JP2007300208A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2007300208A
JP2007300208A JP2006124342A JP2006124342A JP2007300208A JP 2007300208 A JP2007300208 A JP 2007300208A JP 2006124342 A JP2006124342 A JP 2006124342A JP 2006124342 A JP2006124342 A JP 2006124342A JP 2007300208 A JP2007300208 A JP 2007300208A
Authority
JP
Japan
Prior art keywords
image
conversion
shooting mode
unit
conversion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124342A
Other languages
English (en)
Inventor
Nariyasu Murase
成康 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006124342A priority Critical patent/JP2007300208A/ja
Publication of JP2007300208A publication Critical patent/JP2007300208A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

【課題】温度変化により発生するコマ収差を改善でき、メカニカル部品無しのフォーカス調整と光学ズーム両機能を実現して光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることが可能な撮像装置を提供する。
【解決手段】光波面変調素子を備えた光学系110と、光学系110を通過した被写体像を撮像する撮像素子120と、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する変換部を有する画像処理装置140と、を有し、光学系110の前段部に液体レンズ210が配置され、画像処理装置140は、所定の情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行と共に、液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行う。
【選択図】図1

Description

本発明は、撮像素子を用い、光学系を備えたデジタルスチルカメラや携帯電話搭載カメラ、携帯情報端末搭載カメラ、画像検査装置、自動制御用産業カメラ等の撮像装置に関するものである。
近年急峻に発展を遂げている情報のデジタル化に相俟って映像分野においてもその対応が著しい。
特に、デジタルカメラに象徴されるように撮像面は従来のフィルムに変わって固体撮像素子であるCCD(Charge Coupled Device),CMOS(Complementary Metal Oxide Semiconductor)センサが使用されているのが大半である。
このように、撮像素子にCCDやCMOSセンサを使った撮像レンズ装置は、被写体の映像を光学系により光学的に取り込んで、撮像素子により電気信号として抽出するものであり、デジタルスチルカメラの他、ビデオカメラ、デジタルビデオユニット、パーソナルコンピュータ、携帯電話機、携帯情報端末(PDA:Personal DigitalAssistant)、画像検査装置、自動制御用産業カメラ等に用いられている。
図22は、一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。
この撮像レンズ装置1は、光学系2とCCDやCMOSセンサ等の撮像素子3とを有する。
光学系は、物体側レンズ21,22、絞り23、および結像レンズ24を物体側(OBJS)から撮像素子3側に向かって順に配置されている。
撮像レンズ装置1においては、図22に示すように、ベストフォーカス面を撮像素子面上に合致させている。
図23(A)〜(C)は、撮像レンズ装置1の撮像素子3の受光面でのスポット像を示している。
また、位相板(Wavefront Coding optical element)により光束を規則的に分散し、デジタル処理により復元させ被写界深度の深い画像撮影を可能にする等の撮像装置が提案されている(たとえば非特許文献1,2、特許文献1〜5参照)。
また、伝達関数を用いたフィルタ処理を行うデジタルカメラの自動露出制御システムが提案されている(たとえば特許文献6参照)。
"Wavefront Coding;jointly optimized optical and digital imaging systems",Edward R.Dowski,Jr.,Robert H.Cormack,Scott D.Sarama. "Wavefront Coding;A modern method of achieving high performance and/or low cost imaging systems",Edward R.Dowski,Jr.,Gregory E.Johnson. USP6,021,005 USP6,642,504 USP6,525,302 USP6,069,738 特開2003−235794号公報 特開2004−153497号公報
上述した各文献にて提案された撮像装置においては、その全ては通常光学系に上述の位相板を挿入した場合のPSF(Point−Spread−Function)が一定になっていることが前提であり、PSFが変化した場合は、その後のカーネルを用いたコンボリューションにより、被写界深度の深い画像を実現することは極めて難しい。
したがって、単焦点でのレンズではともかく、ズーム系やAF系などのレンズでは、その光学設計の精度の高さやそれに伴うコストアップが原因となり採用するには大きな問題を抱えている。
換言すれば、従来の撮像装置においては、適正なコンボリューション演算を行うことができず、ワイド(Wide)時やテレ(Tele)時のスポット(SPOT)像のズレを引き起こす非点収差、コマ収差、ズーム色収差等の各収差を無くす光学設計が要求される。
しかしながら、これらの収差を無くす光学設計は光学設計の難易度を増し、設計工数の増大、コスト増大、レンズの大型化の問題を引き起こす。
また、上述した各文献に開示された装置においては、たとえば暗所における撮影で、信号処理によって画像を復元する際、ノイズも同時に増幅してしまう。
したがって、たとえば上述した位相板等の光波面変調素子とその後の信号処理を用いるような、光学系と信号処理を含めた光学システムでは、暗所での撮影を行う場合、ノイズが増幅してしまい、復元画像に影響を与えてしまうという不利益がある。
また、たとえば、深度拡張システムに光学ズーム用の固体レンズを搭載するとメカニカルな部品が必要となり、完全にメカニカルな部品無しでフォーカスの調整や光学ズームが実現できなくなる。
フォーカス調整と光学ズーム両機能に液体レンズを使うズームレンズシステムも提案されているが、液体レンズの欠点である温度変化に弱い点から温度変化によるコマ収差が生じてしまう問題がある。
本発明の目的は、温度変化により発生するコマ収差を改善でき、メカニカル部品無しのフォーカス調整と光学ズーム両機能を実現して光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることが可能な撮像装置を提供することにある。
本発明の観点の撮像装置は、光波面変調素子を備えた光学系と、前記光学系を通過した被写体像を撮像する撮像素子と、前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する信号処理部と、を有し、前記光学系の前段に液体レンズが配置されている。
好適には、前記信号処理部は、所定の情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行うと共に、前記液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行う。
好適には、前記信号処理部は、前記液体レンズ固有のコマ収差を改善する画像劣化の復元処理用の復元フィルタとして、液体レンズ固有のコマ収差の温度依存性に応じた複数種類の復元フィルタを有し、温度に応じた復元フィルタを選択して前記画像劣化の復元処理を行う。
好適には、前記信号処理部は、複数種類の復元フィルタを用いて前記画像劣化の復元処理を行う。
