JP2007273484A - 非水二次電池 - Google Patents

非水二次電池 Download PDF

Info

Publication number
JP2007273484A
JP2007273484A JP2007157440A JP2007157440A JP2007273484A JP 2007273484 A JP2007273484 A JP 2007273484A JP 2007157440 A JP2007157440 A JP 2007157440A JP 2007157440 A JP2007157440 A JP 2007157440A JP 2007273484 A JP2007273484 A JP 2007273484A
Authority
JP
Japan
Prior art keywords
lithium
silicon
negative electrode
compound
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007157440A
Other languages
English (en)
Other versions
JP4967839B2 (ja
Inventor
Akira Kase
晃 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007157440A priority Critical patent/JP4967839B2/ja
Publication of JP2007273484A publication Critical patent/JP2007273484A/ja
Application granted granted Critical
Publication of JP4967839B2 publication Critical patent/JP4967839B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リチウム二次電池のエネルギー量を高め、かつサイクル寿命を高める。
【解決手段】 正極、負極、非水電解質を有する非水二次電池に於いて、該正極はリチウム含有遷移金属酸化物を含有し、該負極はケイ素原子を含む化合物を含有し、さらに該負極のリチウム挿入に伴う膨張率が1.05以上3.0以下である非水二次電池。
【選択図】なし

