JP2007287991A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2007287991A
JP2007287991A JP2006114792A JP2006114792A JP2007287991A JP 2007287991 A JP2007287991 A JP 2007287991A JP 2006114792 A JP2006114792 A JP 2006114792A JP 2006114792 A JP2006114792 A JP 2006114792A JP 2007287991 A JP2007287991 A JP 2007287991A
Authority
JP
Japan
Prior art keywords
copper
laser
heat spreader
hole
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006114792A
Other languages
English (en)
Inventor
Katsuhiko Yoshihara
克彦 吉原
Harutaka Taniguchi
春隆 谷口
Tomoaki Gotou
友彰 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006114792A priority Critical patent/JP2007287991A/ja
Publication of JP2007287991A publication Critical patent/JP2007287991A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/8421Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/84214Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

【目的】 高融点材料のヒートスプレッタと低融点材料の金属板をレーザ光で溶融して接合し、高い溶接強度を得ることができる半導体装置の製造方法を提供する。
【解決手段】銅板15に貫通孔20を開けて、レーザ光31を貫通孔20から入射し銅―モリブデンいた16の表面に焦点32を合わせ、銅―モリブデン板16を加熱し、その加熱により貫通孔20の近傍の銅板15を溶融させて銅板15と銅―モリブデン板16をレーザ溶接する。
【選択図】 図1

Description

この発明は、チップ温度低減のためにチップ上面に接合されるヒートスプレッダを有する半導体装置の製造方法に関し、特に、ヒートスプレッダと外部に配線するための金属板を接合する際の、ヒートスプレッダ上配線の接合方法に関する。
近年、電力変換装置の小型化・高密度化が進んできている。電力変換装置の小型化・高密度化に対しては、パッケージ内部の配線,パッケージ構造,放熱方法などを改良する必要がある。特にパワーデバイスであるIGBT(Insulated Gate Bipolar Transistor)やFWD(Free Wheeling Diode)等の半導体チップでは、大電流化,小型化にともない、高電流密度で使用されることが多くなってきている。
ここで問題となるのが高電流密度化に伴う発熱密度の増加である。例えば、従来では定格50Aで使用していた半導体チップに、半導体チップの高性能化に伴って定格以上の電流、例えば75Aの電流を流すという使われ方が多くなってきている。半導体チップの定格電流により、必要とされるチップ面積があるが、例えば10mm□(10mm×10mm)の半導体チップを1枚のウェハから取り出すことができる個数が100個であった場合、半導体チップ面積が30%小さなもの(約8.4mm□)では、同じウェハから取り出すことのできる半導体チップ個数は約142個となり、1ウェハ当たりの半導体チップの取れ数が大きくなる。このように、より小さな半導体チップで、より多くの電流を流すことができれば、1ウェハ当たりの半導体チップの取れ数増加に伴い、コスト低減につながる。
また、半導体チップの小型化は、これらの半導体チップを複数個組み合わせて構成される半導体パッケージのサイズを小さくできるメリットもある。これらのことから、同じ定格電流でも、より小さなチップが嗜好される傾向が強く、結果として高発熱密度化が進んできている現状がある。
IGBTやFWD等のパワーデバイスでは、動作温度の上限を125℃としている場合が多い。しかしながらチップの小型化や高電流密度化に伴って発熱密度が増加し、従来のアルミワイヤによる配線ではチップ表面の温度上昇を抑えることが不可能となっている。
これは、アルミワイヤが例えばφ300μmやφ400μmといった細線であり、チップで発生した熱を移動することが出来ないばかりか、アルミワイヤ自身がジュールにより発熱し、場合によっては溶断してしまう問題点がある。
片面冷却方式をとる半導体パッケージでは、半導体チップから発生した熱は半導体チップの下面からしか放熱が出来ない。半導体パッケージ内には、絶縁保護のためにシリコーン系の封止樹脂が充填されており、半導体チップの上面はこの封止樹脂で覆われている。シリコーン系封止樹脂の熱伝導率は0.1〜0.2W/mK程度であり、この構成では半導体チップ上面からの放熱は期待できない。
このような問題点に対し、半導体チップ上面から効率的に熱を逃がす方法として、半導体チップ上面に金属製のヒートスプレッダ(放熱体)を熱伝導性樹脂あるはんだにより接合する方法がある。
図9は従来例1を示す図である。図9において、セラミクス1、裏面銅箔2、表面回路パターン(表面銅箔)3,4,5から構成される絶縁基板の表面回路パターン4上に、IGBTチップ6がはんだ7により接合されている。図9の例では、半導体チップとしてはIGBTチップ6を用いており、表面回路パターン3にIGBTのエミッタが、表面回路パターン4にはコレクタが、表面回路パターン5にはゲートがそれぞれ接続されている。
このIGBTチップ6の上面にヒートスプレッダ9がはんだ8により接合されている。さらに、このヒートスプレッダ9と表面回路パターン3を結ぶ配線として、アルミワイヤ10が接合されている。また、IGBTチップ6にゲート電圧を供給するために、図示しないIGBTチップ6上のゲートパッドと、表面回路パターン5間をアルミワイヤ11が接続している。また、インバータ動作をさせるには、この他にダイオードが必要であるが、ここでは簡略化のため説明を省略してある。また、図9に示した構造のものは、PPS(ポリ・フェニレン・サルファイド)又はPBT(ポリ・ブチレン・テレフタレート)などの樹脂ケース内に収納され、さらにその中に素子保護としてシリコーン樹脂が充填されて、半導体パッケージを構成する。このように最も高温となるチップ中央部の熱をヒートスプレッダを介してチップ周辺に拡散して、温度を下げる方法が特許文献1に開示されている。
図9に示す従来例1では、半導体チップとヒートスプレッダをはんだで接合した。この場合、はんだの体積固有抵抗が低いために、熱伝導性樹脂による接合に比べ電気的・熱的損失が小さいという利点がある。しかしながら、半導体チップの熱膨張係数と銅などの高熱伝導材からなるヒートスプレッダの熱膨張係数との差異により、冷熱繰り返し環境において、はんだ層に繰り返し応力が働き、はんだにクラックが生じてしまう問題点がある。
図10にヒートスプレッダの接合構造における、冷熱繰り返し環境でのIGBT及びヒートスプレッダの伸縮挙動を示す。図9のような、IGBTを組み込んだ半導体パッケージ(IGBTモジュールとも言う)では、IGBTやFWDがオンとなって通電すると半導体チップが発熱する。また、オフとなると、図示しない放熱構造によって冷却される。
