consumption which is in general less than required in a conventional process.
Other advantages are the production in excellent yield of a fuel oil of good stability, in an operation which is carried out with substantially reduced costs, operational, catalyst and the like, relative to those for a conventional hydrodesulfurization process. Still further advantages in which the above-described hydrodesulfurization process is integrated with other process steps will be evident from the description and Figures below.
SELECT HIGH ACTIVITY HYDRODESULFURIZATION CATALYSTS By a select high activity hydrodesulfurization catalyst, as used herein, is meant a solid composite comprising a Group Vlll component, a Group Vl component and alumina, having an average pore diameter in the range 65-150 A., and a pore volume in the range 0.3 to 1 cc per gram. Excellent results have been obtained with catalysts of the foregoing description which:
1. comprise cobalt, molybdenum, and alumina;
2. have an average pore diameter in the range l20 A. and with at least 50 percent of the pores having a pore diameter in the range 65-150 A. (see US Pat. No. 3,684,688 for background details with respect to average pore diameter determinations and other references):
3. have an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6, preferably about 0.4;
4. have a pore volume at least 0.5 cc per gram; and
5. are sulfided, either prior to use or during process operation.
Particularly good results have been obtained when the catalyst further contains phosphorus, and in a preferred form of the catalyst titanium also is present. Use of titanium-containing alumina during catalyst preparation is an excellent procedure. Good results may be obtained when nickel is used in place of the cobalt.
Select hydrodesulfurization catalysts, as herein, have a high metals acceptance capability, have especially low fouling rates, and hiwh hydrodesulfurization activity under the mild desulfurization conditions of the process of the present invention. For reasons of cost, the density of the catalyst composite should be in the range below about 60 pounds per cubic foot, preferably below 50 pounds. The size of the composite should be in the range one-eighth to one-fortieth inch, preferably one-sixteenth to one-thirty second inch.
An especially suitable select high activity hydrodesulfurization catalyst, as defined herein, may be prepared by the steps comprising:
1. calcining an alumina (no previous calcination experience above about 1700F.) support at a temperature in the range 1400 to 1700F.;
2. impregnating the calcined alumina with an aqueous solution of a cobalt salt and a heteropolyphosphomolybdic acid; and
3. sulfiding the composite prior to use by ordinary means or in situ in use by contacting of a sulfur containing feed, as herein, with the composite under hydrodesulfurizing conditions.
DESCRIPTION OF THE DRAWINGS FIGS. 1-4 are process flow diagrams schematically indicating preferred embodiments of the process of the present invention.
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS Referring now to FIG. 1, a reduced-crude feedstock, a 650F.+ Kuwait residuum is fed at a rate of 50,000 barrels per operating day (BPOD) via line 1 to crude oil vacuum fractionation zone 2. In addition to a reduced-crude oil, other sulfur-containing hydrocarbon sources such as shale oils, tar sand oils and oils derived from coal can be fed to fractionation zone 2. Fractionation zone 2 consists basically of a typical vacuum distillation unit, as used in the petroleum refining art. In zone 2 the Kuwait residuum is separated into an overhead fraction, a vacuum gas oil, in an amount of 30,000 BPOD and a bottoms fraction, a vacuum residuum (1,050F. plus true boiling point cut) in an amount of 20,000 BPOD. The vacuum gas oil is withdrawn from fractionator 2 via line 3 and passed to mild hydrodesulfurization reactor 4 and the vacuum residuum is withdrawn from fractionator 2 via line 5 and passed to vacuum residuum hydrodesulfurization reactor 13. In reactor zones 4 and 13 the respective feeds, vacuum gas oil, or vacuum residuum, are mixed with hydrogen and hydrodesulfurized under mild or vacuum residuum hydrodesulfurization conditions, respectively. The hydrogen is obtained from a suitable source. For example, hydrogen is produced in hydrogen plant 7 by steam reforming about 1,800 BPOD of naphtha, which is introduced to hydrogen plant 7 via line 6. The produced hydrogen is withdrawn from hydrogen plant 7 via line 8 in an am c unt of about 34 million standard cubic feet per day (MSCFD). Via lines 8 and 9, l2 ITISCFD of the hydrogen is delivered to reactor 4 and via lines 8 and 12, 22 lTlSCFD of the hydrogen is delivered to reactor zone 13.
In reactor 4, the mild hydrodesulfurization zone, the vacuum gas oil is mixed with hydrogen (2000 standard cubic feet (SCF)/barrel of vacuum gas oil) and contacted with a select high activity desulfurization catalyst which is a sulfided solid composite:
1. containing cobalt, molybdenum, phosphorus and alumina; o
2. having an average pore diameter of about 100 A. with at least 50% of the pores having a pore diameter in the range 65 to 150 A.;
3. having an atomic ratio of cobalt to molybdenum of about 0.4; and
4. having a pore volume of about 0.5 cc per gram.
The contacting is at a hydrogen partial pressure of about 400-500 psig, a total pressure of about 600-800 psig, a temperature of about 700800F., and at a liquid hourly space velocity (LI-ISV) of about 2-3. The contacting of the vacuum gas oil feed, as described above, results in the production of naphtha, a low-sulfur fuel oil having a sulfur content of about 0.15 weight percent, and a light hydrocarbon gasJ-l s mixture. The naphtha is removed from reactor 4 via line 14 at a rate of about 400 BPOD and the fuel oil is removed from 6 reactor 4 via line 19 at a rate of about 29,800 BPOD. The light gas-H 5 mixture is withdrawn from reactor 4 via line 16 and is passed to a conventional gas and sulfur recovery unit, 27, for processing.
In reactor 13, the vacuum residuum introduced via line 5 and the hydrogen (about 4000 SCF per barrel of vacuum residuum) introduced via line 12 are mixed and contacted with a satisfactory vacuum residuum hydrodesulfurization catalyst, for example a sulfided composite of cobalt, molybdenum, phosphorus, alumina and titania having the nominal (i.e., calculated as the indicated oxides) composition as follows:
Weight Percent C0D 2.5 M00, 1 0.0 A120,, 62.5 Tao, 1 5 .0 mo, 10.0
under suitable vacuum residuum hydrodesulfurization conditions, for example a temperature of about 700800F'., a total pressure of about 2000 psig, a hydrogen partial pressure of about 1500 psia, and an LI-ISV of less than 0.5. The treatment of the vacuum residuum in reactor 13 results in the production of naphtha and a sulfur-reduced vacuum residuum as the principal products and a light gas fraction comprising low molecular weight hydrocarbons and hydrogen sulfide, The naphtha is removed from reactor 13 via line 15 at a rate of about BPOD. The light gas stream containing hydrocarbons and hydrogen sulfide is withdrawn from reactor l3-via line 17 and passed to a conventional gas and sulfur recovery unit 27 via lines 17 and 18.
