JP2006094468A - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
JP2006094468A
JP2006094468A JP2005217799A JP2005217799A JP2006094468A JP 2006094468 A JP2006094468 A JP 2006094468A JP 2005217799 A JP2005217799 A JP 2005217799A JP 2005217799 A JP2005217799 A JP 2005217799A JP 2006094468 A JP2006094468 A JP 2006094468A
Authority
JP
Japan
Prior art keywords
zoom
image
optical system
imaging
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005217799A
Other languages
English (en)
Inventor
Seiji Yoshikawa
誠司 芳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005217799A priority Critical patent/JP2006094468A/ja
Priority to US11/574,127 priority patent/US20070268376A1/en
Priority to PCT/JP2005/015542 priority patent/WO2006022373A1/ja
Publication of JP2006094468A publication Critical patent/JP2006094468A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ズーム位置またはズーム量を気にすることなく、レンズ設計を行うことができ、かつ精度の高い演算による画像復元が可能な撮像装置およびその方法を提供する。
【解決手段】ズーム光学系、非ズーム光学系、および光波面変調素子としての位相板とを通過した被写体分散像を撮像する撮像レンズ装置200と、撮像素子220からの分散画像信号より分散のない画像信号を生成する画像処理装置300と、ズーム光学系のズーム位置またズーム量に相当する情報を生成するズーム情報検出装置300と、を備え、画像処理装置300は、ズーム情報検出装置400により生成される情報に基づいて分散画像信号より分散のない画像信号を生成する。
【選択図】図1

Description

本発明は、撮像素子を用い、ズーム光学系を備えたデジタルスチルカメラや携帯電話搭載カメラ、携帯情報端末搭載カメラ等の撮像装置およびその方法に関するものである。
近年急峻に発展を遂げている情報のデジタル化に相俟って映像分野においてもその対応が著しい。
特に、デジタルカメラに象徴されるように撮像面は従来のフィルムに変わって固体撮像素子であるCCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)センサが使用されているのが大半である。
このように、撮像素子にCCDやCMOSセンサを使った撮像レンズ装置は、被写体の映像を光学系により光学的に取り込んで、撮像素子により電気信号として抽出するものであり、デジタルスチルカメラの他、ビデオカメラ、デジタルビデオユニット、パーソナルコンピュータ、携帯電話機、携帯情報端末(PDA:Personal DigitalAssistant)等に用いられている。
図14は、一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。
この撮像レンズ装置1は、光学系2とCCDやCMOSセンサ等の撮像素子3とを有する。
光学系は、物体側レンズ21,22、絞り23、および結像レンズ24を物体側(OBJS)から撮像素子3側に向かって順に配置されている。
撮像レンズ装置1においては、図14に示すように、ベストフォーカス面を撮像素子面上に合致させている。
図15(A)〜(C)は、撮像レンズ装置1の撮像素子3の受光面でのスポット像を示している。
また、位相板(Wavefront Coding optical element)により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする等の撮像装置が提案されている(たとえば非特許文献1,2、特許文献1〜5参照)。
"Wavefront Coding;jointly optimized optical and digital imaging systems",Edward R.Dowski,Jr.,Robert H.Cormack,Scott D.Sarama. "Wavefront Coding;A modern method of achieving high performance and/or low cost imaging systems",Edward R.Dowski,Jr.,Gregory E.Johnson. USP6,021,005 USP6,642,504 USP6,525,302 USP6,069,738 特開2003−235794号公報
