JP2007227844A - 固体撮像素子及びその製造方法 - Google Patents

固体撮像素子及びその製造方法 Download PDF

Info

Publication number
JP2007227844A
JP2007227844A JP2006050076A JP2006050076A JP2007227844A JP 2007227844 A JP2007227844 A JP 2007227844A JP 2006050076 A JP2006050076 A JP 2006050076A JP 2006050076 A JP2006050076 A JP 2006050076A JP 2007227844 A JP2007227844 A JP 2007227844A
Authority
JP
Japan
Prior art keywords
region
photoelectric conversion
gate electrode
source
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006050076A
Other languages
English (en)
Other versions
JP4779702B2 (ja
Inventor
Masanori Funaki
正紀 舟木
Jun Higuchi
潤 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2006050076A priority Critical patent/JP4779702B2/ja
Publication of JP2007227844A publication Critical patent/JP2007227844A/ja
Application granted granted Critical
Publication of JP4779702B2 publication Critical patent/JP4779702B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】従来のローリングシャッタ型CMOSセンサでは、メカニカルシャッタを設けることで、歪みの無い動画像が得られるが、メカニカルシャッタを設けることにより、機構が複雑化し装置の大型化、制御系の複雑さやシャッタ駆動用の電力が増加する。
【解決手段】全画素のフォトダイオード50により入射光を同時に光電変換して蓄積した電荷を、全画素一斉に転送ゲート電極51を有する転送ゲートトランジスタにより、ソース近傍p型領域47へ転送した後、各画素のリング状ゲート電極45を有するリング状ゲートトランジスタから順次出力するグローバルシャッタ機能を有するため、動画撮影時の画像歪を防止し、静止画撮影時ではシャッタ機構を用いずに画像歪無しの撮影ができる。また、ゲート酸化膜44とSiN膜58との多層膜により、埋め込みのp-領域49に対する反射防止を行うことで、高感度を実現する。
【選択図】図1

