JP2007181170A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2007181170A
JP2007181170A JP2006199813A JP2006199813A JP2007181170A JP 2007181170 A JP2007181170 A JP 2007181170A JP 2006199813 A JP2006199813 A JP 2006199813A JP 2006199813 A JP2006199813 A JP 2006199813A JP 2007181170 A JP2007181170 A JP 2007181170A
Authority
JP
Japan
Prior art keywords
conversion
image
conversion coefficient
unit
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199813A
Other languages
English (en)
Other versions
JP4712631B2 (ja
Inventor
Yusuke Hayashi
佑介 林
Nariyasu Murase
成康 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006199813A priority Critical patent/JP4712631B2/ja
Priority to US11/996,931 priority patent/US20100214438A1/en
Priority to KR1020087002005A priority patent/KR20080019301A/ko
Priority to PCT/JP2006/315047 priority patent/WO2007013621A1/ja
Publication of JP2007181170A publication Critical patent/JP2007181170A/ja
Application granted granted Critical
Publication of JP4712631B2 publication Critical patent/JP4712631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • G06T5/73
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/61Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
    • H04N25/615Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4" involving a transfer function modelling the optical system, e.g. optical transfer function [OTF], phase transfer function [PhTF] or modulation transfer function [MTF]

Abstract

【課題】光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることが可能な撮像装置を提供する。
【解決手段】1次画像を形成する光学系110および撮像素子120と、1次画像を高精細な最終画像に形成する画像処理装置140とを含み、画像処理装置140において、露出制御装置190からの露出情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行う。
【選択図】図1