好適には、前記信号処理部は、複数種類の復元フィルタを用いて復元後の復元画の高周波成分の積算値を算出し、高周波成分の積算値が一番大きくなったときの復元フィルタで画像劣化の復元処理を行う。
好適には、前記信号処理部は、フィルタの演算係数を格納するメモリ手段を有し、前記メモリ手段が格納する演算係数は、前記液体レンズ固有のコマ収差の温度依存性に応じた複数種類の復元フィルタ係数を含む。
好適には、前記メモリ手段には、露出情報に応じたノイズ低減処理のための演算係数が格納される。
好適には、前記メモリ手段には、露出情報に応じた光学的伝達関数(OTF)復元のための演算係数が格納される。
好適には、前記撮像装置は、被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を備え、前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号を生成する。
好適には、前記撮像装置は、被写体距離に応じて少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、前記被写体距離情報生成手段により生成された情報に基づき、前記変換係数記憶手段から被写体までの距離に応じた変換係数を選択する係数選択手段と、を備え、前記変換手段は、前記係数選択手段で選択された変換係数によって、画像信号の変換を行う。
好適には、前記撮像装置は、前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う。
好適には、前記撮像装置は、被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段と、を備え、前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行い分散のない画像信号を生成する。
好適には、前記変換係数演算手段は、前記被写体分散像のカーネルサイズを変数として含む。
好適には、記憶手段を有し、前記変換係数演算手段は、求めた変換係数を前記記憶手段に格納し、前記変換手段は、前記記憶手段に格納された変換係数によって、画像信号の変換を行い分散のない画像信号を生成する。
好適には、前記変換手段は、前記変換係数に基づいてコンボリューション演算を行う。
好適には、前記撮像装置は、撮影する被写体の撮影モードを設定する撮影モード設定手段と、を備え、前記変換手段は、前記撮影モード設定手段により設定された撮影モードに応じて異なる変換処理を行う。
好適には、前記撮影モードは通常撮影モードの他、マクロ撮影モードまたは遠景撮影モードのいずれか1つを有し、前記マクロ撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて近接側に分散を少なくするマクロ変換処理と、を撮影モードに応じて選択的に実行し、前記遠景撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて遠方側に分散を少なくする遠景変換処理と、を撮影モードに応じて選択的に実行する。
好適には、前記撮影モード設定手段により設定される各撮影モードに応じて異なる変換係数を記憶する変換係数記憶手段と、前記撮影モード設定手段により設定された撮影モードに応じて前記変換係数記憶手段から変換係数を抽出する変換係数抽出手段と、を備え、前記変換手段は、前記変換係数抽出手段から得られた変換係数によって、画像信号の変換を行う。
好適には、前記変換係数記憶手段は前記被写体分散像のカーネルサイズを変換係数として含む。
好適には、前記モード設定手段は、撮影モードを入力する操作スイッチと、前記操作スイッチの入力情報により被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を含み、前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号に変換処理する。
本発明によれば、温度変化により発生するコマ収差を改善でき、メカニカル部品無しのフォーカス調整と光学ズーム両機能を実現して光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることができる利点がある。
以下、本発明の実施形態を添付図面に関連付けて説明する。
図1は、本発明に係る撮像装置の一実施形態を示すブロック構成図である。
本実施形態に係る撮像装置100は、光学系110、撮像素子120、アナログフロントエンド部(AFE)130、画像処理装置140、カメラ信号処理部150、画像表示メモリ160、画像モニタリング装置170、操作部180、露出制御装置190、および液体レンズ駆動部(IC)200を有している。
光学系110は、被写体物体OBJを撮影した像を撮像素子120に供給する。
本実施形態の光学系110は、光学ズーム用レンズとして液体レンズ210を有している。液体レンズ210は、光学系110の最も被写体OBJ側に配置されている。
液体レンズ210において、レンズ面となるのは、容器に封入した水溶液とオイルの界面である。この界面の形状を液体レンズ駆動部200により印加される電圧によって変化させることで、所望の屈折力を得るように構成され、ズーム機能を有するようになる。
本実施形態においては、後で説明するように、液体レンズが温度変化の影響を受けやすく温度変化により生じるコマ収差を画像復元処理により改善するように構成されている。
撮像装置120は、光学系110で取り込んだ像が結像され、結像1次画像情報を電気信号の1次画像信号FIMとして、アナログフロントエンド部130を介して画像処理装置140に出力するCCDやCMOSセンサからなる。
図1においては、撮像素子120を一例としてCCDとして記載している。
アナログフロントエンド部130は、タイミングジェネレータ131、アナログ/デジタル(A/D)コンバータ132と、を有する。
タイミングジェネレータ131では、撮像素子120のCCDの駆動タイミングを生成しており、A/Dコンバータ132は、CCDから入力されるアナログ信号をデジタル信号に変換し、画像処理装置140に出力する。
信号処理部の一部を構成する画像処理装置(二次元コンボリューション手段)140は、前段のAFE130からくる撮像画像のデジタル信号を入力し、二次元のコンボリューション処理を施し、後段のカメラ信号処理部(DSP)150に渡す。
画像処理装置140は、たとえば露出制御装置190の露出情報に応じて、光学的伝達関数(OTF)に対してフィルタ処理を行うと共に、液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行う。なお、露出情報として絞り情報を含む。
画像処理装置140は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する機能を有する。また、信号処理部は、最初のステップでノイズ低減フィルタリングを施す機能を有する。
画像処理装置140の処理については後でさらに詳述する。
カメラ信号処理部(DSP)150は、カラー補間、ホワイトバランス、YCbCr変換処理、圧縮、ファイリング等の処理を行い、メモリ160への格納や画像モニタリング装置170への画像表示等を行う。
露出制御装置190は、露出制御を行うとともに、操作部180などの操作入力を持ち、それらの入力に応じて、システム全体の動作を決定し、AFE130、画像処理装置140、DSP150等を制御し、システム全体の調停制御を司るものである。
以下、本実施形態の光学系、画像処理装置の構成および機能について具体的に説明する。
図1のズーム光学系110は、物体側OBJSに配置された物体側レンズ111と、撮像素子120に結像させるための結像レンズ112と、物体側レンズ111と結像レンズ112間に配置され、結像レンズ112による撮像素子120の受光面への結像の波面を変形させる、たとえば3次元的曲面を有する位相板(Cubic Phase Plate)からなる光波面変調素子(波面形成用光学素子:Wavefront Coding Optical Element)群113を有する。
また、物体側レンズ111の前段に液体レンズ210が配置される。
また、物体側レンズ111と結像レンズ112間には可変絞り220が設けられ、露出制御(装置)において可変絞りの絞り度(開口度)を制御する。
なお、本実施形態においては、位相板を用いた場合について説明したが、本発明の光波面変調素子としては、波面を変形させるものであればどのようなものでもよく、厚みが変化する光学素子(たとえば、上述の3次の位相板)、屈折率が変化する光学素子(たとえば屈折率分布型波面変調レンズ)、レンズ表面へのコーディングにより厚み、屈折率が変化する光学素子(たとえば、波面変調ハイブリッドレンズ)、光の位相分布を変調可能な液晶素子(たとえば、液晶空間位相変調素子)等の光波面変調素子であればよい。