Description

本発明は固体撮像素子及びその製造方法に係り、特にグローバルシャッタ型のCMOSエリアセンサの構造を備えた固体撮像素子及びその製造方法に関する。
撮像装置に使用される代表的な固体撮像素子としてはCCD(Charge Coupled Device)型撮像素子がある。しかしながら、消費電力の問題から近年の急速な多画素化と高速読出し化の要求に答えるのが困難になってきている。一方、CMOS(Complementary Metal-Oxide Semiconductor)型撮像素子(以下、CMOSセンサともいう)は、低電圧駆動が可能であり、前記の多画素化と高速読出し化の要求に対応することが容易であり、画素数が8Mを越えるものも現れている。また、製造工程においてCMOSプロセスを使用でき、同一チップ内に駆動回路や処理回路などの周辺回路を混載することが可能であり、小型化にも有利である。このことからCMOS型撮像素子は、ディジタルカメラやビデオカメラ用として、CCDに代わる高性能撮像素子としての注目を浴びつつある。
CMOSセンサについて更に詳しく説明すると、これは従来から知られているローリングシャッタ型CMOSセンサである(例えば、特許文献1参照)。図15は上記の従来のCMOSセンサの一例の等価回路図を示す。同図に示すCMOSセンサは、簡単のため、単位画素1が横方向2画素、縦方向2画素の2×2画素の配置とされている。単位画素1は、被写体像を光電変換するフォトダイオード(PD)2と、信号電荷の増幅用MOS型電界効果トランジスタ(以下、MOSFET)3と、電荷転送用MOSFET4と、リセット用MOSFET5と、選択用MOSFET7とよりなり、電源ライン6がMOSFET3、5のドレインに接続され、増幅用MOSFET3のソースが選択用MOSFET7のドレインに接続されている。
増幅用MOSFET3のゲート電極はフローティングディフュージョン(FD)になっており、フォトダイオード2の電荷が電荷転送用MOSFET4のドレイン−ソースを介して増幅用MOSFET3のゲート電極(FD)に転送される。また、増幅用MOSFET3のゲート電極(FD)の電位は、リセット用MOSFET5によりリセットされる。
選択用MOSFET7がオン状態になると、増幅用MOSFET3のソースを選択用MOSFET7のドレイン・ソースを通して画素出力ライン8に導通させる。画素出力ライン8は定電流供給用MOSFET9のドレインに接続されている。定電流供給用MOSFET9は、増幅用MOSFET3のソースフォロア回路の負荷として作用する。定電流供給用MOSFET9は、ゲート電位供給ライン13のゲート電位により制御される。
また、リセット用制御ライン10、電荷転送用制御ライン11、画素選択用制御ライン12は、それぞれリセット用MOSFET5、電荷転送用MOSFET4、選択用MOSFET7の各ゲート電極に接続されており、その電位はそれぞれパルス供給端子15、14、16から、MOSFET19、20、21のドレイン・ソースをそれぞれ通して供給される。
垂直シフトレジスタ17は、行順次走査のために2×2画素の行を選択する回路で、その垂直シフトレジスタ出力線18−1、18−2が、各行のMOSFET19、20、21のゲート電極に接続されており、パルス供給端子15、14、16の端子に供給されたパルスがどの行の画素を制御するかを決定する。
また、読み出しブロック22は、リセット信号出力を保持する容量23、光信号出力を保持する容量24、どちらの容量に保持するかを選択するスイッチ用MOSFET25及び26、水平出力線27、28に接続されたスイッチ用MOSFET29、30からなる。スイッチ用MOSFET25、26は端子37、38からそのゲート電極に供給されるパルスによりスイッチング制御される。
水平シフトレジスタ34は、2×2画素のうち、どの列の画素の保持信号を水平出力線27、28に出力するかをスイッチ用MOSFET29、30のゲートに接続された水平シフトレジスタ出力線35−1、35−2への出力電位で決定する。また、水平出力線27、28をリセットするための電位を端子33から供給し、リセットのタイミングは端子36から供給するパルスでスイッチ用MOSFET31、32をスイッチング制御して行う。水平出力線27、28は差動アンプ39の入力端子に接続されている。差動アンプ39はリセット信号出力と光信号出力の差をとり、その差信号をアンプ出力端子40からセンサ外に出力する。
次に、図15に示す従来のCMOSセンサの動作について図16のタイミングチャートを併せ参照して説明する。なお、図15中のMOSFETはすべてN型とし、よって、MOSFETはそのゲート電位がハイレベル(High)でオン、ローレベル(Low)でオフとなる。
まず、垂直シフトレジスタ出力線18−1の電位が図16(D)に示すように時刻t1でHighとなり、これにより1行目の画素1が選択される。続いて、パルス供給端子16の入力パルスが図16(C)に示すように時刻t2でHighになり、これにより1行目の画素1の選択用MOSFET7がオン状態になるため、1行目の画素1の増幅用MOSFET3のソースが選択用MOSFET7のドレイン・ソースと画素出力ライン8を通して定電流供給用MOSFET9につながり、ソースフォロア回路を形成する。
この状態で、最初にパルス供給端子15に図16(B)に示すように一定時間Highのパルスが供給され、1行目の画素1のリセット用MOSFET5のドレイン・ソースを通して増幅用MOSFET3のゲート電極(FD)がリセットされる。その後の時刻t3で、パルス供給端子37の入力パルスが図16(I)に示すようにHighになり、スイッチ用MOSFET25をオン状態とし、容量23に1行目の画素1のソースフォロワ回路から出力されたリセット信号出力が保持される。
次に、パルス供給端子14に時刻t4で図16(A)に示すようにHighパルスが印加されると、1行目の画素1内の電荷転送用MOSFET4がオンし、1行目の画素1内のフォトダイオード2に蓄積されている電荷が電荷転送用MOSFET4のドレイン・ソースを介して増幅用MOSFET3のゲート電極(FD)に転送される。その後の時刻t5で、パルス供給端子38に図16(J)に示すようにHighパルスが印加されると、容量24に1行目の画素1のソースフォロワ回路から出力された光信号出力が保持される。続いて、パルス供給端子16の入力パルスが図16(C)に示すように、時刻t6でLowになるため、1行目の画素1内の選択用MOSFET7がオフになり、1行目の画素1からの出力はなくなる。
端子36の入力信号はこの間図16(H)に示すようにHighであり、水平出力ライン27、28はリセット状態になっている。しかし、上記の時刻t6で端子36の入力信号が図16(H)に示すようにLowになり、この状態で水平シフトレジスタ出力線35−1に図16(F)に示すHighパルスを印加すると、1列目のスイッチ用MOSFET29、30がそれぞれオンとされるため、1列目の容量23、24の各信号が1列目のスイッチ用MOSFET29、30を通して水平出力ライン27、28にそれぞれ出力されて差動アンプ39に供給される。差動アンプ39は1列目の容量23、24の各信号、すなわち、リセット信号出力と光信号出力との差をとり、増幅用MOSFET3のしきい値ばらつきに起因したノイズを除去した光信号を出力端子40より出力する。
次に、端子36に図16(H)に示す時刻t7でHighパルスを印加すると、水平出力ライン27、28が再びリセットされ、その後水平シフトレジスタ出力線35−2に、図16(G)に示すように時刻t8でHighパルスが印加され、2列目のスイッチ用MOSFET29、30がそれぞれオンとされるため、2列目の容量23、24の各信号が2列目のスイッチ用MOSFET29、30を通して水平出力ライン27、28にそれぞれ出力されて差動アンプ39に供給され、2列目の信号が1列目と同様に差動アンプ39から出力端子40に出力される。
その後、図16(D)に示す時刻t9で垂直シフトレジスタ出力線18−1の電位がLowとなり、1行目の処理が終わる。次に時刻t10で図16(E)に示すように、垂直シフトレジスタ出力線18−2の電位がHighになり、以下1行目と同様な処理が行われ、全画素の読み出しが終了する。
従って、このCMOSセンサの場合、1行目と2行目のフォトダイオード2で光電変換しているタイミングが異なる。このような撮像方式をローリングシャッタ、あるいはフォーカルプレーンと呼ぶ。
特開2003−17677号公報
このような従来のローリングシャッタ型CMOSセンサは、1行ずつ順番に読み出しを行うもので、画素エリアの上部と下部で読み出されるタイミングが異なる。従って、動いているものを撮像した場合、撮像画像が歪むという問題がある。
この問題を避ける方法として、ローリングシャッタ型CMOSセンサの入射光側前方にメカニカルシャッタを設ける方法が考えられる。この方法では、メカニカルシャッタオープン期間に対応して全ラインの1フレーム期間の露光期間を設け、メカニカルシャッタクローズ期間で各1ラインずつ順次に読み出しを行うことにより、露光プロセスと信号読出しプロセスが分離でき、特に被写体が静止画の場合、前記した撮像画像の歪みを避けることができる。
しかし、この場合、メカニカルシャッタを設けることで、機構が複雑化し装置の大型化を招くことになり、またフレーム毎にメカニカルシャッタの開閉制御を行う必要があり、特に動画撮影の場合、制御系の複雑さやシャッタ駆動用の電力が増加するなどの問題があり、動画撮影に適用するのが困難である。
本発明は以上の点に鑑みてなされたもので、メカニカルシャッタを用いることなく、動画を撮像しても画像が歪まない固体撮像素子及びその製造方法を提供することを目的とする。
また、本発明の他の目的は、酸化膜と窒化シリコン膜の多層膜を基板表面の反射防止膜として使うことで高感度を実現した固体撮像素子及びその製造方法を提供することにある。