Description

本発明は、撮像素子を用い、光学系を備えたデジタルスチルカメラや携帯電話搭載カメラ、携帯情報端末搭載カメラ、画像検査装置、自動制御用産業カメラ等の撮像装置に関するものである。
近年急峻に発展を遂げている情報のデジタル化に相俟って映像分野においてもその対応が著しい。
特に、デジタルカメラに象徴されるように撮像面は従来のフィルムに変わって固体撮像素子であるCCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)センサが使用されているのが大半である。
このように、撮像素子にCCDやCMOSセンサを使った撮像レンズ装置は、被写体の映像を光学系により光学的に取り込んで、撮像素子により電気信号として抽出するものであり、デジタルスチルカメラの他、ビデオカメラ、デジタルビデオユニット、パーソナルコンピュータ、携帯電話機、携帯情報端末(PDA:Personal DigitalAssistant)、画像検査装置、自動制御用産業カメラ等に用いられている。
図28は、一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。
この撮像レンズ装置1は、光学系2とCCDやCMOSセンサ等の撮像素子3とを有する。
光学系は、物体側レンズ21,22、絞り23、および結像レンズ24を物体側(OBJS)から撮像素子3側に向かって順に配置されている。
撮像レンズ装置1においては、図28に示すように、ベストフォーカス面を撮像素子面上に合致させている。
図29(A)〜(C)は、撮像レンズ装置1の撮像素子3の受光面でのスポット像を示している。
また、位相板(Wavefront Coding optical element)により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする等の撮像装置が提案されている(たとえば非特許文献1,2、特許文献1〜5参照)。
また、伝達関数を用いたフィルタ処理を行うデジタルカメラの自動露出制御システムが提案されている(たとえば特許文献6参照)。
"Wavefront Coding;jointly optimized optical and digital imaging systems",Edward R.Dowski,Jr.,Robert H.Cormack,Scott D.Sarama. "Wavefront Coding;A modern method of achieving high performance and/or low cost imaging systems",Edward R.Dowski,Jr.,Gregory E.Johnson. USP6,021,005 USP6,642,504 USP6,525,302 USP6,069,738 特開2003−235794号公報 特開2004−153497号公報
上述した各文献にて提案された撮像装置においては、その全ては通常光学系に上述の位相板を挿入した場合のPSF(Point−Spread−Function)が一定になっていることが前提であり、PSFが変化した場合は、その後のカーネルを用いたコンボリューションにより、被写界深度の深い画像を実現することは極めて難しい。
したがって、単焦点でのレンズではともかく、ズーム系やAF系などのレンズでは、その光学設計の精度の高さやそれに伴うコストアップが原因となり採用するには大きな問題を抱えている。
換言すれば、従来の撮像装置においては、適正なコンボリューション演算を行うことができず、ワイド(Wide)時やテレ(Tele)時のスポット(SPOT)像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求される。
しかしながら、これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
また、上述した各文献に開示された装置においては、たとえば暗所における撮影で、信号処理によって画像を復元する際、ノイズも同時に増幅してしまう。
したがって、たとえば上述した位相板等の光波面変調素子とその後の信号処理を用いるような、光学系と信号処理を含めた光学システムでは、暗所での撮影を行う場合、ノイズが増幅してしまい、復元画像に影響を与えてしまうという不利益がある。
本発明の目的は、光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることが可能な撮像装置を提供することにある。
本発明の観点の撮像装置は、光学系と、前記光学系を通過した被写体像を撮像する撮像素子と、前記撮像素子による画像信号に所定の演算処理を行う信号処理部と、前記信号処理部の演算係数を格納するメモリと、露出制御を行う露出制御手段と、を有し、前記信号処理部は、前記露出制御手段からの露出情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行う。
好適には、前記光学系に光波面変調素子を備え、前記信号処理部は、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する。
好適には、前記信号処理部は、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する。
好適には、前記信号処理部は、ノイズ低減フィルタリングを施す手段を有する。
好適には、前記メモリ手段には、露出情報に応じたノイズ低減処理のための演算係数が格納される。
好適には、前記メモリ手段には、露出情報に応じた光学的伝達関数(OTF)復元のための演算係数が格納される。
好適には、可変絞りを有し、前記露出制御手段は、前記可変絞りを制御する。
好適には、前記露出情報として絞り情報を含む。
好適には、前記撮像装置は、被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を備え、前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号を生成する。
好適には、前記撮像装置は、被写体距離に応じて少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、前記被写体距離情報生成手段により生成された情報に基づき、前記変換係数記憶手段から被写体までの距離に応じた変換係数を選択する係数選択手段と、を備え、前記変換手段は、前記係数選択手段で選択された変換係数によって、画像信号の変換を行う。
好適には、前記撮像装置は、前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う。
好適には、前記撮像装置は、前記光学系はズーム光学系を含み、前記ズーム光学系のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する補正値記憶手段と、少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を予め記憶する第2変換係数記憶手段と、前記被写体距離情報生成手段により生成された情報に基づき、前記補正値記憶手段から被写体までの距離に応じた補正値を選択する補正値選択手段と、を備え、前記変換手段は、前記第2変換係数記憶手段から得られた変換係数と、前記補正値選択手段から選択された前記補正値とによって、画像信号の変換を行う。
好適には、前記補正値記憶手段で記憶する補正値が前記被写体分散像のカーネルサイズを含む。
好適には、前記撮像装置は、被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段と、を備え、前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行い分散のない画像信号を生成する。
好適には、前記変換係数演算手段は、前記被写体分散像のカーネルサイズを変数として含む。
好適には、記憶手段を有し、前記変換係数演算手段は、求めた変換係数を前記記憶手段に格納し、前記変換手段は、前記記憶手段に格納された変換係数によって、画像信号の変換を行い分散のない画像信号を生成する。
好適には、前記変換手段は、前記変換係数に基づいてコンボリューション演算を行う。
好適には、前記撮像装置は、撮影する被写体の撮影モードを設定する撮影モード設定手段と、を備え、前記変換手段は、前記撮影モード設定手段により設定された撮影モードに応じて異なる変換処理を行う。
好適には、前記撮影モードは通常撮影モードの他、マクロ撮影モードまたは遠景撮影モードのいずれか1つを有し、前記マクロ撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて近接側に分散を少なくするマクロ変換処理と、を撮影モードに応じて選択的に実行し、前記遠景撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて遠方側に分散を少なくする遠景変換処理と、を撮影モードに応じて選択的に実行する。
好適には、前記撮影モード設定手段により設定される各撮影モードに応じて異なる変換係数を記憶する変換係数記憶手段と、前記撮影モード設定手段により設定された撮影モードに応じて前記変換係数記憶手段から変換係数を抽出する変換係数抽出手段と、を備え、前記変換手段は、前記変換係数抽出手段から得られた変換係数によって、画像信号の変換を行う。
好適には、前記変換係数記憶手段は前記被写体分散像のカーネルサイズを変換係数として含む。
好適には、前記モード設定手段は、撮影モードを入力する操作スイッチと、前記操作スイッチの入力情報により被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を含み、前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号に変換処理する。
本発明によれば、光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることができる利点がある。
以下、本発明の実施形態を添付図面に関連付けて説明する。
図1は、本発明に係る撮像装置の一実施形態を示すブロック構成図である。
本実施形態に係る撮像装置100は、光学系110、撮像素子120、アナログフロントエンド部(AFE)130、画像処理装置140、カメラ信号処理部150、画像表示メモリ160、画像モニタリング装置170、操作部180、および露出制御装置190を有している。
光学系110は、被写体物体OBJを撮影した像を撮像素子120に供給する。
撮像素子120は、光学系110で取り込んだ像が結像され、結像1次画像情報を電気信号の1次画像信号FIMとして、アナログフロントエンド部130を介して画像処理装置140に出力するCCDやCMOSセンサからなる。
図1においては、撮像素子120を一例としてCCDとして記載している。
アナログフロントエンド部130は、タイミングジェネレータ131、アナログ/デジタル(A/D)コンバータ132と、を有する。
タイミングジェネレータ131では、撮像素子120のCCDの駆動タイミングを生成しており、A/Dコンバータ132は、CCDから入力されるアナログ信号をデジタル信号に変換し、画像処理装置140に出力する。
信号処理部の一部を構成する画像処理装置(二次元コンボリューション手段)140は、前段のAFE130からくる撮像画像のデジタル信号を入力し、二次元のコンボリューション処理を施し、後段のカメラ信号処理部(DSP)150に渡す。
画像処理装置140、露出制御装置190の露出情報に応じて、光学的伝達関数(OTF)に対してフィルタ処理を行う。なお、露出情報として絞り情報を含む。
画像処理装置140は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する機能を有する。また、信号処理部は、最初のステップでノイズ低減フィルタリングを施す機能を有する。
画像処理装置140の処理については後でさらに詳述する。
カメラ信号処理部(DSP)150は、カラー補間、ホワイトバランス、YCbCr変換処理、圧縮、ファイリング等の処理を行い、メモリ160への格納や画像モニタリング装置170への画像表示等を行う。
露出制御装置190は、露出制御を行うとともに、操作部180などの操作入力を持ち、それらの入力に応じて、システム全体の動作を決定し、AFE130、画像処理装置140、DSP150等を制御し、システム全体の調停制御を司るものである。
以下、本実施形態の光学系、画像処理装置の構成および機能について具体的には説明する。
図2は、本実施形態に係るズーム光学系110の構成例を模式的に示す図である。この図は広角側を示している。
また、図3は、本実施形態に係る撮像レンズ装置の望遠側のズーム光学系の構成例を模式的に示す図である。
そして、図4は、本実施形態に係るズーム光学系の広角側の像高中心のスポット形状を示す図であり、図5は、本実施形態に係るズーム光学系の望遠側の像高中心のスポット形状を示す図である。
