JP2007049106A - Planarized resin-coated printed wiring board - Google Patents

Planarized resin-coated printed wiring board Download PDF

Info

Publication number
JP2007049106A
JP2007049106A JP2005259874A JP2005259874A JP2007049106A JP 2007049106 A JP2007049106 A JP 2007049106A JP 2005259874 A JP2005259874 A JP 2005259874A JP 2005259874 A JP2005259874 A JP 2005259874A JP 2007049106 A JP2007049106 A JP 2007049106A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
resin
layer
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259874A
Other languages
Japanese (ja)
Other versions
JP4915639B2 (en
Inventor
Kiyoshi Sato
清 佐藤
Yukihiro Koga
幸博 古閑
Kazunori Kitamura
和憲 北村
Shoji Fujizu
彰二 藤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Ei Kagaku Co Ltd
Original Assignee
San Ei Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Ei Kagaku Co Ltd filed Critical San Ei Kagaku Co Ltd
Priority to JP2005259874A priority Critical patent/JP4915639B2/en
Priority to TW095128091A priority patent/TWI331002B/en
Priority to DE102006037273.5A priority patent/DE102006037273B4/en
Publication of JP2007049106A publication Critical patent/JP2007049106A/en
Application granted granted Critical
Publication of JP4915639B2 publication Critical patent/JP4915639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09536Buried plated through-holes, i.e. plated through-holes formed in a core before lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1572Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a planarized resin-coated printed wiring board without the need of polishing, both surfaces of which have been extremely highly planarized, the thickness of which is constant all over the printed wiring board, and which is excellent in the mounting stability and impedance characteristic of parts; and a multilayer printed wiring board useful as an internal layer that is manufactured by such a printed wiring board and both surfaces of which have been extremely highly planarized. <P>SOLUTION: The method for manufacturing a printed wiring board, in which a photo/thermal hardening resin composite is applied to one of the surfaces of a printed wiring board having a through-hole and the through-hole. After the following steps (1) and (2) are carried out sequentially; the photo/thermal hardening resin composite is applied to the other surface of the printed wiring board, and the following steps (1) to (3) are carried out sequentially for planarizing the surface to which resin is applied (step 1), for photo-hardening the resin to be applied (step 2), and for thermal-hardening the photo hardening resin (step 3). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリント配線板及びその製造法に関する。特に、本発明は、両面(表裏面)が高度に平坦化されたプリント配線板であって、樹脂にて(特に全面)被覆された平坦化樹脂被覆プリント配線板、内層として有用な4層プリント配線板、及び外層として有用な両面プリント配線板、並びにこれらの製造法に関する。  The present invention relates to a printed wiring board and a manufacturing method thereof. In particular, the present invention is a printed wiring board whose surfaces (front and back surfaces) are highly flattened, and is a flattened resin-coated printed wiring board coated with a resin (particularly the entire surface). The present invention relates to a wiring board, a double-sided printed wiring board useful as an outer layer, and a manufacturing method thereof.

従来、平坦化穴埋めプリント配線板の製造法としては、先ずプリント配線板の貫通穴を熱硬化性樹脂組成物にて充填・穴埋めし、次いでこの充填樹脂を熱硬化させた後、プリント配線板表面から盛り上がった硬化樹脂部分を研磨によって除去して表面を平坦化する方法が知られている(特許文献1)。  Conventionally, as a method for producing a flattened hole-filled printed wiring board, first, through holes of the printed wiring board are filled and filled with a thermosetting resin composition, and then the filled resin is thermally cured, and then the surface of the printed wiring board There is known a method of flattening the surface by removing the cured resin portion raised from the surface by polishing (Patent Document 1).

しかし、この方法では、研磨を行うことにより、製造工程が増え且つ研磨コストがかかるという問題点を有する。又、研磨により、プリント配線板の変形(寸法変化)が起こるといった問題点もある。  However, this method has problems that the number of manufacturing steps is increased and the polishing cost is increased. In addition, there is a problem that deformation (dimensional change) of the printed wiring board occurs due to polishing.

