JPS6359440B2 - - Google Patents

Info

Publication number
JPS6359440B2
JPS6359440B2 JP58173203A JP17320383A JPS6359440B2 JP S6359440 B2 JPS6359440 B2 JP S6359440B2 JP 58173203 A JP58173203 A JP 58173203A JP 17320383 A JP17320383 A JP 17320383A JP S6359440 B2 JPS6359440 B2 JP S6359440B2
Authority
JP
Japan
Prior art keywords
catalyst
oil
rate
pore diameter
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58173203A
Other languages
Japanese (ja)
Other versions
JPS6065093A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58173203A priority Critical patent/JPS6065093A/en
Publication of JPS6065093A publication Critical patent/JPS6065093A/en
Publication of JPS6359440B2 publication Critical patent/JPS6359440B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は脱金属オイルサンド油、各種原油から
の残渣油、脱金属残渣油およびこれらの熱分解油
の処理方法に関するものである。 更に詳細に説明すれば、本発明はオイルサンド
油、オイルサンド油の熱分解油、各種原油からの
常圧残渣油、および常圧残渣油の熱分解油を脱金
属処理し、残留金属を100ppm以下にしたものを
原料油として使用し、これを特定の触媒の存在下
で特定の反応条件で水素化処理して脱硫、脱窒
素、脱アスフアルテン、脱金属および水素化分解
する方法に関するものである。 非常に多量の硫黄化合物、窒素化合物、金属化
合物、アスフアルテン等を含む処理の困難なオイ
ルサンド油、各種原油からの残渣油を脱金属処理
と水素化処理とを組合せることにより効率よく利
用価値の高い炭化水素油に変換する方法において
使用する水素化処理に関するものである。 本発明で使用する原料油はオイルサンド油の脱
金属油、各種原油からの残渣油の熱分解脱金属油
であつて金属成分の含量が100ppm以下のもので
ある。上記の原料油の他に金属成分含量が
100ppm以下であつて沸点240℃以上の重質油を使
用することもできる。 本発明で使用する熱分解脱金属油の脱金属処理
の一例を示せば次の如くである。 沸点240℃以上のオイルサンド油、オイルサン
ド油の熱分解油、各種原油からの常圧残渣油およ
び常圧残渣油の熱分解油を反応温度300℃ないし
500℃、好ましくは350℃ないし450℃、水素圧50
ないし250Kg/cm2、好ましくは100ないし200Kg/
cm2、ガス比500ないし2000H2―/―oilの条件
下で触媒として平均細孔直径80ないし250Å、好
ましくは100ないし180Åのγ―アルミナ担体に担
持させたニツケルーバナジウム系触媒(Nio―
V2O5重量比1:0.5〜2)を用いて脱金属処理す
ることによつて得られたものである。 本発明で使用する原料油の諸性状は第1表に示
す。
The present invention relates to a method for treating demetallized oil sand oil, residual oil from various crude oils, demetallized residual oil, and pyrolysis oil thereof. More specifically, the present invention demetallizes oil sand oil, pyrolysis oil of oil sand oil, atmospheric residual oil from various crude oils, and pyrolysis oil of atmospheric residual oil to remove residual metals to 100 ppm. This relates to a method of using the following as a feedstock oil and hydrotreating it under specific reaction conditions in the presence of a specific catalyst to perform desulfurization, denitrification, deasphaltene, demetallization, and hydrocracking. . Oil sand oil, which is difficult to process and contains extremely large amounts of sulfur compounds, nitrogen compounds, metal compounds, asphaltene, etc., and residual oil from various crude oils can be efficiently converted to value by combining demetallization treatment and hydrogenation treatment. It relates to hydrotreating used in the process of converting high hydrocarbon oils. The raw material oil used in the present invention is a demetallized oil of oil sand oil or a pyrolysis demetalized oil of residual oil from various crude oils, and has a metal component content of 100 ppm or less. In addition to the above raw material oil, metal component content is
It is also possible to use heavy oil with a content of 100 ppm or less and a boiling point of 240° C. or more. An example of the demetallization treatment of the pyrolyzed demetalized oil used in the present invention is as follows. Oil sand oil with a boiling point of 240°C or higher, pyrolysis oil of oil sand oil, atmospheric residual oil from various crude oils, and pyrolysis oil of atmospheric residual oil at a reaction temperature of 300°C or higher.
500℃, preferably 350℃ to 450℃, hydrogen pressure 50℃
From 100 to 200Kg/cm 2 , preferably from 100 to 200Kg/cm 2
cm 2 and a gas ratio of 500 to 2000 H 2 -/-oil, a Ni-vanadium catalyst (Nio-
It was obtained by demetallizing using V 2 O 5 (weight ratio 1:0.5-2). Properties of the raw material oil used in the present invention are shown in Table 1.

