JP2007211595A - 内燃機関の排気還流装置 - Google Patents

内燃機関の排気還流装置 Download PDF

Info

Publication number
JP2007211595A
JP2007211595A JP2006029357A JP2006029357A JP2007211595A JP 2007211595 A JP2007211595 A JP 2007211595A JP 2006029357 A JP2006029357 A JP 2006029357A JP 2006029357 A JP2006029357 A JP 2006029357A JP 2007211595 A JP2007211595 A JP 2007211595A
Authority
JP
Japan
Prior art keywords
temperature
passage
intake
amount
pressure egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006029357A
Other languages
English (en)
Inventor
Tomoyuki Ono
智幸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006029357A priority Critical patent/JP2007211595A/ja
Publication of JP2007211595A publication Critical patent/JP2007211595A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

【課題】内燃機関の排気還流装置において、EGRガスを含む吸気の温度を適切な値とすることができる技術を提供する。
【解決手段】排気通路にタービンを備え吸気通路にコンプレッサを備えたターボチャージャと、タービンよりも下流の排気通路とコンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、を備えた内燃機関において、吸気通路の低圧EGR通路が接続される箇所よりも下流の所定の位置における吸気の温度が目標範囲内となるように低圧EGR通路を流れるEGRガスの量を変更するEGRガス量変更手段を備える。
【選択図】図2