上述した各文献にて提案された撮像装置においては、その全ては通常光学系に上述の位相板を挿入した場合のPSF(Point−Spread−Function)が一定になっていることが前提であり、PSFが変化した場合は、その後のカーネルを用いたコンボリューションにより、被写界深度の深い画像を実現することは極めて難しい。
したがって、単焦点でのレンズではともかく、ズーム系のレンズでは、その光学設計の精度の高さやそれに伴うコストアップが原因となり採用するには大きな問題を抱えている。
換言すれば、従来の撮像装置においては、適正なコンボリューション演算を行うことができず、ワイド(Wide)時やテレ(Tele)時のスポット(SPOT)像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求される。
しかしながら、これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
本発明の目的は、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることができ、ズーム位置またはズーム量を気にすることなく、レンズ設計を行うことができ、かつ精度の高い演算による画像復元が可能な撮像装置およびその方法を提供することにある。
上記目的を達成するため、本発明の第1の観点の撮像装置は、少なくともズーム光学系、非ズーム光学系、および光波面変調素子とを通過した被写体分散像を撮像する撮像素子と、上記撮像素子からの分散画像信号より分散のない画像信号を生成する変換手段と、上記ズーム光学系のズーム位置またズーム量に相当する情報を生成するズーム情報生成手段と、を備え、上記変換手段は、上記ズーム情報生成手段により生成される情報に基づいて上記分散画像信号より分散のない画像信号を生成する。
好適には、上記ズーム光学系のズーム位置またはズーム量に応じた少なくとも上記光波面変調素子に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、上記ズーム情報生成手段により生成された情報に基づき、上記変換係数記憶手段から上記ズーム光学系のズ−ム位置またはズーム量に応じた変換係数を選択する係数選択手段と、を備え、上記変換手段は、上記係数選択手段で選択された変換係数によって、画像信号の変換を行う。
好適には、上記ズーム情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、上記変換手段は、上記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う。
好適には、上記ズーム光学系のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する補正値記憶手段と、少なくとも上記光波面変調素子に起因する分散に対応した変換係数を予め記憶する第2変換係数記憶手段と、上記ズーム情報生成手段により生成された情報に基づき、上記補正値記憶手段から上記ズーム光学系のズーム位置またはズーム量に応じた補正値を選択する補正値選択手段と、を備え、上記変換手段は、上記第2変換係数記憶手段から得られた変換係数と、上記補正値選択手段から選択された補正値とによって、画像信号の変換を行う。
好適には、上記補正値記憶手段で記憶する補正値が上記被写体分散像のカーネルサイズを含む。
本発明の第2の観点の撮像方法は、少なくもズーム光学系、非ズーム光学系、および光波面変調素子とを通過した被写体分散像を撮像素子で撮像するステップと、上記ズーム光学系のズーム位置またはズーム量に相当する情報を生成するズーム情報生成ステップと、上記ズーム情報生成ステップにより生成される情報に基づいて上記分散画像信号を変換して分散のない画像信号を生成するステップとを有する。
本発明によれば、ズーム位置またはズーム量を気にすることなくレンズ設計ができ、かつ精度の良いコンボリューション等の演算による画像復元が可能となる利点がある。
また、本発明によれば、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることができる。
以下、本発明の実施形態を添付図面に関連付けて説明する。
図1は、本発明に係る撮像装置の一実施形態を示すブロック構成図である。
本実施形態に係る撮像装置100は、ズーム光学系を有する撮像レンズ装置200と画像処理装置300とズーム情報検出装置400とを主構成要素として有している。
撮像レンズ装置200は、撮像対象物体(被写体)OBJの映像を光学的に取り込むズーム光学系210と、ズーム光学系210で取り込んだ像が結像され、結像1次画像情報を電気信号の1次画像信号FIMとして画像処理装置300に出力するCCDやCMOSセンサからなる撮像素子220とを有する。図1においては、撮像素子220を一例としてCCDとして記載している。
図2は、本実施形態に係るズーム光学系210の光学系の構成例を模式的に示す図である。