また、本実施形態においては、光波面変調素子である位相板を用いて規則的に分散した画像を形成する場合について説明したが、通常の光学系として用いるレンズで光波面変調素子と同様に規則的に分散した画像を形成できるものを選択した場合には、光波面変調素子を用いずに光学系のみで実現することができる。この際は、後述する位相板に起因する分散に対応するのではなく、光学系に起因する分散に対応することとなる。
図で示された位相板113は、光学系により収束される光束を規則正しく分散する光学レンズである。この位相板を挿入することにより、撮像素子120上ではピントのどこにも合わない画像を実現する。
換言すれば、位相板113によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成している。
この規則的に分散した画像をデジタル処理により、ピントの合った画像に復元する手段を波面収差制御光学系システム(WFCO:Wavefront Coding Optical system)といい、この処理を画像処理装置140において行う。
ここで、WFCOの基本原理について説明する。
図2に示すように、被写体の画像fがWFCO光学系Hに入ることにより、g画像が生成される。
これは、次のような式で表される。
(数1)
g=H*f
ただし、*はコンボリューションを表す。
生成された画像から被写体を求めるためには、次の処理を要する。
(数2)
f=H−1*g
ここで、Hに関するカーネルサイズと演算係数について説明する。
ズームポジションをZPn,ZPn−1・・・とする。また、それぞれのH関数をHn,Hn−1、・・・・とする。
各々のスポット像が異なるため、各々のH関数は、次のようになる。
Figure 2007300208
この行列の行数および/または列数の違いをカーネルサイズ、各々の数字を演算係数とする。
ここで、各々のH関数はメモリに格納しておいても構わないし、PSFを物体距離の関数としておき、物体距離によって計算し、H関数を算出することによって任意の物体距離に対して最適なフィルタを作るように設定できるようにしても構わない。また、H関数を物体距離の関数として、物体距離によってH関数を直接求めても構わない。
本実施形態においては、図1に示すように、光学系110からの像を撮像素子120で受像して、画像処理装置140に入力させ、光学系に応じた変換係数を取得して、取得した変換係数をもって撮像素子120からの分散画像信号より分散のない画像信号を生成するように構成している。
なお、本実施形態において、分散とは、上述したように、位相板113を挿入することにより、撮像素子120上ではピントのどこにも合わない画像を形成し、位相板113によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)を形成する現象をいい、像が分散してボケ部分を形成する振る舞いから収差と同様の意味合いが含まれる。したがって、本実施形態においては、収差として説明する場合もある。
次に、画像処理装置140の構成および処理について説明する。
画像処理装置140は、図1に示すように、生(RAW)バッファメモリ141、コンボリューション演算器142、記憶手段としてのカーネルデータ格納ROM143、およびコンボリューション制御部144を有する。
コンボリューション制御部144は、コンボリューション処理のオンオフ、画面サイズ、カーネルデータの入れ替え等の制御を行い、露出制御装置190により制御される。
また、カーネルデータ格納ROM143には、図3に示すように予め用意されたそれぞれの光学系のPSFにより算出されたコンボリューション用のカーネルデータが格納されており、露出制御装置190によって露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
なお、露出情報には、絞り情報が含まれる。
また、図3の例では、カーネルデータAは絞り情報としてのFナンバ(2.8)、カーネルデータBはFナンバ(4)、カーネルデータCはFナンバ(5.6)に対応したデータとなっている。
図3の例のように、絞り情報に応じたフィルタ処理を行うのは以下の理由による。
絞りを絞って撮影を行う場合、絞りによって光波面変調素子を形成する位相板113が覆われてしまい、位相が変化してしまうため、適切な画像を復元することが困難となる。
そこで、本実施形態においては、本例のように、露出情報中の絞り情報に応じたフィルタ処理を行うことによって適切な画像復元を実現している。
図4は、露出制御装置190の露出情報(絞り情報を含む)により切り替え処理のフローチャートである。
まず、露出情報(RP)が検出されコンボリューション制御部144に供給される(ST101)。
コンボリューション制御部144においては、露出情報RPから、カーネルサイズ、数値演係数がレジスタにセットされる(ST102)。
そして、撮像素子120で撮像され、AFE130を介して二次元コンボリューション演算部142に入力された画像データに対して、レジスタに格納されたデータに基づいてコンボリューション演算が行われ、演算され変換されたデータがカメラ信号処理部150に転送される(ST103)。
コンボリューション演算は下記の式で表される。
Figure 2007300208
ただし、fはフィルタ(filter)カーネルを示している(ここでは計算を容易にするために180度回転済みのものを使用している)。
また、Aは元画像、Bはフィルタリングされた画像(ボケ復元画像)を示している。
この式から分かる通り、fを画像に重ねて各タップ同士の積和した結果をその重ねた中心座標の値とすることである。
上述したように、コンボリューション処理は画像処理装置140で行われる。撮像素子120からの画素データは式4に従いコンボリュージョン処理される。
以下に、本実施形態の特徴であるボケ復元処理についてより具体的に説明する。
本実施形態においては、光学ズーム用レンズに液体レンズ210を用い、かつWFCOに対応した構成を有している。
光学系110を通過した信号(ボケ画)には位相変調素子113によるボケと液体レンズ固有のコマ収差によるボケが含まれる。この両ボケを図1の2次元コンボルーション演算部142により画像劣化の復元処理を行う。
画像処理装置140は、はじめに位相変調素子によるボケを位相変調素子によるボケ復元フィルタを用いて、換言すれば、カーネルデータ格納ROM143から位相変調素子によるボケ復元用のフィルタ係数を読み込み、このフィルタ係数により復元処理を行う。
すると処理後は位相変調素子によるボケは改善される。
画像処理装置140は、次に液体レンズ固有のコマ収差によるボケの画像劣化の復元処理を行う。
図5は、本実施形態に係るコマ収差改善用フィルタの一例を示す図である。
まず、図5に示すように、液体レンズの固有のコマ収差には温度依存性があることから温度で分類し、特定温度のコマ収差に応じて作成した復元フィルタF1〜F5を用意して画像劣化の復元処理を行う。
図5の例において、フィルタF1は−20°C〜0°Cに対応し、フィルタF2は0°C〜10°Cに対応し、フィルタF3は10°C〜20°Cに対応し、フィルタF4は20°C〜35°Cに対応し、フィルタF4は35°C〜40°Cに対応している。
本実施形態において、画像処理装置140は、複数種類(図10の例では5)の復元フィルタF1〜F5を用いて復元後の復元画の高周波成分の積算値を算出し、高周波成分の積算値が一番大きくなったときの復元フィルタで画像劣化の復元処理を行う。
図6は、複数の復元フィルタを用いた画像劣化の復元処理の一例を示すフローチャートである。
また、図7は、複数のコマ収差改善用フィルタにより画像劣化の復元処理における高周波成分の積算結果を示す図である。
ステップST111において、ROM143から温度別フィルタ係数を読み込み、ステップST112で復元処理を行う。
ステップST113において、復元後の高周波成分の積算を行い、ステップST114で結果をメモリへ保存する。
以上の処理を繰り返し、ステップST115において図7に示すように、高周波成分の積算値が一番大きかったフィルタ(図7の例ではフィルタF3)をコマ収差改善用のフィルタと決定する。
そいて、ステップST116において、最終の画像劣化復元処理を行う。
図7のような結果になればフィルタF3を用いて画像劣化復元(コマ収差改善)を行う。最終的な復元画はピントの合った画像になり液体レンズだけで構成する光学システムを用いるよりもコマ収差の少ない良好な画像が得られる。