Description

本発明は、内燃機関の排気還流装置に関する。
EGR通路に、排気通路側から順にパティキュレートフィルタと酸化触媒とを備え、これらによりEGRガス中の粒子状物質および未燃燃料を除去することで、該粒子状物質等が吸気系の部材に付着することを抑制する技術が知られている(例えば、特許文献1参照。)。
特開平6−66208号公報 特開2004−162674号公報 特開平8−14111号公報
しかし、パティキュレートフィルタまたは酸化触媒を粒子状物質または未燃燃料がすり抜けることがある。また、吸気通路にインタークーラが備わる場合には、該インタークーラでEGRガスが冷却されるときに該EGRガスに含まれる水分が凝縮することがある。このようにしてインタークーラに液体の水が付着すると、この水にEGRガス中の粒子状物質または未燃燃料が付着する。これにより、インタークーラの冷却効率が低下するおそれがある。また、インタークーラ以外であっても、吸気系の部材に粒子状物質または未燃燃料が付着することにより、該吸気系の部材の機能が低下するおそれがある。
一方、EGRガスの温度は内燃機関の運転状態により変わるため、EGRガスを含んだ吸気の温度も内燃機関の運転状態により変わることになる。また、EGRガスの供給量によっても吸気の温度が変わることになる。そして、EGRガスを含んだ吸気の温度が高いと、該吸気がインタークーラを通過するときの温度低下がおおきくなるため、水分の凝縮が起こりやすい。また、吸気の温度が高くなりすぎると、吸気系の部材を劣化させるおそれがある。
本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気還流装置において、EGRガスを含む吸気の温度を適切な値とすることができる技術を提供することを目的とする。
上記課題を達成するために本発明による内燃機関の排気還流装置は、以下の手段を採用した。すなわち、本発明による内燃機関の排気還流装置は、
排気通路にタービンを備え吸気通路にコンプレッサを備えたターボチャージャと、
前記タービンよりも下流の排気通路と前記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、
を備えた内燃機関において、
前記吸気通路の前記低圧EGR通路が接続される箇所よりも下流の所定の位置における吸気の温度が目標範囲内となるように前記低圧EGR通路を流れるEGRガスの量を変更するEGRガス量変更手段を備えることを特徴とする。
吸気の温度の目標範囲とは、例えばインタークーラにおいてEGRガス中の水分または油分の凝縮を抑制し得る温度とすることができる。また、例えばターボチャージャを含む吸気系の過熱を抑制し得る温度とすることができる。
例えばインタークーラにおける温度低下が大きいと、EGRガス中の水分や油分が該インタークーラ内で凝縮する。これに対しEGRガス量変更手段は、EGRガスを含んだ吸気がインタークーラ等で冷却されたとしても、EGRガス中の水分または油分が凝縮しないようにEGRガスの量を調整する。すなわち、インタークーラでのEGRガスの温度低下を抑制するように、吸気の温度をEGRガスで調整する。なお、インタークーラ以外でも、吸気の温度を大きく低下させる部材が備わる場合には、該部材をEGRガスが通過するときに水分等が凝縮しないようにEGRガスの量を調整することもできる。
一方、ターボチャージャにより過給されると、吸気の温度が上昇する。すなわち、EGRガスにより吸気の温度が上昇するが、ターボチャージャによりさらに吸気の温度が上昇する。そのため、ターボチャージャ周辺では吸気系の中で特に温度が高くなっている。これに対しEGRガス量変更手段は、温度の上昇した吸気により吸気系の部材が過熱しないようにEGRガスの量を調整する。
このように、本発明においては、前記コンプレッサよりも下流の吸気通路に備えられ該吸気通路を流れる吸気を冷却するインタークーラを更に備え、該インタークーラを通過する吸気の温度が所定の範囲となるように、吸気通路における所定箇所の温度を目標範囲内とすることができる。
また、本発明においては、前記コンプレッサを通過する吸気の温度が所定の範囲となるように、吸気通路における所定箇所の温度を目標範囲内とすることができる。
そして、本発明においては、前記EGRガス量変更手段は、新気の吸気量が多くなるほど、前記低圧EGR通路を流れるEGRガス量を段階的または連続的に多くすることができる。
ここで、吸気の量が多くなるほど、EGRガス中に含まれる粒子状物質等が吸気系の部材に付着しにくくなる。つまり、吸気の量が多いと、EGRガス中の水分や油分が凝縮しにくくなる。また、水分や油分が凝縮したとしても吸気の量が多いとすぐに蒸発する。そのため、粒子状物質等の付着が抑制されるので、その分EGRガス量を増加させることができる。
さらに、本発明においては、前記EGRガス量変更手段は、大気の温度が高くなるほど、前記低圧EGR通路を流れるEGRガス量を段階的または連続的に多くすることを特徴とする請求項1から3の何れかに記載の内燃機関の排気還流装置。
ここで、大気の温度と、吸気の温度と、の差が小さいほど、吸気の温度の低下量が小さくなるため、水分等の凝縮が抑制される。つまり、大気の温度が高くなれば、吸気の温度が高くなっても、大気温度と吸気温度との差が大きくならない範囲で水分等の凝縮が抑制される。そのため、EGRガス中に含まれる粒子状物質等が吸気系の部材に付着しにくくなる。すなわち、粒子状物質等の付着が抑制されるので、EGRガス量を増加させることができる。
本発明においては、前記タービンよりも上流の排気通路と前記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路を更に備え、前記EGRガス量変更手段により前記低圧EGR通路を流れるEGRガスの量が変更されたときには、前記内燃機関の気筒内に供給されるEGRガス量が一定となるように、前記高圧EGR通路を流れるEGRガス量を変更することができる。
このようにすることで、気筒内に供給されるEGRガス量は変化させずに低圧EGR通路を通過するEGRガスの量を調整することができる。すなわち、気筒内に供給されるEGRガス量を一定に保ったまま、コンプレッサまたはインタークーラ等を通過する吸気の温度を調整することが可能となる。そして、気筒内に供給されるEGRガス量は変わらないので、NOxの発生を抑制することができる。
また、本発明においては、前記吸気の温度の目標範囲は、コンプレッサの入口温度、コンプレッサの出口温度、インタークーラの入口温度、インタークーラの出口温度、またはインタークーラの冷却効率の中の少なくとも1つから算出されることができる。コンプレッサは吸気系で特に温度が高くなる部材である。このコンプレッサの入口または出口における吸気の温度を目標の範囲内とすることにより、他の部材における吸気の温度はそれよりも低くすることができるので、コンプレッサを含んだ吸気系の部材の過熱を抑制することができる。また、インタークーラの入口または出口における吸気の温度を目標の範囲内とすることにより、該インタークーラでの水分または油分の凝縮を抑制し得る。