そこで、研磨をせずに、プリント配線板の表面を平坦化する方法が求められている。そのような方法としては、特許文献2の方法が提案されている。即ち、先ずプリント配線板の貫通穴に、硬化性樹脂を充填・穴埋めする[図7A、705]。次に、このプリント配線板を硬化性レジスト[図7B、727]にて挟み、熱プレスにより圧着する。その後、高温加熱により、充填樹脂と硬化性レジストとを完全硬化する[図7C、728]。  Therefore, there is a demand for a method for flattening the surface of the printed wiring board without polishing. As such a method, the method of Patent Document 2 has been proposed. That is, first, the through hole of the printed wiring board is filled and filled with a curable resin [FIG. 7A, 705]. Next, the printed wiring board is sandwiched between curable resists [FIG. 7B, 727] and is crimped by hot pressing. Thereafter, the filling resin and the curable resist are completely cured by high-temperature heating [FIGS. 7C and 728].

しかし、この方法では、たとえ真空プレスする場合でも、特に回路密集部においては、レジスト[図7B、727]を回路間の凹部[図7B、704a]に完全に密着させることは困難である。その結果、凹部とレジスト膜間に僅かながら間隙が生じ、その間隙中に空気が残留することがある。そのため、後の高温加熱の際にこの残留空気が熱膨張してレジスト膜表面が膨らむ、所謂「ポップコーン現象」が発生することがある[図7C、725]。  However, with this method, it is difficult to completely adhere the resist [FIG. 7B, 727] to the recesses [FIG. 7B, 704a] between the circuits even in the case of vacuum pressing, especially in the dense circuit area. As a result, a slight gap is generated between the recess and the resist film, and air may remain in the gap. For this reason, the so-called “popcorn phenomenon” in which the residual air is thermally expanded and the resist film surface is expanded during subsequent high-temperature heating may occur [FIGS. 7C and 725].

逆に、回路過疎部においては、回路間の凹部[図7B、704b]に多量の被覆用レジスト樹脂[図7B、727]が充填に使用されるため、加熱硬化後にレジスト表面に僅かながら窪みが生じることがある[図7C、726]。  On the contrary, in the circuit depopulated portion, since a large amount of the resist resin for coating [FIGS. 7B, 727] is used for filling the recesses between the circuits [FIG. 7B, 704b], a slight depression is formed on the resist surface after heat curing. May occur [FIG. 7C, 726].

それ故、このような方法にて製造されたプリント配線板は、その表面が膨れと窪みを有し十分には平坦化されていないために、プリント配線板の部品実装安定性(バンプ接合性等)が低くなる。  Therefore, the printed wiring board manufactured by such a method has swelling and depressions on the surface and is not sufficiently flattened. ) Becomes lower.

更に、プリント配線板表面が膨れと窪みを有する場合、絶縁層の厚さ、特に導電回路層[図7C、702]上の絶縁層の厚さが安定せず、インピーダンスの変動増大等といったインピーダンス特性の低下をもたらす。  Furthermore, when the surface of the printed wiring board has swelling and depressions, the thickness of the insulating layer, in particular, the thickness of the insulating layer on the conductive circuit layer [FIG. 7C, 702] is not stable, and impedance characteristics such as increased fluctuation in impedance, etc. Bring about a decline.

即ち、膨れ周縁部[図7C、729]においては、導電回路層[図8A、802]上の絶縁層の厚さ[図8A、831]は、膨れ中心部方向に漸増する。他方、窪み周縁部「図7C、730]においては、導電回路層[図8B、802]上の絶縁層の厚さ[図8B、831]は、窪み中心部方向に漸減する。  That is, in the bulging peripheral edge [FIG. 7C, 729], the thickness [FIG. 8A, 831] of the insulating layer on the conductive circuit layer [FIG. 8A, 802] gradually increases toward the bulging center. On the other hand, in the peripheral portion of the recess “FIGS. 7C and 730”, the thickness [FIGS. 8B and 831] of the insulating layer on the conductive circuit layer [FIGS. 8B and 802] gradually decreases toward the center of the recess.

また、このような十分には平坦化されていないプリント配線板を外層又は内層に使用して製造した多層プリント配線板においても、部品実装安定性(バンプ接合性等)及びインピーダンス特性等の低下をきたす。  Moreover, even in a multilayer printed wiring board manufactured by using such a printed wiring board that is not sufficiently flattened as an outer layer or an inner layer, the component mounting stability (bump bondability, etc.) and the impedance characteristics are degraded. Come on.

特開2001−15909号公報。Japanese Patent Laid-Open No. 2001-15909. 特開2001−111214号公報。JP 2001-111214 A.