このように、液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行えば、完全にメカニカル部品無しのフォーカス調整と光学ズーム両機能を備えた光学システムでピントの合った復元画像が得られる。
また、フォーカス調整はWFCO技術を用いることから画像全体にピントの合った復元画像を提供できる。特に監視カメラのような電子画像機器システムには最適な光学システムと言える。
以下に画像処理装置140の信号処理部とカーネルデータ格納ROMについてさらに具体的な例について説明する。
図8は、信号処理部とカーネルデータ格納ROMについての第1の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図8の例は露出情報に応じたフィルタカーネルを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。2次元コンボリューション演算部142においては、カーネルデータを用いてコンボリューション処理を施す。
図9は、信号処理部とカーネルデータ格納ROMについての第2の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図9の例は、信号処理部の最初にノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタ処理ST1を予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142においては、前記ノイズ低減フィルタST1を施した後、カラーコンバージョン処理ST2によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST3を施す。
再度ノイズ処理ST4を行い、カラーコンバージョン処理ST5によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、再度のノイズ処理ST4は省略することも可能である。
図10は、信号処理部とカーネルデータ格納ROMについての第3の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図10の例は、露出情報に応じたOTF復元フィルタを予め用意した場合のブロック図である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142は、ノイズ低減処理ST11、カラーコンバージョン処理ST12の後に、前記OTF復元フィルタを用いてコンボリューション処理ST13を施す。
再度ノイズ処理ST14を行い、カラーコンバージョン処理ST15によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST11、ST14は、いずれか一方のみでもよい。
図11は、信号処理部とカーネルデータ格納ROMについての第4の構成例を示す図である。なお、簡単化のためにAFE等は省略している。
図11の例は、ノイズ低減フィルタ処理のステップを有し、フィルタカーネルデータとして露出情報に応じたノイズ低減フィルタを予め用意した場合のブロック図である。
なお、再度のノイズ処理ST4は省略することも可能である。
露出設定時に決まる露出情報を取得し、コンボリューション制御部144を通じてカーネルデータを選択制御する。
2次元コンボリューション演算部142においては、ノイズ低減フィルタ処理ST21を施した後、カラーコンバージョン処理ST22によって色空間を変換、その後カーネルデータを用いてコンボリューション処理ST23を施す。
再度、露出情報に応じたノイズ処理ST24を行い、カラーコンバージョン処理ST25によって元の色空間に戻す。カラーコンバージョン処理は、たとえばYCbCr変換が挙げられるが、他の変換でも構わない。
なお、ノイズ低減処理ST21は省略することも可能である。
以上は露出情報のみに応じて2次元コンボリューション演算部142においてフィルタ処理を行う例を説明したが、たとえば被写体距離情報、ズーム情報、あるいは撮影モード情報と露出情報とを組み合わせることにより適した演算係数の抽出、あるいは演算を行うことが可能となる。
図12は、被写体距離情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
図12は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成するが画像処理装置300の構成例を示している。
画像処理装置300は、図12に示すように、コンボリューション装置301、カーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300においては、物体概略距離情報検出装置400から読み出した被写体の物体距離の概略距離に関する情報および露出情報を得た画像処理演算プロセッサ303では、その物体離位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置400により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
上記の画像処理はコンボリューション演算により行うが、これを実現するには、たとえばコンボリューション演算の演算係数を共通で1種類記憶しておき、焦点距離に応じて補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成をとることができる。
この構成の他にも、以下の構成を採用することが可能である。
焦点距離に応じて、カーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算を行う構成、焦点距離に応じた演算係数を関数として予め記憶しておき、焦点距離によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
図12の構成に対応付けると次のような構成をとることができる。
変換係数記憶手段としてのレジスタ302に被写体距離に応じて少なくとも位相板113に起因する収差に対応した変換係数を少なくとも2以上予め記憶する。画像処理演算プロセッサ303が、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された情報に基づき、レジスタ302から被写体までの距離に応じた変換係数を選択する係数選択手段として機能する。
そして、変換手段としてのコンボリューション装置301が、係数選択手段としての画像処理演算プロセッサ303で選択された変換係数によって、画像信号の変換を行う。
または、前述したように、変換係数演算手段としての画像処理演算プロセッサ303が、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された情報に基づき変換係数を演算し、レジスタ302に格納する。
そして、変換手段としてのコンボリューション装置301が、変換係数演算手段としての画像処理演算プロセッサ303で得られレジスタ302に格納された変換係数によって、画像信号の変換を行う。
または、補正値記憶手段としてのレジスタ302にズーム光学系110のズーム位置またはズーム量に応じた少なくとも1以上の補正値を予め記憶する。この補正値には、被写体収差像のカーネルサイズを含まれる。
第2変換係数記憶手段としても機能するレジスタ302に、位相板113に起因する収差に対応した変換係数を予め記憶する。
そして、被写体距離情報生成手段としての物体概略距離情報検出装置400により生成された距離情報に基づき、補正値選択手段としての画像処理演算プロセッサ303が、補正値記憶手段としてのレジスタ302から被写体までの距離に応じた補正値を選択する。
変換手段としてのコンボリューション装置301が、第2変換係数記憶手段としてのレジスタ302から得られた変換係数と、補正値選択手段としての画像処理演算プロセッサ303により選択された補正値とに基づいて画像信号の変換を行う。
図13に、露出情報と、物体距離情報と、撮影モードとを用いた場合のフィルタの構成例を示す。
この例では、物体距離情報と撮影モード情報で2次元的な情報を形成し、露出情報が奥行きのような情報を形成している。
図14は、撮影モード情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。
図14は、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する画像処理装置300Bの構成例を示している。
画像処理装置300Bは、図12と同様に、コンボリューション装置301、記憶手段としてのカーネル・数値演算係数格納レジスタ302、および画像処理演算プロセッサ303を有する。