上記の目的を達成するために、入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トラジスタと、光電変換領域で蓄積した電荷を増幅出力用トラジスタへ転送する電荷転送手段とからなる画素が、複数規則的に配列されており、複数の全画素の光電変換領域に同時に露光して光電変換して得た電荷を蓄積した後、電荷転送手段及び増幅出力用トラジスタを駆動して、露光期間に蓄積した電荷を各画素から撮像信号として順次出力する駆動手段を備えた固体撮像素子であって、光電変換領域の上面側に形成された反射防止膜と、増幅出力用トランジスタの一部を構成する拡散層に接続され、セルフ・アライン・コンタクト工程により形成されたコンタクトとを有することを特徴とする。
この発明では、全画素の電荷が電荷転送期間のタイミングで読み出し回路に一斉に転送された後、読み出し回路により読み出し期間内で、順次各画素からの信号が読み出されるため、メカニカルシャッタを設けなくても画像の歪みの無い撮像画像を得ることができる。
ここで、上記の増幅出力用トランジスタは、基板上のリング状ゲート電極と、リング状ゲート電極の中央開口部に対応する基板の位置に設けられたソース領域と、ソース領域を取り囲み、かつ、リング状ゲート電極の外周に達しないように基板に設けられたソース近傍領域とからなり、入力された電荷の量をしきい値の変化として出力するトランジスタであり、電荷転送手段は、光電変換領域に蓄積された電荷をソース近傍領域へ転送することを特徴とする。
また、上記の目的を達成するため、本発明の製造方法は、入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トラジスタと、光電変換領域で蓄積した電荷を増幅出力用トラジスタへ転送する電荷転送手段とからなる画素が、複数規則的に配列されており、複数の全画素の光電変換領域に同時に露光して光電変換して得た電荷を蓄積した後、電荷転送手段及び増幅出力用トラジスタを駆動して、露光期間に蓄積した電荷を各画素から撮像信号として順次出力する駆動手段を備えた固体撮像素子を製造する製造方法であって、光電変換領域、増幅出力用トランジスタ及び電荷転送手段とからなる画素が、複数規則的に配列された構造の素子の光電変換領域の上面に、反射防止膜を形成すると同時に、増幅出力用トラジスタの電極の側面にサイドスペーサを形成する第1の工程と、サイドスペーサを利用して、増幅出力用トランジスタの一部を構成する拡散層に接続する、タングステン等の金属によるコンタクトをセルフ・アライン・コンタクトにより形成する第2の工程とを含むことを特徴とする。
この発明では、光電変換領域の上面に反射防止膜を形成すると同時に、増幅出力用トラジスタの電極の側面にサイドスペーサを形成し、そのサイドスペーサを利用して、増幅出力用トランジスタの一部を構成する拡散層に対するコンタクトをセルフ・アライン・コンタクトにより形成することができるため、反射防止膜の形成工程をセルフ・アライン・コンタクトの工程の一部と共用することができる。
本発明によれば、全画素の電荷が電荷転送期間のタイミングで読み出し回路に一斉に転送された後、読み出し回路により読み出し期間内で、順次各画素からの信号が読み出されるグローバルシャッタ型CMOSエリアセンサの構成とすることにより、動画撮影時の画像歪を防止し、静止画撮影時ではシャッタ機構を用いずに画像歪無しの撮影ができる。
また、本発明によれば、光電変換領域の上面に反射防止膜を形成するようにしたため、反射防止膜を形成しない場合よりも高感度な撮像ができる。
更に、本発明によれば、光電変換領域の上面への反射防止膜の形成工程をセルフ・アライン・コンタクトの工程の一部と共用することができるため、工程数を減らすことができる。
次に、本発明の実施の形態について図面と共に説明する。
(固体撮像素子の第1の実施の形態)
図1(A)は本発明になる固体撮像素子の第1の実施の形態の1画素分の平面図、同図(B)は同図(A)のX−X’線に沿う縦断面図を示す。本実施の形態で使用する基板は、図1(B)に示すように、p+基板上41にp-型エピタキシャル層42を成長させてある。p-型エピタキシャル層42内にnウェル43があり、nウェル43上にはゲート酸化膜44を挟んで第1のゲート電極として、平面形状がリング状のゲート電極45が形成されている。
図1(B)に示すように、リング状ゲート電極45の中央開口部のnウェル43表面には、n+型のソース領域46があり、ソース領域46に隣接してソース領域46を取り囲むようにp型のソース近傍領域47が形成されている。ソース近傍p型領域47はリング状ゲート電極45の外周部に達していない。ソース領域46、ソース近傍p型領域47と離れたnウェル43の表面にはn+型のドレイン領域48がある。
また、図1(B)に示すように、リング状ゲート電極45の外周部より外側のnウェル43の中には、p-型領域49が形成され、同図(A)に示す埋め込みフォトダイオード50を形成している。埋め込みフォトダイオード50を構成するp-型領域49とリング状ゲート電極45の間の基板上には、ゲート絶縁膜44を挟んで第2のゲート電極として転送ゲート電極51が形成されている。
ドレイン領域48、リング状ゲート電極45、ソース領域46、転送ゲート電極51には、それぞれメタル配線52、53、54、55が接続されており、それぞれはドレイン電極配線、リング状ゲート電極配線、ソース電極配線(出力線)、転送ゲート電極配線を構成している。また、各構成の上部は図1(B)に示すように、絶縁層59で被覆され、更にその上に遮光膜56が形成されている。遮光膜56のフォトダイオード50の垂直方向の上部に対応する位置には開口部57が穿設されている。この遮光膜56は金属、あるいは有機膜等で形成される。光は、開口部57を通して埋め込みフォトダイオード50に達して光電変換される。
フォトダイオード50の上部のゲート酸化膜44上には図1(B)に示すように窒化シリコン(SiN)膜58が形成されている。このSiN膜58はシリコン(Si)表面、すなわち、p-型領域49の上部にあるドレイン領域48とゲート酸化膜44との界面での反射防止を行う目的で成膜されたもので、成膜後フォトリソグラフィ工程を行い、フォトダイオード50以外の部分をエッチングして形成する。例えば、SiN膜58の膜厚を200nmとした場合、SiN膜58を成膜しない場合と比較すると、反射率を32%から13%と半分以下にすることができることが確かめられた。
なお、ここではフォトダイオード50の上部のSi表面の反射防止を行うために、SiN膜58とゲート酸化膜44との多層膜を反射防止膜として用いたが、光学的に反射防止膜として作用する膜厚であれば、ゲート酸化膜44は、例えば、CVD膜などゲート酸化膜以外の酸化膜でも使用可能である。なお、酸化膜はあまり厚すぎると反射防止機能が低くなるので、ある範囲(例えば、50nm程度以下)に限定される。同様に、SiN膜58に関しても、光学的に反射防止膜として作用する膜厚であれば200nmに限定されることはない。
また、このSiN膜58はエッチバックの結果、リング状ゲー卜電極45、転送ゲート電極51の周辺にサイドスペーサ60として存在している。このサイドスペ−サ60はCMOSプロセスのセルフ・アライン・コンタクト用としても使える。つまり、反射防止膜の工程とセルフ・アライン・コンタクト工程を共用することができるので,別々に行うよりも工程数を減らすことができる。
セルフ・アライン・コンタクトについてもう少し詳しく説明する。図2は図1に示したドレイン電極配線52、リング状ゲート電極配線53、ソース電極配線54が、それぞれ拡散層であるドレイン領域48、リング状ゲート電極45、拡散層であるソース領域46とのコンタクトをとっている様子を拡大した図である。ここで、ドレイン電極配線52とドレイン領域48とのコンタクト66、ソース電極配線54とソース領域46とのコンタクト68は一部、または周囲全部がSiN膜のサイドスペーサ60にかかるように形成されている。なお、リング状ゲート電極配線53とリング状ゲート電極45とのコンタクト67にはサイドスペーサは形成されていないが、サイドスペーサ60は転送ゲート電極51の側面にも形成される。
ここで、特にソース電極配線54に注目すると、コンタクト68の配線の直径はφ1である。この値φ1はリング状ゲート電極45の中心開口部の内径φ2よりは狭いが、サイドスペ−サ60の内径φ3よりは大きい。つまり、φ1は余裕をもった値をとることができる。また、実際のコンタクト位置はサイドスペーサ60によるセルフアラインで決定することができるため、マスクで作る場合よりも位置合わせ精度が高く、作り易いという特徴がある。ドレイン電極配線52のコンタクト66についても、図2に示すように、SiN膜のサイドスペーサ60に一部かかってもよいため、位置合わせ精度をその分余裕を持たせることができる。
(製造方法の第1の実施の形態)
次に、図1及び図2と共に説明した本発明の固体撮像素子を製造する第1の実施の形態の製造方法について、図3〜図7の構造断面図と共に説明する。図3〜図7中、図1及び図2と同一構成部分には同一符号を付してある。図3(A)は配線工程に入る前の本発明の固体撮像素子の第1の実施の形態の1画素分の断面図を示す。フォトダイオード上の酸化膜はゲート酸化膜44そのものでもよいし、酸化、CVD(Chemical Vapour Deposition:化学気相成長)等で厚くなっていても構わない。SiN膜と合わせて反射防止膜として機能すれば問題ない。
図3(B)は図3(A)に示した素子の上面に、SiN膜58を膜厚200nmで成膜した後の状態の断面図を示す。この第1の実施の形態ではSiN膜58の膜厚は200nmとしたが,この膜厚に限定されることはない。SiN膜58はCVDにより形成する。