Description

本発明は、非水二次電池、特に高容量でサイクル寿命の長いリチウム二次電池に関する。
リチウム金属を含まない負極材料とリチウムを含有する正極活物質を用いるリチウム二次電池では、まず、正極活物質に含まれるリチウムを負極材料に挿入して負極材料の活性を上げる。これが充電反応であり、その逆の負極材料からリチウムイオンを正極活物質へ挿入させる反応が放電反応である。このタイプのリチウム電池負極材料として、カーボンが用いられている。カーボン(C6 Li)の理論容量は372mAh/gであり、さらなる高容量負極材料が望まれている。
リチウムと金属間化合物を形成するケイ素の理論容量は4000mAh/gをこえ、カーボンのそれより大きいことはよく知られている。例えば、特許文献1では、単結晶のケイ素を開示しており、特許文献2では、非晶質ケイ素を開示している。また、ケイ素を含んだ合金では、Li−Al合金にケイ素を含む例が、特許文献3(ケイ素が19重量%)、特許文献4(ケイ素が0.05〜1.0重量%)、特許文献5(ケイ素が1〜5重量%)に開示されている。ただし、これらの合金特許出願はいずれもリチウムを主体としているため、正極活物質にはリチウムを含有しない化合物が用いられていた。
また、特許文献6では、ケイ素が0.05〜1.0重量%の合金が開示されている。特許文献7では、リチウムと合金可能な金属と黒鉛粉末を混合する方法が開示されている。しかし、いずれもサイクル寿命が劣り、実用されるには至っていない。ケイ素のサイクル寿命が劣る理由として、その電子伝導性が低いこと、リチウム挿入により体積が膨張し、粒子が微粉化されることが推測されている。
特開平5−74463号公報 特開平7−29602号公報 特開昭63−66369号公報 特開昭63−174275号公報 特開昭63−285865号公報 特開平4−109562号公報 特開昭62−226563号公報
本発明の目的は、リチウム二次電池のエネルギー量を高め、かつサイクル寿命を高めることにある。
本発明の課題は、正極、負極、非水電解質を有する非水二次電池に於いて、該正極はリチウムを含有する遷移金属酸化物を含有し、該負極はリチウム挿入放出可能なケイ素原子を含む化合物を含有し、さらに該負極のリチウム挿入に伴う膨張率が1.05以上3.0以下である非水二次電池を用いることにより解決できた。ケイ素化合物を含有する負極に限らず、一般に負極材料はリチウム挿入・放出にともなって膨張・収縮することは従来より知られていた。本発明者は、ケイ素化合物の膨張に起因して起きる負極の膨張の程度が、リチウム二次電池の重要な性能であるサイクル寿命と対応していること、すなわち負極の膨張の程度が少ないほどサイクル寿命が長くなることを新たに見出し、本発明に至った。
正極活物質、負極材料、非水電解質からなる非水二次電池において、
(1)該正極活物質は、リチウムを含有する遷移金属酸化物であり、該負極材料として、ケイ素原子を含む化合物を用い、さらに該負極のリチウム挿入に伴う膨張率が1.0以上3.0以下である。
(2)該負極材料として、該ケイ素原子を含む化合物の平均粒子サイズは0.001〜5μmである。
(3)該負極材料として、合金を用いる。
(4)該負極材料として、金属ケイ化物からリチウムを除去したケイ素を用いる。
(5)該負極材料として、リチウムと反応しないセラミックと付着したケイ素化合物を用いる。
(6)該負極材料は金属で被覆される。
(7)該負極材料はあらかじめ熱可塑性樹脂で被覆される。
(8)該負極材料のケイ素化合物に対して、炭素を重量比で0〜2000%共存させる。
(9)該負極材料をLixSiで表すと充放電範囲は、x=0〜4.2である。
(10)上記(1)〜(9)の実施態様の少なくとも2種の組み合わせる、ことによりエネルギー量やサイクル寿命の向上した非水二次電池を得ることができた。
以下に本発明の態様について説明するが、本発明はこれらに限定されるものではない。
(1)正極、負極、非水電解質を有する非水二次電池に於いて、該正極はリチウム含有遷移金属酸化物を含有し、該負極はリチウムの挿入放出可能なケイ素原子を含む化合物を含有し、さらに該負極のリチウム挿入に伴う膨張率が1.05以上3.0以下である非水二次電池。
(2)項(1)において、該負極のリチウム挿入に伴う膨張率が1.05以上2.0以下である非水二次電池。
(3)項(1)において、該負極のリチウム挿入に伴う膨張率が1.05以上1.5以下である非水二次電池。
(4)項(1)において、該負極のリチウム挿入に伴う膨張率が1.05以上1.2以下である非水二次電池。
(5)項(1)に記載のケイ素化合物の平均粒子サイズが0.001〜5μmである非水二次電池。
(6)項(1)に記載のケイ素化合物の平均粒子サイズが0.002〜2μmである非水二次電池。
(7)項(1)に記載のケイ素化合物の平均粒子サイズが0.005〜0.5μmである非水二次電池。
(8)項(1)に記載のケイ素化合物が合金である非水二次電池。
(9)項(8)に記載の合金が、ケイ素以外の金属がアルカリ土類金属、遷移金属、半金属から選ばれる少なくとも1種である合金を用いた非水二次電池。
(10)項(8)または(9)に記載のケイ素以外の金属がGe、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znから選ばれる少なくとも1種である非水二次電池。
(11)項(8)〜(10)に記載のケイ素に対する他の金属の原子比率が5〜90%である非水二次電池。
(12)項(1)に記載のケイ素化合物が金属ケイ化物から金属を除去したケイ素である非水二次電池。
(13)項(12)に記載の金属ケイ化物がリチウムケイ化物である非水二次電池。
(14)項(13)に記載のリチウムケイ化物のリチウム含量が、ケイ素に対して、100〜420原子%である非水二次電池。
(15)項(1)に記載のケイ素化合物が、リチウムと反応しないセラミックと付着している複合材料である非水二次電池。
(16)項(15)に記載のセラミックがAl2 3 、SiO2 、TiO2 、SiC、Si3 4 から選ばれる少なくとも一種である非水二次電池。
(17)項(15)または(16)に記載のケイ素化合物に対する該セラミックの重量比が2〜200%である非水二次電池。
(18)項(15)〜(17)に記載のケイ素化合物に該セラミックを付着させる方法が、300〜2000℃に加熱する工程を含む方法である負極材料の製造方法。
(19)項(1)に記載のケイ素化合物が少なくとも一種の金属で被覆されている非水二次電池。
(20)項(19)に記載の金属で被覆させる方法が、無電解めっき法、蒸着法、スパッタリング法、化学気相成長法から選ばれる少なくとも一種の方法である負極材料の製造方法。
(21)項(19)または(20)に記載の被覆金属の少なくとも1種がNi、Cu、Ag、Co、Fe、Cr、W、Ti、Au、Pt、Pd、Sn、Znである非水二次電池。
(22)項(19)〜(21)に記載の金属で被覆されたケイ素化合物の比伝導度が、被覆されていないケイ素化合物の比伝導度の10倍以上である非水二次電池。
(23)項(1)に記載のケイ素化合物が、あらかじめ熱可塑性樹脂で部分的に被覆されているケイ素化合物である非水二次電池。
(24)項(23)に記載の熱可塑性樹脂がポリフッ化ビニリデン、ポリテトラフルオロエチレンから選ばれる少なくとも一種である非水二次電池。
(25)項(23)または(24)に記載のケイ素化合物に対する熱可塑性樹脂の重量比が2〜200%である非水二次電池。
(26)項(23)〜(25)に記載の熱可塑性樹脂のケイ素化合物全表面に対する被覆率が5〜95%である非水二次電池。
(27)項(1)に記載のケイ素化合物に対して炭素を重量比で0〜2000%共存させた非水二次電池。
(28)項(27)に記載の炭素が鱗片状天然黒鉛である非水二次電池。
(29)項(1)に記載のケイ素化合物の充放電範囲が、ケイ素に挿入放出するリチウムの当量比として、LixSiで表すとxが0から4.2の範囲内である非水二次電池。
(30)項(1)に記載のケイ素化合物の充放電範囲が、LixSiで表すとxが0から3.7の範囲内である非水二次電池。
(31)項(1)に記載の正極活物質が、LiyMO2(M=Co、Ni、Fe、Mn y=0〜1.2)を含む材料、またはLiz24(N=Mn z=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いる非水二次電池。
(32)項(8)〜(31)に記載の含ケイ素材料が、リチウムと反応できるケイ素単体、ケイ素合金、ケイ化物の少なくとも1種であり、これらの含ケイ素材料粒子の平均粒子サイズが0.001〜5μmである非水二次電池。
(33)項(8)〜(31)に記載の含ケイ素材料が、リチウムと反応できるケイ素単体、ケイ素合金、ケイ化物の少なくとも1種であり、これらの含ケイ素材料粒子の平均粒子サイズが0.002〜2μmである非水二次電池。
(34)項(8)〜(31)に記載の含ケイ素材料が、リチウムと反応できるケイ素単体、ケイ素合金、ケイ化物の少なくとも1種であり、これらの含ケイ素材料粒子の平均粒子サイズが0.005〜0.5μmである非水二次電池。
本発明で用いられる正極(あるいは負極)は、正極合剤(あるいは負極合剤)を集電体上に塗設、成形して作ることができる。正極合剤(あるいは負極合剤)には、正極活物質(あるいは負極材料)の他、導電剤、結着剤、分散剤、フィラー、イオン導電剤、圧力増強剤や各種添加剤を含むことができる。これらの電極は、円盤状、板状であってもよいが、柔軟性のあるシート状であることが好ましい。
以下に本発明の構成および材料について詳述する。本発明の負極材料で用いられるリチウムの挿入放出できるケイ素原子を含む化合物は、ケイ素単体、ケイ素合金、ケイ化物を意味する。ケイ素単体としては、単結晶、多結晶、非晶質のいずれも使用することができる。単体の純度は85重量%以上が好ましく、特に、95重量%以上が好ましい。さらに、99重量%以上が特に好ましい。