上記事情に鑑み、本発明は、プリント配線板の両表面が極めて高度に平坦化されており、且つプリント配線板の厚みがプリント配線板の全領域(即ち、あらゆる部分・部位)に亘って一定であり、その結果、部品の実装安定性(バンプ接合性等)並びにインピーダンス特性(インピーダンス安定性等)に優れた平坦化樹脂被覆プリント配線板を、研磨を必要とすることなしに製造することを、目的とする。更に、本発明は、このようなプリント配線板から製造され、両表面が極めて高度に平坦化されたプリント配線板であって、内層として有用な多層プリント配線板(特に4層プリント配線板)、並びに外層として有用なプリント配線板(特に両面プリント配線板)を提供することを、目的とする。  In view of the above circumstances, according to the present invention, both surfaces of the printed wiring board are extremely flattened, and the thickness of the printed wiring board is constant over the entire area of the printed wiring board (that is, every portion / part). As a result, it is possible to produce a flattened resin-coated printed wiring board that is excellent in component mounting stability (bump bondability, etc.) and impedance characteristics (impedance stability, etc.) without requiring polishing. , With purpose. Furthermore, the present invention is a printed wiring board manufactured from such a printed wiring board, and both surfaces are extremely highly flattened, and is a multilayer printed wiring board useful as an inner layer (particularly a four-layer printed wiring board), An object of the present invention is to provide a printed wiring board (particularly a double-sided printed wiring board) useful as an outer layer.

上記課題を解決するため、本発明者等が鋭意、検討した結果、下記本発明を成すに到った。  In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, have reached the following present invention.

即ち、本願第1発明は、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、下記工程1)及び2)を順次に行った後、光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、下記工程1)〜3)を順次に行うプリント配線板の製造法、を提供する。
1)塗布樹脂表面を平坦化する工程。
2)塗布樹脂を光硬化させる工程。
3)光硬化樹脂を熱硬化させる工程。
That is, in the first invention of the present application, after applying the photo / thermosetting resin composition to one surface of the printed wiring board having a through hole and the through hole, and sequentially performing the following steps 1) and 2), Provided is a method for producing a printed wiring board, in which a photo / thermosetting resin composition is applied to the other surface of the printed wiring board, and the following steps 1) to 3) are sequentially performed.
1) The process of planarizing the coating resin surface.
2) A step of photocuring the coating resin.
3) A step of thermosetting the photocurable resin.

本願第2発明は、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、上記工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、上記工程1)及び2)を順次に行った後、
A)上記工程3)を行い、次いでプリント配線板を圧着材料で挟んで積層プレスして圧着材料を圧着し、又は
B)プリント配線板を圧着材料で挟んで光硬化樹脂の熱硬化温度以上にて積層プレスして圧着材料の圧着と上記工程3)とを同時に行い、
圧着材料表面から導体層まで穴あけしてマイクロビアを形成し、全面めっきを施し、めっき層より回路を形成した後、レジストを被覆する多層プリント配線板の製造法、を提供する。
In the second invention of the present application, a light / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole, and the above steps 1) and 2) are sequentially performed, and then light / heat is applied. After applying the curable resin composition to the other surface of the printed wiring board and sequentially performing the above steps 1) and 2),
A) Perform step 3) above, and then press the printed wiring board between the pressure-bonding materials to laminate and press the pressure-bonding material, or B) sandwich the printed wiring board between the pressure-bonding materials and raise the temperature to be equal to or higher than the thermosetting temperature of the photocurable resin. And press and laminate the pressure bonding material and the above step 3) at the same time,
Provided is a method for producing a multilayer printed wiring board in which a micro via is formed by drilling from the surface of a pressure-bonding material to a conductor layer, whole surface plating is performed, a circuit is formed from the plating layer, and then a resist is coated.

本願第3発明は、レジストが開口部を有する本願第2発明の多層プリント配線板の製造法、を提供する。  A third invention of the present application provides a method for producing a multilayer printed wiring board according to the second invention of the present application, in which a resist has an opening.

本願第4発明は、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、上記工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、上記工程1)〜3)を順次に行った後、被覆樹脂層に開口部を設けるプリント配線板の製造法、を提供する。  In the fourth invention of the present application, a light / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole, and the above steps 1) and 2) are sequentially performed. A curable resin composition is applied to the other surface of a printed wiring board, and after the above steps 1) to 3) are sequentially performed, a method for producing a printed wiring board in which an opening is provided in a coating resin layer is provided.

