JP2007218500A - 恒温装置 - Google Patents

恒温装置 Download PDF

Info

Publication number
JP2007218500A
JP2007218500A JP2006039533A JP2006039533A JP2007218500A JP 2007218500 A JP2007218500 A JP 2007218500A JP 2006039533 A JP2006039533 A JP 2006039533A JP 2006039533 A JP2006039533 A JP 2006039533A JP 2007218500 A JP2007218500 A JP 2007218500A
Authority
JP
Japan
Prior art keywords
refrigerant
circulation system
temperature tank
low temperature
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006039533A
Other languages
English (en)
Inventor
Rei Kobayashi
令 小林
Yosuke Hamada
陽介 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2006039533A priority Critical patent/JP2007218500A/ja
Publication of JP2007218500A publication Critical patent/JP2007218500A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】本発明は流路を腐食させる可能性がある冷媒を用いて恒温処理を行なう恒温装置に関し、循環ラインを腐食させる可能性がある冷媒を用いる構成であってもメンテナンスの回数を低減することを課題とする。
【解決手段】冷媒が流れる流路を有する恒温装置において、前記流路内に、循環系の構成要素の材料よりもフッ化水素と反応しやすい塩基性物質よりなる腐食防止部材を設ける。
【選択図】図1

Description

本発明は恒温装置に係り、特に流路を腐食させる可能性がある冷媒を用いて恒温処理を行う恒温装置に関する。
一般に、半導体製造技術の分野では、半導体ウエハー(主にシリコンウエハー)上に半導体素子或いは半導体回路(IC等)を製造した後、その半導体素子・回路が、正常に動作するかどうかを調べるための電気的試験が行われる。
通常、この種の試験は、半導体ウエハーをチャックと呼ばれる保持器に保持させ、半導体素子が後に置かれることになると想定される使用環境を模擬した状態(動作環境温度)を作り出して行われる。このような試験は、例えば高温領域(室温から150℃程度まで)や低温領域(−10℃〜−50℃)で行われることも多くなってきている。このため、チャックをこの高温領域或いは低温領域の既定温度に保持する必要がある。
よって、チャックには恒温装置が接続されており、半導体ウエハーの試験時においてチャックを既定の一定温度に保持する構成となっている(例えば、特許文献1参照)。具体的には、チャックには、その内部に冷媒(冷却液)を流通させる冷却液流路と、加熱するためヒーターが設けられている。
半導体ウエハーを冷却する場合には、恒温装置を構成する冷凍機から循環ラインにより冷却液をチャックに流すことにより温度を低下させ、これによりチャックに保持された半導体ウエハーの温度を低下させる。一方、半導体ウエハーを加熱する場合には、チャック内に配設されたヒーターを駆動してチャックの温度を上昇させ、これによりチャックに保持された半導体ウエハーの温度を上昇させる構成とされている。
特開2003−148852号公報
ところで、上記したチャックを冷却する際に使用する冷媒は、ガルデン液やHFE7200(商標)等のふっ素系化学液を用いている。また、恒温装置を構成する循環ラインは、ステンレス等の金属材料により構成されている。
このようなふっ素系化学液は、高温になると分解してフッ化イオンが発生する。このフッ化イオンは、水があると反応してフッ化水素になり、冷媒が内部を通過する恒温装置を構成する循環ラインの腐食の原因となる。このような腐食が発生した場合、循環ラインの腐食発生箇所を新しい部材に取り換えるメンテナンスが必要となる。
しかしながら、従来では冷媒による循環ラインの腐食に対する対策が行われていなかったため、メンテナンスを頻繁に行う必要があり、恒温装置の稼働率が低下してしまうという問題点があった。また、頻繁にメンテナンスを行うことにより、メンテナンス費用が増大してしまうという問題点もあった。
本発明は上記の点に鑑みてなされたものであり、循環ラインを腐食させる可能性がある冷媒を用いる構成であってもメンテナンスの回数を低減しうる恒温装置を提供することを目的とする。