続いて、図4(A)に示すように、フォトリソグラフィ工程でフォトダイオード50上にレジスト61を形成し、SiN膜58のエッチングを行う。すると、フォトダイオード50上のレジスト61が存在する領域はSiN膜58がそのまま残り、レジスト61が存在しないフォトダイオード50の上部以外の領域では、リング状ゲート電極45のエッジ部のみにSiN膜58がサイドスペーサ60として残る。
このエッジ部に残ったSiN膜によるサイドスペーサ60が、セルフ・アライン・コンタクトプロセスで用いられることとなる。この実施の形態では、フォトダイオードの反射防止膜としてのSiN膜58の成膜工程とセルフ・アライン・コンタクト工程を共用することができるので、それらを別々に行うよりも工程数を減らすことができる。続いて、レジスト61を除去した後、図4(B)に示すように、CVDを用いて、素子上面に層間絶緑膜となるSiO膜59−1を被覆形成する。
次に、図5(A)に示すように、フォトリソグラフィ工程とエッチング装置を使った既知の方法で、SiO膜59−1とゲート絶縁膜44にコンタクトビアホール62を形成する。リング状ゲート電極45の中心開口部上のSiO膜59−1には、直径φ1のコンタクトビアホール62を形成する。エッチング条件としては、SiO膜59−1は除去するが、SiN膜58は除去しない条件で行う。すると、サイドスペーサ60のSiN膜は除去できないので、その内径φ3の部分、すなわちSiO膜であるゲート絶縁膜44の内径φ3の部分だけが自動的にエッチングされる。またドレイン領域48上のゲート絶縁膜44についても、サイドスペ−サにかかった部分はエッチングされない。
続いて、図5(B)に示すように、タングステンなどの金属63でコンタクトビアホール62を埋める。方法としてはCVDがよい。続いて、図6(A)に示すように、化学的機械的研磨(CMP;Chemical Mechanical Polishing)により、SiO膜59−1以上の部分のタングステンなどの金属63を除去して表面を平坦化する。
続いて、図6(B)に示すように、配線材料として例えば銅64をスパッタ、メッキなどの方法でSiO膜59−1の表面上に被覆する。配線材料としては抵抗の低い銅がよいが、アルミニウムなどでもよい。また、銅やアルミニウムと、反射防止機能を備えた窒化チタン(TiN)などとの多層膜でもよい。
次に、図7(A)に示すように、通常のフォトリソグラフィ、エッチングの方法により、必要な部分の銅64だけを残し、残りを除去する。そして、SiO膜59−1の上に更にSiO膜を成膜して絶縁膜59を形成し、更にその表面に遮光膜56を金属、あるいは有機膜等で形成した後、遮光膜56のフォトダイオード50の垂直方向の上部に対応する位置に開口部57を穿設する。これにより、図7(B)及び図1(B)に示す断面の固体撮像素子が製造される。
なお、図7(B)において、ドレイン領域48、リング状ゲート電極45、ソース領域46、転送ゲート電極51にタングステンなどの金属63を介して接続された銅製のメタル配線は、それぞれドレイン電極配線52、リング状ゲート電極配線53、ソース電極配線(出力線)54、転送ゲート電極配線54を構成する。
次に、本実施の形態の固体撮像素子の画素構造と撮像素子全体の構造について、電気回路で表現した図8と共に説明する。同図において、まず、画素はm行n列に画素敷き詰め領域71に配置されている。図8ではこれらm行n列の画素のうち、s行t列の一画素72を代表として等価回路で表現している。この画素72は、リング状ゲートMOSFET73と、フォトダイオード74と、転送ゲートMOSFET75とからなり、リング状ゲートMOSFET73のドレインがフォトダイオード74のn側端子とドレイン電極配線76(図1の52に相当)に接続され、転送ゲートMOSFET75のソースがフォトダイオード74のp側端子に接続され、ドレインがリング状ゲートMOSFET73のバックゲートに接続されている。
なお、上記のリング状ゲートMOSFET73は、図1(B)ではリング状ゲート電極45直下のソース近傍p型領域47をゲート領域とし、n型のソース領域46及びn型のドレイン領域48を有するnチャネルMOSFETである。また、上記の転送ゲートMOSFET75は、図1(B)では転送ゲート電極51直下のnウェル43をゲート領域、フォトダイオード50の埋め込みのp型領域49をソース領域、ソース近傍p型領域47をドレイン領域とするpチャネルMOSFETである。
図8において、m行n列の各画素から1フレーム分の信号を読み出すために、まず読み出しを始める合図を出すフレームスタート信号を発生させる回路77がある。このフレームスタート信号は撮像素子の外から与えられてもよい。このフレームスタート信号は垂直シフトレジスタ78に供給される。垂直シフトレジスタ78は、m行n列の各画素のうちの何行目の画素を読み出すかの信号を出力する。
各行の画素はリング状ゲートMOSFET73等のリング状ゲート電極、転送ゲートMOSFET75等の転送ゲート電極、リング状ゲートMOSFET73等のドレイン電極の電位を制御する制御回路に接続されており、これらの制御回路は垂直レジスタ78の出力信号が供給される。例えば、s行目の各画素のリング状ゲート電極は、リング状ゲート電極配線79(図1の53に相当)を介してリング状ゲート電位制御回路80に接続され、各画素の転送ゲート電極は、転送ゲート電極配線81(図1の55に相当)を介して転送ゲート電位制御回路82に接続され、各画素のドレイン電極は、ドレイン電極配線76(図1の52に相当)を介してドレイン電位制御回路83に接続されている。上記の各制御回路80、82、83には垂直シフトレジスタ78の出力信号が供給される。
なお、リング状ゲート電極は、行毎に制御するので横方向に配線するが、転送ゲート電極は全画素で一斉に制御するので、配線方向は問わず、縦方向でもよい。ここでは横方向に配線するものとして表現する。ドレイン電位制御回路83は、全画素一斉に制御するが、行毎に制御する可能性もあるので、フレームスタート信号と垂直レジスタ78の両方と接続して表現している。
画素72のリング状ゲートMOSFET73のソース電極は、ソース電極配線84(図1の54に相当)を介して2分岐され、一方はスイッチSW1を介してソース電極電位を制御するソース電位制御回路85に接続され、他方はスイッチSW2を介して信号読み出し回路86に接続されている。信号を読み出すときにはスイッチSW1をオフ、スイッチSW2をオンにし、ソース電位を制御する時にはスイッチSW1をオン、スイッチSW2をオフにする。信号は縦方向に出すので、ソース電極の配線方向は縦にする。
信号読み出し回路86は次のように構成されている。画素72の出力はリング状ゲートMOSFET73のソースから行われ、出力線84には負荷、例えば電流源87が繋がっている。従って、ソースフォロア回路となっている。電流源87にはキャパシタC1とキャパシタC2の各一端がスイッチsc1とスイッチsc2を介して繋がっている。他端が接地されているキャパシタC1、C2の各一端は、また差動アンプ88の反転入力端子と非反転入力端子に繋がっており、両キャパシタC1及びC2の電位差を差動アンプ88から出力するようになっている。
このような信号読み出し回路86はCDS回路(相関二重サンプリング回路)と呼ばれ、ここに描かれた方式以外にも種々の回路が提案されており、この回路に限るわけではない。信号読み出し回路86から出力された信号は、出力スイッチswtを介して出力される。同じ列にある出力スイッチswtは、水平シフトレジスタ89から出力される信号によりスイッチング制御される。
次に、図8に示すCMOSセンサの駆動方法について、図9のタイミングチャートと共に説明する。まず、図9(1)に示す期間では、埋め込みのフォトダイオード(図1(A)の50、図8の74等)に光が入射し、光電変換効果により電子・ホール対が発生し、フォトダイオードの埋め込みp-型領域49にホールが蓄積される。このとき転送ゲート電極51の電位はドレイン電位Vddと同じになっており、転送ゲートMOSFET75はオフ状態である。これらの蓄積は、前フレームの読み出し操作が行われている時に同時に実行されている。
続く図9(2)に示す期間では、前フレームの読み出しが終了すると、同図(A)に示すように新しいフレームスタート信号が発信されて、次のフレームの読み出しが始まる。
最初に行うのは全画素一斉にフォトダイオード(図1(A)の50、図8の74等)からリング状ゲート電極(図1の45)のソース近傍p型領域(図1の47)にホールを転送することである。そのため、図9(B)に示すように転送ゲート電位制御回路82から出力される転送ゲート制御信号がVddからLow2に下がり、転送ゲート電極(図1の51)の電位がLow2となり、転送ゲートMOSFET75がオン状態になる。
このとき、リング状ゲート電位制御回路80により制御されるリング状ゲート電極配線79の電位は、図9(C)に示すように、LowからLow1になるが、Low2の方がLow1よりも大きい。Low1はLowと同じでもよい。最も簡便にはLow1=Low=0(V)に設定する。
一方、ソース電位制御回路85からスイッチSW1を介してソース電極配線84からリング状ゲートMOSFET73のソースに供給されるソース電位をはじめとする、全画素のソース電位は図9(D)に示すように電位S1に設定される。S1>Low1であり、これにより、リング状ゲートMOSFET73がオフのままであり、電流が流れないようにする。この結果、全画素のフォトダイオードに蓄積された電荷(ホール)が、対応する画素のリング状ゲート電極の下に一斉に転送される。
図1(B)に示すリング状ゲート電極45の下の領域で、ソース近傍p型領域47が最もポテンシャルが低いので、フォトダイオードに蓄積されていたホールはリング状ゲートMOSFET73のバックゲートであるソース近傍p型領域47に達し、そこに蓄積される。ホールが蓄積される結果、ソース近傍p型領域47の電位が上昇する。