この画像処理装置300Bにおいては、物体概略距離情報検出装置500から読み出した被写体の物体距離の概略距離に関する情報および露出情報を得た画像処理演算プロセッサ303では、その物体離位置に対して適正な演算で用いる、カーネルサイズやその演算係数をカーネル、数値算係数格納レジスタ302に格納し、その値を用いて演算するコンボリューション装置301にて適正な演算を行い、画像を復元する。
この場合も上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本例においては、主被写体までの距離を、距離検出センサを含む物体概略距離情報検出装置400により検出し、検出した距離に応じて異なる画像補正の処理を行うことにように構成されている。
上記の画像処理はコンボリューション演算により行うが、これを実現するには、コンボリューション演算の演算係数を共通で1種類記憶しておき、物体距離に応じて補正係数を予め記憶しておき、この補正係数を用いて演算係数を補正し、補正した演算係数で適性なコンボリューション演算を行う構成、物体距離に応じた演算係数を関数として予め記憶しておき、焦点距離によりこの関数より演算係数を求め、計算した演算係数でコンボリューション演算を行う構成、物体距離に応じて、カーネルサイズやコンボリューションの演算係数自体を予め記憶しておき、これら記憶したカーネルサイズや演算係数でコンボリューション演算を行う構成等、を採用することが可能である。
本実施形態においては、上述したように、DSCのモード設定(ポートレイト、無限遠(風景)、マクロ)に応じて画像処理を変更する。
図14の構成に対応付けると次のような構成をとることができる。
前述したように、変換係数演算手段としての画像処理演算プロセッサ303を通して操作部180の撮影モード設定部600により設定される各撮影モードに応じて異なる変換係数を変換係数記憶手段としてのレジスタ302に格納する。
画像処理演算プロセッサ303が、撮影モード設定部600の操作スイッチ601により設定された撮影モードに応じて、被写体距離情報生成手段としての物体概略距離情報検出装置500により生成された情報に基づき、変換係数記憶手段としてのレジスタ302から変換係数を抽出する。このとき、たとえば画像処理演算プロセッサ303が変換係数抽出手段とて機能する。
そして、変換手段としてのコンボリューション装置301が、レジスタ302に格納された変換係数によって、画像信号の撮影モードに応じた変換処理を行う。
また、図3のカーネルデータ格納ROMに関しても、光学倍率、Fナンバやそれぞれのカーネルのサイズ、値に対して用いられるものとは限らない。また用意するカーネルデータの数についても3個とは限らない。
図13のように3次元、さらには4次元以上とすることで格納量が多くなるが、種々の条件を考慮してより適したものを選択することができるようになる。情報としては、上述した露出情報、物体距離情報、撮像モード情報等であればよい。
なお、上述のように、光波面変調素子としての位相板(Wavefront Coding optical element)を備えた撮像装置の場合、所定の焦点距離範囲内であればその範囲内に関し画像処理によって適正な収差のない画像信号を生成できるが、所定の焦点距離範囲外の場合には、画像処理の補正に限度があるため、前記範囲外の被写体のみ収差のある画像信号となってしまう。
また一方、所定の狭い範囲内に収差が生じない画像処理を施すことにより、所定の狭い範囲外の画像にぼけ味を出すことも可能になる。
本実施形態においては、WFCOを採用し、高精細な画質を得ることが可能で、しかも、光学系を簡単化でき、コスト低減を図ることが可能となっている。
以下、この特徴について説明する。
図15(A)〜(C)は、撮像素子120の受光面でのスポット像を示している。
図15(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、図15(B)が合焦点の場合(Best focus)、図15(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示している。
図15(A)〜(C)からもわかるように、本実施形態に係る撮像装置100においては、位相板113を含む波面形成用光学素子群113によって深度の深い光束(像形成の中心的役割を成す)とフレアー(ボケ部分)が形成される。
このように、本実施形態の撮像装置100において形成された1次画像FIMは、深度が非常に深い光束条件にしている。
図16(A),(B)は、本実施形態に係る撮像レンズ装置により形成される1次画像の変調伝達関数(MTF:Modulation Transfer Function)について説明するための図であって、図16(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、図16(B)が空間周波数に対するMTF特性を示している。
本実施形態においては、高精細な最終画像は後段の、たとえばデジタルシグナルプロセッサ(Digital Signal Processor)からなる画像処理装置140の補正処理に任せるため、図16(A),(B)に示すように、1次画像のMTFは本質的に低い値になっている。
画像処理装置140は、上述したように、撮像素子120による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する。
画像処理装置140のMTF補正処理は、たとえば図17の曲線Aで示すように、本質的に低い値になっている1次画像のMTFを、空間周波数をパラメータとしてエッジ強調、クロマ強調等の後処理にて、図17中曲線Bで示す特性に近づく(達する)ような補正を行う。
図17中曲線Bで示す特性は、たとえば本実施形態のように、波面形成用光学素子を用いずに波面を変形させない場合に得られる特性である。
なお、本実施形態における全ての補正は、空間周波数のパラメータによる。
本実施形態においては、図17に示すように、光学的に得られる空間周波数に対するMTF特性曲線Aに対して、最終的に実現したいMTF特性曲線Bを達成するためには、それぞれの空間周波数に対し、エッジ強調等の強弱を付け、元の画像(1次画像)に対して補正をかける。
たとえば、図17のMTF特性の場合、空間周波数に対するエッジ強調の曲線は、図18に示すようになる。
すなわち、空間周波数の所定帯域内における低周波数側および高周波数側でエッジ強調を弱くし、中間周波数領域においてエッジ強調を強くして補正を行うことにより、所望のMTF特性曲線Bを仮想的に実現する。
このように、実施形態に係る撮像装置100は、基本的に、1次画像を形成する光学系110および撮像素子120と、1次画像を高精細な最終画像に形成する画像処理装置140からなり、光学系システムの中に、波面成形用の光学素子を新たに設けるか、またはガラス、プラスチックなどのような光学素子の面を波面成形用に成形したものを設けることにより、結像の波面を変形(変調)し、そのような波面をCCDやCMOSセンサからなる撮像素子120の撮像面(受光面)に結像させ、その結像1次画像を、画像処理装置140を通して高精細画像を得る画像形成システムである。
本実施形態では、撮像素子120による1次画像は深度が非常に深い光束条件にしている。そのために、1次画像のMTFは本質的に低い値になっており、そのMTFの補正を画像処理装置140で行う。
ここで、本実施形態における撮像装置100における結像のプロセスを、波動光学的に考察する。
物点の1点から発散された球面波は結像光学系を通過後、収斂波となる。そのとき、結像光学系が理想光学系でなければ収差が発生する。波面は球面でなく複雑な形状となる。幾何光学と波動光学の間を取り持つのが波面光学であり、波面の現象を取り扱う場合に便利である。
結像面における波動光学的MTFを扱うとき、結像光学系の射出瞳位置における波面情報が重要となる。
MTFの計算は結像点における波動光学的強度分布のフーリエ変換で求まる。その波動光学的強度分布は波動光学的振幅分布を2乗して得られるが、その波動光学的振幅分布は射出瞳における瞳関数のフーリエ変換から求まる。
さらにその瞳関数はまさに射出瞳位置における波面情報(波面収差)そのものからであることから、その光学系110を通して波面収差が厳密に数値計算できればMTFが計算できることになる。
したがって、所定の手法によって射出瞳位置での波面情報に手を加えれば、任意に結像面におけるMTF値は変更可能である。
本実施形態においても、波面の形状変化を波面形成用光学素子で行うのが主であるが、まさにphase(位相、光線に沿った光路長)に増減を設けて目的の波面形成を行っている。