上記の課題を解決するために本発明では、次に述べる各手段を講じたことを特徴とするものである。
請求項1記載の発明は、
フッ素系化学液からなる冷媒と、
該冷媒を循環させる循環ポンプと、
前記冷媒を冷却させるために循環系に設けられた冷凍機と、
前記冷媒を昇温させるために前記循環系に設けられたヒーターと、
被温度制御対象を保持するために前記循環系に設けられたチャックと、
該チャックには前記被温度制御対象の温度を計測するための温度センサーを有し、
該温度センサーからの情報により前記被温度制御対象の所望の温度にするために前記冷凍機と前記ヒーターとを制御する恒温装置において、
前記循環系内に、該循環系の構成要素の材料よりもフッ化水素と反応しやすい塩基性物質よりなる腐食防止部材を設けたことを特徴とするものである。
また、請求項2記載の発明は、
請求項1記載の恒温装置において、
前記塩基性物質は、塩基性酸化物であることを特徴とするものである。
また、請求項3記載の発明は、
請求項1記載の恒温装置において、
前記塩基性物質は、両性酸化物であることを特徴とするものである。
また、請求項4記載の発明は、
請求項1記載の恒温装置において、
前記塩基性物質は、水酸化ナトリウム、炭酸ナトリウム、炭酸カルシウム、および水酸化カルシウムから選ばれる1の物質であることを特徴とするものである。
また、請求項5記載の発明は、
冷媒が流れる循環系を有する恒温装置において、
前記循環系内に、該循環系の構成要素の材料よりもフッ化水素と反応しやすいガラス材を設けたことを特徴とするものである。
また、請求項6記載の発明は、
請求項1乃至5のいずれか1項に記載の恒温装置において、
前記循環系は前記冷媒が貯留される循環装置用タンクを有し、前記腐食防止部材を該循環装置用タンク内に配設したことを特徴とするものである。
また、請求項7記載の発明は、
請求項1乃至6のいずれか1項に記載の恒温装置において、
前記腐食防止部材を構成する材料は、前記冷媒と反応した際に生成される生成物が前記循環系の構成要素の材料に変質を与えない材料であることを特徴とするものである。
本発明によれば、流路を構成する構成要素に腐食が発生することを抑制でき、恒温装置のメンテナンス間隔を延ばすことができる
次に、本発明を実施するための最良の形態について図面と共に説明する。
図1は、本発明の一実施例であるチラーユニット10の構成図である。このチラーユニット10は、例えば半導体ウエハー(被温度制御対象)の試験に適用されるものであり、半導体ウエハーが搭載されるプローバ11内のチャック12を既定温度に保つ機能を奏するものである。
半導体ウエハーが搭載されるチャック12には、伝熱盤Pが配設される。この伝熱盤Pは、チラーユニット10の筺体21内に収納された冷凍機22の熱交換器23で温度を下げられた冷媒24(フッ素系化学液からなる)を、伝熱盤P内に形成された冷却通路29に流すことや伝熱盤Pに取り付けられた伝熱盤ヒーター30で加熱することによって、例えば、−70°C〜200°Cの範囲で温度制御される。伝熱盤ヒーター30は、伝熱盤Pに設置した温度センサー30aの検知する温度に基づいて制御され、伝熱盤Pが予め定めた設定温度になるように伝熱盤Pを加熱する。
伝熱盤Pの温度制御を行うチラーユニット10は、冷媒24を貯留する低温タンク25(循環装置用タンク)と、冷媒24を循環させる循環ポンプ27と、熱交換器23で冷却される冷却液の流量を調整する流量調整弁28と、伝熱盤Pに形成された冷却通路29と、熱交換器23に設けた冷却液通路(図示せず)を備えており、後述する循環ラインL1とL2によって循環系が構成されている。この循環ラインL1とL2の一部或いは全部をステンレス等の金属材料により構成されており、またチラーユニット10内において冷媒24と接触する構成要素の一部或いは全部もステンレス等の金属材料により構成されている。
本実施例に係るチラーユニット10は、冷媒24としてガルデン液やHFE7200(商標)等のフッ素系化学液を用いている。
しかしながら、このようなフッ素系化学液は、高温になると分解してフッ化イオンが発生する。また、このフッ化イオンは水があると反応してフッ化水素になり(2HO+2F→4HF+O)、チラーユニット10内で冷媒24が通過する部位に腐食を発生させる原因となることは前述した通りである。
ここで、再びチラーユニット10の構成説明に戻る。熱交換器23は、二重管で構成されており、その内管が冷凍機22側冷媒の流れる冷媒通路とされ、内管と外管との間に形成される通路が冷媒24の流れる冷却液通路とされている。冷媒24は、この熱交換器23で冷凍機側冷媒と熱交換して冷却されるようになっている。なお、低温タンク25からの冷媒24を内管の中へ、内管と外管との間に形成される流路に冷凍機22からの冷媒が流れるようにしてもよい。
低温タンク25はチラーユニット10の筺体21内に収納されており、ほぼ密閉された断熱構造とされている。低温タンク25内の上部空間には、この上部空間を大気に開放する大気開放チューブ26が設けられており、低温タンク25の液面が上昇や下降して、低温タンク25に圧力の変動が生じたとき、その圧力の変動を吸収するようにしている。