The sulfur reduced vacuum residuum produced in reactor 13 is withdrawn via line 23 and is passed to a vacuum fractionator 24 for separation into a bottoms product and an overhead fraction. The bottoms product is withdrawn from fractionator 24 via line 26 at a rate of 14,000 BPOD and comprises a 1,050F. plus boiling residuum which'contains about 1.2 percent sulfur.
From vacuum fractionator 24 the overhead fraction comprising 350l,050F. boiling range hydrocarbons having a sulfur content of about 0.1 5% is withdrawn via line 20 at a rate of 6,300 BPOD. A low sulfur fuel oil pool is produced by the integrated process, as represented in FIG. 1, in an amount of about 36,100 BPOD. Thus, a fuel oil blend is produced by mixing at least a portion of the 350F.1050F. hydrocarbon mixture obtained by fractionating the hydrodesulfurized vacuum residuum product stream with at least a portion of the 350F.+ efiluent fraction of the product from the vacuum gas oil hydrodesulfurization reactor, the blend having sulfur content below about 0.2 weight percent, or, below about 0.1 weight percent. This fuel oil pool or blend has a good stability and is an excellent synthetic replacement for the virgin low sulfur content fuel oils presently available in the market.
Alternatively, at least a portion of the low sulfur product from the mild hydrodesulfurization zone 4 may be used as a charge stock for a fluid catalytic cracker.
Referring now to FIG. 2, a reduced-crude is processed substantially in the manner as described for that portion of the process of FIG. 1 which is enclosed within the dotted lines except:
l. more detail is given with respect to some of the auxiliary elements, and
2. the heavier fraction of the desulfurized vacuum gas oil is fractionated after withdrawal from low pressure separator 62 via line 67. The withdrawn gas oil is passed to fractionator 68 via line 67 for separation into a naphtha fraction, a kerosene plus diesel oil fraction and a desulfurized fuel oil product.
Referring now to FIG. 3, a reduced-crude feed, a 650F. plus boiling Kuwait residuum is delivered via line 85 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 86 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum. Via line 89 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 86 at a rate of about 30,000 BPOD. Via line 87 the vacuum residuum is withdrawn from fractionator 86 at a rate of about 20,000 BPOD and is Average Pore Diameter, 130-190 Pore Volume, cc per gram 0.5 C 2.5 M00 10.0 TiO l P. ,O,-, 10.0 A1 0 Remainder under the following conditions:
Average Bed Temperature. F. 700-800 Pressure, psig 2000 Space Velocity, V/V/Hr. 0.5 Hydrogen Rate, SCFB 4000 90 Hydrogen Purity, Volume Percent Hydrogen sulfide and light hydrocarbon gases produced by the desulfurization in reactor 88 are withdrawn from the reactor via line 92 and delivered via lines 92, 110 and 111 to gas and sulfur recovery unit 114 for processing. Via line 93 sulfur-reduced vacuum residuum having a sulfur content of about 0.7% is withdrawn from reactor 88 and is delivered via lines 93 and 98 to coker fractionator 94 for separation into a C coker gas oil and a bottoms fraction, a coker feed. The coker feed is withdrawn from fractionator 94 via line and passed to delayed coker 96. Delayed coker 96 is a conventional coke-forming unit which converts the feed to a metallurgical grade coke product and a vaporized hydrocarbon, a coker effluent. The coker effluent is withdrawn from the unit 96 via line 97 and passed to the coker fractionator via lines 97 and 98. Coke having a sulfur content below 2 weight percent and a metals content below 150 ppm of vanadium is withdrawn from coker 96 via line 99 at a rate of about 450 short tons per day.
Two overhead hydrocarbon fractions are withdrawn from coker fractionator 94, the first a C fraction and the second the C coker gas oil. Via line 100 the C,- light hydrocarbon fraction is withdrawn from fractionator 94 and passed via lines 100, 110 and 111 to gas and sulfur recovery unit 114. Via line 103 the C coker gas oil is withdrawn from fractionator 94 at a rate of about 18,800 BPOD. This gas oil having a sulfur content of about 0.871 sulfur is mixed with the vacuum gas oil by joining lines 103 and 89, is line mixed and passed via line 104 to mild hydrodesulfurization reactor 106. In reactor 106 the combined vacuum gas oil and coker gas oil feed is mixed with hydrogen and contacted with a select high activity desulfurization catalyst in the manner described for the process of FIG. 1 with the production of naphtha and low sulfur content fuel oil. The naphtha is separated by fractionation and withdrawn from reactor 106 via line 107 at a rate of 3,200 BPOD. Fuel oil having a sulfur content of 0.15 weight percent is withdrawn from reactor 106 via line 109 at a rate of 46,100 BPOD.
The hydrogen sulfide and light hydrocarbon containing gas streams withdrawn from reactors 88 and 106 and from coker fractionator 94 are passed to gas and sulfur recovery unit 114 via the lines indicated in the Figure and in unit 114 using ordinary recovery methods the hydrogen sulfide is converted to sulfur and the light hydrocarbons are separated into a sweet fuel gas product. The former is withdrawn from unit 114 via line 115 at a rate of about 305 short tons per day and the sweet fuel gas is withdrawn from unit 114 via line 116 at a rate of 1,510 BPOD.
Delayed cokers or furnace type coking units heat the residuum or other hydrocarbon feedstock to coking temperatures rapidly and little reaction occurs while the charge is in the furnace. Effluent from the furnace discharges at about 850F. to 1000F. (see, for example, U.S. Pat. No. 2,727,853, U.S. Pat. No. 2,727,853). U.S. Pat. No. 2,988,501 and U.S. Pat. No. 3,027,317 disclose coking ahead of hydrodesulfurization and U.S. Pat. No. 3,684,688 disclose coking afterwards.
The integrated process of FIG. 3 has many process advantages, including:
1. A practical process by which can be produced at least about a 93 liquid volume percent yield of low sulfur fuel oil product from a high sulfur content reducedcrude oil; and
2. A practical means for disposing of high sulfur-content by-product, e.g., producing metallurgical grade coke and additional fuel oil range gas oil.
Referring now to FIG. 4, a reduced-crude feed, a 650F. plus boiling Arabian light residuum is delivered via line 124 at a rate of 50,000 barrels per operating day (BPOD) to vacuum fractionator 125 for separation into a vacuum gas oil and a 1050F. plus boiling vacuum residuum. Via line 126 vacuum gas oil having a sulfur content of about 2.8 weight percent is withdrawn from vacuum fractionator 125 at a rate from about 34,500 BPOD. Via line 127 vacuum residuum having a sulfur content of 4.1 weight percent is withdrawn from fraetionator 125 at a rate of about 15,500 BPOD and is passed to asphalt removal unit 128 for separation of the vacuum into asphalt or tar and an asphalt-reduced residuum, a solvent deasphalted oil. The separation is as phalt removal unit 128 is carried out using conventional solvent deasphalting methods, for example, butane-pentane solvent deasphalting or the like.