【表】【table】

【表】 本発明で使用する触媒はγ―アルミナ担体にニ
ツケル、コバルトおよびモリブデンの金属より選
ばれた1種または2種以上の金属または金属酸化
物を担持させたもの(例えばM0O3―C0Oおよび
M0O3―NiO)であつて、触媒の平均細孔直径80
ないし250Å、好ましくは100ないし180Åである。
更に本発明で使用する触媒にリン酸化物(P2O5
またはケイ素酸化物(SiO2)を添加して分解率
および脱硫率の向上を図ることができる。 その添加量は2ないし20%(重量)、好ましく
は3ないし10%(重量)である。 触媒の金属成分の担体への担持法、担持触媒の
乾燥方法、焼成方法および活性化方法はいずれも
常法である。 本発明で使用する触媒の性状は第2表に示す。
[Table] The catalyst used in the present invention is one in which one or more metals or metal oxides selected from nickel, cobalt, and molybdenum are supported on a γ-alumina carrier (for example, M 0 O 3 - C 0 O and
M 0 O 3 - NiO), and the average pore diameter of the catalyst is 80
from 100 to 250 Å, preferably from 100 to 180 Å.
Furthermore, phosphorus oxide (P 2 O 5 ) is added to the catalyst used in the present invention.
Alternatively, silicon oxide (SiO 2 ) can be added to improve the decomposition rate and desulfurization rate. The amount added is 2 to 20% (by weight), preferably 3 to 10% (by weight). The method for supporting the metal component of the catalyst on a carrier, the method for drying the supported catalyst, the method for calcination, and the method for activating the catalyst are all conventional methods. The properties of the catalyst used in the present invention are shown in Table 2.