図2および図3のズーム光学系110は、物体側OBJSに配置された物体側レンズ111と、撮像素子120に結像させるための結像レンズ112と、物体側レンズ111と結像レンズ112間に配置され、結像レンズ112による撮像素子120の受光面への結像の波面を変形させる、たとえば3次元的曲面を有する位相板(Cubic Phase Plate)からなる光波面変調素子(波面形成用光学素子:Wavefront Coding Optical Element)群113を有する。また、物体側レンズ111と結像レンズ112間には図示しない絞りが配置される。
たとえば、本実施形態においては、可変絞り200が設けられ、露出制御(装置)において可変絞りの絞り度(開口度)を制御する。
なお、本実施形態においては、位相板を用いた場合について説明したが、本発明の光波面変調素子としては、波面を変形させるものであればどのようなものでもよく、厚みが変化する光学素子(たとえば、上述の3次の位相板)、屈折率が変化する光学素子(たとえば屈折率分布型波面変調レンズ)、レンズ表面へのコーディングにより厚み、屈折率が変化する光学素子(たとえば、波面変調ハイブリッドレンズ)、光の位相分布を変調可能な液晶素子(たとえば、液晶空間位相変調素子)等の光波面変調素子であればよい。
また、本実施形態においては、光波面変調素子である位相板を用いて規則的に分散した画像を形成する場合について説明したが、通常の光学系として用いるレンズで光波面変調素子と同様に規則的に分散した画像を形成できるものを選択した場合には、光波面変調素子を用いずに光学系のみで実現することができる。この際は、後述する位相板に起因する分散に対応するのではなく、光学系に起因する分散に対応することとなる。
図2および図3のズーム光学系110は、デジタルカメラに用いられる3倍ズームに光学位相板113aを挿入した例である。
図で示された位相板113aは、光学系により収束される光束を規則正しく分散する光学レンズである。この位相板を挿入することにより、撮像素子120上ではピントのどこにも合わない画像を実現する。
換言すれば、位相板113aによって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成している。
この規則的に分散した画像をデジタル処理により、ピントの合った画像に復元する手段を波面収差制御光学系システムといい、この処理を画像処理装置140において行う。
ここで、波面収差制御光学系システムの基本原理について説明する。
図6に示すように、被写体の画像fが波面収差制御光学系システム光学系Hに入ることにより、g画像が生成される。
これは、次のような式で表される。
(数1)
g=H*f
ただし、*はコンボリューションを表す。
生成された画像から被写体を求めるためには、次の処理を要する。
(数2)
f=H-−1*g
ここで、Hに関するカーネルサイズと演算係数について説明する。
ズームポジションをZPn,ZPn−1・・・とする。また、それぞれのH関数をHn,Hn−1、・・・・とする。
各々のスポット像が異なるため、各々のH関数は、次のようになる。
Figure 2007181170
この行列の行数および/または列数の違いをカーネルサイズ、各々の数字を演算係数とする。
ここで、各々のH関数はメモリに格納しておいても構わないし、PSFを物体距離の関数としておき、物体距離によって計算し、H関数を算出することによって任意の物体距離に対して最適なフィルタを作るように設定できるようにしても構わない。また、H関数を物体距離の関数として、物体距離によってH関数を直接求めても構わない。
本実施形態においては、図1に示すように、光学系110からの像を撮像素子120で受像して、画像処理装置140に入力させ、光学系に応じた変換係数を取得して、取得した変換係数をもって撮像素子120からの分散画像信号より分散のない画像信号を生成するように構成している。
なお、本実施形態において、分散とは、上述したように、位相板113aを挿入することにより、撮像素子120上ではピントのどこにも合わない画像を形成し、位相板113aによって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成する現象をいい、像が分散してボケ部分を形成する振る舞いから収差と同様の意味合いが含まれる。したがって、本実施形態においては、収差として説明する場合もある。
次に、画像処理装置140の構成および処理について説明する。
画像処理装置140は、図1に示すように、生(RAW)バッファメモリ141、コンボリューション演算器142、記憶手段としてのカーネルデータ格納ROM143、およびコンボリューション制御部144を有する。
コンボリューション制御部144は、コンボリューション処理のオンオフ、画面サイズ、カーネルデータの入れ替え等の制御を行い、露出制御装置190により制御される。
また、カーネルデータ格納ROM143には、図7または図8に示すように予め用意されたそれぞれの光学系のPSFにより算出されたコンボリューション用のカーネルデータが格納されており、露出制御装置190によって露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
なお、露出情報には、絞り情報が含まれる。
図7の例では、カーネルデータAは光学倍率(×1.5)、カーネルデータBは光学倍率(×5)、カーネルデータCは光学倍率(×10)に対応したデータとなっている。
また、図8の例では、カーネルデータAは絞り情報としてのFナンバ(2.8)、カーネルデータBはFナンバ(4)、カーネルデータCはFナンバ(5.6)に対応したデータとなっている。
図8の例のように、絞り情報に応じたフィルタ処理を行うのは以下の理由による。
絞りを絞って撮影を行う場合、絞りによって光波面変調素子を形成する位相板113aが覆われてしまい、位相が変化してしまうため、適切な画像を復元することが困難となる。
そこで、本実施形態においては、本例のように、露出情報中の絞り情報に応じたフィルタ処理を行うことによって適切な画像復元を実現している。
図9は、露出制御装置190の露出情報(絞り情報を含む)により切り替え処理のフローチャートである。
まず、露出情報(RP)が検出されコンボリューション制御部144に供給される(ST1)。
コンボリューション制御部144においては、露出情報RPから、カーネルサイズ、数値演係数がレジスタにセットされる(ST2)。
そして、撮像素子120で撮像され、AFE130を介して二次元コンボリューション演算部142に入力された画像データに対して、レジスタに格納されたデータに基づいてコンボリューション演算が行われ、演算され変換されたデータがカメラ信号処理部150に転送される(ST3)。
以下に画像処理装置140の信号処理部とカーネルデータ格納ROMについてさらに具体的な例について説明する。
図10は、信号処理部とカーネルデータ格納ROMについての第1の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図10の例は露出情報に応じたフィルタカーネルを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。2次元コンボリューション演算部142においては、カーネルデータを用いてコンボリューション処理を施す。
図11は、信号処理部とカーネルデータ格納ROMについての第2の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図11の例は、信号処理部の最初にノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタ処理ST1を予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142においては、前記ノイズ低減フィルタST1を施した後、カラーコンバージョン処理ST2によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST3を施す。
再度ノイズ処理ST4を行い、カラーコンバージョン処理ST5によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、再度のノイズ処理ST4は省略することも可能である。
図12は、信号処理部とカーネルデータ格納ROMについての第3の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図12の例は、露出情報に応じたOTF復元フィルタを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142は、ノイズ低減処理ST11、カラーコンバージョン処理ST12の後に、前記OTF復元フィルタを用いてコンボリューション処理ST13を施す。
再度ノイズ処理ST14を行い、カラーコンバージョン処理ST15によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST11、ST14は、いずれか一方のみでもよい。
図13は、信号処理部とカーネルデータ格納ROMについての第4の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図13の例は、ノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタを予め用意した場合のブロック図である。
なお、再度のノイズ処理ST4は省略することも可能である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142においては、ノイズ低減フィルタ処理ST21を施した後、カラーコンバージョン処理ST22によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST23を施す。
再度、露出情報に応じたノイズ処理ST24を行い、カラーコンバージョン処理ST25によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST21は省略することも可能である。
以上は露出情報のみに応じて2次元コンボリューション演算部142においてフィルタ処理を行う例を説明したが、たとえば被写体距離情報、ズーム情報、あるいは撮影モード情報と露出情報とを組み合わせることにより適した演算係数の抽出、あるいは演算を行うことが可能となる。
図14は、被写体距離情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
図14は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成するが画像処理装置300の構成例を示している。
画像処理装置300は、図14に示すように、コンボリューション装置301、カーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300においては、物体概略距離情報検出装置400から読み出した被写体の物体距離の概略距離に関する情報および露出情報を得た画像処理演算プロセッサ303では、その物体離位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置400により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
上記の画像処理はコンボリューション演算により行うが、これを実現するには、たとえばコンボリューション演算の演算係数を共通で1種類記憶しておき、焦点距離に応じて補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成をとることができる。
この構成の他にも、以下の構成を採用することが可能である。
焦点距離に応じて、カーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算を行う構成、焦点距離に応じた演算係数を関数として予め記憶しておき、焦点距離によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
図14の構成に対応付けると次のような構成をとることができる。
変換係数記憶手段としてのレジスタ302に被写体距離に応じて少なくとも位相板113aに起因する収差に対応した変換係数を少なくとも2以上予め記憶する。画像処理演算プロセッサ303が、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された情報に基づき、レジスタ302から被写体までの距離に応じた変換係数を選択する係数選択手段として機能する。
そして、変換手段としてのコンボリューション装置301が、係数選択手段としての画像処理演算プロセッサ303で選択された変換係数によって、画像信号の変換を行う。
または、前述したように、変換係数演算手段としての画像処理演算プロセッサ303が、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された情報に基づき変換係数を演算し、レジスタ302に格納する。
そして、変換手段としてのコンボリューション装置301が、変換係数演算手段としての画像処理演算プロセッサ303で得られレジスタ302に格納された変換係数によって、画像信号の変換を行う。