Asphalt or tar having a sulfur content of about 6.1% is withdrawn from unit 128 via line 144 and passed to gasification unit 145 for gasification and separation into a sulfur-containing fraction comprising hydrogen sulfide and into a synthetic natural gas fraction substantially free of sulfur. The gasification is effected by conventional process methods, for example, by the Texaco Partial Oxidation Process or the Shell Gasification Process.
Asphalt-reduced residuum (solvent deasphalted oil) having a sulfur content of about 3.5 weight percent is withdrawn from unit 128 at a rate of about 12,400
10 b. producing needed synthetic natural gas using ordinary gasification and sulfur recovery means.
VACUUM RESIDUUM HYDRODESULFURIZATION CATALYSTS BPOD and combined with vacuum gas oil by joining 5 lines 129 and 126 and the combined feeds are line Asatisfactory vacuum residuum desulfurization catamixed and passed via line 130 to mild hydrodesulfurizalyst for use in the present invention must have ahigh tion reactor 132. The combined vacuum gas oil and asmetals acceptance capability, a good stability. and a phalt reduced residuum feed mixture is mixed with hylow fouling rate. A suitable vacuum residuum desulfurdrogen in reactor 132 and desulfurized under mild hyization catalyst for use herein has an average pore didrodesulfurization conditions in the manner described ameter in the range from about 100 to 200 A., preferafor the corresponding portion of the process of FIG. 1 bly 130 to 190 A., and comprises a composite of the oxto produce naphtha, low-sulfur fuel oil and by-product ides and/or sulfides of a Group VIII metal, preferably streams containing hydrogen sulfide. Naphtha is sepacobalt, of molybdenum and phosphorus and of a refracrated by fractionation and withdrawn via line 133 from ,tory metal or mixed metal oxide, preferably alumina. reactor 132 at a rate of about 380 BPOD. Via line 134 For reasons of operating convenience, a catalyst sizing low-sulfur fuel oil having a sulfur content of about 0.05 in the range from about /8 inch to about l/40 inch is weight percent is withdrawn atla rate of 46,700 BPOD. preferable.
In gas and sulfur recovery unit 139 hydrogen sulfide and hydrogen sulfide plus light hydrocarbon effluent VACUUM RESIDUUM streams from reactor 132 and gasification unit 145 are HYDRODESULFURIZATION CONDITIONS separated into a sweet fuel gas fraction and a sulfur Conditions suitable for use for the hydrodesulfurizafraction. Via line 140 sweet fuel gas is withdrawn from tion of a vacuum residua, as herein, vary widely and dcunit 139 at a rate of about 230 BPOD. Via line 143 sulpend in the main upon the particular feed. in general, fur is withdrawn from unit 139 at a rate of about 240 satisfactory conditions include the indicated and prishort tons per day. When the gasification unit commary process parameters within the ranges as noted beprises a partial oxidation gasification coupled with a low: methanation stage, a synthetic natural gas product can be recovered having about a heating Value of about 930 Temperature, F. 600 to 850F. preferably 600 (0 s00 5 1; Pressure, psig 1000 to 2500, preferably 1500 10 2200 if the asphalt-reduced vacuum residuum is not mixed LHSV prefcmby with the vacuum gas'oil and the hydrodesulfurized vacuum gas oil is back blended with the asphalt-reduced and the s Ofa hydrogen-Containing gas, preferably a vacuum residuum, the resulting fuel oil blend has a sulga a ng a hy rogen C nt nt of at least 5 lum fur content of 0.5 weight percent. Such a high value pe cent can be acceptable d f l f some areas d f Representative reduced-crude feeds suitable for use some purposes. The product from the integrated proherein include those obtained from Middle Eastern cess. the 0.05 weight percent fuel oil, is of course an excrudes. such as Arabian light, Kuwait, Arabian mecellent and highly desirable product having particular i m. Ir ni heavy p i lly f r olventing deasreference to desirable environmental protection re- 40 p a t mut and Iranian light Crud ils, and the like i m high sulfur content crude oils; others are California The integrated process of FIG, 4 has many process crude, Alaskan North slOpC CI'U(1, and the like, as well advantages, i cl di as blends of crude oils, that is crude oils and crude oil 1. A practical process by which can be produced at blends, in general, which have a sulfur content of at least about a 93 liquid volume percent yield of 'low sulleast about 1 weightpercent. fur fuel oil product from a high sulfur, high asphaltene EXAMPLE 1 crude, for example, an Arabian light atmospheric reduCed-Crude i]; d In the manner described for the process of FIG. 1, en-
2 A practical means for; circled 130111011, 8. 6l5l050F. TBP vacuum gas 011 a. disposing of high sulfur content asphalt (tar), and from an Arabian medium or a Kuwait-type crude containing 2.8 weight percent sulfur was hydrodesulfurized. The yields and product properties were:
Raw Feed Liquid Products Kuwait By-Product K/D Option 7 VGO Butanes C,-,-35()F. 350F. Plus 350650F. 650F. Plus Yield. LV71 0.1 315 97.5 21.5 76.0
Inspections I Gruvity,-API 22.6 48 28 36 26 Aniline Point, F. I73 ASTM Distillation. F. D1160 Dl 160 E D1 160 ST/5 605/ 350/ 385/- 6l5 10/30 685/745 590/690 450/510 670/745 50 815 760 560 805 905 1005 845/960 H 580/625 880/980 /EP /1100 1000/1065 /670 1020/1065 Sulfur, Wt. 2.8 0.005 0.02 0.005 0.05 Nitrogen, ppm 600 l 10 Pour Point, Fl I05 90 O 95 -continued Raw Feed Liquid Products Kuwait By-Product K/D Option" VGO Butancs C,-,350F. 350F. Plus 350650F. 650F. Plus Viscosity. CS at 122F. 40 25 3.0 40
"'Where kerosene and diesel fuel are desired as an option and is separated from the 350F. plus product. the yields oflucl oil. etc. are as listed und The low sulfur oils produced by the process herein, particularly by the hydrodesulfurization of a vacuum gas oil under mild hydrodesulfurization conditions using a select high activity desulfurization catalyst, are advantageous feedstocks for hydrocracking for the production of more valuable lower molecular weight products. Typical operating conditions for catalytic hydrocracking include a temperature between 500 and 900F., a pressure between 100 and 10,000 psig. a hydrogen rate between 100 and 10,000 SCF per barrel of feed, and the use of a catalyst typically comprising a Group VlB and/or Group V111 hydrogenation component and a cracking component, for example amorphous silica-alumina on a crystalline zeolitic molecular sieve.
HYDROGEN CONSUMPTION The amount of hydrogen required to produce a lowsulfur content fuel oil under the mild hydrodesulfurization conditions as herein varies depending upon the sulfur content of the vacuum gas oil to be treated. On the basis of sulfur content of the vacuum gas oil, at least about 40 standard cubic feet of hydrogen is required per pound of sulfur to be removed in order to reduced the sulfur content to at least 0.2 weight percent. In Table 1 below is given comparative examples illustrat ing sulfur removal, hydrogen consumption and resulting product parameters for the desulfurization of vacuum gas oil from an Arabian light crude oil.
er the ivy-product option.
1. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained froma whole crude oil having a sulfur content of at least about 1 weight percent, which comprises:
1. separating said feedstock into a vacuum gas oil fraction and a vacuum residuum fraction;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst comprising a sulfided composite containing cobalt, molybdenum, phosphorus and alumina and a pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least percent of said pores having a diameter in the range to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and I 3. withdrawing from said first hydrodesulfurization zone an effluent, the 350F.+ portion thereof having a sulfur content below 0.2 weight percent, ca1- culated as elemental sulfur.
2. A process as in claim 1 wherein said 350F.+ portion has a sulfur content in the range 0.005 to 0.2.
3. A process as in claim 1 wherein said 350F.+ portion has a sulfur content in the range of 0.005 to 0.1.
4. A process as in claim 1 wherein:
TABLE 1 DESULFURlZATlON OF ARABIAN LIGHT VACUUM GAS 01L VGO FEED PRODUCTS H Consumption. SCF/Bbl 183 240 277 400 H. Consumption, SCF/Lb Sulfur Removed 38.6 39.6 42.5 56.5 Inspections (350F.+ Product Inspections) Sulfur. Wt. "/1 2.3 0.79 0.43 0.16 0.05 Nitrogen, ppm 650 535 500 420 180 AP1 24.6 27.0 27.7 28.5 29.3 Nickel. ppm 0.1 1 0.03 0.02 Nil Nil Vanadium. ppm 0.39 Nil Nil Nil Nil Distillation. ASTM D-] 160. F. 1BP/5 508/599 462/579 51 l/583 464/573 424/549 10/30 635/724 611/707 623/712 614/707 596/700 50 803 780 782 776 763 /90 846/982 860/970 868/963 851/952 848/953 /EP 1009/1044 1012/1037 994/1044 997/1040 998/1041 Product Yields C,-C Wt. /1 0.04 0.12 0.30 0.35 C,-,350F.. LV '7! 0.6 0.7 0.7 0.8 350F.+, 1.V 99.3 99.3 99.4 1001 Although various specific embodiments of the invention have been described and shown, it is to be understood that they are meant to be illustrative only and not limiting. Certain features may be changed without departing from the spirit or essence of the invention. It is apparent that the present invention has broad application to the hydrodemetalization and hydrodesulfurization of hydrocarbons. Accordingly, the invention is not to be construed as limited to the specific embodiments illustrated but only as defined in the following claims.
What is claimed is:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfuxization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group V111 metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, and said pores having an average pore diameter in the range from to 200A and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the -13 range 600 to 850F.. a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;-
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350C.l050F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
4. a fuel oil blend is produced by mixing at least a portion of said 350F.l050F. hydrocarbon mixture with at least a portion of said 350F.+ portion, said blend having a sulfur content below about 0.2 weight percent. I
2.'a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a coker fractionator;
3. a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
4. a metallurgical grade coke is withdrawn from said coker;
5. an overhead fraction is withdrawn from said coker fractionator; and
6. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said overhead fraction withdrawn from said coker fractionator is admixed with said vacuum gas oil.
5. A process as in claim 4 wherein said blend has a sulfur content below about 0.1 weight percent.
6. A process as in claim 1 wherein:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350F.1050F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350F.1050F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
7. A process as in claim 1 wherein:
1. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone uner vacuum residuum hydrodesulfurization conditions, said conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
8. A process as in claim 1 wherein:
l. at least a portion of said vacuum residuum fraction is passed toan asphalt removal unit and separated .into an asphalt fraction and an asphalt-reduced fraction;
2. said asphalt fraction is withdrawn from said unit,
and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil. 1 i
9. A process as in claim 1 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
10. A process as in claim 1 wherein contains titanium.
11. A process in claim 1 wherein the pores of said catalyst have an average pore diameter of about A.
12. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained from a whole crude oil having a sulfur content of at least about 1 weight percent, which'comprises:
1. separating said feedstock into vacuum gas oil fraction and a vacuum residuum fraction;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfuri-, zation zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst consisting essentially of a sulfided composite containing cobalt, molybdenum, phosphorus. titanium and alumina, and having pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to A with at least 50 percent of said pores having a diameter in the range 65 to A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as elemental sulfur.
13. A process as in claim 12 wherein the pores of said catalyst have an average pore diameter of about 100A.
14. A process as in claim 12 wherein:
l at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum catalyst comprising a composite of oxides and/or sulfides of a Group VIII metal, molybdenum, titanium, phosphorus and alumina said composite containing pores, said pores having an average pore diameter in the range from 100 to 200A, and said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at least about 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. a 350f.l050F. boiling range hydrocarbon mixture having a sulfur content below about 0.15
said catalyst also weight percent is withdrawn from said fractionator; and
4. a fuel oil blend is produced by mixing at least a portion of said 350F. l()50F. hydrocarbon mixture with at least a portion of said 35()F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
15. A process as in claim 12 wherein:
l. at least a portion of said vacuum residuum fraction is contacted with a vacuum residuum hydrodesulfurization catalyst and hydrogen in a second hydrodesulfurization zone under vacuum residuum hydrodesulfurization conditions, said vacuum residuum hydrodesulfurization conditions comprising a temperature in the range 600 to 850F., a pressure in the range 1000 to 2500 psig, a liquid hourly space velocity in the range below about 1 and the use of a gas having a hydrogen content of at leastabout 75 volume percent;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
16 3. a 350F.lO5()F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350F.l()50F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
16. A process as in calim 12 wherein:
l. at least a portion of said vacuum residuum fraction is passed to an asphalt removal unit and separated into an asphalt fraction and an asphalt-reduced fraction;
2. said asphalt fraction is withdrawn from said unit,
and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
17. A process as in claim 12 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
UNE'TED STATES PATENT AND TRADEIVZARK QTE FIE PATENT NO. 3,902,991
DATED September 2, 1975 1NVENTOR(S) Robert I. Christensen & George D. Gould it ceriified tha'e; erro: appears in the aboveicentified patent and that said Letters Pateni are hereby corrected as shown beiow;
Col. 3, line 42,
Col. 4, line 53,
C01. 7, line 52,
C01. 8, line 56,
"meatls" should read metals.
"hiwh" should read -high.
"35" should read 95 "vacuum into asphalt" should read vacuum residuum into asphalt--.
Col. 8, lines 57-58, "is asphalt" should read in asphalt.
C01. 9 "3. 5" should read 3.4.
Col. 11, line 31, "reduced" Claim 1, line 22,
line 3,
should read reduce--.
"and a pore" should read and having a pore-.
C01. 13, "350C. should read 350F.-.
Col. 13, eliminate lines 18-31.
COL. 13, line 5, "uner" should read -under-.
Col.- 14, line 1, "A process in" should read A process as in.
C01. 14,, line 15, "having pore" should read having a pore-.
3 1 14 line 9, "alumina said" should read alumina oxide, said--.
1 16 line 1, "calim" should read Claim-.
lgned and Scaled thisthirtieth Day of March 1976 [SEAL] Arrest.