本願第5発明は、開口部により露出した表面をめっきにて被覆する本願第3発明又は第4発明のプリント配線板の製造法、を提供する。  A fifth invention of the present application provides a method for manufacturing a printed wiring board according to the third or fourth invention of the present invention, wherein the surface exposed by the opening is coated by plating.

本願第6発明は、貫通穴を有するプリント配線板の導電層表面が粗化処理されている本願第1発明〜第5発明のプリント配線板の製造法、を提供する。  A sixth invention of the present application provides a method for manufacturing a printed wiring board according to the first to fifth inventions of the present invention, wherein the conductive layer surface of the printed wiring board having a through hole is roughened.

本願第7発明は、本願第1発明〜第6発明の何れかに記載の製造法にて製造されるプリント配線板、を提供する。  A seventh invention of the present application provides a printed wiring board manufactured by the manufacturing method according to any one of the first to sixth inventions of the present application.

本発明により、プリント配線板の表面が極めて高度に平坦化されており、且つプリント配線板の厚みがプリント配線板の全領域(即ち、あらゆる部分・部位)に亘って一定であり、その結果、部品の実装安定性(バンプ接合性等)並びにインピーダンス特性(インピーダンス安定性等)に優れた平坦化樹脂被覆プリント配線板を、研磨を必要とすることなしに製造することができる。更に、本発明により、このようなプリント配線板から製造され、両表面が極めて高度に平坦化されたプリント配線板であって、内層として有用な多層(特に4層)プリント配線板、並びに外層として有用な(特に両面)プリント配線板を、提供することができる。  According to the present invention, the surface of the printed wiring board is extremely flattened, and the thickness of the printed wiring board is constant over the entire area of the printed wiring board (that is, every portion / part). A flattened resin-coated printed wiring board excellent in component mounting stability (bump bondability and the like) and impedance characteristics (impedance stability and the like) can be manufactured without requiring polishing. Further, according to the present invention, a printed wiring board manufactured from such a printed wiring board and having both surfaces extremely flattened, which is useful as an inner layer, particularly a multilayer (particularly four layers) printed wiring board, and an outer layer Useful (especially double-sided) printed wiring boards can be provided.

本発明の平坦化樹脂被覆プリント配線板の製造法において、光・熱硬化型樹脂組成物(即ち、第一段硬化を光照射により行い且つ第二段硬化を加熱により行う、二段階硬化性樹脂組成物)としては、下記成分[I]〜[V]を含有するものが挙げられる。  In the method for producing a flattened resin-coated printed wiring board of the present invention, a light / thermosetting resin composition (that is, a two-stage curable resin in which first-stage curing is performed by light irradiation and second-stage curing is performed by heating) Examples of the composition) include those containing the following components [I] to [V].

[I]:エポキシ樹脂の不飽和脂肪酸部分付加物。
[II]:(メタ)アクリレート類。
[III]:光架橋剤。
[IV]:エポキシ樹脂。
[V]:潜在性硬化剤。
[I]: Unsaturated fatty acid partial adduct of epoxy resin.
[II]: (Meth) acrylates.
[III]: Photocrosslinking agent.
[IV]: Epoxy resin.
[V]: Latent curing agent.

好ましくは、光・熱硬化型樹脂組成物の具体例としては、特開2003−105061号公報及び特開2004−75967号公報に記載のものが挙げられる。  Preferably, specific examples of the photo / thermosetting resin composition include those described in JP2003-105061A and JP2004-75967A.

光・熱硬化型樹脂組成物には成分[I]として、エポキシ樹脂の不飽和脂肪酸部分付加物を含有する。成分[I]の調製原料であるエポキシ樹脂(以下、単に「原料用エポキシ樹脂」ということがある。)のエポキシ価は、例えば130〜400、特に150〜250が好ましい。原料用エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、多官能性フェノールからのエポキシ樹脂、ナフタレン骨格エポキシ樹脂、グリシジルアミン系エポキシ樹脂、トリアジン骨格エポキシ樹脂、グリシジルエステル系エポキシ樹脂、脂環式タイプのエポキシ樹脂等が挙げられる。  The light / thermosetting resin composition contains an unsaturated fatty acid partial adduct of epoxy resin as component [I]. The epoxy value of the epoxy resin that is the raw material for preparing the component [I] (hereinafter sometimes simply referred to as “raw material epoxy resin”) is, for example, preferably 130 to 400, particularly 150 to 250. Examples of the epoxy resin for raw materials include phenol novolac type epoxy resins, epoxy resins from polyfunctional phenols, naphthalene skeleton epoxy resins, glycidyl amine epoxy resins, triazine skeleton epoxy resins, glycidyl ester epoxy resins, and alicyclic types. An epoxy resin etc. are mentioned.