本発明において、リチウムの挿入放出可能なケイ素原子を含む化合物を含有する負極のリチウム挿入に伴う膨張率は1.05以上3.0以下である必要がある。好ましくは1.05以上2.0以下であり、さらに好ましくは1.05以上1.5以下、最も好ましくは1.05以上1.2以下である。リチウム挿入に伴う負極の膨張率は以下のように定義される。膨張率=(リチウム挿入時の負極合剤層の厚さ)/(リチウム放出時の負極合剤層の厚さ)リチウム挿入時の負極合剤層の厚さは次のように評価する。すなわち金属リチウムを対極としたときの負極単極の開回路電圧が0.05Vになるように電池を充電した後、該電池をアルゴンガス雰囲気下で分解して負極を取り出し、合剤層部分の厚さを測定する。リチウム放出時の負極合剤層の厚さは次のように評価する。すなわち金属リチウムを対極としたときの負極単極の開回路電圧が0.5Vになるように電池を放電した後、該電池をアルゴンガス雰囲気下で分解して負極を取り出し、合剤層部分の厚さを測定する。尚、上記の電圧に関し、0.045V以上0.055V未満であれば0.05Vとみなし、0.45V以上0.55V未満であれば0.5Vとみなす。
本発明に用いるケイ素化合物の平均粒子サイズは0.001〜5μmが好ましい。特に、0.002〜2μmが好ましい。さらに、0.005〜0.5μmが好ましい。ここで述べた好ましい粒子サイズの範囲は、一般に「超微粒子」と呼ばれる粒子サイズの範囲であり、たとえば市販のケイ素粉末の粒子サイズ範囲が1〜数百μmであるのに対し、極めて小さい。このような「超微粒子」のケイ素単体を得る方法としては、数μm〜数十μmオーダーの「粗粒子」を粉砕する方法やレーザー熱化学反応法をあげることができる。本発明者はこのような「超微粒子」のケイ素化合物を用いることにより、負極の膨張率が小さくなりサイクル寿命が一層改良されることを見出した。
ケイ素合金は、リチウムを挿入放出した際に生じるケイ素の膨張収縮による微粉化を抑制したり、ケイ素の伝導性の低さを改良するので有効であると考えられる。合金としては、アルカリ土類金属、遷移金属あるいは半金属との合金が好ましい。特に、固溶性合金や共融性合金が好ましい。固溶性合金は固溶体を形成する合金をいう。Geの合金が固溶性合金である。共融性合金とは、ケイ素とどんな割合でも共融するが、冷却して得られる固体はケイ素と金属の混合体である合金を言う。Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znが共融性合金を形成する。この中でもとくに、Ge、Be、Ag、Al、Au、Cd、Ga、In、Sb、Sn、Znの合金が好ましい。またこれらの2種以上の合金も好ましい。とくに、Ge、Ag、Al、Cd、In、Sb、Sn、Znを含む合金が好ましい。これらの合金の混合比率は、ケイ素に対して5〜2000重量%が好ましい。とくに、10〜500重量%が好ましい。この場合、電気伝導性が向上するが電池性能、とくに、放電容量、ハイレート特性、サイクル寿命の点で、比伝導度が合金前のケイ素またはケイ素化合物の比伝導度の10倍以上になることが好ましい。合金の平均粒子サイズは0.001〜5μmが好ましい。特に、0.002〜2μmが好ましい。さらに0.005〜0.5μmが好ましい。
ケイ化物は、ケイ素と金属の化合物を言う。ケイ化物としては、CaSi、CaSi2、Mg2Si、BaSi2、SrSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、TiSi2、Ti5Si3、Cr3Si、NbSi2、NdSi2、CeSi2、SmSi2、DySi2、ZrSi2、WSi2、W5Si3、TaSi2、Ta5Si3、TmSi2、TbSi2、YbSi2、YSi2、YSi2、ErSi、ErSi2、GdSi2 PtSi、V3Si、VSi2、HfSi2、PdSi、PrSi2、HoSi2、EuSi2、LaSi、RuSi、ReSi、RhSi等が用いられる。
該ケイ素化合物として、金属ケイ化物から金属を除去したケイ素を用いることができる。このケイ素の形状としては、空洞が大きく、かなり微細な構造をもっている。このケイ素を用いるとサイクル寿命が改良される理由としては、微粉化されにくいためと考えられる。該金属ケイ化物の金属はアルカリ金属、アルカリ土類金属であることが好ましい。なかでも、Li、Ca、Mgであることが好ましい。とくに、Liが好ましい。該リチウムケイ化物のリチウム含量は、ケイ素に対して、100〜420モル%が好ましい。特に、200〜420モル%が好ましい。アルカリ金属やアルカリ土類金属のケイ化物からアルカリ金属やアルカリ土類金属を除去する方法は、アルカリ金属やアルカリ土類金属と反応する溶媒で処理させることが好ましい。溶媒としては、水、アルコール類が好ましい。リチウムケイ化物の場合は、脱気し、かつ、脱水したアルコール類が好ましい。アルコールの種類としては、メチルアルコール、エチルアルコール、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコール、1−ペンチルアルコール、2−ペンチルアルコール、3−ペンチルアルコールが好ましい。とくに、1−プロピルアルコール、2−プロピルアルコール、1−ブチルアルコール、2−ブチルアルコール、t−ブチルアルコールが好ましい。CaやMgの除去は、水が好ましい。中性付近に保つようなpH緩衝剤を用いることが好ましい。
ケイ素化合物に付着させるセラミックはケイ素の微粉化の抑制に有効であると考えられる。セラミックとしては、リチウムと原則的に反応しない化合物が好ましい。とくに、Al23、SiO2、TiO2、SiC、Si34が好ましい。ケイ素とセラミックを付着させる方法としては、混合、加熱、蒸着、CVDが用いられるが、とくに、混合と加熱の併用が好ましい。とくに、Al23やSiO2のコロイド溶液(コロイダルシリカ)とケイ素を分散混合させた後、加熱し、固溶した固まりを粉砕してケイ素とAl23やSiO2の付着物を得ることができる。この場合、Al23やSiO2の付着物とは、Al23やSiO2等の表面がケイ素粉末に覆われていたり、Al23やSiO2等の固まりの内部に閉じこめられていたり、ケイ素の表面がそれらが覆われていたりする状態を言う。混合分散は、機械的撹拌、超音波、混練により達成できる。加熱は不活性ガス中で300℃〜2000℃の範囲で行うことが好ましいが、とくに500℃〜1200℃が好ましい。不活性ガスはアルゴン、窒素、水素が上げられる。これらの混合ガスも用いられる。粉砕法はボールミル、振動ミル、遊星ボールミル、ジェットミルなどよく知られた方法が用いられる。この粉砕も不活性ガス中で行われることが好ましい。ケイ素に対するセラミックスの混合比は2〜200重量%の範囲が好ましいが、とくに3〜40%が好ましい。ケイ素の電子顕微鏡観察から求めた平均粒子サイズは、0.001〜5μmが好ましく、さらに0.002〜2μmが好ましく、とくに0.005〜0.5μmが好ましい。
本発明のケイ素化合物の金属被覆としては、電気めっき法、置換めっき法、無電解めっき法、抵抗加熱蒸着法、電子ビーム蒸着、クラスターイオン蒸着法などの蒸着法、スパッタリング法、化学気相成長法(CVD法)により達成できる。とくに、無電解めっき法、抵抗加熱蒸着法、電子ビーム蒸着、クラスターイオン蒸着法などの蒸着法、スパッタリング法、CVD法が好ましい。さらに、無電解めっき法がとくに好ましい。無電解めっき法は「無電解めっき 基礎と応用」電気鍍金研究会編 日刊工業新聞社刊 (1994)に記載されている。その還元剤はホスフィン酸塩、ホスホン酸塩、水素化ホウ素化物、アルデヒド類、糖類、アミン類、金属塩が好ましい。ホスフィン酸水素ナトリウム、ホスホン酸水素ナトリウム、水素化ホウ素ナトリウム、ジメチルアミンボラン、ホルムアルデヒド、蔗糖、デキストリン、ヒドロキシルアミン、ヒドラジン、、アスコルビン酸、塩化チタンが好ましい。めっき液の中には還元剤の他に、pH調節剤、錯形成剤を含ませることが好ましい。これらについても上記「無電解めっき 基礎と応用」に記載されている化合物が用いられる。めっき液のpHはとくに限定されないが、4〜13が好ましい。液の温度は10℃〜100℃が好ましいが、とくに、20℃〜95℃がこのましい。めっき浴の他にSnCl2塩酸水溶液からなる活性化浴、PdCl2塩酸水溶液からなる核形成浴を用いたり、さらに濾過工程、水洗工程、粉砕工程、乾燥工程が用いられる。
また、被覆されるケイ素化合物の形態としては、粉体状、塊状、板状等のいずれもが用いられる。被覆される金属は導電性の高い金属であれば何でもよいが、とくに、Ni、Cu、Ag、Co、Fe、Cr、W、Ti、Au、Pt、Pd、Sn、Znが好ましい。とくに、Ni、Cu、Ag、Co、Fe、Cr、Au、Pt、Pd、Sn、Znが好ましく、さらに、Ni、Cu、Ag、Pd、Sn、Znがとくに好ましい。被覆される金属量はとくに限定がないが、比伝導度が、素地であるケイ素化合物の比伝導度の10倍以上になるように被覆することが好ましい。
本発明で用いられるケイ素化合物を熱可塑性樹脂で被覆することが好ましい。熱可塑性樹脂は含フッ素高分子化合物、イミド系高分子、ビニル系高分子、アクリレート系高分子、エステル系高分子、ポリアクリロニトリルなどが用いられる。とくに、熱可塑性樹脂は電解液に膨潤しにくい樹脂が好ましい。具体例としては、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレンーマレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレンーブタジエン共重合体、アクリロニトリルーブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。