【表】【table】

【表】 本発明で使用する触媒の性状の一例を示せば、
表面積100〜200m2/g、細孔容積0.45 0.6ml/
g、平均細孔直径80〜250Å、カサ比重(g/ml)
0.6〜0.80である。 〔A〕 担持金属の種類が分解率、脱硫率および
脱窒素率におよぼす影響 触媒としてCo―Mo系触媒(CoO―MoO3重量
比1:3)およびNi―Mo 系触媒(NiO―
MoO3重量比1:3.3)を使用し、反応温度(℃)
と分解率(%)との関係を第1図に示した。また
反応温度(℃)と脱硫・脱窒素率(%)との関係
を第2図に示した。 反応条件は水素圧150Kg/cm2、液空間速度1.0
Kg/.hr.ガス比1000H2―/―oilであつ
た。 第1図より反応温度380℃ないし440℃において
Co―Mo系触媒およびNi―Mo系触媒では分解率
は高温側(440℃)でほゞ同程度であつたが、低
温側(380℃)ではNi―Mo系触媒の方がすぐれ
ていることがわかつた。 第2図より脱硫率はCo―Mo系触媒およびNi―
Mo系触媒では同程度で70〜80%(重量)であ
り、脱窒素率ではNi―Mo系触媒の方がすぐれて
おり、低温側(380℃)では35%(重量)、高温側
(440℃)では68%(重量)であつた。 第1図および第2図より、反応温度は350ない
し500℃、好ましくは380℃ないし450℃で、分解
率、脱硫率および脱窒素率はNi―Mo系触媒の方
がすぐれていることがわかつた。 〔B〕 触媒の平均細孔直径の分解率におよぼす
影響 原料油としてイラニアンヘビー常圧残渣熱分解
脱金属油を使用し、触媒としてNi―Mo系触媒
(NiO―MoO3重量比5:20重量%)で平均細孔
直径130Å(No.149)および180Å(No.156)のもの
を使用した。 反応条件は前記〔A〕項と同様であつた。触媒
の平均細孔直径(Å)を130Åないし180Åにか
え、反応温度380℃、410℃および440℃について
分解率(重量%)および脱硫・脱窒素率(重量
%)を調べた。その結果は第3図および第4図に
示した。 第3図より、分解率は触媒平均細孔直径130Å
の方が180Åよりすぐれていることがわかつた。 また第4図より脱窒素率については高温になる
ほど大きくなり、また触媒の平均細孔直径(Å)
が大きくなるに従つて低下することがわかつた。 また脱硫率についても同様な傾向を示した。 第3図および第4図より触媒の細孔直径は80な
いし250Å、好ましくは100ないし180Åである。 また反応温度と脱金属率(脱バナジウム率)と
の関係をそれぞれ第5図に示した。 また、第5図より脱金属率は細孔直径の大きい
触媒を使用した場合の方がすぐれており反応温度
380℃では約60%、反応温度440℃では約90%であ
つた。 水素化分解触媒の寿命を考えれば脱金属率が低
く、細孔直径が大きいものが好ましい。 〔C〕 担持金属量が水素化分解反応におよぼす
影響 触媒としてCo―Mo系触媒(CoO―MoO3重量
比4.4:12.2ないし5.4:16.2)を使用し、反応温
度380℃ないし440℃について調べた。その他の反
応条件は〔A〕項と同様であつた。 その結果を第6図および第7図に示した。触媒
No.120(CoO―MoOC重量比1:3)では触媒成分
の担持量(酸化物の重量基準として)は16%であ
つた。 また触媒No.121(CoO―MoO3重量比1:4)で
は触媒成分の担持量(酸化物の重量基準として)
は21%であつた。 第6図より分解率は低温側(380℃)ではいず
れの触媒を使用した場合でも約45%であつたが、
高温側(440℃)では触媒(No.121)の方がすぐれ
ており、分解率は触媒No.121で85%であり、触媒
No.120では70%であつた。 また第7図において、脱硫率は触媒No.121の方
が触媒No.120よりすぐれており、低温側(380℃)
では約60%であつたが、高温側(440℃)では約
95%に達した。 脱窒素率においても同様な結果を示し、触媒No.
121は反応温度380℃では約30%で、反応温度440
℃では約80%に達した。 触媒としてNi―Mo系触媒(NiO―MoO3)を
使用した場合も同様な結果が得られた。 第6図および第7図より触媒の担持量は10ない
し30%(重量)、好ましくは15ないし25%(重量)
である。 また第1表からNiOまたはCoOに対するMoO3
の比率(重量%)は1:1ないし10で、好ましく
は1:3ないし6である。 〔D〕 添加成分(リン酸化物、ケイ素酸化物)
が分解率および脱硫率におよぼす影響 触媒としてNi―Mo系触媒(NiO:MoO3重量
比1:3.3)を使用し、触媒(No.153)にリン酸化
物(P2O5)3%(重量)および触媒(No.154)に
ケイ素酸化物(SiO2)4%(重量)をそれぞれ
添加した。反応条件は〔A〕項と同様であつた。
反応温度と分解率との関係は第8図に示した。第
8図より分解率に関してはSiO2添加の場合が
P2O5添加の場より効果的であることがわかつた。
一方反応温度と脱硫率との関係は第9図に示し
た。第9図よりP2O5およびSiO2添加の場合には、
添加効果は脱硫率においても充分認められた。 添加成分(P2O5、SiO2)の添加量は2ないし
20%(重量)で、好ましくは3ないし10%(重
量)である。 次に実施例を掲げて本発明を説明するがこれに
限定されるものではない。 実施例 触媒としてNiO―MoO3触媒(No.154.重量比
1:3.3)にSiO24%(重量)を添加して使用し
た。原料として石油原油(イラニアンヘビー原
油)の常圧残渣熱分解油を使用した。反応条件は
水素圧150Kg/cm2、反応温度410℃、液空間速度
2.0Kg/・hr、ガス比1000H2―/―oil、15
時間運転した。脱硫率、脱金属率および分解率の
経時的変化を第10図に示した。運転期間を通じ
て平均脱硫率90%、平均脱金属率(脱バナジウム
率)70%、平均分解率50%であつた。 第10図より本発明の触媒は長期間(約150時
間)に亘り安定した触媒能を示すことがわかつ
た。 原料としてオイルサンド油を使用した場合にも
ほゞ同様な結果が得られた。 本発明の特徴を示せば次の如くである。 (1) 触媒としてγ―アルミナ担体に担持したNiO
―MoO3触媒であつて、平均細孔径80ないし
250Åの触媒を使用した。この触媒は熱分解脱
金属オイルサンド油および熱分解脱金属残渣油
の水素化分解、脱硫および脱窒素に長期間に亘
り有効であることがわかつた。 (2) 本発明の触媒にSiO2またはP2O5を添加した
触媒は分解率および脱硫率において有効である
ことがわかつた。
[Table] An example of the properties of the catalyst used in the present invention is as follows:
Surface area 100-200m2 /g, pore volume 0.45-0.6ml/
g, average pore diameter 80-250Å, bulk specific gravity (g/ml)
It is 0.6-0.80. [A] Effect of the type of supported metal on the decomposition rate, desulfurization rate, and denitrification rate As catalysts, Co-Mo based catalyst (CoO-MoO 3 weight ratio 1:3) and Ni-Mo based catalyst (NiO-
MoO 3 (weight ratio 1:3.3) was used, reaction temperature (°C)
The relationship between the decomposition rate (%) and the decomposition rate (%) is shown in Figure 1. Furthermore, the relationship between the reaction temperature (°C) and the desulfurization/denitrogenization rate (%) is shown in Figure 2. The reaction conditions were hydrogen pressure 150Kg/cm 2 and liquid hourly space velocity 1.0.
Kg/. hr.Gas ratio 1000H 2 -/-oil. From Figure 1, at a reaction temperature of 380℃ to 440℃
The decomposition rates of Co-Mo and Ni-Mo catalysts were almost the same at high temperatures (440°C), but Ni-Mo catalysts were superior at low temperatures (380°C). I understood. From Figure 2, the desulfurization rate is