図2のズーム光学系210は、物体側OBJSに配置された物体側レンズ211と、撮像素子220に結像させるための結像レンズ212と、物体側レンズ211と結像レンズ212間に配置され、結像レンズ212による撮像素子220の受光面への結像の波面を変形させる、たとえば3次元的曲面を有する位相板(Cubic Phase Plate)からなる光波面変調素子(波面形成用光学素子:Wavefront Coding Optical Element)群213を有する。また、物体側レンズ211と結像レンズ212間には図示しない絞りが配置される。
なお、本実施形態においては、位相板を用いた場合について説明したが、本発明の光波面変調素子としては、波面を変形させるものであればどのようなものでもよく、厚みが変化する光学素子(たとえば、上述の3次の位相板)、屈折率が変化する光学素子(たとえば屈折率分布型波面変調レンズ)、レンズ表面へのコーディングにより厚み、屈折率が変化する光学素子(たとえば、波面変調ハイブリッドレンズ)、光の位相分布を変調可能な液晶素子(たとえば、液晶空間位相変調素子)等の光波面変調素子であればよい。
図2のズーム光学系210は、デジタルカメラに用いられる3倍ズームに光学位相板213aを挿入した例である。
図で示された位相板213aは、光学系により収束される光束を規則正しく分光する光学レンズである。この位相板を挿入することにより、撮像素子220上ではピントのどこにも合わない画像を実現する。
換言すれば、位相板213aによって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成している。
この規則的に分光した画像をデジタル処理により、ピントの合った画像に復元する手段を波面収差制御光学系システム(WFCO:Wavefront Coding Optical system)といい、この処理を画像処理装置300において行う。
図3は、位相板を含まないズーム光学系210のワイド(Wide)時のスポット像を示す図である。図4は、位相板を含まないズーム光学系210のテレ(Tele)時のスポット像を示す図である。図5は、位相板を含むズーム光学系210の無限側のスポット像を示す図である。図6は、位相板を含むズーム光学系210の至近側のスポット像を示す図である。
基本的に、位相板を含まない光学レンズ系を通った光のスポット像は図3および図4に示されるように、そのズーム光学系がワイド時とテレ時では、異なったスポット像を示す。
当然、図5および図6に示すように、このスポット像に影響される位相板を通したスポット像も無限側と至近側では異なったスポット像となる。
このような、ズーム位置で異なるスポット像を持つ光学系においては、後で説明するH関数が異なる。
従来の装置では適正なコンボリューション演算を行うことができず、このスポット像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求され。これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
そこで、本実施形態においては、図1に示すように、撮像装置(カメラ)100が撮影状態に入った時点で、そのズーム位置またはズーム量をズーム情報検出装置400から読み出し、画像処理装置300に供給する。
画像処理装置300は、ズーム情報検出装置400から読み出したズーム位置またはズーム量に基づいて、撮像素子220からの分散画像信号より分散のない画像信号を生成する。
なお、本実施形態において、分散とは、上述したように、位相板213aを挿入することにより、撮像素子220上ではピントのどこにも合わない画像を形成し、位相板213aによって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成する現象をいい、像が分散してボケ部分を形成する振る舞いから収差と同様の意味合いが含まれる。したがって、本実施形態においては、収差として説明する場合もある。
図7は、撮像素子220からの分散画像信号より分散のない画像信号を生成するが画像処理装置300の構成例を示すブロック図である。
画像処理装置300は、図7に示すように、コンボリューション装置301、カーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300においては、ズーム情報検出装置400から読み出したズーム位置またはズーム量に関する情報を得た画像処理演算プロセッサ303では、そのズーム位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値演算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
ここで、WFCOの基本原理について説明する。
図8に示すように、被写体の画像fがWFCO光学系Hに入ることにより、g画像が生成される。
これは、次のような式で表すことができる。
(数1)
g=H*f
ここで、*はコンボリューションを表す。
生成された、画像から被写体を求めるためには、次の処理を要する。
(数2)
f=H-1*g
ここで、関数Hに関するカーネルサイズと演算係数について説明する。
個々のズームポジション(ズーム位置)をZpn、Zpn−1・・・とする。
そのH関数をHn、Hn−1、・・・・とする。
各々のスポットが異なるため、各々のH関数は、次のようになる。
Figure 2006094468