そして、目的の波面形成を行えば、射出瞳からの射出光束は、図15(A)〜(C)に示す幾何光学的なスポット像からわかるように、光線の密な部分と疎の部分から形成される。
この光束状態のMTFは空間周波数の低いところでは低い値を示し、空間周波数の高いところまでは何とか解像力は維持している特徴を示している。
すなわち、この低いMTF値(または、幾何光学的にはこのようなスポット像の状態)であれば、エリアジングの現象を発生させないことになる。
つまり、ローパスフィルタが必要ないのである。
そして、後段のDSP等からなる画像処理装置140でMTF値を低くしている原因のフレアー的画像を除去すれば良いのである。それによってMTF値は著しく向上する。
次に、本実施形態および従来光学系のMTFのレスポンスについて考察する。
図19は、従来の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンス(応答)を示す図である。
図20は、光波面変調素子を有する本実施形態の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンスを示す図である。
また、図21は、本実施形態に係る撮像装置のデータ復元後のMTFのレスポンスを示す図である。
図からもわかるように、光波面変調素子を有する光学系の場合、物体が焦点位置から外れた場合でもMTFのレスポンスの変化が光波面変調素子を挿入してない光学径よりも少なくなる。
この光学系によって結像された画像を、コンボリューションフィルタによる処理によって、MTFのレスポンスが向上する。
以上説明したように、本実施形態によれば、光波面変調素子を備えた光学系110と、光学系110を通過した被写体像を撮像する撮像素子120と、撮像素子120からの被写体分散画像信号より分散のない画像信号を生成する変換部を有する画像処理装置140と、を有し、光学系110の前段部に液体レンズ210が配置され、画像処理装置140は、所定の情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行と共に、液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行うことから、以下の効果を得ることができる。
液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行うことから、完全にメカニカル部品無しのフォーカス調整とズーム両機能を備えた光学システムでピントの合った復元画像が得られる。
また、フォーカス調整はWFCO技術を用いることから画像全体にピントの合った復元画像を提供できる。特に監視カメラのような電子画像機器システムには最適な光学システムと言える。
また、画像処理装置140において、露出制御装置190からの露出情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行うことから、光学系を簡単化でき、コスト低減を図ることができ、しかもノイズの影響が小さい復元画像を得ることができる利点がある。
また、コンボリューション演算時に用いるカーネルサイズやその数値演算で用いられる係数を可変とし、操作部180等の入力により知り、適性となるカーネルサイズや上述した係数を対応させることにより、倍率やデフォーカス範囲を気にすることなくレンズ設計ができ、かつ精度の高いコンボリュ−ションによる画像復元が可能となる利点がある。
また、難度が高く、高価でかつ大型化した光学レンズを必要とせずに、かつ、レンズを駆動させること無く、撮影したい物体に対してピントが合い、背景はぼかすといった、いわゆる自然な画像を得ることができる利点がある。
そして、本実施形態に係る撮像装置100は、デジタルカメラやカムコーダー等の民生機器の小型、軽量、コストを考慮されたズームレンズのWFCOに使用することが可能である。
また、本実施形態においては、結像レンズ112による撮像素子120の受光面への結像の波面を変形させる波面形成用光学素子を有する撮像レンズ系と、撮像素子120による1次画像FIMを受けて、1次画像の空間周波数におけるMTFをいわゆる持ち上げる所定の補正処理等を施して高精細な最終画像FNLIMを形成する画像処理装置140とを有することから、高精細な画質を得ることが可能となるという利点がある。
また、光学系110の構成を簡単化でき、製造が容易となり、コスト低減を図ることができる。
ところで、CCDやCMOSセンサを撮像素子として用いた場合、画素ピッチから決まる解像力限界が存在し、光学系の解像力がその限界解像力以上であるとエリアジングのような現象が発生し、最終画像に悪影響を及ぼすことは周知の事実である。
画質向上のため、可能な限りコントラストを上げることが望ましいが、そのことは高性能なレンズ系を必要とする。
しかし、上述したように、CCDやCMOSセンサを撮像素子として用いた場合、エリアジングが発生する。
現在、エリアジングの発生を避けるため、撮像レンズ装置では、一軸結晶系からなるローパスフィルタを併用し、エリアジングの現象の発生を避けている。
このようにローパスフィルタを併用することは、原理的に正しいが、ローパスフィルタそのものが結晶でできているため、高価であり、管理が大変である。また、光学系に使用することは光学系をより複雑にしているという不利益がある。
以上のように、時代の趨勢でますます高精細の画質が求められているにもかかわらず、高精細な画像を形成するためには、従来の撮像レンズ装置では光学系を複雑にしなければならない。複雑にすれば、製造が困難になったりし、また高価なローパスフィルタを利用したりするとコストアップにつながる。
しかし、本実施形態によれば、ローパスフィルタを用いなくとも、エリアジングの現象の発生を避けることができ、高精細な画質を得ることができる。
なお、本実施形態において、光学系の波面形成用光学素子を絞りより物体側レンズよりに配置した例を示したが、絞りと同一あるいは絞りより結像レンズ側に配置しても前記と同様の作用効果を得ることができる。
また、図2や図3の光学系は一例であり、本発明は図2や図3の光学系に対して用いられるものとは限らない。また、スポット形状についても図4および図5は一例であり、本実施形態のスポット形状は、図4および図5に示すものとは限らない。
また、図7および図8のカーネルデータ格納ROMに関しても、光学倍率、Fナンバやそれぞれのカーネルのサイズ、値に対して用いられるものとは限らない。また用意するカーネルデータの数についても3個とは限らない。
本発明に係る撮像装置の一実施形態を示すブロック構成図である。 WFCOの原理を説明するための図である。 カーネルデータROMの格納データの他例(Fナンバ)を示す図である。 露出制御装置の光学系設定処理の概要を示すフローチャートである。 本実施形態に係るコマ収差改善用フィルタの一例を示す図である。 複数の復元フィルタを用いた画像劣化の復元処理の一例を示すフローチャートである。 複数のコマ収差改善用フィルタにより画像劣化の復元処理における高周波成分の積算結果を示す図である。 信号処理部とカーネルデータ格納ROMについての第1の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第2の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第3の構成例を示す図である。 信号処理部とカーネルデータ格納ROMについての第4の構成例を示す図である。 被写体距離情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。 露出情報と、物体距離情報と、ズーム情報とを用いた場合のフィルタの構成例を示す図である。 撮影モード情報と露出情報とを組み合わせる画像処理装置の構成例を示す図である。 本実施形態に係る撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。 本実施形態に係る撮像素子により形成される1次画像のMTFについて説明するための図であって、(A)は撮像レンズ装置の撮像素子の受光面でのスポット像を示す図で、(B)が空間周波数に対するMTF特性を示している。 本実施形態に係る画像処理装置におけるMTF補正処理を説明するための図である。 本実施形態に係る画像処理装置におけるMTF補正処理を具体的に説明するための図である。 従来の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンス(応答)を示す図である。 光波面変調素子を有する本実施形態の光学系の場合において物体が焦点位置にあるときと焦点位置から外れたときのMTFのレスポンスを示す図である。 本実施形態に係る撮像装置のデータ復元後のMTFのレスポンスを示す図である。 一般的な撮像レンズ装置の構成および光束状態を模式的に示す図である。 図22の撮像レンズ装置の撮像素子の受光面でのスポット像を示す図であって、(A)は焦点が0.2mmずれた場合(Defocus=0.2mm)、(B)が合焦点の場合(Best focus)、(C)が焦点が−0.2mmずれた場合(Defocus=−0.2mm)の各スポット像を示す図である。