循環ポンプ27は低温タンク25取り付けられており、そのポンプ部は低温タンク25に貯留された冷媒24の中に位置し、また駆動部は低温タンク25の外部に位置するよう配置されている。循環ポンプ27の吸入口は、低温タンク25内に開口している。また、循環ポンプ27の吐出口は、熱交換器23の入口に冷媒24を送る冷却液循環配管31(往き管)に接続されると共に、伝熱盤Pの冷却通路29に冷媒24を送る冷却液供給配管33に接続されている。
流量調整弁28は低温タンク25に取り付けられており、駆動部は低温タンク25の外部に位置し、弁部は低温タンク25内に位置するよう配置されている。流量調整弁28の冷媒入口は、熱交換器23の出口に接続された冷却液循環配管32(戻り管)に接続されている。流量調整弁28の冷媒出口は、低温タンク25の上部空間に開口している。
流量調整弁28は低温タンク25に設けた温度センサー28aによって制御され、低温タンク25内の冷媒24が所定の設定温度になるように熱交換器23を流れる冷媒24の流量を調整する。なお、温度センサー28aによる流量調整弁28の制御は、例えば、コントローラ等適宜の手段で行うことができる。
伝熱盤Pに形成された冷却通路29は、その冷却液入口が伝熱盤接続配管35(往き管)に接続されると共に、その冷却液出口が伝熱盤接続配管36(戻り菅)に接続されている。伝熱盤接続配管35は、循環ポンプ27の吐出口に接続する冷却液供給配管33に接続され、伝熱盤接続配管36は低温タンク25内に連通する冷却液供給配管34(戻り菅)に接続されている。
このように構成されたチラーユニット10は、前記のように循環ラインL1,L2の二つの循環ラインを有している。循環ラインL1においては、冷媒24は低温タンク25→循環ポンプ27→冷却液循環配管31→熱交換器23の冷却液通路→冷却液循環配管32→流量調整弁28→低温タンク25と循環する。また、循環ラインL2では、冷媒24は低温タンク25→循環ポンプ27→冷却液供給配管33→伝熱盤接続配管35→伝熱盤Pの冷却通路29→伝熱盤接続配管36→冷却液供給配管34→低温タンク25と循環する。
また、チラーユニット10には、循環ラインL1,L2とは別に、低温タンク25内に冷却液を補給するほぼ密閉された常温タンク38が設けられている。この常温タンク38は低温タンク25の下方に設けられており、また常温タンク38内の上部空間にはタンク上部空間を大気に開放する大気開放チューブ39が接続されている。常温タンク38の容積は、低温タンク25へ冷媒を補給できる量を確保できればよい。
この常温タンク38には、循環ラインL1,L2の冷媒24の液量が減少して冷却液が足りなくなったとき、常温タンク38内の冷媒24を低温タンク25に補給する補給ポンプ40が接続されている。補給ポンプ40は、低温タンク25内に設けた液面センサー41の検知する液量に基づいて自動的に運転されるようになっている。補給ポンプ40により常温タンク38から送り出される冷媒24は、補給用ホース40aにより低温タンク25に送られる。
液面センサー41は低温タンク25の外部に設けられ、低温タンク25の上部空間と低温タンク25の低部を連通する透明管41aと、液面高さを検出する液面センサー41bとを備え、低温タンク25の液面25aを検出しうる構成とされている。
この液面センサー41は、冷媒循環装置を制御するコントローラ内に構成されたポンプ駆動指令手段(図示せず)に接続されている。そして、液面センサー41により液面25aの高さが所定位置より低くなったと判断されたとき、ポンプ駆動指令手段は低温タンク25内の冷媒24の液量が減少したと判断し、補給ポンプ40を駆動開始する構成とされている。この際、液面センサー41が検知する液面高さは、循環ラインL1,L2が必要とする最小限の冷媒量に相当する低温タンク25の液面高さを考慮して適宜決められている。
また、常温タンク38には、常温タンク38の冷媒が一定量以下となったときにオペレータに冷媒を補給するよう警告するアラーム(図示せず)が設けられている。このため、常温タンク38には、コントローラ内に構成されたアラーム駆動指令手段(図示せず)に接続された液面センサー43が設けられている。この液面センサー43は液面センサー41と同様の光学式の液面センサーであり、常温タンク38の冷媒が一定量以下となったときにこれをアラーム駆動指令手段に伝え、これによりアラームを作動するようになっている。
また、チラーユニット10では、冷却通路29を高温に制御したときに循環ラインL1,L2内で冷媒24が膨張して、低温タンク25内の液面25aが上昇することがある。しかしながら、低温タンク25には、この上昇した低温タンク25内の余分な冷媒24を補給タンク38に移動させるためのオーバーフロー管42が設けられている。