この行列の行数および/または列数の違いをカーネイレサイズ、各々の数字を演算係数とする。
上述したように、光波面変調素子としての位相板をズーム光学系に備えた撮像装置に適用する場合、ズーム光学系のズーム位置によって生成されるスポット像が異なる。このため、位相板より得られる焦点ズレ画像(スポット画像)を後段のDSP等でコンボリューション演算する際、適性な焦点合わせ画像を得るためには、ズーム位置に応じて異なるコンボリューション演算が必要となる。
そこで、本実施形態においては、ズーム情報検出装置400を設け、ズーム位置に応じて適正なコンボリューション演算を行い、ズーム位置によらず適性な焦点合わせ画像を得るように構成されている。
画像処理装置300における適正なコンボリーション演算には、コンボリューションの演算係数をレジスタ302に共通で1種類記憶しておく構成をとることができる。
この構成の他にも、以下の構成を採用することが可能である。
各ズーム位置に応じて、レジスタ302に補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成、各ズーム位置に応じて、レジスタ302にカーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算行う構成、ズーム位置に応じた演算係数を関数としてレジスタ302に予め記憶しておき、ズーム位置によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
図7の構成に対応付けると次のような構成をとることができる。
変換係数記憶手段としてのレジスタ302にズーム光学系210のズーム位置またはズーム量に応じた位相板213aに起因する収差に対応した変換係数を少なくとも2以上予め記憶する。画像処理演算プロセッサ303が、ズーム情報生成手段としてのズーム情報検出装置400により生成された情報に基づき、レジスタ302からズーム光学系210のズ−ム位置またはズーム量に応じた変換係数を選択する係数選択手段として機能する。
そして、変換手段としてのコンボリューション装置301が、係数選択手段としての画像処理演算プロセッサ303で選択された変換係数によって、画像信号の変換を行う。
または、前述したように、変換係数演算手段としての画像処理演算プロセッサ303が、ズーム情報生成手段としてのズーム情報検出装置400により生成された情報に基づき変換係数を演算し、レジスタ302に格納する。
そして、変換手段としてのコンボリューション装置301が、変換係数演算手段としての画像処理演算プロセッサ303で得られレジスタ302に格納された変換係数によって、画像信号の変換を行う。
または、補正値記憶手段としてのレジスタ302にズーム光学系210のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する。この補正値には、被写体収差像のカーネルサイズを含まれる。
第2変換係数記憶手段としても機能するレジスタ302に、位相板213aに起因する収差に対応した変換係数を予め記憶する。
そして、ズーム情報生成手段としてのズーム情報検出装置400により生成されたズーム情報に基づき、補正値選択手段としての画像処理演算プロセッサ303が、補正値記憶手段としてのレジスタ302からズーム光学系のズーム位置またはズーム量に応じた補正値を選択する。
変換手段としてのコンボリューション装置301が、第2変換係数記憶手段としてのレジスタ302から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ303により選択された補正値とに基づいて画像信号の変換を行う。
次に、画像処理演算プロセッサ303が変換係数演算手段として機能する場合の具体的な処理について、図9のフローチャートに関連付けて説明する。
ズーム光学系210のズーム動作に伴い、ズーム情報検出装置400において、ズームポジション(ズーム位置;ZP)が検出され、検出情報が画像処理演算プロセッサ303に供給される。
画像処理演算プロセッサ303においては、ズームポジションZPがnであるか否かの判定を行う(ST1)。
ステップST1において、ズームポジションZPがnであると判定すると、ZP=nのカーネルサイズ、演算係数を求めてレジスタに格納する(ST2)。
ステップST1において、ズームポジションZPがnでないと判定すると、ズームポジションZPがn−1であるか否かの判定を行う(ST3)。
ステップST3において、ズームポジションZPがn−1であると判定すると、ZP=n−1のカーネルサイズ、演算係数を求めてレジスタに格納する(ST4)。
以下、性能的に分割しなければならないズームポジションZPの数だけステップST2ST4の判断処理を行い、カーネルサイズ、演算係数をレジスタに格納する。
画像処理演算プロセッサ303においては、カーネル、数値演算係数格納レジスタ302に設定値が転送される(ST6)。
そして、撮像レンズ装置200で撮像され、コンボリューション装置301に入力された画像データに対して、レジスタ302に格納されたデータに基づいてコンボリューション演算が行われ、演算され変換されたデータS302が画像処理演算プロセッサ303に転送される。