または、補正値記憶手段としてのレジスタ302にズーム光学系110のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する。この補正値には、被写体収差像のカーネルサイズを含まれる。
第2変換係数記憶手段としても機能するレジスタ302に、位相板113aに起因する収差に対応した変換係数を予め記憶する。
そして、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された距離情報に基づき、補正値選択手段としての画像処理演算プロセッサ303が、補正値記憶手段としてのレジスタ302から被写体までの距離に応じた補正値を選択する。
変換手段としてのコンボリューション装置301が、第2変換係数記憶手段としてのレジスタ302から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ303により選択された補正値とに基づいて画像信号の変換を行う。
図15は、ズーム情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
図15は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成するが画像処理装置300Aの構成例を示している。
画像処理装置300Aは、図14と同様に、図15に示すように、コンボリューション装置301、カーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300Aにおいては、ズーム情報検出装置500から読み出したズーム位置またはズーム量に関する情報および露出情報を得た画像処理演算プロセッサ303では、露出情報およびそのズーム位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値演算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
上述したように、光波面変調素子としての位相板をズーム光学系に備えた撮像装置に適用する場合、ズーム光学系のズーム位置によって生成されるスポット像が異なる。このため、位相板より得られる焦点ズレ画像(スポット画像)を後段のDSP等でコンボリューション演算する際、適性な焦点合わせ画像を得るためには、ズーム位置に応じて異なるコンボリューション演算が必要となる。
そこで、本実施形態においては、ズーム情報検出装置500を設け、ズーム位置に応じて適正なコンボリューション演算を行い、ズーム位置によらず適性な焦点合わせ画像を得るように構成されている。
画像処理装置300Aにおける適正なコンボリーション演算には、コンボリューションの演算係数をレジスタ302に共通で1種類記憶しておく構成をとることができる。
この構成の他にも、以下の構成を採用することが可能である。
各ズーム位置に応じて、レジスタ302に補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成、各ズーム位置に応じて、レジスタ302にカーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算行う構成、ズーム位置に応じた演算係数を関数としてレジスタ302に予め記憶しておき、ズーム位置によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
図15の構成に対応付けると次のような構成をとることができる。
変換係数記憶手段としてのレジスタ302にズーム光学系110のズーム位置またはズーム量に応じた位相板113aに起因する収差に対応した変換係数を少なくとも2以上予め記憶する。画像処理演算プロセッサ303が、ズーム情報生成手段としてのズーム情報検出装置500により生成された情報に基づき、レジスタ302からズーム光学系110のズ−ム位置またはズーム量に応じた変換係数を選択する係数選択手段として機能する。
そして、変換手段としてのコンボリューション装置301が、係数選択手段としての画像処理演算プロセッサ303で選択された変換係数によって、画像信号の変換を行う。
または、前述したように、変換係数演算手段としての画像処理演算プロセッサ303が、ズーム情報生成手段としてのズーム情報検出装置500により生成された情報に基づき変換係数を演算し、レジスタ302に格納する。
そして、変換手段としてのコンボリューション装置301が、変換係数演算手段としての画像処理演算プロセッサ303で得られレジスタ302に格納された変換係数によって、画像信号の変換を行う。
または、補正値記憶手段としてのレジスタ302にズーム光学系110のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する。この補正値には、被写体収差像のカーネルサイズを含まれる。
第2変換係数記憶手段としても機能するレジスタ302に、位相板113aに起因する収差に対応した変換係数を予め記憶する。
そして、ズーム情報生成手段としてのズーム情報検出装置500により生成されたズーム情報に基づき、補正値選択手段としての画像処理演算プロセッサ303が、補正値記憶手段としてのレジスタ302からズーム光学系のズーム位置またはズーム量に応じた補正値を選択する。
変換手段としてのコンボリューション装置301が、第2変換係数記憶手段としてのレジスタ302から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ303により選択された補正値とに基づいて画像信号の変換を行う。
図16に、露出情報と、物体距離情報と、ズーム情報とを用いた場合のフィルタの構成例を示す。
この例では、物体距離情報とズーム情報で2次元的な情報を形成し、露出情報が奥行きのような情報を形成している。
図17は、撮影モード情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
図17は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する画像処理装置300Bの構成例を示している。
画像処理装置300Bは、図14および図15と同様に、図17に示すように、コンボリューション装置301、記憶手段としてのカーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300Bにおいては、物体概略距離情報検出装置600から読み出した被写体の物体距離の概略距離に関する情報および露出情報を得た画像処理演算プロセッサ303では、その物体離位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
この場合も上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置400により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
上記の画像処理はコンボリューション演算により行うが、これを実現するには、コンボリューション演算の演算係数を共通で1種類記憶しておき、物体距離に応じて補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成、物体距離に応じた演算係数を関数として予め記憶しておき、焦点距離によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成、物体距離に応じて、カーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
本実施形態においては、上述したように、DSCのモード設定(ポートレイト、無限遠(風景)、マクロ)に応じて画像処理を変更する。
図17の構成に対応付けると次のような構成をとることができる。
前述したように、変換係数演算手段としての画像処理演算プロセッサ303を通して操作部180の撮影モード設定部700により設定される各撮影モードに応じて異なる変換係数を変換係数記憶手段としてのレジスタ302に格納する。
画像処理演算プロセッサ303が、撮影モード設定部700の操作スイッチ701により設定された撮影モードに応じて、被写体距離情報生成手段としての物体概略距離情報検出装置600により生成された情報に基づき、変換係数記憶手段としてのレジスタ302から変換係数を抽出する。このとき、たとえば画像処理演算プロセッサ303が変換係数抽出手段とて機能する。
そして、変換手段としてのコンボリューション装置301が、レジスタ302に格納された変換係数によって、画像信号の撮影モードに応じた変換処理を行う。
なお、図2や図3の光学系は一例であり、本発明は図2や図3の光学系に対して用いられるものとは限らない。また、スポット形状についても図4および図5は一例であり、本実施形態のスポット形状は、図4および図5に示すものとは限らない。
また、図7および図8のカーネルデータ格納ROMに関しても、光学倍率、Fナンバやそれぞれのカーネルのサイズ、値に対して用いられるものとは限らない。また用意するカーネルデータの数についても3個とは限らない。
図16のように3次元、さらには4次元以上とすることで格納量が多くなるが、種々の条件を考慮してより適したものを選択することができるようになる。情報としては、上述した露出情報、物体距離情報、ズーム情報、撮像モード情報等であればよい。
なお、上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本実施形態においては、波面収差制御光学系システムを採用し、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることが可能となっている。
以下、この特徴について説明する。
図18(A)〜(C)は、撮像素子120の受光面でのスポット像を示している。
図18(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、図18(B)が合焦点の場合(Best focus)、図18(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示している。
図18(A)〜(C)からもわかるように、本実施形態に係る撮像装置100においては、位相板113aを含む波面形成用光学素子群113によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)が形成される。
このように、本実施形態の撮像装置100において形成された1次画像FIMは、深度が非常に深い光束条件にしている。
図19(A),(B)は、本実施形態に係る撮像レンズ装置により形成される1次画像の変調伝達関数(MTF:Modulation Transfer Function)について説明するための図であって、図19(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、図19(B)が空間周波数に対するMTF特性を示している。
本実施形態においては、高精細な最終画像は後段の、たとえばデジタルシグナルプロセッサ(Digital Signal Processor)からなる画像処理装置140の補正処理に任せるため、図19(A),(B)に示すように、1次画像のMTFは本質的に低い値になっている。
画像処理装置140は、上述したように、撮像素子120による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する。
画像処理装置140のMTF補正処理は、たとえば図20の曲線Aで示すように、本質的に低い値になっている1次画像のMTFを、空間周波数をパラメータとしてエッジ強調、クロマ強調等の後処理にて、図20中曲線Bで示す特性に近づく(達する)ような補正を行う。
図20中曲線Bで示す特性は、たとえば本実施形態のように、波面形成用光学素子を用いずに波面を変形させない場合に得られる特性である。
なお、本実施形態における全ての補正は、空間周波数のパラメータによる。
本実施形態においては、図20に示すように、光学的に得られる空間周波数に対するMTF特性曲線Aに対して、最終的に実現したいMTF特性曲線Bを達成するためには、それぞれの空間周波数に対し、エッジ強調等の強弱を付け、元の画像(1次画像)に対して補正をかける。
たとえば、図20のMTF特性の場合、空間周波数に対するエッジ強調の曲線は、図21に示すようになる。
すなわち、空間周波数の所定帯域内における低周波数側および高周波数側でエッジ強調を弱くし、中間周波数領域においてエッジ強調を強くして補正を行うことにより、所望のMTF特性曲線Bを仮想的に実現する。
このように、実施形態に係る撮像装置100は、基本的に、1次画像を形成する光学系110および撮像素子120と、1次画像を高精細な最終画像に形成する画像処理装置140からなり、光学系システムの中に、波面成形用の光学素子を新たに設けるか、またはガラス、プラスチックなどのような光学素子の面を波面成形用に成形したものを設けることにより、結像の波面を変形(変調)し、そのような波面をCCDやCMOSセンサからなる撮像素子120の撮像面(受光面)に結像させ、その結像1次画像を、画像処理装置140を通して高精細画像を得る画像形成システムである。