好ましくは、原料用エポキシ樹脂としては、表1に示す式[化I−E1]〜[化I−E7]で表される各化合物、特にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂等が挙げられ、これらの一種以上使用してよい。  Preferably, as the raw material epoxy resin, each compound represented by the formulas [Chemical I-E1] to [Chemical I-E7] shown in Table 1, particularly phenol novolac type epoxy resin, cresol novolac type epoxy resin, trisphenyl A methane type epoxy resin, a bisphenol A novolak type epoxy resin, a dicyclopentadiene phenol type epoxy resin, etc. are mentioned, and one or more of these may be used.

Figure 2007049106
Figure 2007049106

本願書類を通じ、式中、Gは、明らかに別意に用いられている場合を除き、グリシジル基、即ち次式、  Throughout this application, where G is a glycidyl group, i.e. the following formula, unless explicitly used otherwise:

Figure 2007049106
を表す。
Figure 2007049106
Represents.

式[化I−E1]〜[化I−E3]中、nは0〜30の整数を表す。式[化I−E4]〜[化I−E6]中、nは1〜30の整数を表す。式[化I−E7]中、nは2〜50の整数を表す。式[化I−E2]中、R及びRは、それぞれ独立に、H若しくはCHを表す。In the formulas [Chemical I-E1] to [Chemical I-E3], n represents an integer of 0 to 30. In the formulas [Chemical I-E4] to [Chemical I-E6], n represents an integer of 1 to 30. In the formula [Chemical I-E7], n represents an integer of 2 to 50. In the formula [Chemical I-E2], R 1 and R 2 each independently represent H or CH 3 .

成分[I]のもう一方の調製原料である不飽和脂肪酸としては、例えば次式[化I−UFA]、  As an unsaturated fatty acid which is the other preparation raw material of component [I], for example, the following formula [Chemical Formula I-UFA],

Figure 2007049106
[式中、R〜Rは、それぞれ独立に、H又はCHを表す。]
で表されるものが挙げられる。具体的には不飽和脂肪酸としては、アクリル酸、メタクリル酸、クロトン酸等が挙げられる。
Figure 2007049106
[Wherein, R 1 to R 3 each independently represent H or CH 3 . ]
The thing represented by is mentioned. Specific examples of the unsaturated fatty acid include acrylic acid, methacrylic acid, and crotonic acid.

成分[I]は、通常の調製法により調製してよい。例えば、原料用エポキシ樹脂の一種以上と不飽和脂肪酸の一種以上[例えばアクリル酸及び/又はメタアクリル酸(以下、単に「(メタ)アクリル酸」ということがある。)]とを、必要に応じ加熱下に、撹拌混合して調製してよい。  Component [I] may be prepared by a conventional preparation method. For example, one or more types of raw material epoxy resins and one or more types of unsaturated fatty acids [for example, acrylic acid and / or methacrylic acid (hereinafter sometimes simply referred to as “(meth) acrylic acid”)] are used as necessary. It may be prepared by stirring and mixing under heating.