したがって、IGBTモジュールの使用時には、発熱と冷却が繰り返される。IGBTモジュールの信頼性試験においては、この発熱と冷却を模して、高温側は125℃、低温側は−40℃の温度条件にて、数百サイクルの繰り返し試験(ヒートサイクル試験)が実施されている。同図(a)は高温時の模式図であり、IGBTチップ6に比べヒートスプレッダ9の熱膨張係数の方が大きいため、ヒートスプレッダ9によりはんだ接合部(特にその端部に大きな)左右に引っ張られる形の応力が作用する。同図(b)は低温時の模式図であり、今度はヒートスプレッダ9によりはんだ接合部(特にその端部に大きな)中央に引っ張られる形の応力が作用する。
具体的には、半導体チップ6の熱膨張係数は約3×10−6/℃であり、銅の熱膨張係数は16.5×10−6/℃である。これらの熱膨張係数の違いにより、半導体チップ6とヒートスプレッダ9を接合するはんだ8にストレスが加わる。この繰り返し応力によりはんだ8が劣化し、最も応力が大きい箇所からクラックが生じてきてしまう。
クラックが進展した場合、半導体チップ6からの電流経路が狭まり、配線抵抗増加,導通不良に発展するという不都合が生じる。
このようなことから、ヒートスプレッダ9の材質として、熱膨張係数が半導体チップ6に近いMo(熱膨張係数は5.1×10−6/℃),W(同4.5×10−6/℃),CuMo(同7〜14×10−6/℃),CuW(同6〜12×10−6/℃)などの低熱膨張係数の金属,焼結体を用いることにより、半導体チップ6とヒートスプレッダ9間のはんだ8に加わる熱ストレスを低減することが可能となる。
図11に従来例2のIGBTモジュールの断面図を示す。従来例2では、従来例1で述べたヒートスプレッダ9上のボンディングワイヤ10を、銅や銅合金などの金属板12としたものである。ボンディングワイヤ10を金属板12とすることで、配線抵抗の低減,配線のジュール発熱の低減,半導体チップ6から発生した熱の移動が可能となる。
このヒートスプレッダ9と金属板12との接合方法として、導電性接着剤による接合,はんだ材による接合,超音波による直接接合,レーザによる溶接などが考えられる。しかしながら、導電性接着剤では、はんだ接合や超音波接合に比べ電気抵抗が大きく、好ましくない。はんだ接合の場合、半導体チップ6より発せられた熱がヒートスプレッダ9を介して伝導してくるため、はんだ8が熱劣化し、接合信頼性の確保が難しかった。また、超音波接合では、ヒートスプレッダ9上に金属板を重ね、荷重と振動を加えるために、ヒートスプレッダ9と半導体チップ6を接合しているはんだ8にクラックが生じる場合があった。
これを解決するために、YAGレーザ(波長1064nm)を用いて金属板12とヒートスプレッダ9とを溶接する方法つまり異種金属を溶接する方法を検討した。
図12は、YAGレーザ(波長1064nm)を用いて金属板12とヒートスプレッダ9とを溶接する方法を説明する図であり、同図(a)は平面図、同図(b)は同図(a)のX−X線で切断した要部断面図である。図12は図11に相当する図であるがエミッタ端子3、ゲート端子5およびアルミワイヤ11は図示されていない。また、図12(a)には出射ユニット13は図示されていない。
また、図13は、YAGレーザの場合のレーザ光の焦点を説明する図であり、同図(a)は照射面(X−X線で示す)に垂直に入射した場合の図、同図(b)は照射面に垂直な線に対して傾いて入射した場合の図である。焦点32はある面積をもっており、その焦点32の平面形状は同図(a)では円形であり、同図(b)では楕円形である。円形の直径をD(例えば、0.4mm程度であり出射ユニットと接続する光ファイバの直径とほぼ同じである)、楕円形の長軸をL1、短軸をL2とすると、L1>L2、L1>D、L2=Dとなる。
図12において、レーザ光31は出射ユニット13より出射され、金属板12表面に当たる。この図12で示すレーザ光31の入射角度は図13(a)で示すように垂直ではなく、実際は図13(b)に示すように照射面(X−X線)に垂直な線Pを基準にしたとき、入射角は10度程度(光軸Qが垂直な線Pに対して10度傾斜する)にする。これは、垂直(0度)にすると反射光が出射ユニット13に戻り機器が損傷してしまうためである。
図12において、レーザ光31のエネルギにより金属板12が加熱され、溶融部14を形成する。レーザ光31の出射時間(パルス幅)を長くしていくと、溶融部14は次第に金属板12下部に配置したヒートスプレッダ9表面に到達し、今度はヒートスプレッダ9内部まで溶融部14が形成されてくる。この状態は、金属板12及びヒートスプレッダ9の材質が共に銅または銅合金を使用した場合には容易にレーザ溶接が実現できた。ところが、先に述べたように、ヒートスプレッダ9の材質が熱膨張係数の大きな銅及び銅合金の場合には、ヒートサイクルによってヒートスプレッダ9とIGBTチップ6を固着するはんだ8にクラックが生じてしまう。このため、ヒートスプレッダ9の材質としては、熱伝導率が高く、電気抵抗が低く、熱膨張係数の小さなMo(熱膨張係数は5.1×10−6/℃),W(同4.5×10−6/℃),CuMo(同7〜14×10−6/℃),CuW(同6〜12×10−6/℃)などの材料を用いる必要がある。
しかしながら、ヒートスプレッダ9をこれらの低熱膨張係数材とした場合には、これらの材料は高融点材料でもあり、銅のような低融点材料である金属板12とを確実に溶接することが困難であった。具体的な検討内容を以下に述べる。
図14に金属板12として銅板15を用い、ヒートスプレッダ9として銅−モリブデン板16(CuMo)を用いた場合について説明する。同図(a)はレーザ光のエネルギ小さいときの図、同図(b)はレーザ光のエネルギ大きいときの図である。
図14(a)の場合、金属板12上面より照射されたレーザ光31は銅板15表面より吸収・加熱され、その温度が銅の融点を超えることで溶融が起きる。この溶融部17は次第に銅−モリブデン板16の方向に進行していき、銅−モリブデン板16表面に達するが、モリブデンの融点(2620℃)が銅の融点(1083℃)より1537℃も高いため、溶融部17の進行が銅−モリブデン板16表面で停止する。また、レーザ光31のパワー密度を高くしたり、出射時間(パルス幅)を長くすることで、エネルギーを増して行くと、銅−モリブデン板16(焼結されたモリブデンの微小空洞に銅が染み込んだもの)中の銅成分が溶融し、モリブデン成分を押し広げる形で溶融部17が形成される。
しかしながら、この銅−モリブデン板16側では、溶融部17はなかなか進行せず、浅い溶融部(底部溶融部17a)が形成されるだけであった。例えば、レーザファイバのコア径をφ0.4mm,ピークパワーを3kW,エネルギを100Jとし、0.5mm厚の銅板15と1.0mm厚の銅−モリブデン板16のヒートスプレッダとをレーザ溶接した場合、銅−モリブデン板16側に形成される溶融部は深さ(底部溶融部17aの厚さ)約0.1mm程度であり、溶接部17の強度を測定すると、アルミワイヤボンディングワイヤ1本の接合強度を下回るレベルであった。
また、さらにパワー密度やエネルギを増していくと、図14(b)に示すように銅−モリブデン溶融部17bは多少深くなるが、銅板15の溶融部17の表面に消失部18が生じてしまう。この消失部18はスパッタとして周囲に飛散し、飛散した銅がIGBTモジュール内部の不用な部分に付着することが懸念されるため、半導体パッケージ(IGBTモジュール)の製造上好ましくない。