これらの化合物は単独または混合して用いることが出来る。とくに、含フッ素高分子化合物が好ましい。なかでもポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。あらかじめ被覆する方法としては、熱可塑性樹脂を溶剤に溶解させておき、その溶液にケイ素化合物を混合、混練する。その溶液を乾燥し、得られた固形物を粉砕する方法が好ましい。ケイ素化合物に対する熱可塑性樹脂の使用量としては、2〜200重量%が好ましい。とくに、3〜50重量%が好ましい。被覆率は5〜95%が好ましいが、とくに、5〜90%が好ましい。被覆された粒子の平均サイズは、0.001〜5μmが好ましい。とくに、0.002〜2μmが好ましい。さらに0.005〜0.5μmが好ましい。
本発明では、ケイ素化合物と炭素質化合物を混合して用いることが好ましい。炭素質材料は導電剤や負極材料で用いられる材料が用いられる。炭素質材料としては、難黒鉛化炭素材料と黒鉛系炭素材料を挙げることができる。具体的には、特開昭62−122066号、特開平2−66856号、同3−245473号等の各公報に記載される面間隔や密度、結晶子の大きさの炭素材料、特開平5−290844号公報に記載の天然黒鉛と人造黒鉛の混合物、特開昭63−24555号、同63−13282号、同63−58763号、特開平6−212617号公報に記載の気相成長炭素材料、特開平5−182664号公報に記載の難黒鉛化炭素を2400℃を超える温度で加熱焼成された材料であり、かつ複数の002面に相当するX線回折のピークを持つ材料、特開平5−307957号、同5−307958号、同7−85862号、同8−315820号公報に記載のピッチ焼成により合成されたメソフェース炭素材料、特開平6−84516号公報に記載の被覆層を有する黒鉛、さらには、各種の粒状体、微小球体、平板状体、微小繊維、ウィスカーの形状の炭素材料、フェノール樹脂、アクリロニトリル樹脂、フルフリルアルコール樹脂の焼成体、水素原子を含むポリアセン材料などの炭素材料等を挙げることができる。さらに、導電剤としての具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料が好ましい。これらは単独で用いても良いし、混合物として用いても良い。
とくに、特開平5−182664号公報に記載の炭素材料や各種の粒状体、微小球体、平板状体、繊維、ウィスカーの形状の炭素材料、また、メソフェーズピッチ、フェノール樹脂、アクリロニトリル樹脂の焼成体、さらに、水素原子を含むポリアセン材料が好ましい。なかでも、鱗片状天然黒鉛が合剤膜を強固にさせるため好ましい。混合比は、ケイ素化合物に対して、0〜2000重量%が好ましい。とくに、10〜1000重量%が好ましい。さらに、20〜500重量%が好ましい。導電剤としては、炭素の他金属を用いることができる。Ni、Cu、Ag、Feが好ましい。
ケイ素化合物負極材料の充放電範囲としては、挿入放出できるリチウムとケイ素原子の比をLixSiで表すとき、x=0〜4.2が好ましい。ケイ素のサイクル寿命改良を鋭意検討した結果、x=0〜3.7の範囲に留めるとサイクル寿命が大きく改良することを見いだした。充電電位では、リチウム金属対極に対して、x=4.2では、過電圧を含めて、0.0Vであるのに対し、x=3.7では、約0.05Vであった。このとき、放電曲線の形状は変化し、0.0V充電折り返しでは0.5V(体リチウム金属)付近に平坦な放電曲線が得られるのに対し、0.05V以上、とくに0.08V以上(x=3.6)では、約0.4Vに平均電圧をもつなだらかな曲線が得られる。即ち、充電終始電圧を上げた方が放電電位が下がるという特異的な現象を見いだし、かつ、充放電反応の可逆性もあがった現象を見いだしたことを示している。
ケイ素化合物の高容量を維持しつつ、サイクル寿命を改良する効果を持つ方法を個々に記述してきたが、上記方法の組み合わせによりさらに高い改良効果を得ることを見いだした。
本発明では、負極材料として、本発明のケイ素化合物の他炭素質材料、酸化物材料、窒化物材料、硫化物材料、リチウム金属、リチウム合金などリチウムを挿入放出できる化合物と組み合わせることができる。
本発明で用いられる正極材料はリチウム含有遷移金属酸化物である。好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo、Wから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。より好ましくは、V、Cr、Mn、Fe、Co、Niから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3乃至2.2の化合物である。なお主として存在する遷移金属に対し30モルパーセント未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(M=Co、Ni、Fe、Mnx=0〜1.2)、またはLiy24(N=Mn y=0〜2)で表されるスピネル構造を有する材料の少なくとも1種を用いることがこのましい。具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz 、LixCobFe1-b 2、LixMn24、LixMncCo2-c4、LixMncNi2-c 4、LixMnc2-c 4、LixMncFe2-c 4(ここでx=0.02〜1.2、a=0.1〜0.9、b=0.8〜0.98、c=1.6〜1.96、z=2.01〜2.3)である。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a 2、LixMn24、LixCob1-b z(x=0.02〜1.2、a=0.1〜0.9、b=0.9〜0.98、z=2.01〜2.3)があげられる。なおxの値は充放電開始前の値であり、充放電により増減する。本発明で用いる正極活物質は、リチウム化合物と遷移金属化合物を混合、焼成する方法や溶液反応により合成することができるが、特に焼成法が好ましい。焼成の為の詳細は、特開平6−60,867号の段落35、特開平7−14,579号等に記載されており、これらの方法を用いることができる。焼成によって得られた正極活物質は水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。更に、遷移金属酸化物に化学的にリチウムイオンを挿入する方法としては、リチウム金属、リチウム合金やブチルリチウムと遷移金属酸化物と反応させることにより合成する方法であっても良い。
本発明で用いる正極活物質の平均粒子サイズは特に限定されないが、0.1〜50μmが好ましい。0.5〜30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積としては特に限定されないが、BET法で0.01〜50m2 /gが好ましく、特に0.2m2 /g〜1m2 /gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
本発明の正極活物質を焼成によって得る場合、焼成温度としては500〜1500℃であることが好ましく、さらに好ましくは700〜1200℃であり、特に好ましくは750〜1000℃である。焼成時間としては4〜30時間が好ましく、さらに好ましくは6〜20時間であり、特に好ましくは6〜15時間である。
本発明の合剤に使用される導電剤は、構成された電池において化学変化を起こさない電子伝導性材料であれば何でもよい。具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物等を挙げる事ができる。黒鉛では、アスペクト比が5以上の平板状のものを用いると好ましい。これらの中では、グラファイトやカーボンブラックが好ましく、粒子の大きさは、0.01μm以上、20μm以下が好ましく、0.02μm以上、10μm以下の粒子がより好ましい。これらは単独で用いても良いし、2種以上を併用してもよい。併用する場合は、アセチレンブラック等のカーボンブラック類と、1〜15μmの黒鉛粒子を併用すると好ましい。導電剤の合剤層への添加量は、負極材料または正極材料に対し1〜50重量%であることが好ましく、特に2〜30重量%であることが好ましい。カーボンブラックやグラファイトでは、3〜20重量%であることが特に好ましい。
本発明では電極合剤を保持するために結着剤を用いる。結着剤の例としては、多糖類、熱可塑性樹脂及びゴム弾性を有するポリマー等が挙げられる。好ましい結着剤としては、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アルギン酸Na、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレンーマレイン酸共重合体等の水溶性ポリマー、ポリビニルクロリド、ポリテトラフルロロエチレン、ポリフッ化ビニリデン、テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ビニリデンフロライド−テトラフロロエチレン−ヘキサフロロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール樹脂、メチルメタアクリレート、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステルを含有する(メタ)アクリル酸エステル共重合体、(メタ)アクリル酸エステル−アクリロニトリル共重合体、ビニルアセテート等のビニルエステルを含有するポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂等のエマルジョン(ラテックス)あるいはサスペンジョンを挙げることが出来る。特にポリアクリル酸エステル系のラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが挙げられる。これらの結着剤は、微小粉末を水に分散したものを用いるのが好ましい。また有機溶剤に溶解または分散して用いるのも好ましい。分散して用いる場合、分散液中の粒子の平均サイズが0.01〜5μmのものを用いるのがより好ましく、0.05〜1μmのものを用いるのが特に好ましい。これらの結着剤は単独または混合して用いることが出来る。結着剤の添加量が少ないと電極合剤の保持力・凝集力が弱い。多すぎると電極体積が増加し電極単位体積あるいは単位重量あたりの容量が減少する。このような理由で結着剤の添加量は1〜30重量%が好ましく、特に2〜10重量%が好ましい。