続いて、図9(3)に示す期間では、同図(B)に示すように転送ゲート電極が再びVddになり、転送ゲートMOSFET75がオフになる。これにより、フォトダイオード(図1(A)の50、図8の74等)では再び光電変換効果により電子・ホール対が発生し、フォトダイオードの埋め込みp-型領域49にホールが蓄積され始める。この蓄積動作は次の電荷転送時まで続けられる。
一方、読み出し操作は行単位で順番に行われるので、1行目〜(s−1)行目を読み出す期間(3)では、リング状ゲート電極の電位は図9(C)に示すようにLowの状態で、ソース近傍p型領域47にホールを蓄積したまま待機状態となる。ソース電位は他の行からの信号読み出しが行われている間、その画素からの信号の値により、様々な値をとり得る。また、リング状ゲート電極電位は行毎に様々な値をとり得るが、s行目ではLowに設定され、リング状ゲートMOSFET73がオフ状態である。
続く図9(4)〜(6)に示す期間では、画素の信号読み出しが行われる。s行目t列目の画素72について代表してこの信号読み出し動作について説明するに、まず、ソース近傍p型領域47にホールを蓄積した状態で、図9(E)に示す垂直シフトレジスタ78の出力信号が、同図(H)に示すようにローレベルである期間(4)において、リング状ゲート電位制御回路80からリング状ゲート電極配線79に出力される制御信号により、リング状ゲート電極45の電位を図9(K)に示すように、LowからVg1に上げる。
ここで、上記の電位Vg1は、前述した各電位Low、Low1、Vddとの間に
Low≦Low1≦Vg1≦Vdd (ただし、Low<Vdd)
なる不等式が成立する電位である。また、上記の期間(4)ではスイッチSW1が図9(I)に示すようにオフ、スイッチSW2が同図(J)に示すようにオン、スイッチsc1が同図(M)に示すようにオン、スイッチsc2が同図(N)に示すようにオフとされる。この結果、リング状ゲートMOSFET73のソースに接続されたソースフォロア回路が働き、リング状ゲートMOSFET73のソース電位は、図9(L)に示すように期間(4)ではS2(=Vg1−Vth1)となる。ここで、Vth1とはバックゲート(ソース近傍p型領域47)にホールがある状態での、リング状ゲートMOSFET73のしきい値電圧である。このソース電位S2がオンとされているスイッチsc1を通してキャパシタC1に記憶される。
続く図9(5)に示す期間では、リング状ゲート電位制御回路80からリング状ゲート電極配線79に出力される制御信号により、リング状ゲート電極45の電位を図9(K)に示すようにHigh1に上げると同時に、同図(I)、(J)に示すようにスイッチSW1をオン、スイッチSW2をオフとすると共に、ソース電位制御回路85から出力されるソース電位を同図(L)に示すようにHighsに上げる。ここで、High1、Highs>Low1である。
上記の電位High1及びHighsの値は同じであっても異なっていてもよいが、設計の簡単のためにはHigh1、Highs≦Vddが望ましい。簡便な設定では、High1=Highs=Vddとする。また、リング状ゲートMOSFET73がオンして電流が流れないような電位設定にすることが望ましい。この結果、ソース近傍p型領域47のポテンシャルが上昇し、nウェル43のバリアを越えてホールがエピタキシャル層42に排出される(リセット)。
続く図9(6)に示す期間では、再び前記期間(4)と同じ信号読み出し状態にする。
ただし、期間(4)とは異なり、図9(M)、(N)に示すように、スイッチsc1はオフ、スイッチsc2はオンとする。リング状ゲート電極は図9(K)に示すように期間(4)と同じVg1とする。しかし、この期間(6)では直前の期間(5)でホールが基板に排出されていて、ソース近傍p型領域47にはホールが存在しないので、リング状ゲートMOSFET73のソース電位は、図9(L)に示すように期間(6)ではS0(=Vg1−Vth0)となる。ここでVth0は、バックゲート(ソース近傍p型領域47)にホールがない状態でのリング状ゲートMOSFET73のしきい値電圧である。
このソース電位S0はオンとされたスイッチsc2を介してキャパシタC2に記憶される。差動アンプ88はキャパシタC1とC2の電位差を出力する。すなわち、差動アンプ88は(Vth0−Vth1)を出力する。この出力値(Vth0−Vth1)は、ホール電荷によるしきい値変化分である。その後、水平シフトレジスタ89から出力される図9(F)に示すパルスのうち、同図(O)に示すt列目の出力パルスに基づき、図8の出力スイッチswtがオンとされ、このswtのオン期間に図9(P)にハッチングにより模式的に示すように、差動アンプ88からのホール電荷によるしきい値変化分が画素72の出力信号Voutとしてセンサ外へ出力される。
続いて、図9に(7)で示す期間では、再びリング状ゲート電極45の電位を図9(B)に示すようにLowにし、ソース近傍p型領域47にはホールがない状態で、全ての行の信号処理が終了するまで(s+1行〜n行の画素の読み出しが終了するまで)待機する。これらの読み出し期間中、フォトダイオード74では光電変換効果によるホールの蓄積が進行している。その後、前記期間(1)に戻って、ホールの転送から繰り返す。これにより、各画素から図9(G)に示す出力信号が読み出される。
上記の図1(A)、(B)に示す構成の固体撮像装置は、リング状のゲート電極45を持つリング状ゲートMOSFET73が増幅用MOSFETであり、図8に示したように各画素内に増幅用MOSFETを持つという意味で、CMOSセンサの一種である。そして、このCMOSセンサは、埋め込みのp-型領域49に蓄積された電荷(ホール)が、対応する画素のリング状ゲート電極45の下のソース近傍p型領域47に一斉に転送されるようにすることで、グローバルシャッタを実現している。
なお、図9の期間(5)のリセット時のソース電極配線84の電位供給は、ソース電位制御回路85から供給する以外の次の方法もある。すなわち、上記期間(5)でスイッチSW1、SW2をともにオフとして、ソース電極配線84をフローティングにする。ここでリング状ゲート電極配線79の電位をHigh1とすると、リング状ゲートMOSFET73がオン状態となり、ソース電極にドレインから電流が供給され、ソース電極電位が上昇する。この結果、ソース近傍p型領域47のポテンシャルが持ち上げられ、nウェル43のバリアを越えて、ホールがp型エピタキシャル層42に排出される(リセット)。
ホールが完全に排出されたときのソース電極電位は、High1−Vth0になる。この方法では、ソース電位制御回路85のうち、Highsを供給するトランジスタを削減することができ、その結果、チップ面積を減らすことができる。
このように、図1に示した構造の本実施の形態の固体撮像素子によれば、全画素のフォトダイオード50へ入射した光で発生し全画素同時に蓄積された電荷は、全画素の転送ゲートMOSFET75を一斉にオンすることにより、リング状ゲートMOSFET73の中央開口部下のソース近傍p型領域47(リング状ゲートMOSFET73のバックゲート)に転送される。このとき、すべての画素で同時に電荷を転送することができるために、一括シャッタ(グローバルシャッタ)が可能となる。
そして、リング状ゲートMOSFETのソース近傍p型領域47に転送された電荷は、電荷の量に応じ、リング状ゲートMOSFET73のしきい値電圧をシフトさせるが、このときリング状ゲートMOSFET73のリング状ゲート電極を適当な電位にし、ソース・ドレインに電流を流し、ソースに負荷をつなぐことにより、電荷の量に応じたしきい値電圧の変化として光出力信号を得ることができる。また、リング状ゲートMOSFET73のソース近傍p型領域47に蓄積された電荷は、ソースの電位を高くすることにより、直ぐ下のnウェル領域43の電位を乗り越え基板42へ排出され、リセットをすることができる。この時、リング状ゲートMOSFET73のソース近傍p型領域47に蓄積された電荷はすべて基板42へ排出されるためにリセットノイズの発生を抑えることができる。
また、この実施の形態は、グローバルシャッタ機能を有するので、動きのある被写体を撮像しても画像歪みの無い撮像画像が得られる。すなわち、この実施の形態の固体撮像素子に対する露光は各ライン毎にタイミングがずれることなく同一の1フレーム期間で行われる。これは図9の期間(1)に当たる。
一定期間の露光後、転送ゲート(図8の転送ゲートMOSFET75等)により、全画素の電荷が一斉に各画素の所定領域(図8のリング状ゲートMOSFET73のバックゲート、図1のソース近傍p型領域47)に転送される。これは図9の期間(2)に当たる。その後、読み出し回路により、読み出し期間内で、順次各画素からの信号が読み出される。これは図9の期間(3)〜(7)に当たる。
これにより、移動する被写体を撮像した場合でも、本実施の形態ではメカニカルシャッタを用いなくても撮像画像は同一時刻で露光した画像であるので、被写体の画像と異なる画像歪みは発生しない。従って、本実施の形態によれば、動きの速い被写体を撮影した場合でも、撮影した画像は歪みや変形なく正確な画像が得られる。
(固体撮像素子の第2の実施の形態)
次に、本発明になる固体撮像素子の第2の実施の形態について説明する。第1の実施の形態では、固体撮像素子の製造において、露光、エッチバックという工程が必要になる。反射防止膜だけが必要で、セルフ・アライン・コンタクトが不要な場合には、第1の実施の形態は工程が過剰である。そこで、この第2の実施の形態の固体撮像素子は、より簡単な工程で反射防止膜を得る構造を有するようにしたものである。
図10(A)は本発明になる固体撮像素子の第2の実施の形態の1画素分の平面図、同図(B)は同図(A)のX−X’線に沿う縦断面図を示す。同図中、図1と同一構成部分には同一符号を付してある。なお、図10(A)の平面図では、SiN膜91までを描いてあり、配線等は省略されている。本実施の形態で使用する基板は、第1の実施の形態と同様に、図10(B)に示すように、p+基板上41にp-型エピタキシャル層42を成長させてある。p-型エピタキシャル層42内にnウェル43があり、nウェル43上にはゲート酸化膜44を挟んで第1のゲート電極として、平面形状がリング状のゲート電極45が形成されている。