Mo-based catalysts have a similar denitrification rate of 70-80% (weight), while Ni-Mo-based catalysts are superior in terms of denitrification rate, with 35% (weight) on the low temperature side (380℃) and 35% (weight) on the high temperature side (440℃). ℃), it was 68% (weight). From Figures 1 and 2, it can be seen that the reaction temperature is 350 to 500°C, preferably 380 to 450°C, and the Ni-Mo catalyst is superior in decomposition rate, desulfurization rate, and denitrification rate. Ta. [B] Effect of the average pore diameter of the catalyst on the decomposition rate Iranian Heavy atmospheric residue pyrolysis demetalized oil was used as the feedstock oil, and a Ni-Mo catalyst (NiO-MoO 3 weight ratio 5:20 weight) was used as the catalyst. %) with an average pore diameter of 130 Å (No. 149) and 180 Å (No. 156). The reaction conditions were the same as in section [A] above. The average pore diameter (Å) of the catalyst was changed from 130 Å to 180 Å, and the decomposition rate (wt%) and desulfurization/denitrogenization rate (wt%) were investigated at reaction temperatures of 380°C, 410°C, and 440°C. The results are shown in FIGS. 3 and 4. From Figure 3, the decomposition rate is 130 Å in catalyst average pore diameter.
was found to be better than 180Å. In addition, as shown in Figure 4, the denitrification rate increases as the temperature increases, and the average pore diameter (Å) of the catalyst increases.
It was found that the value decreases as the value increases. A similar trend was also observed for the desulfurization rate. From FIGS. 3 and 4, the pore diameter of the catalyst is 80 to 250 Å, preferably 100 to 180 Å. Further, the relationship between reaction temperature and metal removal rate (vanadium removal rate) is shown in FIG. 5, respectively. In addition, as shown in Figure 5, the metal removal rate is better when using a catalyst with a large pore diameter, and the reaction temperature
It was about 60% at 380°C and about 90% at a reaction temperature of 440°C. Considering the life of the hydrocracking catalyst, it is preferable that the metal removal rate is low and the pore diameter is large. [C] Effect of supported metal amount on hydrogenolysis reaction A Co-Mo catalyst (CoO-MoO 3 weight ratio 4.4:12.2 to 5.4:16.2) was used as a catalyst, and the reaction temperature was investigated at 380°C to 440°C. . Other reaction conditions were the same as in Section [A]. The results are shown in FIGS. 6 and 7. catalyst
In No. 120 (CoO-MoOC weight ratio 1:3), the amount of catalyst component supported (based on the weight of oxide) was 16%. In addition, for catalyst No. 121 (CoO-MoO 3 weight ratio 1:4), the amount of catalyst components supported (based on the weight of oxide)
was 21%. As shown in Figure 6, the decomposition rate was about 45% on the low temperature side (380°C) no matter which catalyst was used.
On the high temperature side (440°C), the catalyst (No. 121) is superior, and the decomposition rate is 85% with catalyst No. 121.
In No. 120, it was 70%. In addition, in Figure 7, catalyst No. 121 has a better desulfurization rate than catalyst No. 120, and the desulfurization rate is higher on the low temperature side (380℃).
It was about 60%, but at the high temperature side (440℃) it was about 60%.
Reached 95%. Similar results were shown for the denitrification rate, and catalyst No.
121 is about 30% at a reaction temperature of 380℃, and at a reaction temperature of 440℃.
It reached about 80% at ℃. Similar results were obtained when a Ni--Mo catalyst (NiO--MoO 3 ) was used as the catalyst. From Figures 6 and 7, the amount of catalyst supported is 10 to 30% (by weight), preferably 15 to 25% (by weight).
It is. Also, from Table 1, MoO 3 for NiO or CoO
The ratio (% by weight) is from 1:1 to 10, preferably from 1:3 to 6. [D] Additive components (phosphorus oxide, silicon oxide)
Effects on decomposition rate and desulfurization rate A Ni-Mo catalyst (NiO:MoO 3 weight ratio 1:3.3) was used as a catalyst, and 3% phosphorus oxide (P 2 O 5 ) was added to the catalyst (No. 153). 4% (by weight) of silicon oxide (SiO 2 ) was added to the catalyst (No. 154) and the catalyst (No. 154). The reaction conditions were the same as in section [A].