本実施形態においては、WFCOを採用し、かつ、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることが可能となっている。
以下、この特徴について説明する。
図10(A)〜(C)は、撮像レンズ装置200の撮像素子220の受光面でのスポット像を示している。
図10(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、図10(B)が合焦点の場合(Best focus)、図10(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示している。
図10(A)〜(C)からもわかるように、本実施形態に係る撮像レンズ装置200においては、位相板213aを含む波面形成用光学素子群213によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)が形成される。
このように、本実施形態の撮像レンズ装置200において形成された1次画像FIMは、深度が非常に深い光束条件にしている。
図11(A),(B)は、本実施形態に係る撮像レンズ装置により形成される1次画像の変調伝達関数(MTF:Modulation Transfer Function)について説明するための図であって、図11(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、図11(B)が空間周波数に対するMTF特性を示している。
本実施形態においては、高精細な最終画像は後段の、たとえばデジタルシグナルプロセッサ(Digital Signal Processor)からなる画像処理装置300の補正処理に任せるため、図11(A),(B)に示すように、1次画像のMTFは本質的に低い値になっている。
画像処理装置300は、たとえばDSPにより構成され、上述したように、撮像レンズ装置200による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する。
画像処理装置300のMTF補正処理は、たとえば図12の曲線Aで示すように、本質的に低い値になっている1次画像のMTFを、空間周波数をパラメータとしてエッジ強調、クロマ強調等の後処理にて、図12中曲線Bで示す特性に近づく(達する)ような補正を行う。
図12中曲線Bで示す特性は、たとえば本実施形態のように、波面形成用光学素子を用いずに波面を変形させない場合に得られる特性である。
なお、本実施形態における全ての補正は、空間周波数のパラメータによる。
本実施形態においては、図12に示すように、光学的に得られる空間周波数に対するMTF特性曲線Aに対して、最終的に実現したいMTF特性曲線Bを達成するためには、それぞれの空間周波数に対し、エッジ強調等の強弱を付け、元の画像(1次画像)に対して補正をかける。
たとえば、図12のMTF特性の場合、空間周波数に対するエッジ強調の曲線は、図13に示すようになる。
すなわち、空間周波数の所定帯域内における低周波数側および高周波数側でエッジ強調を弱くし、中間周波数領域においてエッジ強調を強くして補正を行うことにより、所望のMTF特性曲線Bを仮想的に実現する。
このように、実施形態に係る撮像装置100は、1次画像を形成する光学系210を含む撮像レンズ装置200と、1次画像を高精細な最終画像に形成する画像処理装置300からなり、光学系システムの中に、波面成形用の光学素子を新たに設けるか、またはガラス、プラスチックなどのような光学素子の面を波面成形用に成形したものを設けることにより、結像の波面を変形し、そのような波面をCCDやCMOSセンサからなる撮像素子220の撮像面(受光面)に結像させ、その結像1次画像を、画像処理装置300を通して高精細画像を得る画像形成システムである。
本実施形態では、撮像レンズ装置200による1次画像は深度が非常に深い光束条件にしている。そのために、1次画像のMTFは本質的に低い値になっており、そのMTFの補正を画像処理装置300で行う。
ここで、本実施形態における撮像レンズ装置200における結像のプロセスを、波動光学的に考察する。
物点の1点から発散された球面波は結像光学系を通過後、収斂波となる。そのとき、結像光学系が理想光学系でなければ収差が発生する。波面は球面でなく複雑な形状となる。幾何光学と波動光学の間を取り持つのが波面光学であり、波面の現象を取り扱う場合に便利である。
結像面における波動光学的MTFを扱うとき、結像光学系の射出瞳位置における波面情報が重要となる。
MTFの計算は結像点における波動光学的強度分布のフーリエ変換で求まる。その波動光学的強度分布は波動光学的振幅分布を2乗して得られるが、その波動光学的振幅分布は射出瞳における瞳関数のフーリエ変換から求まる。
さらにその瞳関数はまさに射出瞳位置における波面情報(波面収差)そのものからであることから、その光学系210を通して波面収差が厳密に数値計算できればMTFが計算できることになる。
したがって、所定の手法によって射出瞳位置での波面情報に手を加えれば、任意に結像面におけるMTF値は変更可能である。
本実施形態においても、波面の形状変化を波面形成用光学素子で行うのが主であるが、まさにphase(位相、光線に沿った光路長)に増減を設けて目的の波面形成を行っている。