また、図10(B)に示すように、リング状ゲート電極45の中央開口部のnウェル43表面には、n+型のソース領域46があり、ソース領域46に隣接してソース領域46を取り囲むようにp型のソース近傍領域47が形成されている。ソース近傍p型領域47はリング状ゲート電極45の外周部に達していない。ソース領域46、ソース近傍p型領域47と離れたnウェル43の表面にはn+型のドレイン領域48がある。
また、図10(B)に示すように、リング状ゲート電極45の外周部より外側のnウェル43の中には、p-型領域49が形成され、同図(A)に示す埋め込みフォトダイオード50を形成している。埋め込みフォトダイオード50を構成するp-型領域49とリング状ゲート電極45の間の基板上には、ゲート絶縁膜44を挟んで第2のゲート電極として転送ゲート電極51が形成されている。
以上の構造は第1の実施の形態と同様であるが、本実施の形態では、リング状ゲート電極45及び転送ゲート電極51の表面と、それ以外の露出しているゲート絶縁膜44の表面にSiN膜91が被覆形成されている点に特徴がある。このSiN膜91には、図10(A)及び(B)に示すように、ドレイン・コンタクト92、リング状ゲート電極コンタクト93、ソース電極コンタクト94、転送ゲート電極コンタクト95を通すための貫通孔が形成されている。
図10(B)に示すように、ドレイン・コンタクト92は、SiN膜91及びゲート絶縁膜44を貫通してドレイン領域48とドレイン電極配線52とを接続し、リング状ゲート電極コンタクト93は、SiN膜91を貫通してリング状ゲート電極45とリング状ゲート電極配線53とを接続している。また、ソース電極コンタクト94は、SiN膜91及びゲート絶縁膜44を貫通してソース領域46とソース電極配線54とを接続し、転送ゲート電極コンタクト95は、SiN膜91を貫通して転送ゲート電極51と転送ゲート電極配線55とを接続している。
また、各構成の上部は図10(B)に示すように、絶縁層59で被覆され、更にその上に金属、あるいは有機膜等による遮光膜56が形成されている。遮光膜56のフォトダイオード50の垂直方向の上部に対応する位置には開口部57が穿設されている。光は、開口部57を通して埋め込みフォトダイオード50に達して光電変換される。
フォトダイオード50の上部のゲート酸化膜44だけでなく、リング状ゲート電極45及び転送ゲート電極51、更にはドレイン領域48の上部のゲート絶縁膜44も被覆しているSiN膜91はシリコン(Si)表面での反射防止を行う目的で成膜されたものである点は第1の実施の形態と同様であるが、第1の実施の形態のようにフォトダイオード50上にのみ残すようなエッチングはせず、コンタクトエッチング時にゲート酸化膜44と共にエッチングして、前記コンタクト92〜95を貫通させるためのコンタクトホールを形成する。
この実施の形態では、SiN膜91の成膜工程しか工程増加は無いので、工程増を最小限に抑えられる。SiN膜91の膜厚を200nmとした場合、SiN膜91を成膜しない場合と比較すると、反射率を32%から13%と半分以下にすることができることが確認された。
なお、本実施の形態では、フォトダイオード50の上部のSi表面の反射防止を行うために、SiN膜91とゲート酸化膜44との多層膜を反射防止膜として用いたが、光学的に反射防止膜として作用する膜厚であれば、ゲート酸化膜44は、例えば、CVD膜などゲート酸化膜以外の酸化膜でも使用可能である。なお、酸化膜はあまり厚すぎると反射防止機能が低くなるので、ある範囲(例えば、50nm程度以下)に限定される。同様に、SiN膜91に関しても、光学的に反射防止膜として作用する膜厚であれば200nmに限定されることはない。
(製造方法の第2の実施の形態)
次に、図10と共に説明した本発明の固体撮像素子を製造する第2の実施の形態の製造方法について、図11〜図14の構造断面図と共に説明する。図11〜図14中、図10と同一構成部分には同一符号を付してある。図11(A)は配線工程に入る前の本発明の固体撮像素子の第2の実施の形態の1画素分の断面図を示す。フォトダイオード上の酸化膜はゲート酸化膜44そのものでもよいし、酸化、CVD(Chemical Vapour Deposition:化学気相成長)等で厚くなっていても構わない。SiN膜と合わせて反射防止膜として機能すれば問題ない。
図11(B)は図11(A)に示した素子の上面に、SiN膜91を膜厚200nmで成膜した後の状態の断面図を示す。この実施の形態では第1の実施の形態と同様にSiN膜91の膜厚は200nmとしたが,この膜厚に限定されることはない。SiN膜91はCVDにより形成する。
続いて、図11(C)に示すように、SiN膜91の表面に酸化膜101を成膜した後、コンタクトホールフォトリソグラフィ工程により、酸化膜101とSiN膜91をエッチングして、所定個所にコンタクトホール102を開口する。コンタクトホール102以外の所にはSiN膜91及び酸化膜101が残る。SiN膜91は絶縁膜なので層間絶膜として用いても問題ない。フォトダイオードを構成する埋め込みのp-領域49の上のSiN膜91の部分は反射防止膜として作用する。この実施の形態で通常の固体撮像素子の製造工程に比較して増える工程はSiN成膜工程のみなので、工程増を最小限に抑えられる。
続いて、図12(A)に示すように、コンタクトホール102が開口された酸化膜101上に、タングステン103をCVDにより被覆形成し、コンタクトホール102内にはタングステン103が充填される。なお、タングステン103の替わりに他の配線用金属などを用いてもよい。続いて、図12(B)に示すように、酸化膜101の上のタングステン103をCMPにより除去し、平坦化して各配線を分離する。
次に、図13(A)に示すように、酸化膜101の平坦化された表面に配線材料をスパッタ、メッキなどの方法でつけて配線膜104を形成する。配線材料としては抵抗の低い銅がよいが、アルミニウムなどでもよい。また、銅やアルミニウムと、反射防止機能を備えた窒化チタン(TiN)などとの多層膜でもよい。続いて、図13(B)に示すように、通常のフォトリソグラフィ、エッチングの方法により、タングステン103が充填されたコンタクトホール及びその付近の必要な部分の配線膜104だけを残し、残りを除去する。
そして、酸化膜101の上に更にSiO膜を成膜して絶縁膜59を形成し、更にその表面に遮光膜56を金属、あるいは有機膜等で形成した後、遮光膜56のフォトダイオード50の垂直方向の上部に対応する位置に開口部57を穿設する。これにより、図14及び図10(B)に示す断面の固体撮像素子が製造される。
なお、図14において、ドレイン領域48、リング状ゲート電極45、ソース領域46、転送ゲート電極51にタングステン103を介して接続された配線膜104は、それぞれドレイン電極配線52、リング状ゲート電極配線53、ソース電極配線(出力線)54、転送ゲート電極配線54を構成する。
なお、本実施の形態の固体撮像素子の画素構造と撮像素子全体の構造を電気回路で表現したものは、図8の第1の実施の形態のものと同一であり、またその動作は図9に示したタイミングチャートと同じであるので、その説明は省略する。
なお、本発明は以上の実施の形態に限定されるものではなく、例えば、信号出力用トランジスタはリング状ゲート電極を有するMOSFETとして説明したが、リング状ゲート電極を有しない構造のトランジスタも、本発明の適用が可能である。
本発明の固体撮像素子の第1の実施の形態の1画素分の素子構造の平面図と、そのX−X’線に沿う縦断面図である。 図1の要部の拡大図である。 本発明の固体撮像素子の製造方法の第1の実施の形態の工程説明用素子断面図(その1)である。 本発明の固体撮像素子の製造方法の第1の実施の形態の工程説明用素子断面図(その2)である。 本発明の固体撮像素子の製造方法の第1の実施の形態の工程説明用素子断面図(その3)である。 本発明の固体撮像素子の製造方法の第1の実施の形態の工程説明用素子断面図(その4)である。 本発明の固体撮像素子の製造方法の第1の実施の形態の工程説明用素子断面図(その5)である。 本発明の固体撮像素子の画素構造と撮像素子全体の構造を電気等価回路で示した図である。 図8の電気等価回路の動作を説明するタイミングチャートである。 本発明の固体撮像素子の第2の実施の形態の1画素分の素子構造の平面図と、そのX−X’線に沿う縦断面図である。 本発明の固体撮像素子の製造方法の第2の実施の形態の工程説明用素子断面図(その1)である。 本発明の固体撮像素子の製造方法の第2の実施の形態の工程説明用素子断面図(その2)である。 本発明の固体撮像素子の製造方法の第2の実施の形態の工程説明用素子断面図(その3)である。 本発明の固体撮像素子の製造方法の第2の実施の形態の工程説明用素子断面図(その4)である。 従来のローリングシャッタ型CMOSエリアセンサの全体構成を電気等価回路で説明する図である。 図15のCMOSエリアセンサの動作を説明するタイミングチャートである。
符号の説明
43 nウェル
45 リング状ゲート電極
46 n+型ソース領域
47 ソース近傍p型領域
48 n+型ドレイン領域
49 埋め込みp-型領域
50、74 フォトダイオード
51 転送ゲート電極
52、76 ドレイン電極配線
53、79 リング状ゲート電極配線
54、84 ソース電極配線(出力線)
55、81 転送ゲート電極配線
56 遮光膜
58、91 SiN膜
59 絶縁膜
60 サイドスペーサ
66〜68 コンタクト
71 画素敷き詰め領域
72 画素
73 リング状ゲートMOSFET
75 転送ゲートMOSFET
92 ドレイン・コンタクト
93 リング状ゲート電極・コンタクト
94 ソース電極コンタクト
95 転送ゲート電極コンタクト