符号の説明
100…撮像装置、110…光学系、120…撮像素子、130…アナログフロントエンド部(AFE)、140…画像処理装置、150…カメラ信号処理部、180…操作部、190…露出制御装置、200…液体レンズ駆動部、210…液体レンズ、111…物体側レンズ、112…結像レンズ、113…波面形成用光学素子、113…位相板(光波面変調素子)、142…コンボリューション演算器、143…カーネルデータROM、144…コンボリューション制御部、F1〜F5…コマ収差改善用フィルタ。

Claims (20)

  1. 光波面変調素子を備えた光学系と、
    前記光学系を通過した被写体像を撮像する撮像素子と、
    前記撮像素子からの被写体分散画像信号より分散のない画像信号を生成する変換手段を有する信号処理部と、を有し、
    前記光学系の前段に液体レンズが配置されている
    撮像装置。
  2. 前記信号処理部は、所定の情報に応じて光学的伝達関数(OTF)に対してフィルタ処理を行うと共に、前記液体レンズ固有のコマ収差を改善する画像劣化の復元処理を行う
    請求項1記載の撮像装置。
  3. 前記信号処理部は、前記液体レンズ固有のコマ収差を改善する画像劣化の復元処理用の復元フィルタとして、液体レンズ固有のコマ収差の温度依存性に応じた複数種類の復元フィルタを有し、温度に応じた復元フィルタを選択して前記画像劣化の復元処理を行う
    請求項2記載の撮像装置。
  4. 前記信号処理部は、複数種類の復元フィルタを用いて前記画像劣化の復元処理を行う
    請求項2または3記載の撮像装置。
  5. 前記信号処理部は、複数種類の復元フィルタを用いて復元後の復元画の高周波成分の積算値を算出し、高周波成分の積算値が一番大きくなったときの復元フィルタで画像劣化の復元処理を行う
    請求項4記載の撮像装置。
  6. 前記信号処理部は、フィルタの演算係数を格納するメモリ手段を有し、
    前記メモリ手段が格納する演算係数は、前記液体レンズ固有のコマ収差の温度依存性に応じた複数種類の復元フィルタ係数を含む
    請求項1から5のいずれか一に記載の撮像装置。
  7. 前記メモリ手段には、露出情報に応じたノイズ低減処理のための演算係数が格納される
    請求項6記載の撮像装置。
  8. 前記メモリ手段には、露出情報に応じた光学的伝達関数(OTF)復元のための演算係数が格納される
    請求項6記載の撮像装置。
  9. 前記撮像装置は、
    被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を備え、
    前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号を生成する
    請求項1から8のいずれか一に記載の撮像装置。
  10. 前記撮像装置は、
    被写体距離に応じて少なくとも前記光波面変調素子または前記光学系に起因する分散に対応した変換係数を少なくとも2以上予め記憶する変換係数記憶手段と、
    前記被写体距離情報生成手段により生成された情報に基づき、前記変換係数記憶手段から被写体までの距離に応じた変換係数を選択する係数選択手段と、を備え、
    前記変換手段は、前記係数選択手段で選択された変換係数によって、画像信号の変換を行う
    請求項9に記載の撮像装置。
  11. 前記撮像装置は、
    前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段、を備え、
    前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行う
    請求項9に記載の撮像装置。
  12. 前記撮像装置は、
    被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、
    前記被写体距離情報生成手段により生成された情報に基づき変換係数を演算する変換係数演算手段と、を備え、
    前記変換手段は、前記変換係数演算手段から得られた変換係数によって、画像信号の変換を行い分散のない画像信号を生成する
    請求項1から8のいずれか一に記載の撮像装置。
  13. 前記変換係数演算手段は、前記被写体分散像のカーネルサイズを変数として含む
    請求項12に記載の撮像装置。
  14. 記憶手段を有し、
    前記変換係数演算手段は、求めた変換係数を前記記憶手段に格納し、
    前記変換手段は、前記記憶手段に格納された変換係数によって、画像信号の変換を行い分散のない画像信号を生成する
    請求項12または13に記載の撮像装置。
  15. 前記変換手段は、前記変換係数に基づいてコンボリューション演算を行う
    請求項12から14のいずれか一に記載の撮像装置。
  16. 前記撮像装置は、
    撮影する被写体の撮影モードを設定する撮影モード設定手段と、を備え、
    前記変換手段は、前記撮影モード設定手段により設定された撮影モードに応じて異なる変換処理を行う
    請求項1から8のいずれか一に記載の撮像装置。
  17. 前記撮影モードは通常撮影モードの他、マクロ撮影モードまたは遠景撮影モードのいずれか1つを有し、
    前記マクロ撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて近接側に分散を少なくするマクロ変換処理と、を撮影モードに応じて選択的に実行し、
    前記遠景撮影モードを有する場合、前記変換手段は、通常撮影モードにおける通常変換処理と、当該通常変換処理に比べて遠方側に分散を少なくする遠景変換処理と、を撮影モードに応じて選択的に実行する
    請求項16に記載の撮像装置。
  18. 前記撮影モード設定手段により設定される各撮影モードに応じて異なる変換係数を記憶する変換係数記憶手段と、
    前記撮影モード設定手段により設定された撮影モードに応じて前記変換係数記憶手段から変換係数を抽出する変換係数抽出手段と、を備え、
    前記変換手段は、前記変換係数抽出手段から得られた変換係数によって、画像信号の変換を行う
    請求項16または17に記載の撮像装置。
  19. 前記変換係数記憶手段は前記被写体分散像のカーネルサイズを変換係数として含む
    請求項18に記載の撮像装置。
  20. 前記モード設定手段は、
    撮影モードを入力する操作スイッチと、
    前記操作スイッチの入力情報により被写体までの距離に相当する情報を生成する被写体距離情報生成手段と、を含み、
    前記変換手段は、前記被写体距離情報生成手段により生成される情報に基づいて前記分散画像信号より分散のない画像信号に変換処理する
    請求項16から19のいずれか一に記載の撮像装置。
JP2006124342A 2006-04-27 2006-04-27 撮像装置 Pending JP2007300208A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124342A JP2007300208A (ja) 2006-04-27 2006-04-27 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124342A JP2007300208A (ja) 2006-04-27 2006-04-27 撮像装置

Publications (1)

Publication Number Publication Date
JP2007300208A true JP2007300208A (ja) 2007-11-15

Family

ID=38769361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124342A Pending JP2007300208A (ja) 2006-04-27 2006-04-27 撮像装置

Country Status (1)

Country Link
JP (1) JP2007300208A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069752A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 撮像装置および電子機器