オーバーフロー管42は、上端部分が低温タンク25に取り付けられると共に、下端部分が低温タンク25の下方に設置された常温タンク38の底部近くまで延出したパイプにより形成されている。オーバーフロー管42の冷却液入り口高さ42aと液面センサー41が検知する液面高さは、低温タンク25内の冷却液の浪打等を考慮してある程度差をつけて設定されている。具体的には、オーバーフロー管42の冷却液入り口高さ42aは、液面センサー41が検知する液面高さよりわずかに高い位置(例えば、数ミリ高い位置)とされている。
腐食防止部材50は、低温タンク25の内部に配設されている。図2は、腐食防止部材50の配設位置を拡大して示している。同図に示すように、低温タンク25の腐食防止部材50が配設される位置にはホルダ51が設けられている。
このホルダ51には腐食防止部材50が装着される装着溝52が形成されており、腐食防止部材50はこの装着溝52に装着脱可能な構成とされている。また、腐食防止部材50は装着溝52に装着された状態で、その上端が低温タンク25内における液面25a(上記のように、上下に変動する)の下限位置よりも低くなるよう構成されている。即ち、腐食防止部材50は、低温タンク25内に装着された状態において、常に冷媒24に浸漬されるよう構成されている。
この腐食防止部材50は、チラーユニット10内において冷媒24が流れる流路を構成する構成要素(冷媒24が直接接触する構成要素)の材料よりもフッ化水素(HF)と反応しやすい塩基性物質が選定されている。この塩基性物質としては、塩基性酸化物を用いることが考えられる。具体的には、塩基性酸化物としてクロム(Cr)を除く金属元素の酸化物が適用可能である。例えば、塩基性酸化物として酸化第二銅(CuO)を用いた場合、フッ化水素(HF)との反応式は下式のようになる。
・CuO+2HF→CuF+H
また、上記の塩基性物質として、両性酸化物を用いることも可能である。これは、両性元素(Al,Zn,Sn,Pb)の酸化物であり、酸とも塩基とも中和反応して塩を生成する酸化物である。
また、その他の塩基性物質として、水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO)、炭酸カルシウム(CaCO)、および水酸化カルシウム(Ca(OH))から選ばれる1の物質を用いてもよい。塩基性物質として上記物質を用いた場合の反応式は、下式の通りである。
・NaOH+HF→NaF+H
・NaCO+HF→2NaF+HO+CO
・CaCO+HF→CaF+HO+CO
・Ca(OH)+HF→CaF+2H
また、上記した各塩基性物質に代えて、冷媒24が流れる流路を構成する構成要素の材料よりもフッ化水素(HF)と反応しやすいガラス材を設けた構成としてもよい。このガラス材としては、例えば二酸化ケイ素(SiO)が考えられる。二酸化ケイ素を用いた場合のフッ化水素(HF)との反応式は下式のようになる。
・SiO+4HF→SiF+2H
・SiO+6HF→HSiF+2H
各反応式から明らかなように、HFと反応して生成される物質は、チラーユニット10の特に循環系の構成部品の材料に変質を与えない物質である。このため、HFと反応することにより生成される物質により、チラーユニット10が損傷するようなことはない。即ち、冷媒24はチラーユニット10で循環する際に、循環ラインL2(冷却液循環配管31,32等)、循環ラインL2(冷却液供給配管33,34等)、低温タンク25、循環ポンプ27、流量調整弁28、常温タンク38等の種々の構成要素と直接接触するが、ライン腐食防止部材50(及び後述するライン腐食検出部材63)を設けても、チラーユニット10が損傷するようなことはない。
なお、腐食防止部材50は、冷媒24との接触面積を増大させるため、多孔質構造或いはメッシュ板を積層した構成とされている。これは、後述するように、冷媒24との反応を良好に行わせるためである。
一方、視認窓60は、低温タンク25の外壁に設けられている。図2は、低温タンク25を拡大して示している。この視認窓60は、低温タンク25と連通した上下一対の延出管62と、一対の延出管62間に配設された透明管61(PTFAやPFAチューブ)と、透明管61内に配置された腐食検出部材63等により構成されている。
上部に位置する延出管62は、低温タンク25内における液面25a(上記のように、上下に変動する)の下限位置よりも低い位置において低温タンク25と連通するよう構成されている。また、下部に位置する延出管62は、低温タンク25の底面近傍位置において低温タンク25と連通するよう構成されている。また、透明管61は一対の延出管62と連通するよう構成されている。この構成とすることにより、透明管61の内部には常に冷媒24が存在する構成となる。
腐食検出部材63はガラス管部61の内部に配設されており、よってガラス管部61から視認できるよう構成されている。この腐食検出部材63は、前記した腐食防止部材50と同一材質とされており、よってチラーユニット10内において冷媒24が流れる流路を構成する構成要素(冷媒24が直接接触する構成要素)の材料よりもフッ化水素(HF)と反応しやすい塩基性物質或いはガラス材が選定されている。具体的な塩基性物質としては、クロム(Cr)を除く金属元素の酸化物、両性酸化物、その他の塩基性物質(水酸化ナトリウム(NaOH)、炭酸ナトリウム(NaCO)、炭酸カルシウム(CaCO)、および水酸化カルシウム(Ca(OH)))等を用いることができる。