そして、目的の波面形成を行えば、射出瞳からの射出光束は、図10(A)〜(C)に示す幾何光学的なスポット像からわかるように、光線の密な部分と疎の部分から形成される。
この光束状態のMTFは空間周波数の低いところでは低い値を示し、空間周波数の高いところまでは何とか解像力は維持している特徴を示している。
すなわち、この低いMTF値(または、幾何光学的にはこのようなスポット像の状態)であれば、エリアジングの現象を発生させないことになる。
つまり、ローパスフィルタが必要ないのである。
そして、後段のDSP等からなる画像処理装置300でMTF値を低くしている原因のフレアー的画像を除去すれば良いのである。それによってMTF値は著しく向上する。
以上説明したように、本実施形態によれば、ズーム光学系、非ズーム光学系、および位相板(光波面変調素子)とを通過した被写体分散像を撮像する撮像レンズ装置200と、撮像素子220からの分散画像信号より分散のない画像信号を生成する画像処理装置300と、ズーム光学系のズーム位置またズーム量に相当する情報を生成するズーム情報検出装置300と、を備え、画像処理装置300は、ズーム情報検出装置400により生成される情報に基づいて分散画像信号より分散のない画像信号を生成することから、コンボリューション演算時に用いるカーネルサイズやその数値演算で用いられる係数を可変とし、ズーム光学系210のズーム情報より適正となるカーネルサイズや上述した係数を対応させることにより、ズーム位置を気にすることなくレンズ設計ができ、かつ精度の良いコンボリューションによる画像復元が可能となる。したがって、どのようなズームレンズであっても、難度が高く、高価でかつ大型化した光学レンズを必要としないレンズを駆動させること無くピントの合った画像を提供することが可能となる利点がある。
そして、本実施形態に係る撮像装置100は、デジタルカメラやカムコーダー等の民生機器の小型、軽量、コストを考慮されたズームレンズのWFCOに使用することが可能である。
また、本実施形態においては、結像レンズ212による撮像素子220の受光面への結像の波面を変形させる波面形成用光学素子を有する撮像レンズ装置200と、撮像レンズ装置200による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する画像処理装置300とを有することから、高精細な画質を得ることが可能となるという利点がある。
また、撮像レンズ装置200の光学系210の構成を簡単化でき、製造が容易となり、コスト低減を図ることができる。
ところで、CCDやCMOSセンサを撮像素子として用いた場合、画素ピッチから決まる解像力限界が存在し、光学系の解像力がその限界解像力以上であるとエリアジングのような現象が発生し、最終画像に悪影響を及ぼすことは周知の事実である。
画質向上のため、可能な限りコントラストを上げることが望ましいが、そのことは高性能なレンズ系を必要とする。
しかし、上述したように、CCDやCMOSセンサを撮像素子として用いた場合、エリアジングが発生する。
現在、エリアジングの発生を避けるため、撮像レンズ装置では、一軸結晶系からなるローパスフィルタを併用し、エリアジングの現象の発生を避けている。
このようにローパスフィルタを併用することは、原理的に正しいが、ローパスフィルタそのものが結晶でできているため、高価であり、管理が大変である。また、光学系に使用することは光学系をより複雑にしているという不利益がある。
以上のように、時代の趨勢でますます高精細の画質が求められているにもかかわらず、高精細な画像を形成するためには、従来の撮像レンズ装置では光学系を複雑にしなければならない。複雑にすれば、製造が困難になったりし、また高価なローパスフィルタを利用したりするとコストアップにつながる。
しかし、本実施形態によれば、ローパスフィルタを用いなくとも、エリアジングの現象の発生を避けることができ、高精細な画質を得ることが可能となる。
なお、本実施形態において、光学系210の波面形成用光学素子を絞りより物体側レンズよりに配置した例を示したが、絞りと同一あるいは絞りより結像レンズ側に配置しても上記と同様の作用効果を得ることができる。
また、光学系210を構成するレンズは、図2の例に限定されることはなく、本発明は、種々の態様が可能である。
本発明に係る撮像装置の一実施形態を示すブロック構成図である。 本実施形態に係る撮像レンズ装置のズーム光学系の構成例を模式的に示す図である。 位相板を含まないズーム光学系のワイド(Wide)時のスポット像を示す図である。 位相板を含まないズーム光学系のテレ(Tele)時のスポット像を示す図である。 位相板を含むズーム光学系の無限側のスポット像を示す図である。 位相板を含むズーム光学系の至近側のスポット像を示す図である。 本実施形態の画像処理装置の具体的な構成例を示すブロック図である。 WFCOの原理を説明するための図である。 本実施形態の動作を説明するためのフローチャートである。 本実施形態に係る撮像レンズ装置の撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。 本実施形態に係る撮像レンズ装置により形成される1次画像のMTFについて説明するための図であって、(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、(B)が空間周波数に対するMTF特性を示している。 本実施形態に係る画像処理装置におけるMTF補正処理を説明するための図である。 本実施形態に係る画像処理装置におけるMTF補正処理を具体的に説明するための図である。 一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。 図14の撮像レンズ装置の撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。