WO2009119838A1 (ja) * 2008-03-27 2009-10-01 京セラ株式会社 光学系、撮像装置および情報コード読取装置
US7944490B2 (en) 2006-05-30 2011-05-17 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US8044331B2 (en) 2006-08-18 2011-10-25 Kyocera Corporation Image pickup apparatus and method for manufacturing the same
JP2011217087A (ja) * 2010-03-31 2011-10-27 Canon Inc 画像処理装置及びそれを用いた撮像装置
US8059955B2 (en) 2006-09-25 2011-11-15 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US8125537B2 (en) 2007-06-28 2012-02-28 Kyocera Corporation Image processing method and imaging apparatus using the same
US8149298B2 (en) 2008-06-27 2012-04-03 Kyocera Corporation Imaging device and method
US8310583B2 (en) 2008-09-29 2012-11-13 Kyocera Corporation Lens unit, image pickup apparatus, electronic device and an image aberration control method
US8334500B2 (en) 2006-12-27 2012-12-18 Kyocera Corporation System for reducing defocusing of an object image due to temperature changes
US8363129B2 (en) 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
US8502877B2 (en) 2008-08-28 2013-08-06 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
US8567678B2 (en) 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7944490B2 (en) 2006-05-30 2011-05-17 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US8044331B2 (en) 2006-08-18 2011-10-25 Kyocera Corporation Image pickup apparatus and method for manufacturing the same
US8059955B2 (en) 2006-09-25 2011-11-15 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US8334500B2 (en) 2006-12-27 2012-12-18 Kyocera Corporation System for reducing defocusing of an object image due to temperature changes
US8567678B2 (en) 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device
US8125537B2 (en) 2007-06-28 2012-02-28 Kyocera Corporation Image processing method and imaging apparatus using the same
US8605192B2 (en) 2007-11-29 2013-12-10 Kyocera Corporation Imaging apparatus and electronic device including an imaging apparatus
JPWO2009069752A1 (ja) * 2007-11-29 2011-04-21 京セラ株式会社 撮像装置および電子機器
WO2009069752A1 (ja) * 2007-11-29 2009-06-04 Kyocera Corporation 撮像装置および電子機器
JPWO2009119838A1 (ja) * 2008-03-27 2011-07-28 京セラ株式会社 光学系、撮像装置および情報コード読取装置
US8462213B2 (en) 2008-03-27 2013-06-11 Kyocera Corporation Optical system, image pickup apparatus and information code reading device
WO2009119838A1 (ja) * 2008-03-27 2009-10-01 京セラ株式会社 光学系、撮像装置および情報コード読取装置
US8149298B2 (en) 2008-06-27 2012-04-03 Kyocera Corporation Imaging device and method
US8363129B2 (en) 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
US8502877B2 (en) 2008-08-28 2013-08-06 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
US8773778B2 (en) 2008-08-28 2014-07-08 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
US8310583B2 (en) 2008-09-29 2012-11-13 Kyocera Corporation Lens unit, image pickup apparatus, electronic device and an image aberration control method
JP2011217087A (ja) * 2010-03-31 2011-10-27 Canon Inc 画像処理装置及びそれを用いた撮像装置

Similar Documents

Publication Publication Date Title
JP4712631B2 (ja) 撮像装置
JP4663737B2 (ja) 撮像装置およびその画像処理方法
JP4749959B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4749984B2 (ja) 撮像装置、並びにその製造装置および製造方法
JP4818957B2 (ja) 撮像装置およびその方法
JP2008268937A (ja) 撮像装置および撮像方法
JP2007300208A (ja) 撮像装置
JP2007322560A (ja) 撮像装置、並びにその製造装置および製造方法
JP2008048293A (ja) 撮像装置、およびその製造方法
JP2008085697A (ja) 撮像装置、並びにその製造装置および製造方法
JP2007206738A (ja) 撮像装置およびその方法
JP4364847B2 (ja) 撮像装置および画像変換方法
JP2008245266A (ja) 撮像装置および撮像方法
JP2006311473A (ja) 撮像装置および撮像方法
JP2009086017A (ja) 撮像装置および撮像方法
JP2006094468A (ja) 撮像装置および撮像方法
JP4818956B2 (ja) 撮像装置およびその方法
JP2008245265A (ja) 撮像装置、並びにその製造装置および製造方法
JP2009033607A (ja) 撮像装置および画像処理方法
JP4916853B2 (ja) 撮像装置およびその方法
JP4722748B2 (ja) 撮像装置およびその画像生成方法
JP2009134023A (ja) 撮像装置および情報コード読取装置
JP5197784B2 (ja) 撮像装置
JP2008058540A (ja) 撮像装置、および画像処理方法
JP2009008935A (ja) 撮像装置