本実施形態では、撮像素子120による1次画像は深度が非常に深い光束条件にしている。そのために、1次画像のMTFは本質的に低い値になっており、そのMTFの補正を画像処理装置140で行う。
ここで、本実施形態における撮像装置100における結像のプロセスを、波動光学的に考察する。
物点の1点から発散された球面波は結像光学系を通過後、収斂波となる。そのとき、結像光学系が理想光学系でなければ収差が発生する。波面は球面でなく複雑な形状となる。幾何光学と波動光学の間を取り持つのが波面光学であり、波面の現象を取り扱う場合に便利である。
結像面における波動光学的MTFを扱うとき、結像光学系の射出瞳位置における波面情報が重要となる。
MTFの計算は結像点における波動光学的強度分布のフーリエ変換で求まる。その波動光学的強度分布は波動光学的振幅分布を2乗して得られるが、その波動光学的振幅分布は射出瞳における瞳関数のフーリエ変換から求まる。
さらにその瞳関数はまさに射出瞳位置における波面情報(波面収差)そのものからであることから、その光学系110を通して波面収差が厳密に数値計算できればMTFが計算できることになる。
したがって、所定の手法によって射出瞳位置での波面情報に手を加えれば、任意に結像面におけるMTF値は変更可能である。
本実施形態においても、波面の形状変化を波面形成用光学素子で行うのが主であるが、まさにphase(位相、光線に沿った光路長)に増減を設けて目的の波面形成を行っている。
そして、目的の波面形成を行えば、射出瞳からの射出光束は、図18(A)〜(C)に示す幾何光学的なスポット像からわかるように、光線の密な部分と疎の部分から形成される。
この光束状態のMTFは空間周波数の低いところでは低い値を示し、空間周波数の高いところまでは何とか解像力は維持している特徴を示している。
すなわち、この低いMTF値(または、幾何光学的にはこのようなスポット像の状態)であれば、エリアジングの現象を発生させないことになる。
つまり、ローパスフィルタが必要ないのである。
そして、後段のDSP等からなる画像処理装置140でMTF値を低くしている原因のフレアー的画像を除去すれば良いのである。それによってMTF値は著しく向上する。
次に、本実施形態および従来光学系のMTFのレスポンスについて考察する。
図22は、従来の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンス(応答)を示す図である。
図23は、光波面変調素子を有する本実施形態の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンスを示す図である。
また、図24は、本実施形態に係る撮像装置のデータ復元後のMTFのレスポンスを示す図である。
図からもわかるように、光波面変調素子を有する光学系の場合、物体が焦点位置から外れた場合でもMTFのレスポンスの変化が光波面変調素子を挿入してない光学径よりも少なくなる。
この光学系によって結像された画像を、コンボリューションフィルタによる処理によって、MTFのレスポンスが向上する。
以上説明したように、本実施形態によれば、1次画像を形成する光学系110および撮像素子120と、1次画像を高精細な最終画像に形成する画像処理装置140とを含み、画像処理装置140において、露出制御装置190からの露出情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行うことから、光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることができる利点がある。
また、コンボリューション演算時に用いるカーネルサイズやその数値演算で用いられる係数を可変とし、操作部180等の入力により知り、適性となるカーネルサイズや上述した係数を対応させることにより、倍率やデフォーカス範囲を気にすることなくレンズ設計ができ、かつ精度の高いコンボリュ−ションによる画像復元が可能となる利点がある。
また、難度が高く、高価でかつ大型化した光学レンズを必要とせずに、かつ、レンズを駆動させること無く、撮影したい物体に対してピントが合い、背景はぼかすといった、いわゆる自然な画像を得ることができる利点がある。
そして、本実施形態に係る撮像装置100は、デジタルカメラやカムコーダー等の民生機器の小型、軽量、コストを考慮されたズームレンズの波面収差制御光学系システムに使用することが可能である。
また、本実施形態においては、結像レンズ112による撮像素子120の受光面への結像の波面を変形させる波面形成用光学素子を有する撮像レンズ系と、撮像素子120による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する画像処理装置140とを有することから、高精細な画質を得ることが可能となるという利点がある。
また、光学系110の構成を簡単化でき、製造が容易となり、コスト低減を図ることができる。
ところで、CCDやCMOSセンサを撮像素子として用いた場合、画素ピッチから決まる解像力限界が存在し、光学系の解像力がその限界解像力以上であるとエリアジングのような現象が発生し、最終画像に悪影響を及ぼすことは周知の事実である。
画質向上のため、可能な限りコントラストを上げることが望ましいが、そのことは高性能なレンズ系を必要とする。
しかし、上述したように、CCDやCMOSセンサを撮像素子として用いた場合、エリアジングが発生する。
現在、エリアジングの発生を避けるため、撮像レンズ装置では、一軸結晶系からなるローパスフィルタを併用し、エリアジングの現象の発生を避けている。
このようにローパスフィルタを併用することは、原理的に正しいが、ローパスフィルタそのものが結晶でできているため、高価であり、管理が大変である。また、光学系に使用することは光学系をより複雑にしているという不利益がある。
以上のように、時代の趨勢でますます高精細の画質が求められているにもかかわらず、高精細な画像を形成するためには、従来の撮像レンズ装置では光学系を複雑にしなければならない。複雑にすれば、製造が困難になったりし、また高価なローパスフィルタを利用したりするとコストアップにつながる。
しかし、本実施形態によれば、ローパスフィルタを用いなくとも、エリアジングの現象の発生を避けることができ、高精細な画質を得ることができる。
なお、本実施形態において、光学系の波面形成用光学素子を絞りより物体側レンズよりに配置した例を示したが、絞りと同一あるいは絞りより結像レンズ側に配置しても前記と同様の作用効果を得ることができる。
また、図2や図3の光学系は一例であり、本発明は図2や図3の光学系に対して用いられるものとは限らない。また、スポット形状についても図4および図5は一例であり、本実施形態のスポット形状は、図4および図5に示すものとは限らない。
ところで、たとえば暗所における撮影で、信号処理によって画像を復元する際、ノイズも同時に増幅してしまう。
したがって、たとえば上述した位相変調素子とその後の信号処理を用いるような、光学系と信号処理を含めた光学システムでは、暗所での撮影を行う場合、ノイズが増幅してしまい、復元画像に影響を与えてしまうおそれがある。
そこで、画像処理装置で用いるフィルタのサイズやその数値、ゲイン倍率を可変とし、露出情報によって適正な演算係数を対応させることにより、ノイズの影響が小さい復元画像を得ることが可能となる。
たとえばデジタルカメラを例に説明すると、撮影モードが夜景時に、図25に示すような光学伝達関数Hのインバース復元1/Hでボケ画像に周波数変調を施す。
すると、特にISO感度でゲインが掛かったノイズ(特に高周波成分)に対しても周波数変調を施すことになり、さらにノイズ成分が強調され、復元画はノイズの目立つ画となってしまう。
これは、暗所における撮影で、信号処理によって画像を復元する際、ノイズも同時に増幅してしまうためであり、復元画像に影響を与えてしまう可能性がある。
ここで、ゲイン倍率について説明すると、ゲイン倍率とはフィルタでMTFに周波数変調を施す際の倍率であり、ある周波数に着目したときのMTFの持ち上げ量である。つまり、ぼけMTF値がa、復元後MTF値をbとするとゲイン倍率はb/aとなる。たとえば、図25の例で点像(MTFが1)に復元する場合を考えるとゲイン倍率は1/aとなる。
そこで、図26に示すように、高周波側でのゲイン倍率を下げた形で周波数変調を施すことが本発明のさらなる特徴である。このようにすることで、図25と比べて特に高周波のノイズに対する周波数変調は抑えられ、よりノイズの抑圧された画像を得ることができる。図26に示すように、この時のMTF値がa、復元後のMTF値をb’(b’<b)とすると、ゲイン倍率はb’/aとなり、インバース復元時よりもゲイン倍率は小さくなる。このように、暗所での撮影等で露出量が小さくなった時に、高周波側のゲイン倍率を下げることにより、適正な演算係数を対応させることができ、ノイズの影響が小さい復元画像を得ることが可能となる。
図27(A)〜(D)は上記ノイズ抑圧効果のシミュレーション結果である。図27(A)はボケ画であり、図27(B)がボケ画にノイズを加算したものである。図27(C)は図27(B)に対してインバース復元した結果を示し、図27(D)がゲイン倍率を下げて復元した結果である。
これらの図からゲイン倍率を下げて復元した結果の方がノイズの影響を抑えて復元されることがわかる。ゲイン倍率を下げることは、若干のコントラスト低下に繋がるが、これは後段画像処理のエッジ強調などでコントラスト上げればカバーすることができる。
本発明に係る撮像装置の一実施形態を示すブロック構成図である。 本実施形態に係る撮像レンズ装置の広角側のズーム光学系の構成例を模式的に示す図である。 本実施形態に係る撮像レンズ装置の望遠側のズーム光学系の構成例を模式的に示す図である。 広角側の像高中心のスポット形状を示す図である。 望遠側の像高中心のスポット形状を示す図である。 波面収差制御光学系システムの原理を説明するための図である。 カーネルデータROMの格納データの一例(光学倍率)を示す図である。 カーネルデータROMの格納データの他例(Fナンバ)を示す図である。 露出制御装置の光学系設定処理の概要を示すフローチャートである。 信号処理部とカーネルデータ格納ROMについての第1の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第2の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第3の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第4の構成例を示す図である。 被写体距離情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。 ズーム情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。 露出情報と、物体距離情報と、ズーム情報とを用いた場合のフィルタの構成例を示す図である。 撮影モード情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。 本実施形態に係る撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。 本実施形態に係る撮像素子により形成される1次画像のMTFについて説明するための図であって、(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、(B)が空間周波数に対するMTF特性を示している。 本実施形態に係る画像処理装置におけるMTF補正処理を説明するための図である。 本実施形態に係る画像処理装置におけるMTF補正処理を具体的に説明するための図である。 従来の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンス(応答)を示す図である。 光波面変調素子を有する本実施形態の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンスを示す図である。 本実施形態に係る撮像装置のデータ復元後のMTFのレスポンスを示す図である。 インバース復元におけるMTF持ち上げ量(ゲイン倍率)の説明図である。 高周波側を抑えたMTF持ち上げ量(ゲイン倍率)の説明図である。 高周波側のMTF持ち上げ量を抑えたシミュレーション結果を示す図である。 一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。 図28の撮像レンズ装置の撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。
符号の説明
100…撮像装置、110…光学系、120…撮像素子、130…アナログフロントエンド部(AFE)、140…画像処理装置、150…カメラ信号処理部、180…操作部、190…露出制御装置、111…物体側レンズ、112…結像レンズ、113…波面形成用光学素子、113a…位相板(光波面変調素子)、142…コンボリューション演算器、143…カーネルデータROM、144…コンボリューション制御部。