図15はヒートスプレッダ材としてモリブデン板19(Mo)を用いた場合を示している。この場合には、図14(a)、(b)で示したように、ヒートスプレッダ9であるモリブデン板19中には銅が無いため、銅が溶融する温度ではモリブデン板19は溶融しない。具体的には、銅(Cu)の融点は1083℃であるが、Moの融点は2620℃であり、銅が溶融しても必ずしもMoは溶融しない。また、銅の沸点は2570℃であるため、Moが溶融すると銅の沸点を超えるため、銅板15は蒸気圧により図15(b)に示すようにスパッタや金属蒸気として消失して消失部18が形成されてしまう。
ここで、貫通孔を開けてレーザ光で溶接することが特許文献2に開示されている。鋼板同士を溶接することが記載されているものの、異種金属のレーザ溶接については記載されていない。
また、底が塞がれた凹穴を形成し、この凹穴にレーザ光を照射してレーザ溶接することが特許文献3に開示されている。底が塞がれた凹穴を形成しその凹穴の裏面側を丸みを帯びた凸型にしてレーザ溶接する場合について記載されており、レーザ溶接する箇所の接触面積が極めて小さく溶接強度が十分に確保することが困難である。
特開2000−307058号公報 特開2001−71162号公報 特開平11−144774号公報
上述した、従来例ではCuとCuMoや、CuとMoとをYAGレーザを用いてワイヤボンディング以上の溶接強度を得ることが出来なかった。従来例では述べていないが、CuとCuW,CuとWの場合も同様である。つまり、低融点材料であるCuと高融点材料であるCuMo,CuW,Mo,Wとのレーザ溶接では高い溶接強度が得られない。
この発明の目的は、前記の課題を解決して、高融点材料のヒートスプレッダと低融点材料の金属板をレーザ光で溶融して接合し、高い溶接強度を得ることができる半導体装置の製造方法を提供することにある。
前記の目的を達成するために、半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、前記金属板に貫通孔を形成し、該金属板を前記ヒートスプレッダ上に接触させて前記貫通孔に露出する前記ヒートスプレッダの表面に対して前記レーザ光を照射し、前記ヒートスプレッダの前記レーザ光が照射された箇所とその近傍の前記金属板とを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接するものとする。
また、半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、前記金属板に底部が塞がった凹穴を形成し、該金属板を前記ヒートスプレッダ上に接触させて前記凹穴の底面に前記レーザ光を照射し、前記金属板の前記凹穴の底面の該レーザ光が照射された箇所とその直下の前記ヒートスプレッダを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接するものとする。
また、前記レーザ光を、前記ヒートスプレッダの前記金属板との接合面から前記レーザ光の光源側に0.3mm乃至前記接合面から前記光源とは反対側に0.5mmの間に焦点をあわせて照射するとよい。
また、半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、
前記金属板をヒートスプレッダ上に接触させて、前記レーザ光を、前記ヒートスプレッダの前記金属板との接合面から前記レーザ光の光源側に0.3mm乃至前記接合面から前記光源とは反対側に0.5mmの間に焦点をあわせて照射し、該レーザ光が照射された箇所の前記金属板と前記ヒートスプレッダを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接するものとする。
また、前記低融点材料が銅もしくは銅合金であり、前記高融点材料がCuMo(銅−モリブデン焼結体),CuW(銅−タングステン焼結体),Mo(モリブデン),W(タングステン),の少なくとも一つであるとよい。
また、前記レーザ光がYAGレーザ、半導体レーザおよびCOレーザのいずれか一つから出射される光であるとよい。
また、前記凹穴の裏面側を含めた前記金属板の裏面が平坦であってもよい。
また、前記凹穴の裏面側が該凹穴が形成されていない箇所の前記金属板の裏面から凸となっており、該凸の表面が平坦であるとよい。
また、前記金属板に形成された前記貫通孔もしくは前記凹穴の前記レーザ光が入射する表面側の開口部を大きくし、該表面側から裏面側に向かって開口部が小さくなるようして、前記貫通孔もしくは凹穴の側壁にテーパーを付けるとよい。また、少なくともテーパー部にめっきを施すとよい。
また、前記表面側の開口部を、該開口部を通過する前記レーザ光の光束より大きくし、該レーザ光を、前記貫通孔もしくは凹穴の側壁の少なくとも一部と、貫通孔に露出したヒートスプレッダの表面もしくは凹穴の底面の少なくとも一部とに照射するとよい。
また、前記貫通孔もしくは凹穴の開口部の平面形状が円形および多角形をしているとよい。
また、前記貫通孔もしくは凹穴の開口部の平面形状が細線状をしており、前記レーザ光を該細線状の貫通孔もしくは凹穴の複数箇所に照射し、複数のレーザ溶接するとよい。
この発明によれば、高融点材料のCuMo,CuW,Mo,W,などのヒートスプレッダとヒートスプレッダより低融点材料の銅板(もしくは銅合金)とのレーザ溶接において、銅板に貫通孔または底部が塞がれた凹穴を形成し、これらの箇所にレーザ光を照射してレーザ溶接することで、高い接合信頼性を確保することができる。また、貫通孔や凹穴の側壁にテーパーを付けこのテーパー部にもレーザ光が当たるようにすることで、溶融箇所を広げてさらに強固な接合を得ることができる。テーパー部にめっきを施すことでレーザ光の吸収率を高くすることができる。また、貫通孔や凹穴の平面形状を細線状に形成して、この細線状の貫通孔や凹穴の複数箇所にレーザ光を照射することで、複数のレーザ溶接を行い、製造コストの低減を図ることができる。
この発明は、パワーデバイスであるIGBTやFWD等の半導体チップの上面に高融点材料のCuMo(銅−モリブデンの焼結体),CuW(銅−タングステンの焼結体),Mo,Wなどのヒートスプレッダを接合したものにおいて、ヒートスプレッダよりも低融点の金属板(銅または銅合金)をレーザ溶接にてヒートスプレッダに接合するものである。発明の実施の形態を以下の実施例にて説明する。
図1は、この発明の第1実施例の半導体装置の主要部を示す図である。
図1において、15は金属板であり、本実施例では銅板(Cu)を用いた(以下銅板15という)。16はヒートスプレッダであり、同じく板状の銅−モリブデンの焼結体(CuMo)を用いた(以下銅−モリブデン板16という)。そして銅−モリブデン板16上に銅板15をレーザ溶接にて接合する。
同図(a)、(b)は銅−モリブデン板16と銅板の要部断面図であり、同図(a)はレーザ照射前の状態の図、同図(b)はレーザ照射時の状態を示す図、同図(c)は溶融部の平面図である。
尚、図1では図示は省略するが、銅−モリブデン板16は、IGBTなどの半導体チップにはんだ接合され、半導体チップははんだにより絶縁基板の表面回路パターンに接合されている。銅板15は、図11の金属板12のごとく表面回路パターンに接続してもよいし、外部へ導出してもよい。また、半導体チップのうちIGBTチップのゲートパッドと表面回路パターンとの間をアルミワイヤで接続している。また、インバータ動作をさせるには、この他にダイオード(FWD)が必要であり、FWDについても同様に絶縁基板に接合し、必要に応じて銅−モリブデン板16を接合し、銅−モリブデン板16上に銅板15を接合する。このように絶縁基板上に搭載されたIGBTやFWDをPPSやPBTなどの樹脂ケース内に収納し、さらにその中に素子保護としてシリコーン樹脂が充填を充填して半導体パッケージ(IGBTモジュール)を構成する。また、樹脂ケースへの収納に替えて、所望の箇所を熱硬化性の樹脂でモールドしてもよい。また、セラミクスを用いた絶縁基板に替えて金属板に絶縁層を介して表面回路パターンを形成した金属絶縁基板を用いてもよい。このように、種々変更が可能である。なお、半導体パッケージの構成については、後述の他の実施例についても同様であるので、各実施例での説明は省略する。