RUTH C MASON Arresting Officer C. MARSHALL DANN (ommissl'umr oj'larents and Trademarks
Claims (45)
1. A PROCESS FOR PRODUCING A LOW-SULFUR HYDROCARBON MIXTURE BY DESULFURIZING A HYDROCARBON FEEDSTOCK, SAID FEEDSTOCK BEING A REDUCED-CRUDE OBTAINED FROMA WHOLE CRUDE OIL HAVING A SULFUR OF AT LEAST ABOUT 1 WEIGHT PERCENT, WHICH COMPRISES:
1. SEPARATING SAID FEEDSTOCK INTO A VACUUM GAS OIL FRACTION AND A VACUUM RESIDUUM FRACTION,
2. CONTACTING AT LEAST A PORTION OF SAID VACUUM GAS OIL FRACTION WITH A SELECT HIGH ACTIVITY DESULFURIZATION CATALYST AND HYDROGEN GAS IN A FIRST HYDRODESULFURIZATION ZONE UNDER A HYDROGEN PARTIAL PRESSURE IN THE RANGE 300 TO 800 PSIG, SAID CATALYST COMPRISING A SULFIDED COMPOSITE CONTAINING COBALT, MOLYBDENUM, PHOSPHORUS AND ALUMINA AND A PORE VOLUME OF AT LEAST 0.5 CC PER GRAM OF SAID COMPOSITE, SAID PORES HAVING AN AVERAGE PORE DIAMETER IN THE RANGE 80 TO 120A WITH AT LEAST 50 PERCENT OF SAID PORES HAVING A DIAMETER IN THE RANGE 65 TO 150A, AND SAID COMPOSITE HAVING AN ATOMIC RATIO OF COBALT TO MOLYBDENUM RANGE 0.3 TO 0.6., AND
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst comprising a sulfided composite containing cobalt, molybdenum, phosphorus and alumina and a pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least 50 percent of said pores having a diameter in the range 65 to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
2. A process as in claim 1 wherein said 350*F.+ portion has a sulfur content in the range 0.005 to 0.2.
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a coker fractionator;
2. said asphalt fraction is withdrawn from said unit, and
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
2. contacting at least a portion of said vacuum gas oil fraction with a select high activity desulfurization catalyst and hydrogen gas in a first hydrodesulfurization zone under a hydrogen partial pressure in the range 300 to 800 psig, said catalyst consisting essentially of a sulfided composite containing cobalt, molybdenum, phosphorus, titanium and alumina, and having pore volume of at least 0.5 cc per gram of said composite, said pores having an average pore diameter in the range 80 to 120A with at least 50 percent of said pores having a diameter in the range 65 to 150A, and said composite having an atomic ratio of cobalt to molybdenum in the range 0.3 to 0.6; and
2. said asphalt fraction is withdrawn from said unit, and
2. a sulfur-reduced vacuum residuum is withdrawn from said second zone and passed to a vacuum fractionator;
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350*F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as elemental sulfur.
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
3. a 350*f.-1050*F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
3. a 350*F.-1050*F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
3. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said asphalt-reduced fraction is admixed with said vacuum gas oil.
3. a 350*C.-1050*F. boiling range hydrocarbon mixture having a sulfur content below about 0.15 weight percent is withdrawn from said fractionator; and
3. a 350*F.-1050*F. boiling range hydrocarbon mixture is withdrawn from said fractionator; and
3. a bottoms fraction is withdrawn from said coker fractionator and passed to a coker;
3. A process as in claim 1 wherein said 350*F.+ portion has a sulfur content in the range of 0.005 to 0.1.
3. withdrawing from said first hydrodesulfurization zone an effluent, the 350*F.+ portion thereof having a sulfur content below 0.2 weight percent, calculated as Elemental sulfur.
3. WITHDRAWING FROM SAID FIRST HYDRODESULFURIZATION ZONE AN EFFLUENT, THE 350*F.+ PORTION THEREOF HAVING A SULFUR CONTENT BELOW 0.2 WEIGHT PERCENT, CALCULATED AS ELEMENTAL SULFUR.
4. A process as in claim 1 wherein:
4. a metallurgical grade coke is withdrawn from said coker;
4. a fuel oil blend is produced by mixing at least a portion of said 350*F.-1050*F. hydrocarbon mixture with at least a portion of said 350*F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350*F.-1050*F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
4. a fuel oil blend is produced by mixing at least a portion of said 350*F. -1050*F. hydrocarbon mixture with at least a portion of said 350*F.+ portion, said blend having a sulfur content below about 0.2 weight percent.
4. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first hydrodesulfurization zone, at least a portion of said withdrawn 350*F.-1050*F. hydrocarbon mixture is admixed with said vacuum gas oil fraction and the resulting mixture is fed to the first hydrodesulfurization zone.
5. A process as in claim 4 wherein said blend has a sulfur content below about 0.1 weight percent.
5. an overhead fraction is withdrawn from said coker fractionator; and
6. prior to the hydrodesulfurization of said vacuum gas oil fraction in said first zone, at least a portion of said overhead fraction withdrawn from said coker fractionator is admixed with said vacuum gas oil.
6. A process as in claim 1 wherein:
7. A process as in claim 1 wherein:
8. A process as in claim 1 wherein:
9. A process as in claim 1 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
10. A process as in claim 1 wherein said catalyst also contains titanium.
11. A process in claim 1 wherein the pores of said catalyst have an average pore diameter of about 100A.
12. A process for producing a low-sulfur hydrocarbon mixture by desulfurizing a hydrocarbon feedstock, said feedstock being a reduced-crude obtained from a whole crude oil having a sulfur content of at least about 1 weight percent, which comprises:
13. A process as in claim 12 wherein the pores of said catalyst have an average pore diameter of about 100A.
14. A process as in claim 12 wherein:
15. A process as in claim 12 wherein:
16. A process as in calim 12 wherein:
17. A process as in claim 12 wherein said phosphorus and molybdenum are incorporated into the catalyst in the phosphomolybdate form.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US355230A US3902991A (en) | 1973-04-27 | 1973-04-27 | Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture |
US05/583,139 US4006076A (en) | 1973-04-27 | 1975-06-02 | Process for the production of low-sulfur-content hydrocarbon mixtures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US355230A US3902991A (en) | 1973-04-27 | 1973-04-27 | Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/583,139 Continuation-In-Part US4006076A (en) | 1973-04-27 | 1975-06-02 | Process for the production of low-sulfur-content hydrocarbon mixtures |
Publications (1)
Publication Number | Publication Date |
---|---|
US3902991A true US3902991A (en) | 1975-09-02 |
Family
ID=23396708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US355230A Expired - Lifetime US3902991A (en) | 1973-04-27 | 1973-04-27 | Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture |
Country Status (1)
Country | Link |
---|---|
US (1) | US3902991A (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006076A (en) * | 1973-04-27 | 1977-02-01 | Chevron Research Company | Process for the production of low-sulfur-content hydrocarbon mixtures |
US4048060A (en) * | 1975-12-29 | 1977-09-13 | Exxon Research And Engineering Company | Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst |
US4051021A (en) * | 1976-05-12 | 1977-09-27 | Exxon Research & Engineering Co. | Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst |
US4069139A (en) * | 1975-12-29 | 1978-01-17 | Exxon Research & Engineering Co. | Hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst |
US4075084A (en) * | 1977-02-17 | 1978-02-21 | Union Oil Company Of California | Manufacture of low-sulfur needle coke |
US4145189A (en) * | 1976-09-08 | 1979-03-20 | Energy Conversion Systems Limited | Process for preparing a clean-burning, low sulphur liquid fuel from coal |
US4302323A (en) * | 1980-05-12 | 1981-11-24 | Mobil Oil Corporation | Catalytic hydroconversion of residual stocks |
US4385984A (en) * | 1980-09-09 | 1983-05-31 | Shell Oil Company | Lubricating base oil compositions |
JPS6065093A (en) * | 1983-09-21 | 1985-04-13 | Res Assoc Petroleum Alternat Dev<Rapad> | Treatment of oil sand oil and residual oil |
US4556480A (en) * | 1984-08-23 | 1985-12-03 | Phillips Petroleum Company | Removal of topped crude demineralization sediment by backwashing filter to crude oil desalting process |
US4615789A (en) * | 1984-08-08 | 1986-10-07 | Chevron Research Company | Hydroprocessing reactors and methods |
US4885080A (en) * | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US4913797A (en) * | 1985-11-21 | 1990-04-03 | Mobil Oil Corporation | Catalyst hydrotreating and dewaxing process |
US4990242A (en) * | 1989-06-14 | 1991-02-05 | Exxon Research And Engineering Company | Enhanced sulfur removal from fuels |
US5543036A (en) * | 1993-07-22 | 1996-08-06 | Mobil Oil Corporation | Process for hydrotreating |
US6217748B1 (en) * | 1998-10-05 | 2001-04-17 | Nippon Mitsubishi Oil Corp. | Process for hydrodesulfurization of diesel gas oil |
US6838060B1 (en) * | 1996-09-24 | 2005-01-04 | Institut Francais Dupetrole | Process and apparatus for the production of catalytic cracking gasoline with a low sulphur content |
US20050139522A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
WO2005061670A3 (en) * | 2003-12-19 | 2006-03-23 | Shell Oil Co | Systems, methods, and catalysts for producing a crude product |
US20070246399A1 (en) * | 2006-04-24 | 2007-10-25 | Florent Picard | Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps |
WO2009126974A2 (en) * | 2008-04-10 | 2009-10-15 | Shell Oil Company | Diluents, method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions |
US7678264B2 (en) | 2005-04-11 | 2010-03-16 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7745369B2 (en) | 2003-12-19 | 2010-06-29 | Shell Oil Company | Method and catalyst for producing a crude product with minimal hydrogen uptake |
US7749374B2 (en) | 2006-10-06 | 2010-07-06 | Shell Oil Company | Methods for producing a crude product |
US7918992B2 (en) | 2005-04-11 | 2011-04-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8137536B2 (en) | 2003-12-19 | 2012-03-20 | Shell Oil Company | Method for producing a crude product |
US8450538B2 (en) | 2008-04-10 | 2013-05-28 | Shell Oil Company | Hydrocarbon composition |
US8608938B2 (en) | 2003-12-19 | 2013-12-17 | Shell Oil Company | Crude product composition |
WO2014120491A1 (en) * | 2013-02-01 | 2014-08-07 | Lummus Technology Inc. | Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels |
FR3013722A1 (en) * | 2013-11-28 | 2015-05-29 | IFP Energies Nouvelles | METHOD FOR HYDROPROCESSING A GASOLINE IN SERIES REACTORS WITH HYDROGEN RECYCLING |
WO2015161937A1 (en) * | 2014-04-25 | 2015-10-29 | IFP Energies Nouvelles | Hydrotreating process in cocurrent upflow reactors having an overall countercurrent |
WO2016089590A1 (en) * | 2014-12-04 | 2016-06-09 | Exxonmobil Research And Engineering Company | Low sulfur marine bunker fuels and methods of making same |
WO2019053323A1 (en) | 2017-09-14 | 2019-03-21 | Neste Oyj | Low sulfur fuel oil bunker composition and process for producing the same |
US10533141B2 (en) | 2017-02-12 | 2020-01-14 | Mag{tilde over (e)}mã Technology LLC | Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287254A (en) * | 1964-06-03 | 1966-11-22 | Chevron Res | Residual oil conversion process |
US3306845A (en) * | 1964-08-04 | 1967-02-28 | Union Oil Co | Multistage hydrofining process |
US3531398A (en) * | 1968-05-03 | 1970-09-29 | Exxon Research Engineering Co | Hydrodesulfurization of heavy petroleum distillates |
US3544452A (en) * | 1968-07-08 | 1970-12-01 | Chevron Res | Fluorine and metal phosphate-containing catalysts and preparation and use thereof |
US3577353A (en) * | 1968-11-22 | 1971-05-04 | Chevron Res | Preparation of a cogelled catalyst of alumina and a group vi hydrogenating component |
US3658681A (en) * | 1970-02-24 | 1972-04-25 | Texaco Inc | Production of low sulfur fuel oil |
US3668116A (en) * | 1970-10-16 | 1972-06-06 | Exxon Research Engineering Co | Slurry hydrodesulfurization of a heavy petroleum oil |
US3684688A (en) * | 1971-01-21 | 1972-08-15 | Chevron Res | Heavy oil conversion |
US3749664A (en) * | 1971-04-01 | 1973-07-31 | Union Oil Co | Hydrogenative denitrogenation |
-
1973
- 1973-04-27 US US355230A patent/US3902991A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3287254A (en) * | 1964-06-03 | 1966-11-22 | Chevron Res | Residual oil conversion process |
US3306845A (en) * | 1964-08-04 | 1967-02-28 | Union Oil Co | Multistage hydrofining process |
US3531398A (en) * | 1968-05-03 | 1970-09-29 | Exxon Research Engineering Co | Hydrodesulfurization of heavy petroleum distillates |