Claims (24)

  1. 光学系と、
    前記光学系を通過した被写体像を撮像する撮像素子と、
    前記撮像素子による画像信号に所定の演算処理を行う信号処理部と、
    前記信号処理部の演算係数を格納するメモリ手段と、
    露出制御を行う露出制御手段と、を有し、
    前記信号処理部は、前記露出制御手段からの露出情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行う
    撮像装置。
  2. 前記光学系に光波面変調素子を備え、
    前記信号処理部は、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する
    請求項1記載の撮像装置。
  3. 前記信号処理部は、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する
    請求項1記載の撮像装置。
  4. 前記信号処理部は、ノイズ低減フィルタリングを施す手段を有する
    請求項1から3のいずれか一に記載の撮像装置。
  5. 前記メモリ手段には、露出情報に応じたノイズ低減処理のための演算係数が格納される
    請求項1から4のいずれか一に記載の撮像装置。
  6. 前記メモリ手段には、露出情報に応じた光学的伝達関数(OTF)復元のための演算係数が格納される
    請求項1から5のいずれか一に記載の撮像装置。
  7. 前期露出情報に応じたOTF復元は、露出情報に応じて周波数変調のゲイン倍率を変えて周波数変調を施す
    請求項6に記載の撮像装置。
  8. 露出量が小さくなると高周波側のゲイン倍率を下げる
    請求項7に記載の撮像装置。
  9. 可変絞りを有し、
    前記露出制御手段は、前記可変絞りを制御する
    請求項1から8のいずれか一に記載の撮像装置。
  10. 前記露出情報として絞り情報を含む
    請求項1から9のいずれか一に記載の撮像装置。
  11. 前記撮像装置は、
    被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を備え、
    前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号を生成する
    請求項2から10のいずれか一に記載の撮像装置。
  12. 前記撮像装置は、
    被写体距離に応じて少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、
    前記被写体距離情報生成手段により生成された情報に基づき、前記変換係数記憶手段から被写体までの距離に応じた変換係数を選択する係数選択手段と、を備え、
    前記変換手段は、前記係数選択手段で選択された変換係数によって、画像信号の変換を行う
    請求項11に記載の撮像装置。
  13. 前記撮像装置は、
    前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、
    前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う
    請求項11に記載の撮像装置。
  14. 前記撮像装置は、
    前記光学系はズーム光学系を含み、
    前記ズーム光学系のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する補正値記憶手段と、
    少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を予め記憶する第2変換係数記憶手段と、
    前記被写体距離情報生成手段により生成された情報に基づき、前記補正値記憶手段から被写体までの距離に応じた補正値を選択する補正値選択手段と、を備え、
    前記変換手段は、前記第2変換係数記憶手段から得られた変換係数と、前記補正値選択手段から選択された前記補正値とによって、画像信号の変換を行う
    請求項2から8のいずれか一に記載の撮像装置。
  15. 前記補正値記憶手段で記憶する補正値が前記被写体分散像のカーネルサイズを含む
    請求項12に記載の撮像装置。
  16. 前記撮像装置は、
    被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、
    前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段と、を備え、
    前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行い分散のない画像信号を生成する
    請求項2から10のいずれか一に記載の撮像装置。
  17. 前記変換係数演算手段は、前記被写体分散像のカーネルサイズを変数として含む
    請求項16に記載の撮像装置。
  18. 記憶手段を有し、
    前記変換係数演算手段は、求めた変換係数を前記記憶手段に格納し、
    前記変換手段は、前記記憶手段に格納された変換係数によって、画像信号の変換を行い分散のない画像信号を生成する
    請求項16または17に記載の撮像装置。
  19. 前記変換手段は、前記変換係数に基づいてコンボリューション演算を行う
    請求項16から18のいずれか一に記載の撮像装置。
  20. 前記撮像装置は、
    撮影する被写体の撮影モードを設定する撮影モード設定手段と、を備え、
    前記変換手段は、前記撮影モード設定手段により設定された撮影モードに応じて異なる変換処理を行う
    請求項2から10のいずれか一に記載の撮像装置。
  21. 前記撮影モードは通常撮影モードの他、マクロ撮影モードまたは遠景撮影モードのいずれか1つを有し、
    前記マクロ撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて近接側に分散を少なくするマクロ変換処理と、を撮影モードに応じて選択的に実行し、
    前記遠景撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて遠方側に分散を少なくする遠景変換処理と、を撮影モードに応じて選択的に実行する
    請求項20に記載の撮像装置。
  22. 前記撮影モード設定手段により設定される各撮影モードに応じて異なる変換係数を記憶する変換係数記憶手段と、
    前記撮影モード設定手段により設定された撮影モードに応じて前記変換係数記憶手段から変換係数を抽出する変換係数抽出手段と、を備え、
    前記変換手段は、前記変換係数抽出手段から得られた変換係数によって、画像信号の変換を行う
    請求項20または21に記載の撮像装置。
  23. 前記変換係数記憶手段は前記被写体分散像のカーネルサイズを変換係数として含む
    請求項22に記載の撮像装置。
  24. 前記モード設定手段は、
    撮影モードを入力する操作スイッチと、
    前記操作スイッチの入力情報により被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を含み、
    前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号に変換処理する
    請求項20から23のいずれか一に記載の撮像装置。
JP2006199813A 2005-07-28 2006-07-21 撮像装置 Active JP4712631B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006199813A JP4712631B2 (ja) 2005-07-28 2006-07-21 撮像装置
US11/996,931 US20100214438A1 (en) 2005-07-28 2006-07-28 Imaging device and image processing method
KR1020087002005A KR20080019301A (ko) 2005-07-28 2006-07-28 촬상 장치 및 화상 처리 방법
PCT/JP2006/315047 WO2007013621A1 (ja) 2005-07-28 2006-07-28 撮像装置および画像処理方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005219405 2005-07-28
JP2005219405 2005-07-28
JP2005344309 2005-11-29
JP2005344309 2005-11-29
JP2006199813A JP4712631B2 (ja) 2005-07-28 2006-07-21 撮像装置