レーザ光31の光軸Qは照射面(銅−モリブデン板16の露出面)に垂直な線P(図13参照)に対して10度程度傾斜している。光軸を傾斜させる理由は前述のとおりである。なお、図12〜図14と同一部位には同一符号を付した。
同図(a)に示すように、銅板15に貫通孔20を設けている。銅板15は所望の電流容量や他の製造・組立工程での作業性を勘案して厚さを選択している。例えば、0.3mm〜2mmから選択が可能であり、図1の例では1mmである。銅板15に形成される貫通孔20は、銅板15を所望の外形寸法に加工する際に同時にプレス打ち抜きにて加工するのが最も簡便でありコスト的にも有利である。貫通孔20の直径が銅板15の暑さに対して小さく、銅板15のプレス打ち抜き加工時に同時に形成するのが難しい場合は、銅板15に対して、レーザ溶接工程とは別の工程で、レーザ光による穴あけ加工を施せばよい。
図1は、貫通孔20の側壁20aが垂直な場合を示しており、貫通孔20の直径M1はYAGレーザ(波長1064nm)の出射ユニット13から出射されるレーザ光31の焦点32の長軸L1(図13(b)参照)の1.5倍から2倍程度である。貫通孔20の直径M1が焦点32の長軸L1より小さいとレーザ光の照射によって銅板15の表面15a(貫通孔20の外周部)が溶融して所望の接合が得られず、直系M1が、焦点32の長軸より大きすぎると、銅板15が十分に溶融せず所望の接合が得られないためである。このように、貫通孔の直径M1を選択することにより、レーザ光31の光束33は銅板15に形成した貫通孔20の開口部より小さく、銅板15の表面15aには当たらず、また側壁20aも当たらずに、所望の領域のレーザ溶接を行うことができる。
銅板15および銅−モリブデン板16へのレーザ光の照射は次のように行う。銅−モリブデン板16が接合された半導体チップもしくは絶縁基板を治具に固定し、銅板15を銅−モリブデン板16上の所定の位置に接触させる。強固な接合を得るためには、レーザ光が照射される付近では銅板15と銅−モリブデン板16とが接触していることが望ましいため、銅板15を銅−モリブデン板16へ押圧して保持し、レーザ光を照射する。
この貫通孔20を通し、銅−モリブデン板16表面にレーザ光31が照射される。その全エネルギは50Jから100J程度である。この照射されるレーザ光31のエネルギは数ms〜数十msのパルスである。時間の経過とともに階段的に照射パワー(単位はWatt)を上昇させてもよい。このようにすると、レーザ光を照射した部材の温度をゆっくりと上昇させることができる。
レーザ光31の焦点32は、貫通孔20に露出する銅−モリブデン板16の表面となるように、出射ユニット13にて調整する。しかしながら、レーザ光を照射する対象は半導体チップと銅−モリブデン板16とをはんだにて接合した積層構造体である。銅−モリブデン板16には製造上のバラツキ(公差)があり、またはんだ接合の際はんだ層の厚さにもバラツキ(公差)がある。その結果出射ユニット13から銅−モリブデン板16の表面までの距離が当初設定した距離からずれてしまい、所定の焦点が得られない場合がある。その場合でも銅−モリブデン板16の表面(接合面)からレーザ光の光源側に0.5mm乃至銅−モリブデン板16の表面(接合面)から光源とは反対側に0.3mmの範囲にレーザ光31の焦点32が位置すれば所望の溶接部21が得られる。焦点位置が上記の範囲から大きく外れる場合には、レーザ光31の焦点32が、貫通孔20に露出する銅−モリブデン板16の表面となるように、出射ユニット13にて再調整する。
図16は、レーザ光31のスポット径(図13(a),(b)に示す焦点の平面図における径)と焦点位置からのずれ量との関係を示す図である。図16において、Dは、レーザ溶接を行うのに必要な照射パワーが得られるパワー密度の下限である。これよりスポット径が大きくなるとレーザ光のパワー密度が低下して、所望の溶接が得られない。
図16の例では、出射ユニットと接続する光ファイバの直径が0.4mmの場合であるが、焦点位置から「+」側(焦点位置よりレーザ光の光源側)に0.5mm,「−」側(焦点位置よりレーザ光の光源とは反対側)には0.3mmの範囲で、所望の照射パワー密度が得られる。なお、図16では、「+」側の方が曲線の傾斜がゆるやかである。光学系の特性などの影響によるものである。このため、同一の照射パワー密度を得るために許容できる焦点位置からのずれ量は、「−」側の方が小さくなっている。
図1(b)では、レーザ光31は銅−モリブデン板16の表面より吸収され、銅−モリブデン板16はレーザエネルギーにより加熱され、この熱が銅−モリブデン板16上面に配置した銅板15に伝導し、貫通孔20近傍の銅板15と銅−モリブデン板16がレーザ溶接される。この溶融部21(レーザ溶接部)の平面形状は同図(c)で示すように貫通孔20の側壁20a近傍となりドーナッツ状になる。
本発明では、レーザ光31により銅−モリブデン板16中には殆ど溶融部21が生じないが、銅−モリブデン板16面に照射されたレーザ光31により銅板15が溶融し、この溶融部21が銅−モリブデン板16表面に濡れ拡がり、銅−モリブデン板16と銅板15とが溶接される。この場合、銅−モリブデン板16の深さ方向への溶け込みはほとんど無いが、溶融部21の濡れ拡がりにより、充分な接合強度(溶接強度)を得ることができる。なお、図1では貫通孔20の側壁20aは銅板15の表面に対して垂直であったが、図2に示すようにテーパーを付けた側壁20bにするとレーザ光31が表面15aに、より当たり難くなり、より好ましくなる。
図3は、この発明の第2実施例の半導体装置の主要部を示す図である。
図3において、15は金属板であり、本実施例では銅板(Cu)を用いた(以下銅板15という)。16はヒートスプレッダであり、同じく板状の銅−モリブデンの焼結体(CuMo)を用いた(以下銅−モリブデン板16という)。そして銅−モリブデン板16上に銅板15をレーザ溶接にて接合する。
同図(a),(b)は銅−モリブデン板16と銅板15の要部断面図であり、同図(a)はレーザ照射前の状態の図、同図(b)はレーザ照射時の状態を示す図、同図(c)は溶融部の平面図である。
同図(a)では、銅板15に貫通孔ではなく底部が塞がれた凹穴22を設けている。この凹穴22部の裏面は飛び出しておらず平坦になっている。銅板15は所望の電流容量や他の製造・組立工程での作業性を勘案して厚さを選択している。例えば、0.3mm〜2mmから選択が可能であり、図3の例では1mmである。銅板15に形成される凹穴22は、銅板15を所望の外形寸法に加工する際に同時にプレス加工するのが最も簡便でありコスト的にも有利である。凹穴22の直径が銅板15の厚さに対して小さく、銅板15のプレス加工時に同時に形成するのが難しい場合は、銅板15に対して、レーザ溶接工程とは別の工程で、レーザ光による穴あけ加工を施せばよい。