なお、前記「所定の位置」とは、例えばインタークーラ入口、インタークーラ出口、コンプレッサ入口、またはコンプレッサ出口を挙げることができる。
本発明に係る内燃機関の排気還流装置は、低圧EGR通路を流れるEGRガス量を調整することにより、EGRガスを含む吸気の温度を適切な値とすることができる。
以下、本発明に係る内燃機関の排気還流装置の具体的な実施態様について図面に基づいて説明する。
図1は、本実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクル・ディーゼルエンジンである。
内燃機関1には、吸気管3および排気管4が接続されている。この吸気管3の途中には、排気のエネルギを駆動源として作動するターボチャージャ5のコンプレッサハウジング5aが設けられている。また、コンプレッサハウジング5aよりも上流の吸気管3には、該吸気管3内を流通する吸気の流量を調節する第1スロットル6が設けられている。この第1スロットル6は、電動アクチュエータにより開閉される。第1スロットル6よりも上流の吸気管3には、該吸気管3内を流通する吸気の流量に応じた信号を出力するエアフローメータ7が設けられている。このエアフローメータ7により、内燃機関1の吸入空気量が測定される。
コンプレッサハウジング5aよりも下流の吸気管3には、吸気と外気とで熱交換を行うインタークーラ8が設けられている。そして、インタークーラ8よりも下流の吸気管3には、該吸気管3内を流通する吸気の流量を調整する第2スロットル9が設けられている。この第2スロットル9は、電動アクチュエータにより開閉される。
一方、排気管4の途中には、前記ターボチャージャ5のタービンハウジング5bが設けられている。また、タービンハウジング5bよりも下流の排気管4には、パティキュレートフィルタ(以下、単にフィルタという。)10が設けられている。このフィルタ10には、吸蔵還元型NOx触媒(以下、単にNOx触媒という。)が担持されている。このパティキュレートフィルタは、排気中の粒子状物質を捕集する。また、NOx触媒は、該NOx
触媒に流入する排気の酸素濃度が高いときは排気中の窒素酸化物(NOx)を吸蔵し、一
方、該NOx触媒に流入する排気の酸素濃度が低下したときは吸蔵していたNOxを放出する。その際、排気中に炭化水素(HC)や一酸化炭素(CO)等の還元成分が存在していれば、該NOx触媒から放出されたNOxが還元される。
そして、内燃機関1には、排気管4内を流通する排気の一部を低圧で吸気管3へ再循環させる低圧EGR装置30が備えられている。この低圧EGR装置30は、低圧EGR通路31、低圧EGR弁32、およびEGRクーラ33を備えて構成されている。
低圧EGR通路31は、フィルタ10よりも下流側の排気管4と、コンプレッサハウジング5aよりも上流且つ第1スロットル6よりも下流の吸気管3と、を接続している。この低圧EGR通路31を通って、排気が低圧で再循環される。そして、本実施例では、低圧EGR通路31を通って再循環される排気を低圧EGRガスと称している。また、低圧EGR弁32は、低圧EGR通路31の通路断面積を調整することにより、該低圧EGR通路31を流れる低圧EGRガスの量を調整する。さらに、EGRクーラ33は、該EGRクーラ33を通過する低圧EGRガスと、内燃機関1の冷却水とで熱交換をして、該低圧EGRガスの温度を低下させる。
また、内燃機関1には、排気管4内を流通する排気の一部を高圧で吸気管3へ再循環させる高圧EGR装置40が備えられている。この高圧EGR装置40は、高圧EGR通路41、および高圧EGR弁42を備えて構成されている。
高圧EGR通路41は、タービンハウジング5bよりも上流側の排気管4と、第2スロットル9よりも下流の吸気管3と、を接続している。この高圧EGR通路41を通って、排気が高圧で再循環される。そして、本実施例では、高圧EGR通路41を通って再循環される排気を高圧EGRガスと称している。また、高圧EGR弁42は、高圧EGR通路41の通路断面積を調整することにより、該高圧EGR通路41を流れる低圧EGRガスの量を調整する。
フィルタ10よりも下流の排気管4には、該排気管4を流通する排気の温度を検出する排気温度センサ11が取り付けられている。この排気温度センサ11は、排気の温度を測定すると共に、フィルタ10の温度を検出する。また、フィルタ10よりも下流の排気管4には、該排気管4を流通する排気の空燃比を検出する空燃比センサ12が取り付けられている。この空燃比センサ12は、排気の空燃比および低圧EGRガスの空燃比を検出する。
また、エアフローメータ7付近の吸気管3には、吸気の温度を検出する第1吸気温度センサ91が取り付けられている。この第1吸気温度センサ91により、吸気管3に導入される空気の温度が検出される。また、第1吸気温度センサ91により得られる温度を、大気温度とすることができる。
コンプレッサハウジング5aの入口付近の吸気管3には、該コンプレッサハウジング5aに流入する吸気の温度を検出する第2吸気温度センサ92が取り付けられている。さらに、インタークーラ8の入口付近の吸気管3には、該インタークーラ8に流入する吸気の温度を検出する第3吸気温度センサ93が取り付けられている。なお、第2吸気温度センサ92または第3吸気温度センサ93の何れか一方のみを取り付けるようにしてもよい。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU13が併設されている。このECU13は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。また、ECU
13には、上記センサの他、運転者がアクセルペダル14を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ15、機関回転数を検出するクランクポジションセンサ16、内燃機関1の冷却水の温度を検出する冷却水温度センサ17が電気配線を介して接続され、これら各種センサの出力信号がECU13に入力されるようになっている。
一方、ECU13には、第1スロットル6、第2スロットル9、低圧EGR弁32、及び高圧EGR弁42が電気配線を介して接続されており、該ECU13によりこれらの機器が制御される。
そして、本実施例では、EGRガスがインタークーラ8で急速に冷却されたときに、該EGRガスに含まれる水分等が凝縮することを抑制する。そのために、低圧EGRガス量を制御して、吸気の温度が一定となるようにする。
具体的には、コンプレッサハウジング5aの入口における吸気温度が目標値または目標範囲内となるように低圧EGR弁32の開度を制御する。吸気系の部材に未燃燃料が付着することを抑制するため、排気温度が低い場合には低圧EGR弁32の開度を閉じ側へ制御する。また、排気温度が高い場合には低圧EGR弁32を開き側へ制御する。