充填剤は、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、0〜30重量%が好ましい。イオン導電剤は、無機及び有機の固体電解質として知られている物を用いることができ、詳細は電解液の項に記載されている。圧力増強剤は、電池の内圧を上げる化合物であり、炭酸リチウム等の炭酸塩が代表例である。
本発明で使用できる集電体は正極はアルミニウム、ステンレス鋼、ニッケル、チタン、またはこれらの合金であり、負極は銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金である。集電体の形態は箔、エキスパンドメタル、パンチングメタル、もしくは金網である。特に、正極にはアルミニウム箔、負極には銅箔が好ましい。
箔の厚みとしては7μm〜100μmが好ましく、さらに好ましくは7μm〜50μmであり、特に好ましくは7μm〜20μmである。エキスパンドメタル、パンチングメタル、金網の厚みとしては7μm〜200μmが好ましく、さらに好ましくは7μm〜150μmであり、特に好ましくは7μm〜100μmである。集電体の純度としては98%以上が好ましく、さらに好ましくは99%以上であり、特に好ましくは99.3%以上である。集電体の表面は酸、アルカリ、有機溶剤などにより洗浄してもよい。
集電体は、厚さを薄くするため、プラスチックシートの両面上に金属層を形成したものがさらに好ましい。プラスチックは、延伸性及び耐熱性に優れたものが好ましく、例えばポリエチレンテレフタレートである。金属だけでは、弾性がほとんどないので、外力に弱い。プラスチック上に金属層を形成すれば、衝撃に強くなる。より具体的には、集電体は、合成樹脂フィルムや紙等の基材を電子伝導性の物質で被覆した複合集電体であっても良い。基材となる合成樹脂フィルムとしては、フッ素樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリ塩化ビニル、ポリスチレン、ポリエチレン、ポリプロピレン、ポリイミド、ポリアミド、セルロース誘電体、ポリスルホンを挙げることができる。基材を被覆する電子伝導性の物質としては、黒鉛やカーボンブラック等の炭素質材料、アルミニウム、銅、ニッケル、クロム、鉄、モリブデン、金、銀等の金属元素及びこれらの合金を挙げることができる。特に好ましい電子伝導性の物質は金属であり、アルミニウム、銅、ニッケル、ステンレス鋼である。複合集電体は、基材のシートと金属シートを張り合わせる形態であってもよいし、蒸着等により金属層を形成してもよい。
次に本発明における正負電極の構成について説明する。正負電極は集電体の両面に電極合剤を塗布した形態であることが好ましい。この場合、片面あたりの層数は1層であっても2層以上から構成されていても良い。片面あたりの層の数が2以上である場合、正極活物質(もしくは負極材料)含有層が2層以上であっても良い。より好ましい構成は、正極活物質(もしくは負極材料)を含有する層と正極活物質(もしくは負極材料)を含有しない層から構成される場合である。正極活物質(もしくは負極材料)を含有しない層には、正極活物質(もしくは負極材料)を含有する層を保護するための保護層、分割された正極活物質(もしくは負極材料)含有層の間にある中間層、正極活物質(もしくは負極材料)含有層と集電体との間にある下塗り層等があり、本発明においてはこれらを総称して補助層と言う。
保護層は正負電極の両方または正負電極のいずれかにあることが好ましい。負極において、リチウムを電池内で負極材料に挿入する場合は負極は保護層を有する形態であることが望ましい。保護層は、少なくとも1層からなり、同種又は異種の複数層により構成されていても良い。また、集電体の両面の合剤層の内の片面にのみ保護層を有する形態であっても良い。これらの保護層は、水不溶性の粒子と結着剤等から構成される。結着剤は、前述の電極合剤を形成する際に用いられる結着剤を用いることが出来る。水不溶性の粒子としては、種種の導電性粒子、実質的に導電性を有さない有機及び無機の粒子を用いることができる。水不溶性粒子の水への溶解度は、100PPM 以下、好ましくは不溶性のものが好ましい。保護層に含まれる粒子の割合は2.5重量%以上、96重量%以下が好ましく、5重量%以上、95重量%以下がより好ましく、10重量%以上、93重量%以下が特に好ましい。
水不溶性の導電性粒子としては、金属、金属酸化物、金属繊維、炭素繊維、カーボンブラックや黒鉛等の炭素粒子を挙げることが出来る。これらの水不溶導電性粒子の中で、アルカリ金属特にリチウムとの反応性が低いものが好ましく、金属粉末、炭素粒子がより好ましい。粒子を構成する元素の20℃における電気抵抗率としては、5×109 Ω・m以下が好ましい。
金属粉末としては、リチウムとの反応性が低い金属、即ちリチウム合金を作りにくい金属が好ましく、具体的には、銅、ニッケル、鉄、クロム、モリブデン、チタン、タングステン、タンタルが好ましい。これらの金属粉末の形は、針状、柱状、板状、塊状のいずれでもよく、最大径が0.02μm以上、20μm以下が好ましく、0.1μm以上、10μm以下がより好ましい。これらの金属粉末は、表面が過度に酸化されていないものが好ましく、酸化されているときには還元雰囲気で熱処理することが好ましい。
炭素粒子としては、従来電極活物質が導電性でない場合に併用する導電材料として用いられる公知の炭素材料を用いることが出来る。具体的には電極合剤を作る際に用いられる導電剤が用いられる。
実質的に導電性を持たない水不溶性粒子としては、テフロン(登録商標)の微粉末、SiC、窒化アルミニウム、アルミナ、ジルコニア、マグネシア、ムライト、フォルステライト、ステアタイトを挙げることが出来る。これらの粒子は、導電性粒子と併用してもよく、導電性粒子の0.01倍以上、10倍以下で使うと好ましい。
正(負)の電極シートは正(負)極の合剤を集電体の上に塗布、乾燥、圧縮する事により作成する事ができる。合剤の調製は正極活物質(あるいは負極材料)および導電剤を混合し、結着剤(樹脂粉体のサスペンジョンまたはエマルジョン状のもの)、および分散媒を加えて混練混合し、引続いて、ミキサー、ホモジナイザー、ディゾルバー、プラネタリミキサー、ペイントシェイカー、サンドミル等の攪拌混合機、分散機で分散して行うことが出来る。分散媒としては水もしくは有機溶媒が用いられるが、水が好ましい。このほか、適宜充填剤、イオン導電剤、圧力増強剤等の添加剤を添加しても良い。分散液のpHは負極では5〜10、正極では7〜12が好ましい。
塗布は種々の方法で行うことが出来るが、例えば、リバースロール法、ダイレクトロール法、ブレード法、ナイフ法、エクストルージョン法、スライド法、カーテン法、グラビア法、バー法、ディップ法及びスクイーズ法を挙げることが出来る。エクストルージョンダイを用いる方法、スライドコーターを用いる方法が特に好ましい。塗布は、0.1〜100m/分の速度で実施されることが好ましい。この際、合剤ペーストの液物性、乾燥性に合わせて、上記塗布方法を選定することにより、良好な塗布層の表面状態を得ることが出来る。電極層が複数の層である場合にはそれらの複数層を同時に塗布することが、均一な電極の製造、製造コスト等の観点から好ましい。その塗布層の厚み、長さや巾は、電池の大きさにより決められる。典型的な塗布層の厚みは乾燥後圧縮された状態で10〜1000μmである。塗布後の電極シートは、熱風、真空、赤外線、遠赤外線、電子線及び低湿風の作用により乾燥、脱水される。これらの方法は単独あるいは組み合わせて用いることが出来る。乾燥温度は80〜350℃の範囲が好ましく、特に100〜260℃の範囲が好ましい。乾燥後の含水量は2000ppm以下が好ましく、500ppm以下がより好ましい。電極シートの圧縮は、一般に採用されているプレス方法を用いることが出来るが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は、特に限定されないが、10kg/cm2 〜3t/cm2 が好ましい。カレンダープレス法のプレス速度は、0.1〜50m/分が好ましい。プレス温度は、室温〜200℃が好ましい。
本発明で使用できるセパレータは、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜であれば良く、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン、ガラス繊維、アルミナ繊維が用いられ、形態として、不織布、織布、微孔性フィルムが用いられる。特に、材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレンの混合体、ポリプロピレンとテフロンの混合体、ポリエチレンとテフロンの混合体が好ましく、形態として微孔性フィルムであるものが好ましい。特に、孔径が0.01〜1μm、厚みが5〜50μmの微孔性フィルムが好ましい。これらの微孔性フィルムは単独の膜であっても、微孔の形状や密度等や材質等の性質の異なる2層以上からなる複合フィルムであっても良い。例えば、ポリエチレンフィルムとポリプロピレンフィルムを張り合わせた複合フィルムを挙げることができる。