図3は、凹穴22の側壁22aが垂直な場合を示しており、凹穴22の直径M1はYAGレーザ(波長1064nm)の出射ユニット13から出射されるレーザ光31の焦点32の長軸L1(図13(b)参照)の1.5倍から2倍程度である。凹穴22のの直径M1が焦点32の長軸L1より小さいとレーザ光の照射によって銅板15の表面15a(凹穴22の外周部)が溶融して所望の接合が得られない。直系M1が、焦点32の長軸より大きすぎると、複数箇所にてレーザ溶接を行うような場合には、溶接箇所の間隔が不要に広くなって、銅板15の面積を十分に活用できない。このように、凹穴の直径M1を選択することにより、レーザ光31の光束33は銅板15に形成した凹穴22の開口部より小さく、銅板15の表面15aには当たらず、また側壁20aも当たらずに、所望の領域のレーザ溶接を行うことができる。
この凹穴22の底面にレーザ光31を照射し、凹穴22部の底部を溶融させてレーザ溶接を行う。次にこのレーザ溶接の工程について説明する。
銅板15および銅−モリブデン板16へのレーザ光の照射は次のように行う。銅−モリブデン板16が接合された半導体チップもしくは絶縁基板を治具に固定し、銅板15を銅−モリブデン板16上の所定の位置に接触させる。強固な接合を得るためには、レーザ光が照射される付近では銅板15と銅−モリブデン板16とが接触していることが望ましいため、銅板15を銅−モリブデン板16へ押圧して保持し、レーザ光を凹穴22の底部へ照射する。
ここで、レーザ光31の焦点32は、凹穴22の直下であって銅−モリブデン板16の表面となるように、出射ユニット13にて調整する。しかしながら、レーザ光を照射する対象は半導体チップと銅−モリブデン板16とをはんだにて接合した積層構造体である。銅−モリブデン板16には製造上のバラツキ(公差)があり、またはんだ接合の際はんだ層の厚さにもバラツキ(公差)がある。その結果出射ユニット13から銅−モリブデン板16の表面までの距離が当初設定した距離からずれてしまい、所定の焦点が得られない場合がある。その場合でも銅−モリブデン板16の表面(接合面)からレーザ光の光源側に0.5mm乃至銅−モリブデン板16の表面(接合面)から光源とは反対側に0.3mmの範囲にレーザ光31の焦点32が位置すれば所望の溶接部23が得られる。凹穴22の底部の厚さを例えば0.1mm程度とすると、焦点32がレーザ光の光源側に最大0.3mmずれて、凹穴22の底面から0.2mm上方に焦点32が来た場合でも、所望の溶融部23を得ることができる。焦点位置が上記の範囲から大きく外れる場合には、レーザ光31の焦点32が、貫通孔20に露出する銅−モリブデン板16の表面となるように、出射ユニット13にて再調整する。
同図(b)では、凹穴22の底面に照射されたレーザにより凹穴22の底部の銅が溶融し、さらに凹穴22下の銅−モリブデン板16の銅も溶融して、銅−モリブデン板16と銅板15が溶融部23によりレーザ溶接される。この凹穴22の底部の厚さは、銅板15の他の部分よりも薄いため、照射したレーザエネルギーが低くても充分に凹穴22の底部の銅を溶融することが可能であり、低エネルギでレーザ溶接できるために凹穴22でのスパッタによる消失が無い。
本実施例では、銅板15の凹穴22の底面にレーザ光31が照射される。その全エネルギは、凹穴が形成されていない場合に比べて低くてよく、例えば、30Jから70J程度である。この照射されるレーザ光31のエネルギは数ms〜数十msのパルスである。時間の経過とともに階段的に照射パワー(単位はWatt)を上昇させてレーザ溶接してもよい。
この溶融部23(レーザ溶接部)の平面形状は同図(c)で示すように凹穴22の底面には、銅−モリブデン板16は露出しない。
図4は、この発明の第3実施例の半導体装置の主要部を示す図である。
図4において、15は金属板であり、本実施例では銅板(Cu)を用いた(以下銅板15という)。16はヒートスプレッダであり、同じく板状の銅−モリブデンの焼結体(CuMo)を用いた(以下銅−モリブデン板16という)。そして銅−モリブデン板16上に銅板15をレーザ溶接にて接合する。
同図(a)および同図(b)は銅−モリブデン板16と銅板15の要部断面図であり、同図(a)はレーザ照射前の状態の図、同図(b)はレーザ照射時の状態を示す図、同図(c)は溶融部の平面図である。
第2実施例との違いは、銅板15に設けた凹穴24の裏面(凹穴裏面24b)が凸型に突出している点である。銅板15は所望の電流容量や他の製造・組立工程での作業性を勘案して厚さを選択している。例えば、0.3mm〜2mmから選択が可能であり、図4の例では0.5mmである。また、銅板15の凹穴24の裏面に形成される凸部は、銅板15の裏面より0.2mmほど突出している。
銅板15に形成される凹穴24は、銅板15を所望の外形寸法に加工する際に同時にプレス加工するのが最も簡便でありコスト的にも有利である。凹穴22の直径が銅板15の厚さに対して小さく、銅板15のプレス加工時に同時に形成するのが難しい場合は、銅板15に対して、まずプレス加工にて裏面の凸部を形成しレーザ溶接工程とは別の工程で、表面にレーザ光による穴あけ加工を施せばよい。
図4は、凹穴24の側壁24aが垂直な場合を示しており、凹穴24の直径M1はYAGレーザ(波長1064nm)の出射ユニット13から出射されるレーザ光31の焦点32の長軸L1(図13(b)参照)の1.5倍から2倍程度である。凹穴22のの直径M1が焦点32の長軸L1より小さいとレーザ光の照射によって銅板15の表面15a(凹穴22の外周部)が溶融して所望の接合が得られない。直系M1が、焦点32の長軸より大きすぎると、複数箇所にてレーザ溶接を行うような場合には、溶接箇所の間隔が不要に広くなって、銅板15の面積を十分に活用できない。このように、凹穴の直径M1を選択することにより、レーザ光31の光束33は銅板15に形成した凹穴22の開口部より小さく、銅板15の表面15aには当たらず、また側壁20aも当たらずに、所望の領域のレーザ溶接を行うことができる。
この凹穴24の底面にレーザ光31を照射し、凹穴24部の底部を溶融させてレーザ溶接を行う。次にこのレーザ溶接の工程について説明する。
銅板15および銅−モリブデン板16へのレーザ光の照射は次のように行う。銅−モリブデン板16が接合された半導体チップもしくは絶縁基板を治具に固定し、銅板15を銅−モリブデン板16上の所定の位置に接触させる。強固な接合を得るためには、レーザ光が照射される付近では銅板15と銅−モリブデン板16とが接触していることが望ましいため、銅板15を銅−モリブデン板16へ押圧して保持しする。レーザ溶接箇所である凹穴24の裏面側は、銅板15の裏面より突出しているため、銅板15を銅−モリブデン板16へ押圧した際に、両者が確実に接触する。そして、レーザ光を凹穴24の底部へ照射する。
ここで、レーザ光31の焦点32は、凹穴24の直下であって銅−モリブデン板16の表面となるように、出射ユニット13にて調整する。しかしながら、レーザ光を照射する対象は半導体チップと銅−モリブデン板16とをはんだにて接合した積層構造体である。銅−モリブデン板16には製造上のバラツキ(公差)があり、またはんだ接合の際はんだ層の厚さにもバラツキ(公差)がある。その結果出射ユニット13から銅−モリブデン板16の表面までの距離が当初設定した距離からずれてしまい、所定の焦点が得られない場合がある。その場合でも銅−モリブデン板16の表面(接合面)からレーザ光の光源側に0.5mm乃至銅−モリブデン板16の表面(接合面)から光源とは反対側に0.3mmの範囲にレーザ光31の焦点32が位置すれば所望の溶接部23が得られる。凹穴22の底部の厚さを例えば0.1mm程度とすると、焦点32がレーザ光の光源側に最大0.3mmずれて、凹穴24の底面から0.2mm上方に焦点32が来た場合でも、所望の溶融部25を得ることができる。焦点位置が上記の範囲から大きく外れる場合には、レーザ光31の焦点32が、貫通孔20に露出する銅−モリブデン板16の表面となるように、出射ユニット13にて再調整する。