また、低圧EGR弁32に開度を変更すると、気筒2内に供給されるEGRガス量が変化してしまう。これに対し本実施例では、気筒2内に供給されるEGRガス量が一定となるように、高圧EGR弁42の開度を制御する。このときに吸入空気量が一定となるように高圧EGR弁42の開度を制御する。ここで、気筒2内に吸入されるのは、新気およびEGRガスである。そして、内燃機関1の運転状態が変わらなければ、新気およびEGRガスを合わせた量は変わらない。そのため、EGRガス量が減少すると、その分新気量が増加する関係にある。すなわち、EGRガス量を一定とするためには、新気の量、すなわちエアフローメータ7により測定される吸入空気量が一定となるように高圧EGR弁42の開度を制御すればよい。
次に、本実施例によるEGRガスの供給制御のフローについて説明する。図2は、本実施例によるEGRガスの供給制御のフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。
ステップS101では、目標コンプレッサ入口温度T2trgが算出される。目標コンプレッサ入口温度T2trgは、コンプレッサハウジング5aの入口における吸気温度の目標値であり、吸気系への未燃燃料の付着を抑制し得る温度以上で且つ熱による耐久性の低下を抑制し得る温度以下とする。この温度は、予め実験等により求めてECU13に記憶させておく。
ステップS102では、新気量Gnが測定される。新気量Gnは、エアフローメータ7により測定される吸入空気量が用いられる。
ステップS103では、コンプレッサハウジング5aの入口における吸気の温度(以下、測定コンプレッサ入口温度T2actという。)が測定される。測定コンプレッサ入口温度T2actは、第2吸気温度センサ92により得る。
ステップS104では、目標コンプレッサ入口温度T2trgと測定コンプレッサ入口温度T2actとの差が算出される。
ステップS105では、低圧EGR弁32の目標開度が算出される。この目標開度は、
ステップS104で算出される差が0となるように算出される。例えば、目標開度と、ステップS104で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておいてもよい。また、現時点での低圧EGR弁32の開度からどれだけ開閉すればよいのかを求めるようにしてもよい。この場合も、現時点からの開閉量と、ステップS104で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておく。なお、本実施例においてはステップS105の処理を実行するECU13が、本発明におけるEGRガス量変更手段に相当する。
ステップS106では、目標吸入空気量Gntrgが算出される。この目標吸入空気量Gntrgは、内燃機関1の回転数および負荷に基づいて算出される。目標吸入空気量Gntrgと機関回転数と機関負荷との関係は予め実験等により求めてマップ化しECU13に記憶させておく。
ステップS107では、目標吸入空気量Gntrgと新気量Gnとの差が算出される。この差に基づいてEGRガスの総量が制御される。
ステップS108では、高圧EGR弁42の目標開度が算出される。この目標開度は、ステップS107で算出される差が0となるように算出される。例えば、目標開度と、ステップS107で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておいてもよい。
このようにして、低圧EGR弁32および高圧EGR弁42の目標開度が求められる。そして、低圧EGR弁32および高圧EGR弁42の開度が目標開度となるように制御することにより、コンプレッサハウジング5aの入口における吸気温度を目標値に維持することができる。これにより、吸気管3、コンプレッサハウジング5a、インタークーラ8、第2スロットル9、および各種センサに未燃燃料が付着することが抑制される。また、これらの過熱が抑制される。そして、気筒2内に供給されるEGRガス量は、高圧EGR弁42により調整されるので、NOx発生を抑制することができる。
なお、本実施例では、コンプレッサハウジング5aの入口における吸気温度に基づいて、低圧EGR弁32および高圧EGR弁42の開度を制御しているが、これに代えてコンプレッサハウジング5aの出口における吸気温度、インタークーラ8の入口若しくは出口における吸気温度、またはインタークーラ8の冷却効率に基づいて低圧EGR弁32および高圧EGR弁42の開度を制御してもよい。
例えばコンプレッサハウジング5aの出口における吸気温度は、該コンプレッサハウジング5aによる吸気の圧縮により、吸気系で一番高くなっている。そのため、吸気系の熱による耐久性の低下は、コンプレッサハウジング5aの出口における吸気温度に関係している。これに対し、コンプレッサハウジング5aの出口における吸気温度が高くなりすぎないように低圧EGRガス量を調整してもよい。
また、吸入空気の流量が多い場合には吸気系に粒子状物質が付着し難いので、吸入空気量が多いほど低圧EGR弁32をより開き側にして低圧EGRガス量を増加させてもよい。
なお、測定コンプレッサ入口温度T2actを第2吸気温度センサ92により得ているが、この温度は以下のようにして推定してもよい。
図3は、コンプレッサハウジング5aの入口における吸気温度を推定するためのフローを示したフローチャートである。本処理は、前記ステップS103に代えて行なうものである。
ステップS1030では、吸気温度T1が測定される。吸気温度T1は第1吸気温度センサ91により得ることができる。大気温度を吸気温度T1としてもよい。
ステップS1031では、吸気のエネルギEinが算出される。吸気のエネルギEinは、例えば新気量Gnおよび吸気温度T1に基づいて算出される。
ステップS1032では、排気温度T7が測定される。排気温度T7は、排気温度センサ11により得ることができる。
ステップS1033では、EGRクーラの冷却効率が算出される。EGRクーラの冷却効率は冷却水温度と相関関係があるので、例えば冷却水温度とEGRクーラの冷却効率との関係を予め実験等により求めてマップ化しECU13に記憶させておく。冷却水温度は、冷却水温度センサ17により得ることができる。
ステップS1034では、低圧EGR弁32を通過する低圧EGRガスの温度Tegrを推定する。この温度は、排気温度センサ11により得られる排気温度T7と、EGRクーラの冷却効率と、低圧EGR通路31を流れるときの温度低下分と、に基づいて算出することができる。これらの関係は予め実験等により求めておいてもよい。
ステップS1035では、低圧EGR弁32の開度が算出される。この開度は、現時点での実際の開度である。低圧EGR弁32の開度は、例えばECU13からの指令値またはセンサを取り付けて測定することにより得る。
ステップS1036では、低圧EGR弁32を通過する低圧EGRガスの量Gegrを算出する。低圧EGR弁32の開度と、内燃機関1の運転状態と、に基づいて低圧EGRガスの量Gegrが算出される。