なお、前記した腐食防止部材50は冷媒24との接触面積を増大させるために多孔質構造或いはメッシュ板を積層した構成としたが、腐食検出部材63は多孔質或いはメッシュ構造とはされておらず、棒状形状とされている。これは、後述するように腐食防止部材50の腐食状態を確認するために、腐食速度が腐食防止部材50と腐食検出部材63でほぼ等しくなるようにするためである。
続いて、上記構成とされたチラーユニット10の動作について説明する。
伝熱盤Pを高温(例えば、40°C以上)で温度制御するときは、循環ポンプ27の運転を停止し、伝熱盤Pに取り付けた伝熱盤ヒーター30を駆動する。伝熱盤ヒーター30は、温度センサー30aが検知する温度に基づいて伝熱盤Pの温度が設定温度になるように恒温制御がされる。
一方、伝熱盤Pを低温(例えば40°Cより低い温度)で温度制御するときは、循環ポンプ27を駆動する。循環ポンプ27は、低温タンク25内の冷媒24を冷却液循環配管31を通して熱交換器23の冷却液通路に送ると共に、冷却液供給配管33及び伝熱盤接続配管35を通して伝熱盤Pの冷却通路29に送る。
熱交換器23の冷却液通路に送られた冷媒24は、熱交換器23の冷媒通路を流れる冷凍機22側冷媒と熱交換して温度を下げ、冷却液循環配管32及び流量調整弁28を通って低温タンク25に戻される。このようにして、循環ラインL1を流れる冷媒24は熱交換器23によって徐々に温度が下げられていく。他方、伝熱盤Pの冷却通路29に送られた冷媒24は、冷却通路29を通る間に温度を上げ、伝熱盤接続配管36、冷却液供給配管34を通って低温タンク25に戻される。
流量調整弁28は、低温タンク25内に設けた温度センサー28aの検知温度に基づいて制御され、低温タンク25内の冷媒24の温度が伝熱盤Pの設定温度に対応した所定の設定温度になるように循環ラインL1を流れる冷媒24の液量を調整する。伝熱盤Pは、このようにして所定の温度に調整された低温タンク25からの冷媒24が冷却通路29流れることによって冷却される。同時に、伝熱盤Pの温度は、温度センサー30aでモニターされており、温度センサー30aで検知した伝熱盤Pの温度が設定温度より低い場合には、伝熱盤ヒーター30に通電して、伝熱盤Pの温度が設定温度になるように制御する。
ところで、上記のように伝熱盤Pを冷媒24と伝熱盤ヒーター30によって温度制御するとき、循環ラインL1,L2の冷媒24がその揮発や収縮などによって減少することがある。このようにして循環ラインL1,L2の冷媒24が減少すると、低温タンク25に設けた液面センサー41がこの冷媒24の減少を検知して、コントローラ内のポンプ駆動指令手段(図示せず)に冷媒24の減少を知らせる。
これにより、ポンプ駆動指令手段は、補給ポンプ40を駆動し、常温タンク38内の冷媒24を低温タンク25に補給する。また、常温タンク38から低温タンク25に冷媒24が補給され、液面センサー41が冷媒24の減少を検知しなくなると、ポンプ駆動指令手段によって補給ポンプ40の運転が停止される。
一方、冷媒24の膨張に伴い低温タンク25の液面25aが上昇し、冷媒24がオーバーフロー管42の冷却液入口42aを超えると、冷媒24はオーバーフロー管42に流れ込み、重力によってオーバーフロー管42内を下降して常温タンク38へ移動する。これによって、低温タンク25内の余分な冷媒24は、常温タンク38に流れ、低温タンク25内の液面25aは、オーバーフロー管42の冷却液入口42aの高さ以上にはならない。
これにより、チラーユニット10に必要な最小限の冷媒24以外は常温タンク38に溜められることになる。また、オーバーフロー管42の冷却液入り口高さ42aと液面センサー41が検知する液面高さは、わずかの差とされているので、循環ラインL1,L2の冷媒24の液量が増減しても、低温タンク25内の液面高さは常にほぼ一定に保たれる。
また、常温タンク38内の冷媒が、一定量以下になると、液面センサー43がそれを検知し、その検知信号がコントローラCR内に構成したアラーム駆動指令手段(図示せず)に送られる。この信号を受けたアラーム駆動指令手段は、アラームに駆動指令信号を送り、アラームを駆動して、オペレータに冷媒を常温タンク38に補給するよう警告する。これにより、冷媒24の不足により、チラーユニット10の稼動に不都合が生じることを防止できる。
ところで、チラーユニット10が稼動している間、上記のように冷媒24はチラーユニット10を常に循環している。また、チラーユニット10は上記のように高温状態と低温状態を繰り返すため、チラーユニット10を構成する各構成要素において水が発生し易い。また、本実施例では冷媒24としてガルデン液やHFE7200(商標)等のフッ素系化学液を用いているため、高温になると分解してフッ化イオンが発生し、またこのフッ化イオンが水と反応すると腐食性の高いフッ化水素が生成されてしまう。