The relationship between reaction temperature and decomposition rate is shown in FIG. From Figure 8, regarding the decomposition rate, the case with SiO 2 addition is
It was found to be more effective than the case where P 2 O 5 was added.
On the other hand, the relationship between reaction temperature and desulfurization rate is shown in FIG. From Figure 9, in the case of P 2 O 5 and SiO 2 addition,
The effect of the addition was also fully recognized in the desulfurization rate. The amount of additive components (P 2 O 5 , SiO 2 ) is 2 or more.
20% (by weight), preferably 3 to 10% (by weight). Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto. Example A NiO--MoO 3 catalyst (No. 154, weight ratio 1:3.3) was used as a catalyst by adding 4% (by weight) of SiO 2 . Atmospheric pressure residue pyrolysis oil of petroleum crude oil (Iranian heavy crude oil) was used as a raw material. The reaction conditions were hydrogen pressure 150Kg/cm 2 , reaction temperature 410℃, and liquid hourly space velocity.
2.0Kg/・hr, gas ratio 1000H 2 -/-oil, 15
I drove for hours. Figure 10 shows the changes over time in the desulfurization rate, metal removal rate, and decomposition rate. Throughout the operation period, the average desulfurization rate was 90%, the average metal removal rate (vanadium removal rate) was 70%, and the average decomposition rate was 50%. From FIG. 10, it was found that the catalyst of the present invention exhibited stable catalytic performance over a long period of time (approximately 150 hours). Almost similar results were obtained when oil sands oil was used as the raw material. The features of the present invention are as follows. (1) NiO supported on a γ-alumina support as a catalyst
- MoO 3 catalyst with average pore size of 80 or more
A 250 Å catalyst was used. This catalyst was found to be effective for long periods of time in the hydrocracking, desulfurization, and denitrification of pyrolytically demetalized oil sand oils and pyrolytically demetallized residual oils. (2) It was found that the catalyst of the present invention to which SiO 2 or P 2 O 5 was added was effective in terms of decomposition rate and desulfurization rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は水素化分解反応における担持金属の種
類と分解率との関係を示す図、第2図は担持金属
の種類と脱硫・脱窒素率との関係を示す図、第3
図はNi―Mo系触媒による触媒の平均細孔直径と
分解率との関係を示す図、第4図はCo―Mo系触
媒による触媒の平均細孔直径と脱硫・脱窒素率と
の関係を示す図、第5図はNi―Mo系触媒による
反応温度と脱金属率との関係を示す図、第6図は
金属担持量と分解率との関係を示す図、第7図は
水素化分解反応における金属担持量と脱窒素・脱
硫率との関係を示す図、第8図は水素化反応にお
ける第3成分の添加が分解率におよぼす影響を示
す図、第9図は第3成分の添加が脱硫率におよぼ
す影響を示す図、第10図は原料通油運転時間と
脱硫・脱金属率との関係を示す図である。
Figure 1 is a diagram showing the relationship between the type of supported metal and the decomposition rate in the hydrocracking reaction, Figure 2 is a diagram showing the relationship between the type of supported metal and the desulfurization/denitrogenization rate, and Figure 3 is a diagram showing the relationship between the type of supported metal and the desulfurization/denitrogenization rate.
The figure shows the relationship between the average pore diameter and decomposition rate of a Ni-Mo catalyst, and Figure 4 shows the relationship between the average pore diameter and desulfurization/denitrogenization rate of a Co-Mo catalyst. Figure 5 is a diagram showing the relationship between the reaction temperature and demetalization rate using a Ni-Mo catalyst, Figure 6 is a diagram showing the relationship between the amount of metal supported and the decomposition rate, and Figure 7 is a diagram showing the relationship between the amount of metal supported and the decomposition rate. A diagram showing the relationship between the amount of metal supported in the reaction and the denitrification/desulfurization rate. Figure 8 is a diagram showing the effect of the addition of a third component in the hydrogenation reaction on the decomposition rate. Figure 9 is a diagram showing the effect of the addition of the third component in the hydrogenation reaction. FIG. 10 is a diagram showing the relationship between the raw material oil passing operation time and the desulfurization/demetallization rate.