ステップS1037では、排気の比熱比Cegrを算出する。排気の比熱比Cegrは、空燃比センサ12により得られる排気の空燃比と、排気の比熱比Cegrとの関係を予め求めてマップ化しておき、該マップに排気の空燃比を代入することにより得ることができる。
ステップS1038では、低圧EGR弁32を通過するEGRガスのエネルギEegrを算出する。低圧EGRガスの温度Tegr、低圧EGRガスの量Gegr、および排気の比熱比Cegrに基づいてEGRガスのエネルギEegrを算出することができる。
ステップS1039では、コンプレッサハウジング5aの入口における温度T2actが算出される。吸気のエネルギEinおよびEGRガスのエネルギEegrに基づいて算出される。
このようにして、コンプレッサハウジング5aの入口における温度T2actを推定するようにしてもよい。
本実施例においては、大気温度(外気温度)に基づいて、目標コンプレッサ入口温度T3trgを決定する。その他は実施例1と共通であるため、説明を省略する。
ここで、大気温度が低くなると、インタークーラ8において吸気中のEGRガスがより冷却される。すなわち、EGRガスの温度低下が大きくなり、EGRガスに含まれる水分
等が凝縮しやすくなる。これに対し本実施例では、大気温度が低いほど目標コンプレッサ入口温度T3trgを低く設定する。これにより、大気温度と目標コンプレッサ入口温度T3trgとの差を小さくすることができるので、EGRガスの温度低下が大きくなることが抑制される。つまり、水分等の凝縮を抑制することができる。
図4は、本実施例によるEGRガスの供給制御のフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。なお、前記フローチャートと同じ処理が実行されるステップについては、同じ符号を付けて説明を省略する。
ステップS201では、大気温度Taが測定される。大気温度Taは、第1吸気温度センサ91により得ることができる。
ステップS202では、目標コンプレッサ入口温度T3trgが算出される。目標コンプレッサ入口温度T3trgは、コンプレッサハウジング5aの入口における吸気温度の目標値であり、図5に基づいて算出される。ここで図5は、大気温度と目標コンプレッサ入口温度T3trgとの関係を示した図である。大気温度が高いほど、目標コンプレッサ入口温度T3trgを高くしている。この関係は、予め実験等により求めてマップ化しECU13に記憶させておく。
ステップS203では、目標コンプレッサ入口温度T3trgと測定コンプレッサ入口温度T2actとの差が算出される。
ステップS204では、低圧EGR弁32の目標開度が算出される。この目標開度は、ステップS203で算出される差が0となるように算出される。例えば、目標開度と、ステップS203で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておいてもよい。また、現時点での低圧EGR弁32の開度からどれだけ開閉すればよいのかを求めるようにしてもよい。この場合も、現時点からの開閉量と、ステップS203で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておく。なお、本実施例においてはステップS204の処理を実行するECU13が、本発明におけるEGRガス量変更手段に相当する。
このようにして、低圧EGR弁32および高圧EGR弁42の目標開度が求められる。そして、低圧EGR弁32および高圧EGR弁42の開度が目標開度となるように制御することにより、コンプレッサハウジング5aの入口における吸気温度を目標値に維持することができる。これにより、大気温度が低い場合であっても水分等が凝縮することを抑制できる。そして、気筒2内に供給されるEGRガス量は、高圧EGR弁42により調整されるので、NOx発生を抑制することができる。
なお、本実施例では、コンプレッサハウジング5aの入口における吸気温度に基づいて、低圧EGR弁32および高圧EGR弁42の開度を制御しているが、これに代えてコンプレッサハウジング5aの出口における吸気温度、インタークーラ8の入口若しくは出口における吸気温度、またはインタークーラ8の冷却効率に基づいて低圧EGR弁32および高圧EGR弁42の開度を制御してもよい。
本実施例においては、インタークーラ8を通過するガス量(流量)に基づいて、目標コンプレッサ入口温度T4trgを決定する。その他は実施例1と共通であるため、説明を省略する。
ここで、インタークーラ8を通過するガス量が少ないほど、インタークーラ8において
EGRガスがより冷却される。すなわち、EGRガスの温度低下が大きくなり、EGRガスに含まれる水分等が凝縮しやすくなる。これに対し本実施例では、インタークーラ8を通過するガス量が少ないほど目標コンプレッサ入口温度T4trgを低く設定する。これにより、インタークーラ8におけるEGRガスの温度低下量を小さくして、水分等の凝縮を抑制する。
図6は、本実施例によるEGRガスの供給制御のフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。なお、前記フローチャートと同じ処理が実行されるステップについては、同じ符号を付けて説明を省略する。
ステップS301では、インタークーラ8を通過するガス量(以下、インタークーラ通過ガス量という。)が推定される。インタークーラ通過ガス量は、例えば、機関回転数と、インタークーラ8の上流側または下流側の圧力と、に基づいて推定される。この関係は予め実験等により求めてECU13に記憶させておく。なお、インタークーラ8の上流側または下流側の圧力は、圧力センサを取り付けることに得ることができる。
ステップS302では、目標コンプレッサ入口温度T4trgが算出される。目標コンプレッサ入口温度T4trgは、コンプレッサハウジング5aの入口における吸気温度の目標値であり、図7に基づいて算出される。ここで図7は、インタークーラ通過ガス量と目標コンプレッサ入口温度T4trgとの関係を示した図である。インタークーラ通過ガス量が多くなるほど目標コンプレッサ入口温度T4trgが大きくされる。この関係は、予め実験等により求めてマップ化しECU13に記憶させておく。
ステップS303では、目標コンプレッサ入口温度T4trgと測定コンプレッサ入口温度T2actとの差が算出される。
ステップS304では、低圧EGR弁32の目標開度が算出される。この目標開度は、ステップS303で算出される差が0となるように算出される。例えば、目標開度と、ステップS303で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておく。また、現時点での低圧EGR弁32の開度からどれだけ開閉すればよいのかを求めるようにしてもよい。この場合も、現時点からの開閉量と、ステップS303で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておく。なお、本実施例においてはステップS304の処理を実行するECU13が、本発明におけるEGRガス量変更手段に相当する。