符号の説明
100…画像形成装置、200…撮像レンズ装置、211…物体側レンズ、212…結像レンズ、213…波面形成用光学素子、213a…位相板(光波面変調素子)、300…画像処理装置、301…コンボリューション装置、302…カーネル、数値演算係数格納レジスタ、303…画像処理演算プロセッサ、400…ズーム情報検出装置。

Claims (6)

  1. 少なくともズーム光学系、非ズーム光学系、および光波面変調素子とを通過した被写体分散像を撮像する撮像素子と、
    上記撮像素子からの分散画像信号より分散のない画像信号を生成する変換手段と、
    上記ズーム光学系のズーム位置またズーム量に相当する情報を生成するズーム情報生成手段と、を備え、
    上記変換手段は、上記ズーム情報生成手段により生成される情報に基づいて上記分散画像信号より分散のない画像信号を生成する
    撮像装置。
  2. 上記ズーム光学系のズーム位置またはズーム量に応じた少なくとも上記光波面変調素子に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、
    上記ズーム情報生成手段により生成された情報に基づき、上記変換係数記憶手段から上記ズーム光学系のズ−ム位置またはズーム量に応じた変換係数を選択する係数選択手段と、を備え、
    上記変換手段は、上記係数選択手段で選択された変換係数によって、画像信号の変換を行う
    請求項1に記載の撮像装置。
  3. 上記ズーム情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、
    上記変換手段は、上記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う
    請求項1に記載の撮像装置。
  4. 上記ズーム光学系のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する補正値記憶手段と、
    少なくとも上記光波面変調素子に起因する分散に対応した変換係数を予め記憶する第2変換係数記憶手段と、
    上記ズーム情報生成手段により生成された情報に基づき、上記補正値記憶手段から上記ズーム光学系のズーム位置またはズーム量に応じた補正値を選択する補正値選択手段と、を備え、
    上記変換手段は、上記第2変換係数記憶手段から得られた変換係数と、上記補正値選択手段から選択された補正値とによって、画像信号の変換を行う
    請求項1に記載の撮像装置。
  5. 上記補正値記憶手段で記憶する補正値が上記被写体分散像のカーネルサイズを含む
    請求項4に記載の撮像装置。
  6. 少なくもズーム光学系、非ズーム光学系、および光波面変調素子とを通過した被写体分散像を撮像素子で撮像するステップと、
    上記ズーム光学系のズーム位置またはズーム量に相当する情報を生成するズーム情報生成ステップと、
    上記ズーム情報生成ステップにより生成される情報に基づいて上記分散画像信号を変換して分散のない画像信号を生成するステップと
    を有する撮像方法。
JP2005217799A 2004-08-26 2005-07-27 撮像装置および撮像方法 Pending JP2006094468A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005217799A JP2006094468A (ja) 2004-08-26 2005-07-27 撮像装置および撮像方法
US11/574,127 US20070268376A1 (en) 2004-08-26 2005-08-26 Imaging Apparatus and Imaging Method
PCT/JP2005/015542 WO2006022373A1 (ja) 2004-08-26 2005-08-26 撮像装置および撮像方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004247444 2004-08-26
JP2005217799A JP2006094468A (ja) 2004-08-26 2005-07-27 撮像装置および撮像方法

Publications (1)

Publication Number Publication Date
JP2006094468A true JP2006094468A (ja) 2006-04-06

Family