成分[I]は、エポキシ樹脂に不飽和脂肪酸が部分的に付加した物である。即ち、エポキシ樹脂の不飽和脂肪酸部分付加物は、不飽和脂肪酸が付加した後のエポキシ樹脂中に少なくとも一個以上のエポキシ基が残存する。具体的には、不飽和脂肪酸は、原料用エポキシ樹脂中のエポキシ基の20〜80%、特に40〜60%に付加するのが好ましい。不飽和脂肪酸の付加量が20%未満のもの(単に、「20%未満不飽和脂肪酸付加物」のように言うことがある。以下、同様。)は、第一段光硬化物に粘着性が残ることがあり、その結果、後述のカバーフィルムを剥離する際に第一段光硬化物がカバーフィルムに付着することがある。逆に80%超過不飽和脂肪酸付加物は、エポキシ基の減少により硬化物の強靭性が損なわれ、クラックが発生しやすくなることがある。  Component [I] is a product obtained by partially adding an unsaturated fatty acid to an epoxy resin. That is, in the unsaturated fatty acid partial adduct of the epoxy resin, at least one epoxy group remains in the epoxy resin after the addition of the unsaturated fatty acid. Specifically, the unsaturated fatty acid is preferably added to 20 to 80%, particularly 40 to 60% of the epoxy group in the raw material epoxy resin. Those having an addition amount of unsaturated fatty acid of less than 20% (simply referred to as “less than 20% unsaturated fatty acid adduct”, hereinafter the same shall apply) As a result, the first-stage photocured product may adhere to the cover film when the cover film described later is peeled off. On the other hand, an 80% excess unsaturated fatty acid adduct may deteriorate the toughness of the cured product due to a decrease in the epoxy group, and may easily generate cracks.

成分[I]としては、例えばノボラック型エポキシ樹脂と(メタ)アクリル酸との付加物(具体的には、クレゾールノボラック型エポキシ樹脂とアクリル酸との付加物等)が挙げられ、これらの1種以上を光・熱硬化型樹脂組成物中に含有してよい。  Examples of component [I] include adducts of novolac type epoxy resin and (meth) acrylic acid (specifically, adducts of cresol novolac type epoxy resin and acrylic acid, etc.). The above may be contained in the light / thermosetting resin composition.

好ましくは、成分[I]としては、フェノールノボラック型エポキシ樹脂のアクリル酸部分付加物、クレゾールノボラック型エポキシ樹脂のアクリル酸部分付加物、トリスフェニルメタン型エポキシ樹脂のアクリル酸部分付加物、ビスフェノールAノボラック型エポキシ樹脂のメタクリル酸部分付加物、ジシクロペンタジエンフェノール型エポキシ樹脂のメタクリル酸部分付加物、フェノールノボラック型エポキシ樹脂のクロトン酸部分付加物等が挙げられ、これらの一種以上使用してよい。  Preferably, as the component [I], an acrylic acid partial adduct of a phenol novolac type epoxy resin, an acrylic acid partial adduct of a cresol novolac type epoxy resin, an acrylic acid partial adduct of a trisphenylmethane type epoxy resin, or a bisphenol A novolak Methacrylic acid partial adduct of type epoxy resin, methacrylic acid partial adduct of dicyclopentadiene phenol type epoxy resin, crotonic acid partial adduct of phenol novolac type epoxy resin and the like, and one or more of these may be used.

光・熱硬化型樹脂組成物には成分[II]として、(メタ)アクリレート類(即ち、アクリレート類及び/又はメタアクリレート類)を含有する。成分[II]において、上記アクリレート類としては、アクリル酸類とヒドロキシ化合物とのエステル化物等が挙げられる。上記メタアクリレート類としては、メタアクリル酸類とヒドロキシ化合物とのエステル化物等が挙げられる。  The photo / thermosetting resin composition contains (meth) acrylates (that is, acrylates and / or methacrylates) as component [II]. In the component [II], examples of the acrylate include esterified products of acrylic acid and a hydroxy compound. Examples of the methacrylates include esterified products of methacrylic acids and hydroxy compounds.

上記アクリル酸類及びメタクリル酸類としては、前記式[化I−UFA]により表される不飽和脂肪酸等が挙げられる。具体的には、アクリル酸類及びメタクリル酸類としては、アクリル酸、メタアクリル酸、クロトン酸等が挙げられる。  Examples of the acrylic acids and methacrylic acids include unsaturated fatty acids represented by the above formula [Chemical I-UFA]. Specific examples of acrylic acids and methacrylic acids include acrylic acid, methacrylic acid, and crotonic acid.