US3544452A (en) * | 1968-07-08 | 1970-12-01 | Chevron Res | Fluorine and metal phosphate-containing catalysts and preparation and use thereof |
US3577353A (en) * | 1968-11-22 | 1971-05-04 | Chevron Res | Preparation of a cogelled catalyst of alumina and a group vi hydrogenating component |
US3658681A (en) * | 1970-02-24 | 1972-04-25 | Texaco Inc | Production of low sulfur fuel oil |
US3668116A (en) * | 1970-10-16 | 1972-06-06 | Exxon Research Engineering Co | Slurry hydrodesulfurization of a heavy petroleum oil |
US3684688A (en) * | 1971-01-21 | 1972-08-15 | Chevron Res | Heavy oil conversion |
US3749664A (en) * | 1971-04-01 | 1973-07-31 | Union Oil Co | Hydrogenative denitrogenation |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006076A (en) * | 1973-04-27 | 1977-02-01 | Chevron Research Company | Process for the production of low-sulfur-content hydrocarbon mixtures |
US4048060A (en) * | 1975-12-29 | 1977-09-13 | Exxon Research And Engineering Company | Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst |
US4069139A (en) * | 1975-12-29 | 1978-01-17 | Exxon Research & Engineering Co. | Hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst |
US4051021A (en) * | 1976-05-12 | 1977-09-27 | Exxon Research & Engineering Co. | Hydrodesulfurization of hydrocarbon feed utilizing a silica stabilized alumina composite catalyst |
US4145189A (en) * | 1976-09-08 | 1979-03-20 | Energy Conversion Systems Limited | Process for preparing a clean-burning, low sulphur liquid fuel from coal |
US4075084A (en) * | 1977-02-17 | 1978-02-21 | Union Oil Company Of California | Manufacture of low-sulfur needle coke |
US4302323A (en) * | 1980-05-12 | 1981-11-24 | Mobil Oil Corporation | Catalytic hydroconversion of residual stocks |
US4385984A (en) * | 1980-09-09 | 1983-05-31 | Shell Oil Company | Lubricating base oil compositions |
JPS6065093A (en) * | 1983-09-21 | 1985-04-13 | Res Assoc Petroleum Alternat Dev<Rapad> | Treatment of oil sand oil and residual oil |
JPS6359440B2 (en) * | 1983-09-21 | 1988-11-18 | ||
US4615789A (en) * | 1984-08-08 | 1986-10-07 | Chevron Research Company | Hydroprocessing reactors and methods |
US4556480A (en) * | 1984-08-23 | 1985-12-03 | Phillips Petroleum Company | Removal of topped crude demineralization sediment by backwashing filter to crude oil desalting process |
US4913797A (en) * | 1985-11-21 | 1990-04-03 | Mobil Oil Corporation | Catalyst hydrotreating and dewaxing process |
US4885080A (en) * | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US4990242A (en) * | 1989-06-14 | 1991-02-05 | Exxon Research And Engineering Company | Enhanced sulfur removal from fuels |
US5543036A (en) * | 1993-07-22 | 1996-08-06 | Mobil Oil Corporation | Process for hydrotreating |
US6838060B1 (en) * | 1996-09-24 | 2005-01-04 | Institut Francais Dupetrole | Process and apparatus for the production of catalytic cracking gasoline with a low sulphur content |
US6217748B1 (en) * | 1998-10-05 | 2001-04-17 | Nippon Mitsubishi Oil Corp. | Process for hydrodesulfurization of diesel gas oil |
US8475651B2 (en) | 2003-12-19 | 2013-07-02 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7736490B2 (en) | 2003-12-19 | 2010-06-15 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20050173303A1 (en) * | 2003-12-19 | 2005-08-11 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
WO2005061670A3 (en) * | 2003-12-19 | 2006-03-23 | Shell Oil Co | Systems, methods, and catalysts for producing a crude product |
US8608938B2 (en) | 2003-12-19 | 2013-12-17 | Shell Oil Company | Crude product composition |
US7534342B2 (en) | 2003-12-19 | 2009-05-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7588681B2 (en) | 2003-12-19 | 2009-09-15 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7591941B2 (en) | 2003-12-19 | 2009-09-22 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8764972B2 (en) | 2003-12-19 | 2014-07-01 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7615196B2 (en) | 2003-12-19 | 2009-11-10 | Shell Oil Company | Systems for producing a crude product |
US7628908B2 (en) | 2003-12-19 | 2009-12-08 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7648625B2 (en) | 2003-12-19 | 2010-01-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8608946B2 (en) | 2003-12-19 | 2013-12-17 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7674368B2 (en) | 2003-12-19 | 2010-03-09 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7674370B2 (en) | 2003-12-19 | 2010-03-09 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8506794B2 (en) | 2003-12-19 | 2013-08-13 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20050167332A1 (en) * | 2003-12-19 | 2005-08-04 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US8613851B2 (en) | 2003-12-19 | 2013-12-24 | Shell Oil Company | Crude product composition |
US7745369B2 (en) | 2003-12-19 | 2010-06-29 | Shell Oil Company | Method and catalyst for producing a crude product with minimal hydrogen uptake |
US20050139522A1 (en) * | 2003-12-19 | 2005-06-30 | Bhan Opinder K. | Systems, methods, and catalysts for producing a crude product |
US7780844B2 (en) | 2003-12-19 | 2010-08-24 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7807046B2 (en) | 2003-12-19 | 2010-10-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7837863B2 (en) | 2003-12-19 | 2010-11-23 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8663453B2 (en) | 2003-12-19 | 2014-03-04 | Shell Oil Company | Crude product composition |
US7955499B2 (en) | 2003-12-19 | 2011-06-07 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7959796B2 (en) | 2003-12-19 | 2011-06-14 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8025794B2 (en) | 2003-12-19 | 2011-09-27 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8070937B2 (en) | 2003-12-19 | 2011-12-06 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8137536B2 (en) | 2003-12-19 | 2012-03-20 | Shell Oil Company | Method for producing a crude product |
US8241489B2 (en) | 2003-12-19 | 2012-08-14 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7918992B2 (en) | 2005-04-11 | 2011-04-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US8481450B2 (en) | 2005-04-11 | 2013-07-09 | Shell Oil Company | Catalysts for producing a crude product |
US7678264B2 (en) | 2005-04-11 | 2010-03-16 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7651606B2 (en) * | 2006-04-24 | 2010-01-26 | Institut Francais Du Petrole | Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps |
US20070246399A1 (en) * | 2006-04-24 | 2007-10-25 | Florent Picard | Process for desulphurizing olefinic gasolines, comprising at least two distinct hydrodesulphurization steps |
US7749374B2 (en) | 2006-10-06 | 2010-07-06 | Shell Oil Company | Methods for producing a crude product |
US8734634B2 (en) | 2008-04-10 | 2014-05-27 | Shell Oil Company | Method for producing a crude product, method for preparing a diluted hydrocarbon composition, crude products, diluents and uses of such crude products and diluents |
WO2009126974A3 (en) * | 2008-04-10 | 2010-03-18 | Shell Oil Company | Method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions |
WO2009126974A2 (en) * | 2008-04-10 | 2009-10-15 | Shell Oil Company | Diluents, method for preparing a diluted hydrocarbon composition, and diluted hydrocarbon compositions |