電解液は一般に支持塩と溶媒から構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。本発明で使用出来るリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiOSO2n2n+1で表されるフルオロスルホン酸(nは6以下の正の整数)、LiN(SO2 n 2n+1)(SO2 m 2m+1)で表されるイミド塩(m、nはそれぞれ6以下の正の整数)、LiC(SO2 p 2p+1)(SO2 q 2q+1)(SO2 r 2r+1)で表されるメチド塩(p、q、rはそれぞれ6以下の正の整数)、低級脂肪族カルボン酸リチウム、LiAlCl4 、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどのLi塩を上げることが出来、これらの一種または二種以上を混合して使用することができる。なかでもLiBF4 及び/あるいはLiPF6 を溶解したものが好ましい。支持塩の濃度は、特に限定されないが、電解液1リットル当たり0.2〜3モルが好ましい。
本発明で使用できる溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、炭酸トリフルオロメチルエチレン、炭酸ジフルオロメチルエチレン、炭酸モノフルオロメチルエチレン、六フッ化メチルアセテート、三フッ化メチルアセテート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、2,2−ビス(トリフルオロメチル)−1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、ホウ酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、3−アルキルシドノン(アルキル基はプロピル、イソプロピル、ブチル基等)、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。これらのなかでは、カーボネート系の溶媒が好ましく、環状カーボネートと非環状カーボネートを混合して用いるのが特に好ましい。環状カーボネートとしてはエチレンカーボネート、プロピレンカーボネートが好ましい。また、非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートをが好ましい。本発明で使用できる電解液としては、エチレンカーボネート、プロピレンカ−ボネ−ト、1,2−ジメトキシエタン、ジメチルカーボネートあるいはジエチルカーボネートを適宜混合した電解液にLiCF3SO3、LiClO4、LiBF4および/またはLiPF6を含む電解液が好ましい。特にプロピレンカーボネートもしくはエチレンカーボネートの少なくとも一方とジメチルカーボネートもしくはジエチルカーボネートの少なくとも一方の混合溶媒に、LiCF3SO3、LiClO4、もしくはLiBF4の中から選ばれた少なくとも一種の塩とLiPF6を含む電解液が好ましい。これら電解液を電池内に添加する量は特に限定されず、正極材料や負極材料の量や電池のサイズに応じて用いることができる。
また、電解液の他に次の様な固体電解質も併用することができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。無機固体電解質には、Liの窒化物、ハロゲン化物、酸素酸塩などがよく知られている。なかでも、Li3N、LiI、Li5I2、Li3N−LiI−LiOH、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4(1-x) Li4SiO4、Li2SiS3、硫化リン化合物などが有効である。
有機固体電解質では、ポリエチレンオキサイド誘導体か該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体あるいは該誘導体を含むポリマー、イオン解離基を含むポリマー、イオン解離基を含むポリマーと上記非プロトン性電解液の混合物、リン酸エステルポリマー、非プロトン性極性溶媒を含有させた高分子マトリックス材料が有効である。さらに、ポリアクリロニトリルを電解液に添加する方法もある。また、無機と有機固体電解質を併用する方法も知られている。
また、放電や充放電特性を改良する目的で、他の化合物を電解質に添加しても良い。例えば、ピリジン、ピロリン、ピロール、トリフェニルアミン、フェニルカルバゾール、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノンとN, N’−置換イミダリジノン、エチレングリコールジアルキルエーテル、第四級アンモニウム塩、ポリエチレングリコール、ピロール、2−メトキシエタノール、AlCl3 、導電性ポリマー電極活物質のモノマー、トリエチレンホスホルアミド、トリアルキルホスフィン、モルホリン、カルボニル基を持つアリール化合物、12−クラウン−4のようなクラウンエーテル類、ヘキサメチルホスホリックトリアミドと4−アルキルモルホリン、二環性の三級アミン、オイル、四級ホスホニウム塩、三級スルホニウム塩などを挙げることができる。特に好ましいのはトリフェニルアミン、フェニルカルバゾールを単独もしくは組み合わせて用いた場合である。
また、電解液を不燃性にするために含ハロゲン溶媒、例えば、四塩化炭素、三弗化塩化エチレンを電解液に含ませることができる。また、高温保存に適性をもたせるために電解液に炭酸ガスを含ませることができる。
電解液は、水分及び遊離酸分をできるだけ含有しないことが望ましい。このため、電解液の原料は充分な脱水と精製をしたものが好ましい。また、電解液の調整は、露点がマイナス30℃以下の乾燥空気中もしくは不活性ガス中が好ましい。電解液中の水分及び遊離酸分の量は、0.1〜500ppm、より好ましくは0.2〜100ppmである。
電解液は、全量を1回で注入してもよいが、2回以上に分けて注入することが好ましい。2回以上に分けて注入する場合、それぞれの液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入)でも良い。また、電解液の注入時間の短縮等のために、電池缶を減圧したり、電池缶に遠心力や超音波をかけることを行ってもよい。
本発明で使用できる電池缶および電池蓋は材質としてニッケルメッキを施した鉄鋼板、ステンレス鋼板(SUS304、SUS304L、SUS304N、SUS316、SUS316L、SUS430、SUS444等)、ニッケルメッキを施したステンレス鋼板(同上)、アルミニウムまたはその合金、ニッケル、チタン、銅であり、形状として、真円形筒状、楕円形筒状、正方形筒状、長方形筒状である。特に、外装缶が負極端子を兼ねる場合は、ステンレス鋼板、ニッケルメッキを施した鉄鋼板が好ましく、外装缶が正極端子を兼ねる場合は、ステンレス鋼板、アルミニウムまたはその合金が好ましい。電池缶の形状はボタン、コイン、シート、シリンダー、角などのいずれでも良い。電池缶の内圧上昇の対策として封口板に安全弁を用いることができる。この他、電池缶やガスケット等の部材に切り込みをいれる方法も利用することが出来る。この他、従来から知られている種々の安全素子(例えば、過電流防止素子として、ヒューズ、バイメタル、PTC素子等)を備えつけても良い。
本発明で使用するリード板には、電気伝導性をもつ金属(例えば、鉄、ニッケル、チタン、クロム、モリブデン、銅、アルミニウム等)やそれらの合金を用いることが出来る。電池蓋、電池缶、電極シート、リード板の溶接法は、公知の方法(例、直流又は交流の電気溶接、レーザー溶接、超音波溶接)を用いることが出来る。封口用シール剤は、アスファルト等の従来から知られている化合物や混合物を用いることが出来る。
本発明で使用できるガスケットは、材質として、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ポリアミドであり、耐有機溶媒性及び低水分透過性から、オレフィン系ポリマーが好ましく、特にプロピレン主体のポリマーが好ましい。さらに、プロピレンとエチレンのブロック共重合ポリマーであることが好ましい。
以上のようにして組み立てられた電池は、エージング処理を施すのが好ましい。エージング処理には、前処理、活性化処理及び後処理などがあり、これにより高い充放電容量とサイクル性に優れた電池を製造することができる。前処理は、電極内のリチウムの分布を均一化するための処理で、例えば、リチウムの溶解制御、リチウムの分布を均一にするための温度制御、揺動及び/または回転処理、充放電の任意の組み合わせが行われる。活性化処理は電池本体の負極に対してリチウムを挿入させるための処理で、電池の実使用充電時のリチウム挿入量の50〜120%を挿入するのが好ましい。後処理は活性化処理を十分にさせるための処理であり、電池反応を均一にするための保存処理と、判定のための充放電処理当があり、任意に組み合わせることができる。
本発明の活性化前の好ましいエージング条件(前処理条件)は次の通りである。温度は30℃以上70℃以下が好ましく、30℃以上60℃以下がより好ましく、40℃以上60℃以下がさらに好ましい。また、開路電圧は2.5V以上3.8V以下が好ましく、2.5V以上3.5V以下がより好ましく、2.8V以上3.3V以下がさらに好ましい。エージング期間は1日以上20日以下が好ましく、1日以上15日以下が特に好ましい。活性化の充電電圧は4.0V以上が好ましく、4.05V以上4.3V以下がより好ましく、4.1V以上4.2V以下が更に好ましい。活性化後のエージング条件としては、開路電圧が3.9V以上4.3V以下が好ましく、4.0V以上4.2V以下が特に好ましく、温度は30℃以上70℃以下が好ましく、40℃以上60℃以下が特に好ましい。エージング期間は0.2日以上20日以下が好ましく、0.5日以上5日以下が特に好ましい。
本発明の電池は必要に応じて外装材で被覆される。外装材としては、熱収縮チューブ、粘着テープ、金属フィルム、紙、布、塗料、プラスチックケース等がある。また、外装の少なくとも一部に熱で変色する部分を設け、使用中の熱履歴がわかるようにしても良い。