ID=36234945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217799A Pending JP2006094468A (ja) 2004-08-26 2005-07-27 撮像装置および撮像方法

Country Status (1)

Country Link
JP (1) JP2006094468A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028454A (ja) * 2006-07-18 2008-02-07 Kyocera Corp 撮像装置
WO2008020630A1 (fr) * 2006-08-18 2008-02-21 Kyocera Corporation Dispositif d'imagerie et son procédé de fabrication
JP2008109542A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2008136144A (ja) * 2006-11-29 2008-06-12 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2008160484A (ja) * 2006-12-22 2008-07-10 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2011120309A (ja) * 2011-03-22 2011-06-16 Kyocera Corp 撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028454A (ja) * 2006-07-18 2008-02-07 Kyocera Corp 撮像装置
JP4693720B2 (ja) * 2006-07-18 2011-06-01 京セラ株式会社 撮像装置
WO2008020630A1 (fr) * 2006-08-18 2008-02-21 Kyocera Corporation Dispositif d'imagerie et son procédé de fabrication
JP2008109542A (ja) * 2006-10-27 2008-05-08 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2008136144A (ja) * 2006-11-29 2008-06-12 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2008160484A (ja) * 2006-12-22 2008-07-10 Kyocera Corp 撮像装置、並びにその製造装置および製造方法
JP2011120309A (ja) * 2011-03-22 2011-06-16 Kyocera Corp 撮像装置

Similar Documents

Publication Publication Date Title
JP4712631B2 (ja) 撮像装置
JP4663737B2 (ja) 撮像装置およびその画像処理方法
JP4749959B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4749984B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4818957B2 (ja) 撮像装置およびその方法
JP2007322560A (ja) 撮像装置、並びにその製造装置および製造方法
JP2008268937A (ja) 撮像装置および撮像方法
US8462213B2 (en) Optical system, image pickup apparatus and information code reading device
JP2008048293A (ja) 撮像装置、およびその製造方法
JP2008085697A (ja) 撮像装置、並びにその製造装置および製造方法
JP2007300208A (ja) 撮像装置
JP4364847B2 (ja) 撮像装置および画像変換方法
JP2006094468A (ja) 撮像装置および撮像方法
JP2006311473A (ja) 撮像装置および撮像方法
JP2008245266A (ja) 撮像装置および撮像方法
JP2009086017A (ja) 撮像装置および撮像方法
JP2006094469A (ja) 撮像装置および撮像方法
JP2006094470A (ja) 撮像装置および撮像方法
JP4818956B2 (ja) 撮像装置およびその方法
JP2009033607A (ja) 撮像装置および画像処理方法
JP2008245265A (ja) 撮像装置、並びにその製造装置および製造方法
JP5197784B2 (ja) 撮像装置
JP4722748B2 (ja) 撮像装置およびその画像生成方法
JP2009134023A (ja) 撮像装置および情報コード読取装置
JP2008167040A (ja) 撮像装置、その製造装置および製造方法、並びに情報コード読取装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418