Claims (1)

【特許請求の範囲】 1 原料油として脱金属オイルサンド油、各種原
油からの残渣油、脱金属残渣油およびこれらの熱
分解脱金属油を反応温度350℃ないし500℃、水素
圧力50ないし250Kg/cm2、液空間速度0.3ないし
2.5h-1およびガス比500ないし2000―H2/―
oilの反応条件下で触媒としてγ―アルミナ担体
にニツケル、コバルトおよびモリブデンの金属よ
り選ばれた1種または2種以上の金属または金属
酸化物を担持させたもので、しかも触媒の平均細
孔直径は80ないし250Åであることを特徴とする
オイルサンド油および残渣油の処理方法。 2 上記のγ―アルミナ担体にニツケル、コバル
トおよびモリブデンの金属より選ばれた1種また
は2種以上の金属または金属酸化物を担持させた
ものにリン酸化物またはケイ素酸化物を添加した
触媒であつて、触媒の平均細孔直径は80ないし
250Åであることを特徴とする特許請求の範囲第
1項記載の処理方法。
[Scope of Claims] 1. Demetallized oil sand oil, residual oil from various crude oils, demetallized residual oil, and thermally decomposed demetalized oils thereof are used as feedstock oils at a reaction temperature of 350°C to 500°C and a hydrogen pressure of 50 to 250 kg/ cm 2 , liquid space velocity 0.3 to
2.5h -1 and gas ratio 500 to 2000—H 2 /—
One or more metals or metal oxides selected from nickel, cobalt, and molybdenum are supported on a γ-alumina carrier as a catalyst under oil reaction conditions, and the catalyst has an average pore diameter. A method for treating oil sand oil and residual oil, characterized in that: 80 to 250 Å. 2. A catalyst prepared by adding phosphorous oxide or silicon oxide to the above-mentioned γ-alumina carrier supporting one or more metals or metal oxides selected from the metals nickel, cobalt and molybdenum. Therefore, the average pore diameter of the catalyst is 80 or
The treatment method according to claim 1, characterized in that the thickness is 250 Å.
JP58173203A 1983-09-21 1983-09-21 Treatment of oil sand oil and residual oil Granted JPS6065093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173203A JPS6065093A (en) 1983-09-21 1983-09-21 Treatment of oil sand oil and residual oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173203A JPS6065093A (en) 1983-09-21 1983-09-21 Treatment of oil sand oil and residual oil