本発明の電池は必要に応じて複数本を直列及び/または並列に組み電池パックに収納される。電池パックには正温度係数抵抗体、温度ヒューズ、ヒューズ及び/または電流遮断素子等の安全素子の他、安全回路(各電池及び/または組電池全体の電圧、温度、電流等をモニターし、必要なら電流を遮断する機能を有す回路)を設けても良い。また電池パックには、組電池全体の正極及び負極端子以外に、各電池の正極及び負極端子、組電池全体及び各電池の温度検出端子、組電池全体の電流検出端子等を外部端子として設けることもできる。また電池パックには、電圧変換回路(DC−DCコンバータ等)を内蔵しても良い。また各電池の接続は、リード板を溶接することで固定しても良いし、ソケット等で容易に着脱できるように固定しても良い。さらには、電池パックに電池残存容量、充電の有無、使用回数等の表示機能を設けても良い。
本発明の電池は様々な機器に使用される。特に、ビデオムービー、モニター内蔵携帯型ビデオデッキ、モニター内蔵ムービーカメラ、デジタルカメラ、コンパクトカメラ、一眼レフカメラ、レンズ付きフィルム、ノート型パソコン、ノート型ワープロ、電子手帳、携帯電話、コードレス電話、ヒゲソリ、電動工具、電動ミキサー、自動車等に使用されることが好ましい。
以下に具体例をあげ、本発明をさらに詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。
実施例1
負極材料として平均粒子サイズ0.6μmの多結晶ケイ素単体(化合物−1−1)、平均粒子サイズ0.01μmの多結晶ケイ素単体(化合物−1−2)、冶金学的に合成した以下の合金化合物として、Si−Ag合金(化合物−2 重量比20−80)、Si−Al(化合物−3 重量比30−70)、Si−Ag−Cd(化合物−4 重量比20−70−10)、Si−Zn(化合物−5 重量比30−70)、Si−Au(化合物ー6 重量比20−80)、Si−Ag−In(化合物−7 重量比20−70−10)、Si−Ge(化合物−8 重量比40−60)、Si−Ag−Sn(化合物−9 重量比20−70−10)、Si−Ag−Sb(化合物−10 重量比20−70−10)、冶金学的に合成したLi4 Siからイソプロピルアルコールを用いてLiを溶出させたケイ素をアルゴンガス中で粉砕して得られたケイ素(化合物−11)、多結晶ケイ素とコロイダルシリカを混合し、900℃で加熱して得られた固形物をアルゴンガス中で振動ミルにて粉体にしたSi−SiO2(化合物−12 重量比80−20)、同様の方法で得られたSi−Al23(化合物−13 重量比80−20)、無電解めっき法にて多結晶ケイ素表面にめっきした化合物として、AgめっきしたSi(化合物−14 Si−Agの重量比 55−45)、同じくNiめっきしたケイ素(化合物−15 Si−Niの重量比 55−45)、同じくZnめっきしたケイ素(化合物−16 Si−Znの重量比 55−45)、ポリフッ化ビニリデン3gをN−メチルピロリドン20gに溶かした液にケイ素を30g添加し、混合混練した後、乾燥し、アルゴンガス中で振動ミルにて粉砕した粉体(化合物−17)を用いた。化合物−11を無電解めっき法にてAgを被覆した化合物(化合物−18 Si−Agの重量比率55−45)、化合物−12を無電解めっき法にてAgを被覆した化合物(化合物−19 Si−SiO2−Agの重量比率50−10−40)、同じく化合物−12を用いてポリフッ化ビニリデンで被覆した化合物(化合物−20 Si−SiO2−ポリフッ化ビニリデンの重量比75−15−10)を用いた。上記負極材料のうち化合物2〜20はいずれも平均粒子サイズ0.01〜1μmの範囲の粒子を用いた。これらを重量比でケイ素と鱗片状天然黒鉛が40−60になるように混合して得られた粉体を170g、結着剤としてポリ沸化ビニリデン30gをN−メチル−2−ピロリドン 500mlに分散して、負極ペーストを作成した。
正極活物質LiCoO2を200gとアセチレンブラック10gと鱗片状人造黒鉛10gとをホモジナイザーで混合し、続いて結着剤としてポリ沸化ビニリデン5gを混合し、N−メチル−2−ピロリドン 500mlを加え混練混合し、正極合剤ペーストを作成した。
上記で作成した正極合剤ペーストをブレードコーターで厚さ30μmのアルミニウム箔集電体の両面に塗布、150℃乾燥後ローラープレス機で圧縮成型し所定の大きさに裁断し、帯状の正極シートを作成した。さらにドライボックス(露点;−50℃以下の乾燥空気)中で遠赤外線ヒーターにて充分脱水乾燥し、正極シートを作成した。同様に、負極合剤ペーストを20μmの銅箔集電体に塗布し、上記正極シート作成と同様の方法で負極シートを作成した。負極や正極のシートの長さを一定にし、塗布量を変えて、直径18mm、最大高65mmの円筒形電池を作成し、正極活物質がリチウム金属に対して4.2Vになる第1サイクルの充電容量と上記負極材料が0.0Vになる第1サイクルの充電容量が合うようにそれぞれの電極合剤の塗布量を調整した。
次に電解液は次のようにして作成した。アルゴン雰囲気で、200ccの細口のポリプロピレン容器に65.3gの炭酸ジエチルをいれ、これに液温が30℃を越えないように注意しながら、22.2gの炭酸エチレンを少量ずつ溶解した。次に、0.4gのLiBF4 、12.1gのLiPF6 を液温が30℃を越えないように注意しながら、それぞれ順番に、上記ポリプロピレン容器に少量ずつ溶解した。得られた電解液は比重1.135で無色透明の液体であった。水分は18ppm(京都電子製 商品名MKC−210型カールフィシャー水分測定装置で測定)、遊離酸分は24ppm(ブロムチモールブルーを指示薬とし、0.1規定NaOH水溶液を用いて中和滴定して測定)であった。
シリンダー電池は次のようにして作成した。図1に従い電池の作り方を説明する。上記で作成した正極シート、微孔性ポリエチレンフィルム製セパレーター、負極シートさらにセパレーターを順に積層し、これを渦巻き状に巻回した。この巻回した電極群(2)を負極端子を兼ねるニッケルめっきを施した鉄製の有底円筒型電池缶(1)に収納し、上部絶縁板(3)を更に挿入した。この電池缶内に電解液E−1を注入した後、正極端子(6)、絶縁リング、PTC素子(63)、電流遮断体(62)、圧力感応弁体(61)を積層したものをガスケット(5)を介してかしめて円筒型電池を作成した。
上記の円筒形電池を1.5Aで充電する。この場合、充電は4.2Vまで定電流で充電し、充電開始から2.5時間が経過するまで4.2Vで一定に保つように充電電流を制御した。放電は0.2C電流にて3.0Vまで定電流で実施した。そのときの第1サイクルの放電容量、平均放電電圧、エネルギー量(放電容量×平均放電電圧)また、充放電(放電電流は1C相当)を繰り返した30サイクル目の容量維持率を表1に示した。また負極のリチウム挿入に伴う膨張率を、本文に記載の方法にしたがって求め、表1に示した。
Figure 2007273484
実施例2
実施例1の化合物1−1、1−2、2、11、12、14、15、17、18、19について、実施例1のうち、正極活物質がリチウム金属に対して4.2Vになる第1サイクルの充電容量と上記負極材料が0.1Vになる第1サイクルの充電容量が合うようにそれぞれの電極合剤の塗布量を調整した。充放電試験は、充電終始電圧が4.1Vになる以外は実施例−1と同じ条件で実施し、結果は表2に示した。ケイ素へのリチウム挿入量は約3.2モルであった。(LixSiで表すと x=3.2を意味している。)
Figure 2007273484
実施例3
実施例1の化合物1−1、1−2、2、11、12、14、15、17、18、19について、ケイ素と鱗片状天然黒鉛が重量比で40−60になるようにして得られた粉体を158g、結着剤としてポリ弗化ビニリデン15g、カルボキシメチルセルロース5g、添加剤として酢酸リチウム1gを水200mlに分散して、負極合剤ペーストを作製した。正極活物質LiCoO2を200g、アセチレンブラック5g、鱗片状天然黒鉛5g、結着剤として2−エチルヘキシルアクリレートを主体とするアクリル酸共重合体4g、ポリ沸化ビニリデン2g、カルボキシメチルセルロース1g、添加剤として炭酸水素ナトリウム2gを、水200mlに分散して正極合剤ペーストを作製した。上記以外は実施例1と同じ条件で電池を作製し、実施例1と同じ条件で性能評価を行い、結果は表3に示した。
Figure 2007273484
比較例1
平均粒子サイズ20μmの多結晶ケイ素を用いた以外は実施例1と同じ試験をし、結果は表4に示した。
Figure 2007273484
比較例2
負極材料としてメソフェーズピッチコークスおよび鱗片状天然黒鉛を重量比80/20になるように用い、導電補助剤としてアセチレンブラックを前記コークスおよび黒鉛の合計に対して2重量%加えた以外は実施例1と同様に電池を作成し、充放電試験を実施し、結果は上記表4に示した。
本発明の化合物を用いた実施例1の電池と比較例1の電池性能を比較すると、本発明のケイ素原子を含む化合物を含有し、かつ負極の膨張率が3.0以下の電池はサイクル寿命に優れている。また、実施例1で比較すると、合金、リチウムケイ化物からリチウムを除去したケイ素、コロイダルシリカを付着させたケイ素、めっきにより金属を被覆したケイ素、ポリフッ化ビニリデンにて被覆したケイ素は何も処理を施さないケイ素より負極の膨張率が小さく、サイクル寿命が改良されている。さらに、本発明の処理を組み合わせることにより、単独処理よりサイクル寿命が改良されている。また、実施例2の試験では、ケイ素へのリチウム挿入量を低減させることにより、放電容量は低下するが、平均放電電圧があがり、サイクル寿命が改良されている。また比較例2の炭素質材料と比較すると、放電容量がきわめて高く、エネルギー量も高い。また実施例3の試験では電極合剤調製を水を分散媒として行っているが、N−メチル−2−ピロリドンを分散媒に用いたときと同様の効果が得られた。さらに以上の効果は、正極活物質LiCoO2 をLiNiO2 やLiMn2 4 に変えても同様であった。
実施例に使用したシリンダー電池の断面図を示したものである。
符号の説明
1 負極を兼ねる電池缶
2 巻回電極群
3 上部絶縁板
4 正極リード
5 ガスケット
6 正極端子を兼ねる電池蓋
61 圧力感応弁体
62 電流遮断素子(スイッチ)
63 PTC素子