また、凹穴裏面24bを平坦にすることで、この箇所が円弧状の突出(特許文献2参照)に比べて、銅−モリブデン板16と接触する面積を大きくできる。このように凸型に突出させ、突出部を平坦とすることで、第2実施例より低エネルギで同じ溶接強度を得ることができる。これは、銅−モリブデン板16との接触が凸部で行われるため、第2実施例のように全面が平坦な場合に比べ接触面積を小さくすることができて、レーザ光31により発生した熱の銅−モリブデン板16への拡散を防げて、レーザ照射した部分が効率的に高温に達することができるからである。また、この凹穴24部の厚みW2は、第2実施例で述べた場合(W1)と同様に、銅板15の他の部分よりも薄くしてあり、第2実施例で述べた理由と同様に低エネルギでレーザ溶接ができる。
第2実施例及び第3実施例でも、第1実施例の場合と同様に、銅−モリブデン板16の深さ方向への溶け込みは殆ど無いが、溶融部23及び溶融部25の濡れ拡がりにより、充分な接合強度を得ることができる。
図5は、この発明の第4実施例の半導体装置の主要部を示す図である。
図5において、15は金属板であり、本実施例では銅板(Cu)を用いた(以下銅板15という)。16はヒートスプレッダであり、同じく板状の銅−モリブデンの焼結体(CuMo)を用いた(以下銅−モリブデン板16という)。そして銅−モリブデン板16上に銅板15をレーザ溶接にて接合する。
同図(a)、同図(b)および同図(d)は銅−モリブデン板16と銅板15の要部断面図であり、同図(a)はレーザ照射前の状態の図、同図(b)はレーザ照射時の状態を示す図、同図(c)は溶融部の平面図、同図(d)はレーザ光のエネルギをさらに大きくした場合の図である。
従来の溶接の説明で示した図14、図15においては、レーザ光31の焦点32を銅板15表面に合わせていたが、この実施例では、その焦点32の位置を銅−モリブデン板16表面に設定している。具体的には、銅−モリブデン板16表面に焦点32を合わせるように出射ユニット13の位置を調整することにより、図5(b)に示すように、銅−モリブデン板16の溶融部である底部溶融部26aを形成できる。
さらに、レーザ光31のエネルギを上昇させ、ファイバコア径φ0.4mm,ピークパワー3kW,エネルギ100Jの条件で、銅板15の厚さ0.5mm,銅−モリブデン板16の厚さ1.0mmの組合せで、銅−モリブデン板16中に深さ400μmの銅−モリブデン溶融部26b(モリブデンの微細空洞を埋めた銅が溶融する)を形成することができた。
焦点32の位置は、銅−モリブデン板16の表面とした場合が最も深い溶け込みを得たが、必要とする接合強度との関係で、銅−モリブデン板16表面から+0.5mm(銅−モリブデン板16表面よりレーザ光の光源側)〜−0.3mm(銅−モリブデン板16表面より光源とは反対側)の範囲に焦点を合わせることで、所望の溶接部26(26a、26bを含む)を得ることができた。
焦点32を銅−モリブデン板16の表面近傍に合わせることで、深い溶接部26bが形成された理由を、図12及び図5を用いて説明する。
図12では、レーザ光31の焦点32を金属板12表面に合わせており、故にパワー密度は金属板12表面で最大値をとる。しかしながら、レーザ光31には出射角があり、出射ユニット13より発せられたレーザ光31は、金属板12表面でそのスポット径が最小となるが、金属板12内部に行くにしたがい、今度はスポット径が大きくなっていくため、パワー密度は低下する。いま、溶融したいヒートスプレッダ9に届いたレーザ光31は、金属板12表面のスポット径よりも大きく、パワー密度が低下してしまっている。
図5においては、出射ユニット13の位置を、銅板15表面に対して下側に移動させ、銅−モリブデン板16表面にレーザ光31の焦点32が来るように調節してある。例えば、銅板15の板厚が0.5mmであった場合には、銅板15表面に焦点32を合わせた後に、銅板15表面に対して下側に焦点32を0.5mm移動させると16銅−モリブデン板の表面に焦点32の位置が移動することになる。
また、図5のようにすることで、レーザ光31のエネルギが高くなっても銅板15の表面には消失部が形成されないために、レーザエネルギーの範囲を広くすることができて確実にレーザ溶接を行うことができる。
図6は、この発明の第5実施例の半導体装置の主要部を示す図である。
図6において、15は金属板であり、本実施例では銅板(Cu)を用いた(以下銅板15という)。16はヒートスプレッダであり、同じく板状の銅−モリブデンの焼結体(CuMo)を用いた(以下銅−モリブデン板16という)。そして銅−モリブデン板16上に銅板15をレーザ溶接にて接合する。
同図(a)および同図(d)は銅−モリブデン板16と銅板15の要部断面図であり、同図(a)はレーザ光の照射状態を説明する断面図、同図(b)はレーザ光の照射状態を説明する平面図、同図(c)は溶融部を説明する平面図、同図(d)は溶融部を説明する断面図である。
図2との違いは、貫通孔35の底面の開口部の直径M2をレーザ光31の焦点32の長軸L1より小さくする点である。つまり、M2<L1とする。また、この側壁35aのテーパー角はレーザ光31が銅板15の表面15aに当たらないように、レーザ光の入射角より大きくする。つまり、側壁35aのテーパー角θ3を垂直の線Pからの角度とし、レーザ光31の光軸Qの角度θ1を垂直軸Pからの角度とし、レーザ光31の絞り角度(光束の角度)θ2を光軸Qからの角度とした場合、θ3>θ1+θ2とする。また、レーザ光31の側壁照射部の外周端32aが側壁35a内に位置するように、その高さHを銅板15の厚さTの半分以下とする。つまり、H≦Tとする。こうすることで、側壁35aの銅が溶けて図1や図2の場合より溶融部27の面積を広くすることができる。前記の条件を満たせば貫通孔35の上部の開口部の直径M3の中にレーザ光31の光束が入るようになり表面15aには当たらない。なお、このテーパー部を設ける方法は第2実施例、第3実施例にも同様に適用できる。さらに、第1〜第3、第5実施例の銅板15に形成した貫通孔や凹穴の平面パターンは円形であるが図7のように正方形や図示しないが多角形であってもよい。なお、図7(a)は図7(b)のX−X線で切断した断面図である。
銅板15に形成される貫通孔35は、銅板15を所望の外形寸法に加工する際に同時にプレス加工するのが最も簡便でありコスト的にも有利である。貫通孔35の直径が銅板15の厚さに対して小さく、銅板15のプレス加工時に同時に形成するのが難しい場合は、銅板15に対して、まずレーザ溶接工程とは別の工程で、表面にレーザ光による穴あけ加工を施した後、機械加工で面取りを行って、所望のテーパー角を形成すればよい。
さらに、テーパー部にめっきを施すとよい。例えばニッケル(Ni)のめっきを施すことにより、レーザ光の吸収率を高くすることができる。よって、テーパー部においても効率よく温度を上昇させて溶接することができ、強固な溶接を得ることができる。
また、断面形状が図7と同じで、図8のように、細線状でテーパーを付けた側壁29aを有する貫通孔29を形成し、これに複数箇所にレーザ光31の焦点32を当て複数の溶融部を形成すると、図1や図7の場合より製造コストを低減することができる。また、図3、図4の凹穴22、24を図8のようなテーパーを付けた側壁を有する細線状の底が塞がれた凹穴にして、複数の溶融部を形成することで、図3、図4の場合より製造コストを低減することができる。