Publications (2)

Publication Number Publication Date
JPS6065093A JPS6065093A (en) 1985-04-13
JPS6359440B2 true JPS6359440B2 (en) 1988-11-18

Family

ID=15956019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173203A Granted JPS6065093A (en) 1983-09-21 1983-09-21 Treatment of oil sand oil and residual oil

Country Status (1)

Country Link
JP (1) JPS6065093A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749374B2 (en) * 2006-10-06 2010-07-06 Shell Oil Company Methods for producing a crude product
WO2010009077A2 (en) 2008-07-14 2010-01-21 Saudi Arabian Oil Company Process for the treatment of heavy oils using light hydrocarbon components as a diluent
US8372267B2 (en) 2008-07-14 2013-02-12 Saudi Arabian Oil Company Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383301A (en) * 1966-01-20 1968-05-14 Gulf Research Development Co Residue desulfurization with catalyst whose pore volume is distributed over wide range of pore sizes
US3513086A (en) * 1967-11-01 1970-05-19 Union Oil Co Selective hydrocracking process for converting heavy oils to middle distillates
JPS4933321A (en) * 1972-08-02 1974-03-27
JPS5018883A (en) * 1973-06-19 1975-02-27
US3898155A (en) * 1973-12-19 1975-08-05 Gulf Research Development Co Heavy oil demetallization and desulfurization process
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US3928176A (en) * 1974-04-01 1975-12-23 Exxon Research Engineering Co Heavy crude conversion
JPS5138723A (en) * 1974-09-26 1976-03-31 Takao Ooe ORITATAMISHIKIPURE HABUKAOKU
JPS5213503A (en) * 1975-07-23 1977-02-01 Exxon Research Engineering Co Catalyst and method for removing sulfur and metal contamination from hydrocarbon feed oil
JPS52152890A (en) * 1976-06-14 1977-12-19 American Cyanamid Co Manufacture of molded alumina catalyst materials
JPS5420476A (en) * 1977-07-18 1979-02-15 Tousoku Seimitsu Kougiyou Kk Automatic sample manufacturing machine for use in material test
JPS5423096A (en) * 1977-07-22 1979-02-21 Exxon Research Engineering Co Hydrotreating catalyst and method of using it
JPS5645648A (en) * 1979-09-10 1981-04-25 Shaw Robert F Nonnsticky surgical instrument and method
JPS5648205A (en) * 1979-09-27 1981-05-01 Babcock Hitachi Kk Electric dialysis type water making apparatus
JPS5715935A (en) * 1980-07-02 1982-01-27 Toyota Motor Corp Continuous foaming molder