しかしながら、本実施例では冷媒24の流路内(本実施例では、低温タンク25内)に腐食防止部材50を配設した構成としているため、冷媒24(実際には、冷媒24内に発生したフッ化水素)は流路を構成する構成要素を腐食させるよりも先に、先ず腐食防止部材50と反応する。このため、冷媒24が腐食防止部材50と反応している間は、流路を構成する構成要素に腐食が発生することを抑制でき、よってチラーユニット10のメンテナンス間隔を延ばすことができる。
また、本実施例では腐食防止部材50を冷媒24が貯留される低温タンク25に配設している。低温タンク25は、循環ラインL1,L2を流れてきた冷媒24が貯留される部位であるため、フッ化水素の濃度が高い位置である。また、循環ラインL1,L2は冷媒24が流れる部位であるのに対し、低温タンク25は冷媒24が貯留される位置であり、腐食が進み易い部位である。よって、低温タンク25は腐食防止部材50と冷媒24(フッ化水素)との反応が効率的に行われる部位であり、よって低温タンク25に腐食防止部材50を設けることにより流路に腐食が発生することを有効に防止できる。
また本実施例では、腐食防止部材50の材料として、冷媒24(実際はフッ化水素)と腐食防止部材50とが反応した際に生成される生成物が、前記流路を構成する構成要素の材料に変質を与えない材料を選定している。よって、本実施例によれば、冷媒24と腐食防止部材50が酸化還元した際に生成される生成物が、二次的に流路に悪影響を及ぼすことを防止できる。
上記のようにチラーユニット10の流路内(低温タンク25内)に腐食防止部材50を配設することにより、冷媒24内に発生したフッ化水素によりチラーユニット10を構成する流路が早期に腐食されることを抑制することができる。しかしながら、腐食防止部材50が全て反応した場合には流路が腐食されることとなり、よって腐食防止部材50の腐食状態を検知できないと、やはり流路がフッ化水素により腐食される可能性がある。これを防止するためには、腐食防止部材50の腐食状態を検知する必要がある。
このため、本実施例では低温タンク25に視認窓60を設けた構成としている。視認窓60内に配設された腐食検出部材63も腐食防止部材50と同様に、冷媒24が流れる流路を構成する構成要素の材料よりもフッ化水素(HF)と反応しやすい材料により形成されている。また、腐食検出部材63も低温タンク25内に貯留されている冷媒24に浸漬された状態とされている。よって、冷媒24(フッ化水素)は、流路を構成する構成要素よりも先に腐食検出部材63と反応する。
よって、視認窓60から視認される腐食検出部材63に発生した腐食の状態より、チラーユニット10のメンテナンスの時期を設定することができる。これにより、チラーユニット10のメンテナンスを適正時期に実施することが可能となる。
また、本実施例では腐食防止部材50が多孔質等の冷媒24との接触面積を広くして流路と冷媒24(フッ化水素)との反応を抑制しているのに対し、腐食検出部材63は腐食防止部材50の腐食状態と腐食速度が一致するように多孔質等の構成とはしいない。これによっても、チラーユニット10のメンテナンス時期を適確に判断することができる。
なお、腐食検出部材63の材質は腐食防止部材50の材質と同一であるため、前記したように、冷媒24と腐食検出部材63が酸化還元した際に生成される生成物が、二次的に流路に悪影響を及ぼすようなことはない。
また、上記した実施例では、視認窓60を低温タンク25の外部に配設し、腐食検出部材63を解して腐食防止部材50の腐食状態を間接的に確認する構成としたが、低温タンク25の外壁に透明窓を形成し、腐食防止部材50の腐食状態を直接監視しうる構成としてもよい。
また、低温タンク25に腐食防止部材50を配設することなく、腐食検出部材63の腐食状態を検知することにより、チラーユニット10の流路に腐食が発生し始めたか否かを検知する構成としてもよい。この構成とした場合にも、従来に比べてより確実にメンテナンス時期を判定することができる。
図1は、本発明の一実施例である恒温装置の構成図である。 図2は、本発明の一実施例である恒温装置のライン腐食防止部材の配設位置近傍を拡大して示す図である。 図3は、本発明の一実施例である恒温装置の視認窓の配設位置近傍を拡大して示す図である。
符号の説明
P 伝熱盤
L1,L2 循環ライン
10 チラーユニット
11 プローバ
12 チャック
22 冷凍機
23 熱交換器
24 冷媒
25 低温タンク
27 循環ポンプ
28 流量調整弁
28a 温度センサー
29 冷却通路
30 伝熱盤ヒーター
30a 温度センサー
31,32 冷却液循環配管
33,34 冷却液供給配管
35,36 伝熱盤接続配管
38 常温タンク
40 補給ポンプ
41 液面センサー
42 オーバーフロー管
43 液面センサー
50 腐食防止部材
51 ホルダ
52 装着溝
60 視認窓
61 透明管
62 延出管
63 腐食検出部材