US8450538B2 (en) | 2008-04-10 | 2013-05-28 | Shell Oil Company | Hydrocarbon composition |
US9725661B2 (en) | 2013-02-01 | 2017-08-08 | Lummus Technology Inc. | Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels |
WO2014120491A1 (en) * | 2013-02-01 | 2014-08-07 | Lummus Technology Inc. | Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels |
US9080113B2 (en) | 2013-02-01 | 2015-07-14 | Lummus Technology Inc. | Upgrading raw shale-derived crude oils to hydrocarbon distillate fuels |
FR3013722A1 (en) * | 2013-11-28 | 2015-05-29 | IFP Energies Nouvelles | METHOD FOR HYDROPROCESSING A GASOLINE IN SERIES REACTORS WITH HYDROGEN RECYCLING |
WO2015078674A1 (en) * | 2013-11-28 | 2015-06-04 | IFP Energies Nouvelles | Method for hydrotreating diesel fuel in reactors in series, comprising hydrogen recirculation |
RU2666589C1 (en) * | 2013-11-28 | 2018-09-18 | Ифп Энержи Нувелль | Method for hydrotreating gas oil in reactors in series with hydrogen recirculation |
US10072221B2 (en) | 2013-11-28 | 2018-09-11 | IFP Energies Nouvelles | Process for the hydrotreatment of a gas oil in a series of reactors with recycling of hydrogen |
FR3020373A1 (en) * | 2014-04-25 | 2015-10-30 | IFP Energies Nouvelles | HYDROTREATING PROCESS IN ASCENDING CO-CURRENT REACTORS HAVING AN OVERCURRENT CURRENT |
WO2015161937A1 (en) * | 2014-04-25 | 2015-10-29 | IFP Energies Nouvelles | Hydrotreating process in cocurrent upflow reactors having an overall countercurrent |
CN107001959A (en) * | 2014-12-04 | 2017-08-01 | 埃克森美孚研究工程公司 | Low-sulfur marine fuel and preparation method thereof |
JP2018501342A (en) * | 2014-12-04 | 2018-01-18 | エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company | Low sulfur marine bunker fuel and method for producing the same |
US9920270B2 (en) | 2014-12-04 | 2018-03-20 | Exxonmobil Research And Engineering Company | Low sulfur marine bunker fuels and methods of making same |
AU2015355397B2 (en) * | 2014-12-04 | 2018-06-14 | Exxonmobil Research And Engineering Company | Low sulfur marine bunker fuels and methods of making same |
WO2016089590A1 (en) * | 2014-12-04 | 2016-06-09 | Exxonmobil Research And Engineering Company | Low sulfur marine bunker fuels and methods of making same |
US10501699B2 (en) | 2014-12-04 | 2019-12-10 | Exxonmobil Research And Engineering Company | Low sulfur marine bunker fuels and methods of making same |
RU2692483C2 (en) * | 2014-12-04 | 2019-06-25 | ЭкссонМобил Рисерч энд Энджиниринг Компани | Low-sulfur ship bunker fuels and methods for production thereof |
US10533141B2 (en) | 2017-02-12 | 2020-01-14 | Mag{tilde over (e)}mã Technology LLC | Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit |
US11441084B2 (en) | 2017-02-12 | 2022-09-13 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10563132B2 (en) | 2017-02-12 | 2020-02-18 | Magēmā Technology, LLC | Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization |
US10563133B2 (en) | 2017-02-12 | 2020-02-18 | Magëmä Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10584287B2 (en) | 2017-02-12 | 2020-03-10 | Magēmā Technology LLC | Heavy marine fuel oil composition |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US10655074B2 (en) | 2017-02-12 | 2020-05-19 | Mag{hacek over (e)}m{hacek over (a)} Technology LLC | Multi-stage process and device for reducing environmental contaminates in heavy marine fuel oil |
US10836966B2 (en) | 2017-02-12 | 2020-11-17 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
US11136513B2 (en) | 2017-02-12 | 2021-10-05 | Magëmä Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US11203722B2 (en) | 2017-02-12 | 2021-12-21 | Magëmä Technology LLC | Multi-stage process and device for treatment heavy marine fuel oil and resultant composition including ultrasound promoted desulfurization |
US11345863B2 (en) | 2017-02-12 | 2022-05-31 | Magema Technology, Llc | Heavy marine fuel oil composition |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
US11447706B2 (en) | 2017-02-12 | 2022-09-20 | Magēmā Technology LLC | Heavy marine fuel compositions |
US11492559B2 (en) | 2017-02-12 | 2022-11-08 | Magema Technology, Llc | Process and device for reducing environmental contaminates in heavy marine fuel oil |
US11530360B2 (en) | 2017-02-12 | 2022-12-20 | Magēmā Technology LLC | Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit |
US11560520B2 (en) | 2017-02-12 | 2023-01-24 | Magēmā Technology LLC | Multi-stage process and device for treatment heavy marine fuel oil and resultant composition and the removal of detrimental solids |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
US11795406B2 (en) | 2017-02-12 | 2023-10-24 | Magemä Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US11884883B2 (en) | 2017-02-12 | 2024-01-30 | MagêmãTechnology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US11912945B2 (en) | 2017-02-12 | 2024-02-27 | Magēmā Technology LLC | Process and device for treating high sulfur heavy marine fuel oil for use as feedstock in a subsequent refinery unit |
US12025435B2 (en) | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
WO2019053323A1 (en) | 2017-09-14 | 2019-03-21 | Neste Oyj | Low sulfur fuel oil bunker composition and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3902991A (en) | Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture | |
US4006076A (en) | Process for the production of low-sulfur-content hydrocarbon mixtures | |
US4302323A (en) | Catalytic hydroconversion of residual stocks | |
US4067799A (en) | Hydroconversion process | |
US7214308B2 (en) | Effective integration of solvent deasphalting and ebullated-bed processing | |
US5158668A (en) | Preparation of recarburizer coke | |
US5286371A (en) | Process for producing needle coke | |
US3684688A (en) | Heavy oil conversion | |
US3816298A (en) | Hydrocarbon conversion process | |
US4686028A (en) | Upgrading of high boiling hydrocarbons | |
US4695369A (en) | Catalytic hydroconversion of heavy oil using two metal catalyst | |
US3891538A (en) | Integrated hydrocarbon conversion process | |
US3287254A (en) | Residual oil conversion process | |
US4151070A (en) | Staged slurry hydroconversion process | |
US6620311B2 (en) | Process for converting petroleum fractions, comprising an ebullated bed hydroconversion step, a separation step, a hydrodesulphurization step and a cracking step | |
US3671419A (en) | Upgrading of crude oil by combination processing | |
US3172842A (en) | Hydrocarbon conversion process includ- ing a hydrocracking stage, two stages of catalytic cracking, and a reform- ing stage | |
US4176048A (en) | Process for conversion of heavy hydrocarbons | |
CA1169841A (en) | Process for upgrading residual oil and catalyst for use therein | |
US3862899A (en) | Process for the production of synthesis gas and clean fuels | |
WO2020123374A1 (en) | Upgrading polynucleararomatic hydrocarbon-rich feeds | |
US4992163A (en) | Cat cracking feed preparation | |
US3321395A (en) | Hydroprocessing of metal-containing asphaltic hydrocarbons | |
US4272357A (en) | Desulfurization and demetalation of heavy charge stocks | |
US5362382A (en) | Resid hydrocracking using dispersed metal catalysts |