上記ヒドロキシ化合物としては、アルコール類、(ヘミ)アセタール若しくは(ヘミ)ケタール、ヒドロキシ酸エステル等が挙げられる。アルコール類としては、例えば低級アルコール、環系アルコール、多価アルコール類、芳香族アルコール等が挙げられる。ヒドロキシ化合物において、(ヘミ)アセタール若しくは(ヘミ)ケタールとしては、上記アルコール類(例えば環系アルコール、多価アルコール等)とホルムアルデヒド、ヒドロキシアルデヒドの縮合物等が挙げられる。ヒドロキシ化合物において、ヒドロキシ酸エステルとしては、具体的にはフルフリルアルコールのカプロラクトン開環付加体、ヒドロキシピバリン酸ネオペンチルグリコール等が挙げられる。  Examples of the hydroxy compound include alcohols, (hemi) acetals or (hemi) ketals, and hydroxy acid esters. Examples of alcohols include lower alcohols, ring alcohols, polyhydric alcohols, and aromatic alcohols. In the hydroxy compound, examples of (hemi) acetal or (hemi) ketal include condensates of the above alcohols (for example, ring alcohols, polyhydric alcohols, etc.) with formaldehyde and hydroxyaldehyde. In the hydroxy compound, specific examples of the hydroxy acid ester include caprolactone ring-opening adduct of furfuryl alcohol, neopentyl glycol hydroxypivalate, and the like.

好ましくは、成分[II]としては、表2に示す式[化II−1]〜[化II−9]で表される各化合物、特にイソボロニルアクリレート、ジシクロペンタニルメタクリレート、ヒドロキシビバリン酸ネオペンチルグリコールジアクリレート、トリシクロデカンジメタノールアクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート、クロトン酸イソボロニル等が挙げられ、これらの1種以上含有してよい。  Preferably, as the component [II], each compound represented by the formulas [Chemical Formula II-1] to [Chemical Formula II-9] shown in Table 2, particularly isobornyl acrylate, dicyclopentanyl methacrylate, hydroxybivalin. Examples include acid neopentyl glycol diacrylate, tricyclodecane dimethanol acrylate, trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, isobornyl crotonic acid, and the like, and one or more of these may be contained.

Figure 2007049106
Figure 2007049106

光・熱硬化型樹脂組成物には成分[III]として、光架橋剤を含有する。成分[III]としては、光、例えば波長200〜400nmの紫外線等の照射により第一段硬化反応を開始させるものが挙げられる。  The photo / thermosetting resin composition contains a photocrosslinking agent as component [III]. Examples of component [III] include those that initiate the first-stage curing reaction by irradiation with light, for example, ultraviolet rays having a wavelength of 200 to 400 nm.

具体的には、成分[III]としては、ヒドロキシケトン類、ベンジルメチルケタール類、アシルホスフィンオキサイド類、アミノケトン類、ベンゾインエーテル類、ベンゾイル化合物類、チオキサントン類、ビイミダゾール類、ジメチルアミノ安息香酸エステル類、スルホニウム塩類、アントラキノン類、アクリドン類、アクリジン類、カルバゾール類、チタン錯体、及びこれらの一種以上含有してよい。  Specifically, the component [III] includes hydroxy ketones, benzyl methyl ketals, acylphosphine oxides, amino ketones, benzoin ethers, benzoyl compounds, thioxanthones, biimidazoles, dimethylaminobenzoic acid esters. , Sulfonium salts, anthraquinones, acridones, acridines, carbazoles, titanium complexes, and one or more of these.

好ましくは、成分[III]としては、表3に示す式[化III−1]及び[化III−2]で表される各化合物等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of component [III] include the compounds represented by the formulas [Chemical Formula III-1] and [Chemical Formula III-2] shown in Table 3, and may contain one or more of these compounds.

Figure 2007049106
Figure 2007049106

光・熱硬化型樹脂組成物には成分[IV]として、エポキシ樹脂を含有する。エポキシ樹脂としては、結晶性エポキシ樹脂及び/又は液状エポキシ樹脂が挙げられる。成分[IV]において、結晶性エポキシ樹脂としては、例えば80〜110℃、特に90〜105℃が好ましい。更に、結晶性エポキシ樹脂としては、粘度(mPa・s)が、融点〜融点+20(℃)において50以下、特に0.1〜20が好ましい。更に、結晶性エポキシ樹脂としては、光・熱硬化型樹脂組成物中において難溶性のものが好ましい。  The photo / thermosetting resin composition contains an epoxy resin as component [IV]. Examples of the epoxy resin include a crystalline epoxy resin and / or a liquid epoxy resin. In the component [IV], the crystalline epoxy resin is preferably, for example, 80 to 110 ° C, particularly 90 to 105 ° C. Furthermore, as a crystalline epoxy resin, the viscosity (mPa · s) is preferably 50 or less, particularly 0.1 to 20 in the melting point to the melting point + 20 (° C.). Further, as the crystalline epoxy resin, those which are hardly soluble in the photo / thermosetting resin composition are preferable.