Publications (2)

Publication Number Publication Date
JP2007181170A true JP2007181170A (ja) 2007-07-12
JP4712631B2 JP4712631B2 (ja) 2011-06-29

Family

ID=37683509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199813A Active JP4712631B2 (ja) 2005-07-28 2006-07-21 撮像装置

Country Status (4)

Country Link
US (1) US20100214438A1 (ja)
JP (1) JP4712631B2 (ja)
KR (1) KR20080019301A (ja)
WO (1) WO2007013621A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074104A1 (ja) * 2009-12-17 2011-06-23 キヤノン株式会社 画像処理装置およびそれを用いた撮像装置
JP2013033496A (ja) * 2012-10-09 2013-02-14 Canon Inc 画像処理装置、撮像装置、画像処理方法、及び、プログラム
WO2014050191A1 (ja) * 2012-09-26 2014-04-03 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法、及びプログラム

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322560A (ja) 2006-05-30 2007-12-13 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2008048293A (ja) 2006-08-18 2008-02-28 Kyocera Corp 撮像装置、およびその製造方法
JP4749984B2 (ja) 2006-09-25 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
WO2008081903A1 (ja) 2006-12-27 2008-07-10 Kyocera Corporation 撮像装置および情報コード読取装置
US8567678B2 (en) 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device
WO2008105431A1 (ja) * 2007-02-26 2008-09-04 Kyocera Corporation 撮像装置、撮像方法、並びに撮像装置の製造装置および製造方法
JP2008245266A (ja) * 2007-02-26 2008-10-09 Kyocera Corp 撮像装置および撮像方法
JP2008268869A (ja) * 2007-03-26 2008-11-06 Fujifilm Corp 撮像装置、撮像方法、及びプログラム
WO2008117766A1 (en) * 2007-03-26 2008-10-02 Fujifilm Corporation Image capturing apparatus, image capturing method and program
WO2008123503A1 (ja) * 2007-03-29 2008-10-16 Kyocera Corporation 撮像装置および撮像方法
JP2009008935A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 撮像装置
JP2009010783A (ja) * 2007-06-28 2009-01-15 Kyocera Corp 撮像装置
JP2009010730A (ja) 2007-06-28 2009-01-15 Kyocera Corp 画像処理方法と該画像処理方法を用いた撮像装置
TWI377508B (en) * 2008-01-17 2012-11-21 Asia Optical Co Inc Image pickup methods and image pickup systems using the same
US8462213B2 (en) 2008-03-27 2013-06-11 Kyocera Corporation Optical system, image pickup apparatus and information code reading device
JP4658162B2 (ja) 2008-06-27 2011-03-23 京セラ株式会社 撮像装置および電子機器
US8363129B2 (en) 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
US8502877B2 (en) 2008-08-28 2013-08-06 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
JP4743553B2 (ja) 2008-09-29 2011-08-10 京セラ株式会社 レンズユニット、撮像装置、および電子機器
JP5103637B2 (ja) * 2008-09-30 2012-12-19 富士フイルム株式会社 撮像装置、撮像方法、およびプログラム
CN102844788B (zh) * 2010-03-31 2016-02-10 佳能株式会社 图像处理装置及使用该图像处理装置的图像拾取装置
WO2011132280A1 (ja) * 2010-04-21 2011-10-27 富士通株式会社 撮像装置及び撮像方法
JP5672527B2 (ja) 2010-09-01 2015-02-18 パナソニックIpマネジメント株式会社 画像処理装置及び画像処理方法
JP5153846B2 (ja) * 2010-09-28 2013-02-27 キヤノン株式会社 画像処理装置、撮像装置、画像処理方法、及び、プログラム
JP5264968B2 (ja) * 2011-08-08 2013-08-14 キヤノン株式会社 画像処理装置、画像処理方法、撮像装置、および、画像処理プログラム
US8548778B1 (en) 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005127A (ja) * 1998-01-23 2000-01-11 Olympus Optical Co Ltd 内視鏡システム
JP2000101845A (ja) * 1998-09-23 2000-04-07 Seiko Epson Corp 階層的エッジ検出及び適応的長さの平均化フィルタを用いたスクリ―ンされた画像におけるモアレの改善された低減
JP2000098301A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 拡大被写界深度光学系
JP2001346069A (ja) * 2000-06-02 2001-12-14 Fuji Photo Film Co Ltd 映像信号処理装置及び輪郭強調補正装置
JP2003235794A (ja) * 2002-02-21 2003-08-26 Olympus Optical Co Ltd 電子内視鏡システム
JP2003244530A (ja) * 2002-02-21 2003-08-29 Konica Corp デジタルスチルカメラ、及びプログラム
JP2003283878A (ja) * 2002-03-27 2003-10-03 Fujitsu Ltd 画質改善方法
JP2004328506A (ja) * 2003-04-25 2004-11-18 Sony Corp 撮像装置および画像復元方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739089A (en) * 1970-11-30 1973-06-12 Conco Inc Apparatus for and method of locating leaks in a pipe
US5724743A (en) * 1992-09-04 1998-03-10 Snap-On Technologies, Inc. Method and apparatus for determining the alignment of motor vehicle wheels
JPH08161250A (ja) * 1994-12-06 1996-06-21 Canon Inc 情報処理装置
KR19980702008A (ko) * 1995-02-03 1998-07-15 마이클 지. 가브리지 광학 시스템의 필드 심도를 증가시키기 위한 방법 및 장치
US20020118457A1 (en) * 2000-12-22 2002-08-29 Dowski Edward Raymond Wavefront coded imaging systems
US7218448B1 (en) * 1997-03-17 2007-05-15 The Regents Of The University Of Colorado Extended depth of field optical systems
US6911638B2 (en) * 1995-02-03 2005-06-28 The Regents Of The University Of Colorado, A Body Corporate Wavefront coding zoom lens imaging systems
US5664243A (en) * 1995-06-08 1997-09-02 Minolta Co., Ltd. Camera
US6021005A (en) * 1998-01-09 2000-02-01 University Technology Corporation Anti-aliasing apparatus and methods for optical imaging
US6069738A (en) * 1998-05-27 2000-05-30 University Technology Corporation Apparatus and methods for extending depth of field in image projection systems
JP2000275582A (ja) * 1999-03-24 2000-10-06 Olympus Optical Co Ltd 被写界深度拡大システム
US20010008418A1 (en) * 2000-01-13 2001-07-19 Minolta Co., Ltd. Image processing apparatus and method
JP2001208974A (ja) * 2000-01-24 2001-08-03 Nikon Corp 共焦点型顕微鏡及び一括照明型顕微鏡
US6642504B2 (en) * 2001-03-21 2003-11-04 The Regents Of The University Of Colorado High speed confocal microscope
US6525302B2 (en) * 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems
US7006252B2 (en) * 2001-10-17 2006-02-28 Eastman Kodak Company Image processing system and method that maintains black level
JP3791777B2 (ja) * 2001-12-28 2006-06-28 オリンパス株式会社 電子内視鏡
US20030158503A1 (en) * 2002-01-18 2003-08-21 Shinya Matsumoto Capsule endoscope and observation system that uses it
DE10202163A1 (de) * 2002-01-22 2003-07-31 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bildverarbeitung sowie Nachtsichtsystem für Kraftfahrzeuge
DE60332328D1 (de) * 2002-03-13 2010-06-10 Imax Corp Systeme und verfahren für ein digitales remastering oder anderweitiges modifizieren von beweglichen bildern oder anderen bildsequenzdaten
US7158660B2 (en) * 2002-05-08 2007-01-02 Gee Jr James W Method and apparatus for detecting structures of interest
US7271838B2 (en) * 2002-05-08 2007-09-18 Olympus Corporation Image pickup apparatus with brightness distribution chart display capability
US20040125211A1 (en) * 2002-09-03 2004-07-01 Yoshirhiro Ishida Image processing apparatus and image processing method
JP4143394B2 (ja) * 2002-12-13 2008-09-03 キヤノン株式会社 オートフォーカス装置
US7180673B2 (en) * 2003-03-28 2007-02-20 Cdm Optics, Inc. Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US7260251B2 (en) * 2003-03-31 2007-08-21 Cdm Optics, Inc. Systems and methods for minimizing aberrating effects in imaging systems
US20040228505A1 (en) * 2003-04-14 2004-11-18 Fuji Photo Film Co., Ltd. Image characteristic portion extraction method, computer readable medium, and data collection and processing device
US7596286B2 (en) * 2003-08-06 2009-09-29 Sony Corporation Image processing apparatus, image processing system, imaging apparatus and image processing method
JP4383841B2 (ja) * 2003-12-12 2009-12-16 キヤノン株式会社 交換レンズ
KR100825172B1 (ko) * 2004-04-05 2008-04-24 미쓰비시덴키 가부시키가이샤 촬상 장치
US7245133B2 (en) * 2004-07-13 2007-07-17 Credence Systems Corporation Integration of photon emission microscope and focused ion beam
WO2006022373A1 (ja) * 2004-08-26 2006-03-02 Kyocera Corporation 撮像装置および撮像方法
US7215493B2 (en) * 2005-01-27 2007-05-08 Psc Scanning, Inc. Imaging system with a lens having increased light collection efficiency and a deblurring equalizer
US7683950B2 (en) * 2005-04-26 2010-03-23 Eastman Kodak Company Method and apparatus for correcting a channel dependent color aberration in a digital image
JP4778755B2 (ja) * 2005-09-09 2011-09-21 株式会社日立ハイテクノロジーズ 欠陥検査方法及びこれを用いた装置
JP4961182B2 (ja) * 2005-10-18 2012-06-27 株式会社リコー ノイズ除去装置、ノイズ除去方法、ノイズ除去プログラム及び記録媒体
JP4469324B2 (ja) * 2005-11-01 2010-05-26 イーストマン コダック カンパニー 色収差抑圧回路及び色収差抑圧プログラム
JP2007322560A (ja) * 2006-05-30 2007-12-13 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP4749959B2 (ja) * 2006-07-05 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
JP5089940B2 (ja) * 2006-08-29 2012-12-05 株式会社トプコン 眼球運動測定装置、眼球運動測定方法及び眼球運動測定プログラム
JP4749984B2 (ja) * 2006-09-25 2011-08-17 京セラ株式会社 撮像装置、並びにその製造装置および製造方法
US8249695B2 (en) * 2006-09-29 2012-08-21 Tearscience, Inc. Meibomian gland imaging