Claims (7)

  1. フッ素系化学液からなる冷媒と、
    該冷媒を循環させる循環ポンプと、
    前記冷媒を冷却させるために循環系に設けられた冷凍機と、
    前記冷媒を昇温させるために前記循環系に設けられたヒーターと、
    被温度制御対象を保持するために前記循環系に設けられたチャックと、
    該チャックには前記被温度制御対象の温度を計測するための温度センサーを有し、
    該温度センサーからの情報により前記被温度制御対象の所望の温度にするために前記冷凍機と前記ヒーターとを制御する恒温装置において、
    前記循環系内に、該循環系の構成要素の材料よりもフッ化水素と反応しやすい塩基性物質よりなる腐食防止部材を設けたことを特徴とする恒温装置。
  2. 前記塩基性物質は、塩基性酸化物であることを特徴とする請求項1記載の恒温装置。
  3. 前記塩基性物質は、両性酸化物であることを特徴とする請求項1記載の恒温装置。
  4. 前記塩基性物質は、水酸化ナトリウム、炭酸ナトリウム、炭酸カルシウム、および水酸化カルシウムから選ばれる1の物質であることを特徴とする請求項1記載の恒温装置。
  5. 冷媒が流れる循環系を有する恒温装置において、
    前記循環系内に、該循環系の構成要素の材料よりもフッ化水素と反応しやすいガラス材を設けたことを特徴とする恒温装置。
  6. 前記循環系は前記冷媒が貯留される循環装置用タンクを有し、前記腐食防止部材を該循環装置用タンク内に配設したことを特徴とする請求項1乃至5のいずれか1項に記載の恒温装置。
  7. 前記腐食防止部材を構成する材料は、前記冷媒と反応した際に生成される生成物が前記循環系の構成要素の材料に変質を与えない材料であることを特徴とする請求項1乃至6のいずれか1項に記載の恒温装置。
JP2006039533A 2006-02-16 2006-02-16 恒温装置 Pending JP2007218500A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006039533A JP2007218500A (ja) 2006-02-16 2006-02-16 恒温装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006039533A JP2007218500A (ja) 2006-02-16 2006-02-16 恒温装置