このようにして、低圧EGR弁32および高圧EGR弁42の目標開度が求められる。そして、低圧EGR弁32および高圧EGR弁42の開度が目標開度となるように制御することにより、コンプレッサハウジング5aの入口における吸気温度を目標値に維持することができる。これにより、インタークーラ8を通過するガス量が少ない場合であっても水分等が凝縮することを抑制できる。そして、気筒2内に供給されるEGRガス量は、高圧EGR弁42により調整されるので、NOx発生を抑制することができる。
なお、本実施例では、コンプレッサハウジング5aの入口における吸気温度に基づいて、低圧EGR弁32および高圧EGR弁42の開度を制御しているが、これに代えてコンプレッサハウジング5aの出口における吸気温度、インタークーラ8の入口若しくは出口における吸気温度、またはインタークーラ8の冷却効率に基づいて低圧EGR弁32および高圧EGR弁42の開度を制御してもよい。
本実施例においては、インタークーラ8の冷却効率に基づいて、低圧EGR弁32の開
度を制御する。図8は、本実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。吸気管3に取り付ける温度センサの位置、および吸気圧力センサを取り付ける点で実施例1と相違する。その他は実施例1と共通であるため、説明を省略する。
インタークーラ8の入口付近の吸気管3には、該インタークーラ8に流入する吸気の温度を検出する第3吸気温度センサ93が取り付けられている。さらに、インタークーラ8の出口付近の吸気管3には、該インタークーラ8から流出する吸気の温度を検出する第4吸気温度センサ94が取り付けられている。さらに、インタークーラ8の出口付近の吸気管3には、該インタークーラ8よりも下流の吸気の圧力を検出する吸気圧力センサ95が取り付けられている。
ここで、インタークーラ8の冷却効率が高いと、インタークーラ8においてEGRガスがより冷却される。すなわち、EGRガスの温度低下が大きくなり、EGRガスに含まれる水分等が凝縮しやすくなる。これに対し本実施例では、目標となるEGRクーラの冷却効率をインタークーラ通過ガス量と大気温度に基づいて決定する。この目標となるEGRクーラの冷却効率は、インタークーラ8を通過するEGRガス中の水分等が凝縮しない値に設定する。これにより、EGRガスの温度低下を小さくし、水分等の凝縮を抑制する。
図9は、本実施例によるEGRガスの供給制御のフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。なお、前記フローチャートと同じ処理が実行されるステップについては、同じ符号を付けて説明を省略する。
ステップS401では、目標インタークーラ効率ηtrgが算出される。目標インタークーラ効率ηtrgとは、インタークーラ8の冷却効率であって水分等の凝縮を抑制し得る冷却効率である。ここで、目標インタークーラ効率ηtrgは、インタークーラ通過ガス量が多くなるほど、または大気温度Taが高くなるほど、高くすることができる。この関係は、予め実験等により求めてECU13に記憶させておく。なお、インタークーラ通過ガス量は、前記実施例で推定された値を用いることができる。また、大気温度Taは、第1吸気温度センサ91により得ることができる。
ステップS402では、実インタークーラ効率ηactが算出される。実インタークーラ効率ηactとは、インタークーラ8の実際の冷却効率であり、以下の式で算出される。
ηact=(T3−T4)/(T3−Ta)
ただし、T3はインタークーラ8の入口温度、T4はインタークーラ8の出口温度、Taは大気温度である。
ステップS403では、目標インタークーラ効率ηtrgと実インタークーラ効率ηactとの差Δηicが算出される。
ステップS404では、低圧EGR弁32の目標開度が算出される。この目標開度は、ステップS403で算出される差が0となるように算出される。例えば、目標開度と、ステップS403で算出される差と、の関係を予め実験等により求めてマップ化しECU13に記憶させておいてもよい。ここで、低圧EGR弁32の開度が変わることにより、吸気中の低圧EGRガスの割合も変わる。これにより、インタークーラ8の入口温度T3およびインタークーラ8の出口温度T4が変わるので、実インタークーラ効率ηactも変わることになる。なお、本実施例においてはステップS404の処理を実行するECU1
3が、本発明におけるEGRガス量変更手段に相当する。
このようにして、低圧EGR弁32および高圧EGR弁42の目標開度が求められる。そして、低圧EGR弁32および高圧EGR弁42の開度を前記フローで求められた値に制御することにより、インタークーラ8における水分等の凝縮を抑制し得るようにインタークーラ8の冷却効率を変更することができる。これにより、EGRガスがインタークーラ8を通過する際に水分等が凝縮することを抑制できる。そして、気筒2内に供給されるEGRガス量は、高圧EGR弁42により調整されるので、NOx発生を抑制することが
できる。
実施例に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。 実施例1によるEGRガスの供給制御のフローを示したフローチャートである。 コンプレッサハウジングの入口における吸気温度を推定するためのフローを示したフローチャートである。 実施例2によるEGRガスの供給制御のフローを示したフローチャートである。 大気温度と目標コンプレッサ入口温度との関係を示した図である。 実施例3によるEGRガスの供給制御のフローを示したフローチャートである。 インタークーラ通過ガス量と目標コンプレッサ入口温度との関係を示した図である。 実施例4に係る内燃機関の排気還流装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。 実施例4によるEGRガスの供給制御のフローを示したフローチャートである。
符号の説明
1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ターボチャージャ
5a コンプレッサハウジング
5b タービンハウジング
6 第1スロットル
7 エアフローメータ
8 インタークーラ
9 スロットル
10 パティキュレートフィルタ
11 排気温度センサ
12 空燃比センサ
13 ECU
14 アクセルペダル
15 アクセル開度センサ
16 クランクポジションセンサ
17 冷却水温度センサ
30 低圧EGR装置
31 低圧EGR通路
32 低圧EGR弁
33 EGRクーラ
40 高圧EGR装置
41 高圧EGR通路
42 高圧EGR弁
91 第1吸気温度センサ
92 第2吸気温度センサ
93 第3吸気温度センサ
94 第4吸気温度センサ
95 吸気圧力センサ