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383301A (en) * 1966-01-20 1968-05-14 Gulf Research Development Co Residue desulfurization with catalyst whose pore volume is distributed over wide range of pore sizes
US3513086A (en) * 1967-11-01 1970-05-19 Union Oil Co Selective hydrocracking process for converting heavy oils to middle distillates
JPS4933321A (en) * 1972-08-02 1974-03-27
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
JPS5018883A (en) * 1973-06-19 1975-02-27
US3898155A (en) * 1973-12-19 1975-08-05 Gulf Research Development Co Heavy oil demetallization and desulfurization process
US3928176A (en) * 1974-04-01 1975-12-23 Exxon Research Engineering Co Heavy crude conversion
JPS5138723A (en) * 1974-09-26 1976-03-31 Takao Ooe ORITATAMISHIKIPURE HABUKAOKU
JPS5213503A (en) * 1975-07-23 1977-02-01 Exxon Research Engineering Co Catalyst and method for removing sulfur and metal contamination from hydrocarbon feed oil
JPS52152890A (en) * 1976-06-14 1977-12-19 American Cyanamid Co Manufacture of molded alumina catalyst materials
JPS5420476A (en) * 1977-07-18 1979-02-15 Tousoku Seimitsu Kougiyou Kk Automatic sample manufacturing machine for use in material test
JPS5423096A (en) * 1977-07-22 1979-02-21 Exxon Research Engineering Co Hydrotreating catalyst and method of using it
JPS5645648A (en) * 1979-09-10 1981-04-25 Shaw Robert F Nonnsticky surgical instrument and method
JPS5648205A (en) * 1979-09-27 1981-05-01 Babcock Hitachi Kk Electric dialysis type water making apparatus
JPS5715935A (en) * 1980-07-02 1982-01-27 Toyota Motor Corp Continuous foaming molder

Also Published As

Publication number Publication date
JPS6065093A (en) 1985-04-13

Similar Documents

Publication Publication Date Title
US4048060A (en) Two-stage hydrodesulfurization of oil utilizing a narrow pore size distribution catalyst
JP3824464B2 (en) Method for hydrocracking heavy oils
US5529968A (en) Hydrodearomatization of hydrocarbon oils using novel "phophorus treated carbon" supported metal sulfide catalysts
US6030915A (en) Process for preparing a large pore hydroprocessing catalyst
US5676822A (en) Process for hydrodearomatization of hydrocarbon oils using carbon supported metal sulfide catalysts promoted by zinc
JPS6326157B2 (en)
JPH0249783B2 (en)
JPS63194732A (en) Hydrogenation catalyst for heavy oil
JP2000000470A (en) Hydrogenation catalyst and method for hydrogenating heavy oil
JPH0263553A (en) Residue hydrotreating catalyst, production thereof and catalytic hydrotreatment of hydrocarbon containing oil using said catalyst
JP2619700B2 (en) Hydrocracking process for hydrocarbon feedstocks
US5472595A (en) Process for hydrodearomatization of hydrocarbon oils using carbon supported metal sulfide catalysts promoted by phosphate
GB2038354A (en) Process for demetallizing a hydrocarbon feedstock
JPS5824352A (en) Crystalline silica zeolite containing catalyst and hydrogenation treatment of hydrocarbon using same
JPS63289092A (en) Hydrorefining method
JPS6359440B2 (en)
US4969989A (en) Hydrocarbon conversion process with catalytic materials of controlled geometric mean electronegativity
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JP3544603B2 (en) Hydrorefining method of hydrocarbon oil
JPS63254191A (en) Hydrotreatment of liquid hydrocarbon
EP0034908B1 (en) Process for hydrodemetallization of hydrocarbon streams
JP3689476B2 (en) Heavy oil hydrocracking catalyst
JP3502499B2 (en) Hydrocracking method for heavy oils
JPH0813338B2 (en) Residual oil hydrocracking catalyst
JPS6225418B2 (en)