Claims (3)

  1. 入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トラジスタと、前記光電変換領域で蓄積した電荷を前記増幅出力用トラジスタへ転送する電荷転送手段とからなる画素が、複数規則的に配列されており、前記複数の全画素の光電変換領域に同時に露光して光電変換して得た電荷を蓄積した後、前記電荷転送手段及び増幅出力用トラジスタを駆動して、露光期間に前記蓄積した電荷を各画素から撮像信号として順次出力する駆動手段を備えた固体撮像素子であって、
    前記光電変換領域の上面側に形成された反射防止膜と、
    前記増幅出力用トランジスタの一部を構成する拡散層に接続され、セルフ・アライン・コンタクト工程により形成されたコンタクトと
    を有することを特徴とする固体撮像素子。
  2. 前記増幅出力用トランジスタは、基板上のリング状ゲート電極と、前記リング状ゲート電極の中央開口部に対応する前記基板の位置に設けられたソース領域と、前記ソース領域を取り囲み、かつ、前記リング状ゲート電極の外周に達しないように前記基板に設けられたソース近傍領域とからなり、入力された電荷の量をしきい値の変化として出力するトランジスタであり、
    前記電荷転送手段は、前記光電変換領域に蓄積された前記電荷を前記ソース近傍領域へ転送することを特徴とする請求項1記載の固体撮像素子。
  3. 入射する光を光電変換して電荷として蓄積する光電変換領域と、入力された電荷を光信号に変換し、かつ、増幅して出力する増幅出力用トラジスタと、前記光電変換領域で蓄積した電荷を前記増幅出力用トラジスタへ転送する電荷転送手段とからなる画素が、複数規則的に配列されており、前記複数の全画素の光電変換領域に同時に露光して光電変換して得た電荷を蓄積した後、前記電荷転送手段及び増幅出力用トラジスタを駆動して、露光期間に前記蓄積した電荷を各画素から撮像信号として順次出力する駆動手段を備えた固体撮像素子を製造する製造方法であって、
    前記光電変換領域、増幅出力用トランジスタ及び電荷転送手段とからなる前記画素が、複数規則的に配列された構造の素子の前記光電変換領域の上面に、反射防止膜を形成すると同時に、前記増幅出力用トラジスタの電極の側面にサイドスペーサを形成する第1の工程と、
    前記サイドスペーサを利用して、前記増幅出力用トランジスタの一部を構成する拡散層に接続する、タングステン等の金属によるコンタクトをセルフ・アライン・コンタクトにより形成する第2の工程と
    を含むことを特徴とする固体撮像素子の製造方法。
JP2006050076A 2006-02-27 2006-02-27 固体撮像素子 Active JP4779702B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050076A JP4779702B2 (ja) 2006-02-27 2006-02-27 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050076A JP4779702B2 (ja) 2006-02-27 2006-02-27 固体撮像素子