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005127A (ja) * 1998-01-23 2000-01-11 Olympus Optical Co Ltd 内視鏡システム
JP2000098301A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 拡大被写界深度光学系
JP2000101845A (ja) * 1998-09-23 2000-04-07 Seiko Epson Corp 階層的エッジ検出及び適応的長さの平均化フィルタを用いたスクリ―ンされた画像におけるモアレの改善された低減
JP2001346069A (ja) * 2000-06-02 2001-12-14 Fuji Photo Film Co Ltd 映像信号処理装置及び輪郭強調補正装置
JP2003235794A (ja) * 2002-02-21 2003-08-26 Olympus Optical Co Ltd 電子内視鏡システム
JP2003244530A (ja) * 2002-02-21 2003-08-29 Konica Corp デジタルスチルカメラ、及びプログラム
JP2003283878A (ja) * 2002-03-27 2003-10-03 Fujitsu Ltd 画質改善方法
JP2004328506A (ja) * 2003-04-25 2004-11-18 Sony Corp 撮像装置および画像復元方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074104A1 (ja) * 2009-12-17 2011-06-23 キヤノン株式会社 画像処理装置およびそれを用いた撮像装置
JP5147994B2 (ja) * 2009-12-17 2013-02-20 キヤノン株式会社 画像処理装置およびそれを用いた撮像装置
US8659672B2 (en) 2009-12-17 2014-02-25 Canon Kabushiki Kaisha Image processing apparatus and image pickup apparatus using same
WO2014050191A1 (ja) * 2012-09-26 2014-04-03 富士フイルム株式会社 画像処理装置、撮像装置、画像処理方法、及びプログラム
JP2013033496A (ja) * 2012-10-09 2013-02-14 Canon Inc 画像処理装置、撮像装置、画像処理方法、及び、プログラム

Also Published As

Publication number Publication date
KR20080019301A (ko) 2008-03-03
JP4712631B2 (ja) 2011-06-29
US20100214438A1 (en) 2010-08-26
WO2007013621A1 (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4712631B2 (ja) 撮像装置
JP4663737B2 (ja) 撮像装置およびその画像処理方法
JP4749959B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4749984B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4818957B2 (ja) 撮像装置およびその方法
JP2008268937A (ja) 撮像装置および撮像方法
JP2007322560A (ja) 撮像装置、並びにその製造装置および製造方法
JP2008048293A (ja) 撮像装置、およびその製造方法
JP2007300208A (ja) 撮像装置
JP2008085697A (ja) 撮像装置、並びにその製造装置および製造方法
JP2007206738A (ja) 撮像装置およびその方法
JP4364847B2 (ja) 撮像装置および画像変換方法
JP2008245266A (ja) 撮像装置および撮像方法
JP2006311473A (ja) 撮像装置および撮像方法
JP2009086017A (ja) 撮像装置および撮像方法
JP2006094468A (ja) 撮像装置および撮像方法
JP4818956B2 (ja) 撮像装置およびその方法
JP4812541B2 (ja) 撮像装置
JP4813147B2 (ja) 撮像装置および撮像方法
JP2008245265A (ja) 撮像装置、並びにその製造装置および製造方法
JP4722748B2 (ja) 撮像装置およびその画像生成方法
JP2009134023A (ja) 撮像装置および情報コード読取装置
JP5197784B2 (ja) 撮像装置
JP2008058540A (ja) 撮像装置、および画像処理方法
JP4948967B2 (ja) 撮像装置、並びにその製造装置および製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323