Claims (2)

  1. 正極、負極、非水電解質を有する非水二次電池に於いて、該正極はリチウム含有遷移金属酸化物を含有し、該負極はリチウムの挿入放出可能なケイ素原子を含む化合物を含有し、さらに該負極のリチウム挿入に伴う膨張率が1.05以上3.0以下であることを特徴とする非水二次電池。
  2. 該ケイ素化合物の平均粒子サイズが0.001〜5μmであることを特徴とする請求項1に記載の非水二次電池。
JP2007157440A 2007-06-14 2007-06-14 非水二次電池 Expired - Lifetime JP4967839B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157440A JP4967839B2 (ja) 2007-06-14 2007-06-14 非水二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157440A JP4967839B2 (ja) 2007-06-14 2007-06-14 非水二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16550198A Division JP4728458B2 (ja) 1998-05-13 1998-06-12 非水二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010006929A Division JP5229239B2 (ja) 2010-01-15 2010-01-15 非水二次電池

Publications (2)

Publication Number Publication Date
JP2007273484A true JP2007273484A (ja) 2007-10-18
JP4967839B2 JP4967839B2 (ja) 2012-07-04

Family

ID=38676030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157440A Expired - Lifetime JP4967839B2 (ja) 2007-06-14 2007-06-14 非水二次電池

Country Status (1)

Country Link
JP (1) JP4967839B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859552B2 (en) 2013-09-20 2018-01-02 Kabushiki Kaisha Toshiba Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20190086773A (ko) * 2011-12-14 2019-07-23 유미코아 리튬-이온 배터리를 위한 양으로 하전된 규소
WO2020080246A1 (ja) * 2018-10-18 2020-04-23 株式会社村田製作所 リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN114050226A (zh) * 2021-10-26 2022-02-15 惠州锂威新能源科技有限公司 一种负极材料及其制备方法、负极片以及锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430489B2 (ja) 2014-03-24 2018-11-28 株式会社東芝 非水電解質電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池及び電池パック

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213258A (ja) * 1987-02-27 1988-09-06 Sharp Corp 電極
JPH04294059A (ja) * 1991-03-25 1992-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JPH06349482A (ja) * 1993-06-07 1994-12-22 Sharp Corp リチウム二次電池
JPH0729602A (ja) * 1993-07-13 1995-01-31 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JPH07288127A (ja) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd 非水電解質電池
JPH087895A (ja) * 1994-06-24 1996-01-12 Japan Energy Corp リチウム二次電池電極用炭素材料及びその製造方法
JPH08130006A (ja) * 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd 負極、その製造方法及びLi二次電池
JPH09245771A (ja) * 1996-03-13 1997-09-19 Fuji Photo Film Co Ltd 非水二次電池
JPH103920A (ja) * 1996-06-17 1998-01-06 Toshiba Corp リチウム二次電池及びその製造方法
JPH1083817A (ja) * 1996-07-19 1998-03-31 Sony Corp 負極材料及びこれを用いた非水電解液二次電池
JPH10162823A (ja) * 1996-11-29 1998-06-19 Hitachi Maxell Ltd 非水二次電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213258A (ja) * 1987-02-27 1988-09-06 Sharp Corp 電極
JPH04294059A (ja) * 1991-03-25 1992-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JPH06349482A (ja) * 1993-06-07 1994-12-22 Sharp Corp リチウム二次電池
JPH0729602A (ja) * 1993-07-13 1995-01-31 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JPH07288127A (ja) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd 非水電解質電池
JPH087895A (ja) * 1994-06-24 1996-01-12 Japan Energy Corp リチウム二次電池電極用炭素材料及びその製造方法
JPH08130006A (ja) * 1994-10-27 1996-05-21 Mitsubishi Cable Ind Ltd 負極、その製造方法及びLi二次電池
JPH09245771A (ja) * 1996-03-13 1997-09-19 Fuji Photo Film Co Ltd 非水二次電池
JPH103920A (ja) * 1996-06-17 1998-01-06 Toshiba Corp リチウム二次電池及びその製造方法
JPH1083817A (ja) * 1996-07-19 1998-03-31 Sony Corp 負極材料及びこれを用いた非水電解液二次電池
JPH10162823A (ja) * 1996-11-29 1998-06-19 Hitachi Maxell Ltd 非水二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190086773A (ko) * 2011-12-14 2019-07-23 유미코아 리튬-이온 배터리를 위한 양으로 하전된 규소
KR102093588B1 (ko) * 2011-12-14 2020-03-27 유미코아 리튬-이온 배터리를 위한 양으로 하전된 규소
US9859552B2 (en) 2013-09-20 2018-01-02 Kabushiki Kaisha Toshiba Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2020080246A1 (ja) * 2018-10-18 2020-04-23 株式会社村田製作所 リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN112823440A (zh) * 2018-10-18 2021-05-18 株式会社村田制作所 锂离子二次电池用负极及锂离子二次电池
JPWO2020080246A1 (ja) * 2018-10-18 2021-09-02 株式会社村田製作所 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7259863B2 (ja) 2018-10-18 2023-04-18 株式会社村田製作所 リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN114050226A (zh) * 2021-10-26 2022-02-15 惠州锂威新能源科技有限公司 一种负极材料及其制备方法、负极片以及锂离子电池
CN114050226B (zh) * 2021-10-26 2023-10-31 惠州锂威新能源科技有限公司 一种负极材料及其制备方法、负极片以及锂离子电池

Also Published As

Publication number Publication date
JP4967839B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4728458B2 (ja) 非水二次電池
JP3941235B2 (ja) 非水二次電池
JP4085473B2 (ja) 非水二次電池の充電方法
JP4329743B2 (ja) 非水二次電池とその製造方法
JP3661417B2 (ja) 非水二次電池
JP5637257B2 (ja) 非水二次電池
US6235427B1 (en) Nonaqueous secondary battery containing silicic material
JP3945023B2 (ja) 非水二次電池
JP5229239B2 (ja) 非水二次電池
JP4844550B2 (ja) 非水二次電池
JP2009099523A (ja) リチウム二次電池
JP4078714B2 (ja) 非水二次電池の充電或いは放電方法
JP3627516B2 (ja) 非水二次電池
JP2005166684A (ja) 非水二次電池
JP2000012091A (ja) 非水二次電池とその製造方法
JP5000979B2 (ja) 非水二次電池
JP4967839B2 (ja) 非水二次電池
JP3899684B2 (ja) 非水二次電池
JP4003298B2 (ja) 非水二次電池
JP4055254B2 (ja) 非水二次電池
JP4075109B2 (ja) 非水二次電池
JP4725489B2 (ja) 非水二次電池
JP4725562B2 (ja) 非水二次電池
JP4702321B2 (ja) 非水二次電池
JP4221774B2 (ja) 非水二次電池

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

EXPY Cancellation because of completion of term