Publications (2)

Publication Number Publication Date
JP2007227844A true JP2007227844A (ja) 2007-09-06
JP4779702B2 JP4779702B2 (ja) 2011-09-28

Family

ID=38549320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050076A Active JP4779702B2 (ja) 2006-02-27 2006-02-27 固体撮像素子

Country Status (1)

Country Link
JP (1) JP4779702B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206336A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 内視鏡システム
CN107204335A (zh) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 光传感器及摄像装置
CN113614565A (zh) * 2019-03-29 2021-11-05 凸版印刷株式会社 固体摄像装置、摄像系统及摄像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041493A (ja) * 1996-07-24 1998-02-13 Sony Corp 固体撮像素子
JP2002134729A (ja) * 2000-10-26 2002-05-10 Innotech Corp 固体撮像装置及びその駆動方法
JP2004095636A (ja) * 2002-08-29 2004-03-25 Fujitsu Ltd 半導体装置
JP2004228425A (ja) * 2003-01-24 2004-08-12 Renesas Technology Corp Cmosイメージセンサの製造方法
JP2004235609A (ja) * 2003-01-06 2004-08-19 Canon Inc 光電変換装置及び光電変換装置の製造方法及び同光電変換装置を用いたカメラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041493A (ja) * 1996-07-24 1998-02-13 Sony Corp 固体撮像素子
JP2002134729A (ja) * 2000-10-26 2002-05-10 Innotech Corp 固体撮像装置及びその駆動方法
JP2004095636A (ja) * 2002-08-29 2004-03-25 Fujitsu Ltd 半導体装置
JP2004235609A (ja) * 2003-01-06 2004-08-19 Canon Inc 光電変換装置及び光電変換装置の製造方法及び同光電変換装置を用いたカメラ
JP2004228425A (ja) * 2003-01-24 2004-08-12 Renesas Technology Corp Cmosイメージセンサの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206336A (ja) * 2010-03-30 2011-10-20 Fujifilm Corp 内視鏡システム
CN107204335A (zh) * 2016-03-17 2017-09-26 松下知识产权经营株式会社 光传感器及摄像装置
CN113614565A (zh) * 2019-03-29 2021-11-05 凸版印刷株式会社 固体摄像装置、摄像系统及摄像方法
CN113614565B (zh) * 2019-03-29 2024-03-08 凸版印刷株式会社 固体摄像装置、摄像系统及摄像方法

Also Published As

Publication number Publication date
JP4779702B2 (ja) 2011-09-28

Similar Documents

Publication Publication Date Title
US10115762B2 (en) Solid-state image pickup device, method of manufacturing thereof, and electronic apparatus
JP4655898B2 (ja) 固体撮像装置
JP5132102B2 (ja) 光電変換装置および光電変換装置を用いた撮像システム
US8717476B2 (en) Image sensor pixel with gain control
JP5713050B2 (ja) 固体撮像素子
US10141356B2 (en) Image sensor pixels having dual gate charge transferring transistors
KR20200100047A (ko) 촬상 소자 및 촬상 장치
JP2007129192A (ja) 固体撮像装置
JP4779702B2 (ja) 固体撮像素子
JP2005198001A (ja) 固体撮像装置
JP4876235B2 (ja) 固体撮像素子及びその製造方法
JP4720402B2 (ja) 固体撮像装置
US9379160B2 (en) Solid-state imaging apparatus, method of manufacturing the same, and electronic apparatus
JP5135772B2 (ja) 固体撮像装置
JP4720414B2 (ja) 固体撮像素子及びその製造方法
JP4631661B2 (ja) 固体撮像素子
JP4640102B2 (ja) 全方位カメラ
JP4618170B2 (ja) 固体撮像装置
JP4367397B2 (ja) 画像読取装置及び画像読取方法
JP4760325B2 (ja) 固体撮像素子及びその製造方法
JP4561651B2 (ja) 固体撮像素子
JPH09275204A (ja) 固体撮像素子
JP4655785B2 (ja) 固体撮像素子の駆動方法
JP2009259921A (ja) 固体撮像素子の駆動方法、及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4779702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250