本発明の実施例1〜5においては、低融点材料である銅板15と高融点材料である銅−モリブデン板16の組合せについて示したが、銅板15は低融点材料である銅合金でもよく、また、銅−モリブデン板16は高融点材料であるCuW,Mo,Wで形成した金属板としても、実施例に示したことと同様な効果が得られる。さらに、低融点材料である銅,銅合金の表面,あるいは高融点材料であるCuW,CuMo,W,Mの表面にあらかじめめっきを施してもよい。例えばニッケル(Ni)のめっきを施すことにより、レーザ光の吸収率が高くなり、溶接の効率を高くすることができる。
また、第1〜第5実施例ではレーザ種としてYAGレーザを用いたが、YAGレーザに限定するものではなく、半導体レーザ,COレーザを用いても良い。
なお、前記したレーザ溶接は、超音波接合のように加圧,振動を加えることが無いために、図12に示すヒートスプレッダ9下のはんだ8及び半導体チップ6にダメージを与えることが無い。さらに、銅板(もしくは銅合金)などの金属板12とヒートスプレッダ9の境界に、これらの金属材料よりも高抵抗なはんだや導電性接着剤などが挟まれていないため、低抵抗・低熱抵抗の接合が実現される。
この発明の第1実施例の半導体装置の図であり、(a)はレーザ照射前の状態の断面図、(b)はレーザ照射時の状態を示す断面図、(c)は溶融部の平面図 図1の貫通孔の側壁にテーパーを付けた場合の断面図 この発明の第2実施例の半導体装置の図であり、(a)はレーザ照射前の状態の断面図、(b)はレーザ照射時の状態を示す断面図、(c)は溶融部の平面図 この発明の第3実施例の半導体装置の図であり、(a)はレーザ照射前の状態の断面図、(b)はレーザ照射時の状態を示す断面図、(c)は溶融部の平面図 この発明の第4実施例の半導体装置の図であり、(a)はレーザ照射前の状態の断面図、(b)はレーザ照射時の状態を示す断面図、(c)は溶融部の平面図、(d)はレーザ光のエネルギをさらに大きくした場合の断面図である。 この発明の第5実施例の半導体装置の図であり、(a)はレーザ光の照射状態を説明する断面図、(b)はレーザ光の照射状態を説明する平面図、(c)は溶融部を説明する平面図、(d)は溶融部を説明する断面図 貫通孔がテーパーの付いた側壁を有し、平面形状が正方形の場合の図で、(a)は断面図、(b)は平面図 細線状でテーパーを付けた側壁29aを有する貫通孔の平面図 従来例1のIGBTモジュールの要部断面図 ヒートスプレッダの接合構造における、冷熱繰り返し環境でのIGBT及びヒートスプレッダの伸縮挙動を示す図で、(a)は高温時の模式図、(b)は低温時の模式図 従来例2のIGBTモジュールの断面図 YAGレーザ(波長1064nm)を用いて金属板12とヒートスプレッダ9とを溶接する方法を説明する図であり、(a)は平面図、(b)は(a)のX−X線で切断した要部断面図 YAGレーザの場合のレーザ光の焦点を説明する図であり、(a)は照射面(X−X線で示す)に垂直に入射した場合の図、(b)は照射面に垂直な線に対して傾いて入射した場合の図 銅板に銅−モリブデン板16をレーザ光で溶接した図であり、(a)はレーザ光のエネルギ小さいときの図、(b)はレーザ光のエネルギ大きいときの図 銅板にモリブデン板をレーザ光で溶接しようとした図であり、(a)はレーザ光のエネルギ小さいときの図、(b)はレーザ光のエネルギ大きいときの図 レーザ光31のスポット径と焦点位置からのずれ量との関係を示す図
符号の説明
13 出射ユニット
15 銅板
15a 表面
16 銅−モリブデン板
20、28、35 貫通孔
20a、20b、22a、24a、28a,35a 側壁
21、23、25、26、27 溶融部
22、24 凹穴
24b 凹穴裏面
26a、27a 底部溶融部
26b 銅−モリブデン溶融部
31 レーザ光
32 焦点
32a 側壁照射部の外周端
33 光束

Claims (13)

  1. 半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、
    前記金属板に貫通孔を形成し、該金属板を前記ヒートスプレッダ上に接触させて前記貫通孔に露出する前記ヒートスプレッダの表面に対して前記レーザ光を照射し、前記ヒートスプレッダの前記レーザ光が照射された箇所とその近傍の前記金属板とを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接することを特徴とする半導体装置の製造方法。
  2. 半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、
    前記金属板に底部が塞がった凹穴を形成し、該金属板を前記ヒートスプレッダ上に接触させて前記凹穴の底面に前記レーザ光を照射し、前記金属板の前記凹穴の底面の該レーザ光が照射された箇所とその直下の前記ヒートスプレッダを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接することを特徴とする半導体装置の製造方法。
  3. 前記レーザ光を、前記ヒートスプレッダの前記金属板との接合面から前記レーザ光の光源側に0.5mm乃至前記接合面から前記光源とは反対側に0.3mmの間に焦点をあわせて照射することを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4. 半導体チップ上に高融点材料からなるヒートスプレッダが固着され、該ヒートスプレッダ上に前記ヒートスプレッダより低融点材料からなる金属板がレーザ溶接される半導体装置の製造方法において、
    前記金属板をヒートスプレッダ上に接触させて、前記レーザ光を、前記ヒートスプレッダの前記金属板との接合面から前記レーザ光の光源側に0.5mm乃至前記接合面から前記光源とは反対側に0.3mmの間に焦点をあわせて照射し、該レーザ光が照射された箇所の前記金属板と前記ヒートスプレッダを加熱し溶融させることで、前記ヒートスプレッダに前記金属板をレーザ溶接することを特徴とする半導体装置の製造方法。
  5. 前記低融点材料が銅もしくは銅合金であり、前記高融点材料が銅−モリブデン焼結体,銅−タングステン焼結体,モリブデン,タングステンの少なくとも一つであることを特徴とする請求項1〜4のいずれか一項に記載の半導体装置の製造方法。
  6. 前記レーザ光がYAGレーザ、半導体レーザおよびCOレーザのいずれか一つから出射される光であることを特徴とする請求項1〜4のいずれか一項に記載の半導体装置の製造方法。
  7. 前記凹穴の裏面側を含めた前記金属板の裏面が平坦であることを特徴とする請求項2に記載の半導体装置の製造方法。
  8. 前記凹穴の裏面側が該凹穴が形成されていない箇所の前記金属板の裏面から凸となっており、該凸の表面が平坦であることを特徴とする請求項2に記載の半導体装置の製造方法。
  9. 前記金属板に形成された前記貫通孔もしくは前記凹穴の前記レーザ光が入射する表面側の開口部を大きくし、該表面側から裏面側に向って開口部が小さくなるようして、前記貫通孔もしくは凹穴の側壁にテーパーを付けることを特徴とする請求項1、2、5〜8に記載の半導体装置の製造方法。
  10. 少なくとも前記テーパー部にめっきを施したことを特徴とする請求項9に記載の半導体装置の製造方法。
  11. 前記表面側の開口部を、該開口部を通過する前記レーザ光の光束より大きくし、該レーザ光を、前記貫通孔もしくは凹穴の側壁の少なくとも一部と、貫通孔に露出したヒートスプレッダの表面もしくは凹穴の底面の少なくとも一部とに照射することを特徴とする請求項9に記載の半導体装置の製造方法。