Claims (7)

  1. 排気通路にタービンを備え吸気通路にコンプレッサを備えたターボチャージャと、
    前記タービンよりも下流の排気通路と前記コンプレッサよりも上流の吸気通路とを接続する低圧EGR通路と、
    を備えた内燃機関において、
    前記吸気通路の前記低圧EGR通路が接続される箇所よりも下流の所定の位置における吸気の温度が目標範囲内となるように前記低圧EGR通路を流れるEGRガスの量を変更するEGRガス量変更手段を備えることを特徴とする内燃機関の排気還流装置。
  2. 前記コンプレッサよりも下流の吸気通路に備えられ該吸気通路を流れる吸気を冷却するインタークーラを更に備え、該インタークーラを通過する吸気の温度が所定の範囲となるように、吸気通路における所定箇所の温度を目標範囲内とすることを特徴とする請求項1に記載の内燃機関の排気還流装置。
  3. 前記コンプレッサを通過する吸気の温度が所定の範囲となるように、吸気通路における所定箇所の温度を目標範囲内とすることを特徴とする請求項1または2に記載の内燃機関の排気還流装置。
  4. 前記EGRガス量変更手段は、新気の吸気量が多くなるほど、前記低圧EGR通路を流れるEGRガス量を段階的または連続的に多くすることを特徴とする請求項1から3の何れかに記載の内燃機関の排気還流装置。
  5. 前記EGRガス量変更手段は、大気の温度が高くなるほど、前記低圧EGR通路を流れるEGRガス量を段階的または連続的に多くすることを特徴とする請求項1から3の何れかに記載の内燃機関の排気還流装置。
  6. 前記タービンよりも上流の排気通路と前記コンプレッサよりも下流の吸気通路とを接続する高圧EGR通路を更に備え、前記EGRガス量変更手段により前記低圧EGR通路を流れるEGRガスの量が変更されたときには、前記内燃機関の気筒内に供給されるEGRガス量が一定となるように、前記高圧EGR通路を流れるEGRガス量を変更することを特徴とする請求項1から5の何れかに記載の内燃機関の排気還流装置。
  7. 前記吸気の温度の目標範囲は、コンプレッサの入口温度、コンプレッサの出口温度、インタークーラの入口温度、インタークーラの出口温度、またはインタークーラの冷却効率の中の少なくとも1つから算出されることを特徴とする請求項1から6の何れかに記載の内燃機関の排気還流装置。
JP2006029357A 2006-02-07 2006-02-07 内燃機関の排気還流装置 Withdrawn JP2007211595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029357A JP2007211595A (ja) 2006-02-07 2006-02-07 内燃機関の排気還流装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029357A JP2007211595A (ja) 2006-02-07 2006-02-07 内燃機関の排気還流装置