Publications (1)

Publication Number Publication Date
JP2007218500A true JP2007218500A (ja) 2007-08-30

Family

ID=38496003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006039533A Pending JP2007218500A (ja) 2006-02-16 2006-02-16 恒温装置

Country Status (1)

Country Link
JP (1) JP2007218500A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199341A (ja) * 2011-03-19 2012-10-18 Tokyo Electron Ltd 冷却装置の運転方法及び検査装置
JP2016072480A (ja) * 2014-09-30 2016-05-09 株式会社Screenホールディングス 基板処理システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199341A (ja) * 2011-03-19 2012-10-18 Tokyo Electron Ltd 冷却装置の運転方法及び検査装置
US9310814B2 (en) 2011-03-19 2016-04-12 Tokyo Electron Limited Cooling device operating method and inspection apparatus
JP2016072480A (ja) * 2014-09-30 2016-05-09 株式会社Screenホールディングス 基板処理システム

Similar Documents

Publication Publication Date Title
JP5806581B2 (ja) 冷却システム及び冷却方法
JP2007218500A (ja) 恒温装置
JP2013242055A (ja) 給湯装置
JP2007220903A (ja) 恒温装置
JP2006283994A (ja) 冷却システム
JP2008286441A (ja) 吸収式冷凍機
KR100752653B1 (ko) 약액조 내에 가열부를 구비하는 기판 습식 처리 장치 및상기 장치를 사용한 기판 처리용 케미컬 가열 방법
JPH0227976Y2 (ja)
JP2005106434A (ja) 恒温液循環装置
CN107564834B (zh) 药液温度调节装置、利用其的基板处理系统及方法
JP6763608B2 (ja) 現像液の二酸化炭素濃度表示装置、及び現像液管理装置
JP2006284000A (ja) 循環装置用タンク装置
KR100689723B1 (ko) 온도조절 장치
JP2011191006A (ja) 熱交換器
JP4563237B2 (ja) 冷却システム
KR20140008266A (ko) 냉각 유체의 유독성 가스 누설 차단장치를 구비한 반도체 공정 설비용 칠러
JP2007230617A (ja) 飲料水供給装置
JP4511992B2 (ja) 温水循環加熱装置
JP7496130B2 (ja) ウォーターサーバ、動作処理方法、動作処理システム、動作処理プログラムおよび記録媒体
JP4192126B2 (ja) 吸収式冷凍機
JP2019120569A (ja) Cod測定装置およびcod測定方法
KR20070080504A (ko) 냉각 장치 및 방법
JP7048259B2 (ja) 水処理システム及び薬品注入制御装置
KR101165783B1 (ko) 전자부품 제조용 에칭액 냉각장치
JP2009236343A (ja) 液体の冷却システム