  12. 前記貫通孔もしくは凹穴の開口部の平面形状が円形および多角形をしていることを特徴とする請求項1、2,5〜11のいずれか一項に記載の半導体装置の製造方法。
  13. 前記貫通孔もしくは凹穴の開口部の平面形状が細線状をしており、前記レーザ光を該細線状の貫通孔もしくは凹穴の複数箇所に照射し、複数のレーザ溶接することを特徴とする請求項1、2、5〜11のいずれか一項に記載の半導体装置の製造方法。
JP2006114792A 2006-04-18 2006-04-18 半導体装置の製造方法 Withdrawn JP2007287991A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006114792A JP2007287991A (ja) 2006-04-18 2006-04-18 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006114792A JP2007287991A (ja) 2006-04-18 2006-04-18 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007287991A true JP2007287991A (ja) 2007-11-01

Family

ID=38759464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006114792A Withdrawn JP2007287991A (ja) 2006-04-18 2006-04-18 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007287991A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003302A1 (de) * 2016-03-15 2017-09-21 Hochschule Mittweida (Fh) Verfahren zum Verbinden wenigstens bereichsweise übereinander angeordneter Werkstücke mittels Laserstrahlung und Verbindung
JP7065617B2 (ja) 2018-01-12 2022-05-12 新光電気工業株式会社 支持体付基板及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130290A (ja) * 1986-11-20 1988-06-02 Matsushita Electric Works Ltd エネルギビ−ムによる溶接方法
JPH09108874A (ja) * 1995-10-13 1997-04-28 Matsushita Electric Works Ltd レーザー溶接方法
JPH11138281A (ja) * 1997-11-04 1999-05-25 Harness Syst Tech Res Ltd レーザ溶接構造
JP2000183249A (ja) * 1998-12-11 2000-06-30 Mitsubishi Electric Corp パワー半導体モジュール
JP2001071162A (ja) * 1999-09-09 2001-03-21 Fuji Xerox Co Ltd 鋼板のレーザ溶接方法
JP2002117913A (ja) * 2000-10-04 2002-04-19 Hitachi Ltd 金属線の溶接接合継手及びその接合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130290A (ja) * 1986-11-20 1988-06-02 Matsushita Electric Works Ltd エネルギビ−ムによる溶接方法
JPH09108874A (ja) * 1995-10-13 1997-04-28 Matsushita Electric Works Ltd レーザー溶接方法
JPH11138281A (ja) * 1997-11-04 1999-05-25 Harness Syst Tech Res Ltd レーザ溶接構造
JP2000183249A (ja) * 1998-12-11 2000-06-30 Mitsubishi Electric Corp パワー半導体モジュール
JP2001071162A (ja) * 1999-09-09 2001-03-21 Fuji Xerox Co Ltd 鋼板のレーザ溶接方法
JP2002117913A (ja) * 2000-10-04 2002-04-19 Hitachi Ltd 金属線の溶接接合継手及びその接合方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003302A1 (de) * 2016-03-15 2017-09-21 Hochschule Mittweida (Fh) Verfahren zum Verbinden wenigstens bereichsweise übereinander angeordneter Werkstücke mittels Laserstrahlung und Verbindung
JP7065617B2 (ja) 2018-01-12 2022-05-12 新光電気工業株式会社 支持体付基板及びその製造方法

Similar Documents

Publication Publication Date Title
JP4976688B2 (ja) ヒートスプレッダと金属板との接合方法
KR101836658B1 (ko) 파워 모듈 및 그 제조 방법
JP5103863B2 (ja) 半導体装置
JP4775327B2 (ja) 半導体装置の製造方法
JP2015119072A (ja) レーザ溶接方法、レーザ溶接治具、半導体装置
WO2017195625A1 (ja) 半導体装置および半導体装置の製造方法
JP4940743B2 (ja) 半導体装置
JP4858238B2 (ja) レーザ溶接部材およびそれを用いた半導体装置
JP4765853B2 (ja) 半導体装置の製造方法
JP5239291B2 (ja) 半導体装置およびその製造方法
JP4764983B2 (ja) 半導体装置の製造方法
JP6269458B2 (ja) 半導体装置及びその製造方法
WO2017154289A1 (ja) 半導体装置及び半導体装置の製造方法
JP2009105266A (ja) 半導体装置の製造方法
JP4800019B2 (ja) 半導体レーザパッケージ装置及びその製造方法
WO2013039099A1 (ja) 半導体装置の製造方法およびその製造方法を用いて製造した半導体装置
JP2008205058A (ja) 半導体装置
JP2019133965A (ja) 半導体装置及びその製造方法
KR101956983B1 (ko) 파워 모듈 및 그 제조 방법
JP2007287991A (ja) 半導体装置の製造方法
WO2020105476A1 (ja) 半導体装置
JP2008194707A (ja) レーザ溶接用治具およびそれを用いた半導体装置の製造方法
JP2007305620A (ja) 半導体装置の製造方法
JP2006135270A (ja) 半導体装置およびその製造方法
JP4797492B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110510