Publications (1)

Publication Number Publication Date
JP2007211595A true JP2007211595A (ja) 2007-08-23

Family

ID=38490270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029357A Withdrawn JP2007211595A (ja) 2006-02-07 2006-02-07 内燃機関の排気還流装置

Country Status (1)

Country Link
JP (1) JP2007211595A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123148A1 (ja) 2007-03-30 2008-10-16 Ntt Docomo, Inc. 移動通信システム、基地局装置、ユーザ装置及び方法
JP2010048107A (ja) * 2008-08-19 2010-03-04 Fuji Heavy Ind Ltd ディーゼルエンジンの排気ガス再循環装置
JP2011111942A (ja) * 2009-11-25 2011-06-09 Toyota Motor Corp Egrクーラの冷却効率算出装置、およびこれを利用した内燃機関の制御装置
KR20120040050A (ko) * 2010-10-18 2012-04-26 현대자동차주식회사 저압 egr시스템 제어장치 및 방법
JP2012132364A (ja) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp エンジンの制御装置
JP2013036452A (ja) * 2011-08-11 2013-02-21 Mitsubishi Motors Corp 内燃機関
JP2013147953A (ja) * 2012-01-17 2013-08-01 Mazda Motor Corp エンジンの吸気装置
JP2013147952A (ja) * 2012-01-17 2013-08-01 Mazda Motor Corp エンジンの吸気装置
WO2013121517A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 内燃機関の制御装置
WO2014020982A1 (ja) * 2012-08-01 2014-02-06 日産自動車株式会社 内燃機関の制御装置
JP2016061152A (ja) * 2014-09-12 2016-04-25 マツダ株式会社 エンジンの排気還流制御装置
US10415514B2 (en) 2017-02-27 2019-09-17 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and control method for internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123148A1 (ja) 2007-03-30 2008-10-16 Ntt Docomo, Inc. 移動通信システム、基地局装置、ユーザ装置及び方法
JP2010048107A (ja) * 2008-08-19 2010-03-04 Fuji Heavy Ind Ltd ディーゼルエンジンの排気ガス再循環装置
JP2011111942A (ja) * 2009-11-25 2011-06-09 Toyota Motor Corp Egrクーラの冷却効率算出装置、およびこれを利用した内燃機関の制御装置
KR20120040050A (ko) * 2010-10-18 2012-04-26 현대자동차주식회사 저압 egr시스템 제어장치 및 방법
JP2012087779A (ja) * 2010-10-18 2012-05-10 Hyundai Motor Co Ltd 低圧egrシステム制御装置および方法
KR101628095B1 (ko) * 2010-10-18 2016-06-08 현대자동차 주식회사 저압 egr시스템 제어장치 및 방법
JP2012132364A (ja) * 2010-12-21 2012-07-12 Mitsubishi Motors Corp エンジンの制御装置
JP2013036452A (ja) * 2011-08-11 2013-02-21 Mitsubishi Motors Corp 内燃機関
JP2013147952A (ja) * 2012-01-17 2013-08-01 Mazda Motor Corp エンジンの吸気装置
JP2013147953A (ja) * 2012-01-17 2013-08-01 Mazda Motor Corp エンジンの吸気装置
WO2013121517A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 内燃機関の制御装置
EP2816208A1 (en) * 2012-02-14 2014-12-24 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP2816208A4 (en) * 2012-02-14 2015-01-14 Toyota Motor Co Ltd CONTROL DEVICE FOR A COMBUSTION ENGINE
JPWO2013121517A1 (ja) * 2012-02-14 2015-05-11 トヨタ自動車株式会社 内燃機関の制御装置
WO2014020982A1 (ja) * 2012-08-01 2014-02-06 日産自動車株式会社 内燃機関の制御装置
JP5673896B2 (ja) * 2012-08-01 2015-02-18 日産自動車株式会社 内燃機関の制御装置
US10174719B2 (en) 2012-08-01 2019-01-08 Nissan Motor Co., Ltd. Control device for internal combustion engine
JP2016061152A (ja) * 2014-09-12 2016-04-25 マツダ株式会社 エンジンの排気還流制御装置
US10415514B2 (en) 2017-02-27 2019-09-17 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine and control method for internal combustion engine
DE102018103874B4 (de) * 2017-02-27 2020-11-26 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für einen Verbrennungsmotor und Steuerungsverfahren für einen Verbrennungsmotor

Similar Documents

Publication Publication Date Title
JP2007211595A (ja) 内燃機関の排気還流装置
JP4225322B2 (ja) 内燃機関の排気還流装置
JP4415963B2 (ja) 内燃機関の排気浄化装置
JP4333725B2 (ja) 内燃機関の排気還流装置
JP4218702B2 (ja) 内燃機関の排気還流装置
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
EP2049786B1 (en) Exhaust gas recirculation system of internal combustion engine
JP4631886B2 (ja) 内燃機関の排気還流システム
JP2005054657A (ja) エンジンの制御装置
WO2015016303A1 (ja) 診断装置
JP2008002351A (ja) 内燃機関の排気還流装置
WO2008059362A2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4736931B2 (ja) 内燃機関の排気還流装置
JP2007303380A (ja) 内燃機関の排気制御装置
JP2010242617A (ja) 内燃機関の異常検出システム
JP2010144700A (ja) 排気還流装置
JP2008150978A (ja) 内燃機関の排気還流装置
JP4613812B2 (ja) ディーゼルエンジン
JP2008309133A (ja) 内燃機関の排気還流システム
JP2008128043A (ja) 内燃機関の排気再循環装置
JP2009209764A (ja) エンジンのガス漏れ検出装置
JP2008019730A (ja) 内燃機関の排気還流装置
JP4910844B2 (ja) 内燃機関の排気浄化装置
JP2007291975A (ja) 内燃機関の排気還流装置
JP2009299590A (ja) 内燃機関のegr制御装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090407