結晶性エポキシ樹脂としては、例えばビフェニル型、ジフェニル型、ハイドロキノン型、ビフェニルノボラック型、及びフルオレイン型等の結晶性エポキシ樹脂が挙げられ、これらの一種以上含有してよい。  Examples of the crystalline epoxy resin include crystalline epoxy resins such as biphenyl type, diphenyl type, hydroquinone type, biphenyl novolac type, and fluorin type, and one or more of these may be contained.

ビフェニル型結晶性エポキシ樹脂としては、例えば、次式[化IVc−1]、  Examples of the biphenyl type crystalline epoxy resin include the following formula [Chemical IVc-1],

Figure 2007049106
[式中、RはH若しくはCHを表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein R represents H or CH 3 . ]
These may be included, and one or more of these may be contained.

ジフェニル型結晶性エポキシ樹脂としては、例えば、次式[化IVc−2]、  As the diphenyl type crystalline epoxy resin, for example, the following formula [Formula IVc-2],

Figure 2007049106
[式中、XはO若しくはSを表し、並びにR及びRは、それぞれ独立に、H、CH若しくはt−ブチルを表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein, X represents O or S, and R 1 and R 2 each independently represent H, CH 3 or t-butyl. ]
These may be included, and one or more of these may be contained.

ハイドロキノン型結晶性エポキシ樹脂としては、例えば、次式[化IVc−3]、  Examples of the hydroquinone type crystalline epoxy resin include the following formula [Formula IVc-3],

Figure 2007049106
[式中、nは0、1若しくは2を表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein n represents 0, 1 or 2. ]
These may be included, and one or more of these may be contained.

ビフェニルノボラック型結晶性エポキシ樹脂としては、例えば、次式[化IVc−4]、  Examples of the biphenyl novolac type crystalline epoxy resin include the following formula [Chemical IVc-4],

Figure 2007049106
[式中、nは1若しくは2を表す。]
で表されるものが挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein n represents 1 or 2. ]
These may be included, and one or more of these may be contained.

フルオレイン型結晶性エポキシ樹脂としては、例えば、次式[化IVc−5]、  As the fluorescein type crystalline epoxy resin, for example, the following formula [Formula IVc-5],

Figure 2007049106
で表されるものが挙げられる。
Figure 2007049106
The thing represented by is mentioned.

好ましくは、結晶性エポキシ樹脂としては、テトラメチルビフェニル型エポキシ樹脂、ハイドロキノンジグリシジルエーテル、ジ−(p−グリシジルフェニル)エーテル等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of the crystalline epoxy resin include tetramethylbiphenyl type epoxy resin, hydroquinone diglycidyl ether, di- (p-glycidylphenyl) ether, and the like.

成分[IV]において、液状エポキシ樹脂とは、常温で液状又は半固体状態のエポキシ樹脂をいい、例えば、常温で流動性をもつエポキシ樹脂が挙げられる。そのような液状エポキシ樹脂としては、例えば粘度(室温、mPa・s)が20000以下、特に1000〜10000が好ましい。  In component [IV], the liquid epoxy resin refers to an epoxy resin that is in a liquid or semi-solid state at room temperature, and examples thereof include an epoxy resin having fluidity at room temperature. As such a liquid epoxy resin, for example, the viscosity (room temperature, mPa · s) is 20000 or less, particularly preferably 1000 to 10,000.

具体的には、液状エポキシ樹脂としては、次式[化IVl−1]、  Specifically, as the liquid epoxy resin, the following formula [Formula IVl-1],

Figure 2007049106
[式中、nは0若しくは1を表す。]
で表されるビスフェノールA型エポキシ樹脂が挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein n represents 0 or 1; ]
The bisphenol A type epoxy resin represented by these is mentioned, You may contain these 1 or more types.

更に、液状エポキシ樹脂の具体例としては、次式[化IVl−2]、  Furthermore, as a specific example of the liquid epoxy resin, the following formula [Formula IVl-2],

Figure 2007049106
[式中、nは0若しくは1を表す。]
で表されるビスフェノールF型エポキシ樹脂が挙げられ、これらの一種以上含有してよい。
Figure 2007049106
[Wherein n represents 0 or 1; ]
The bisphenol F type epoxy resin represented by these is mentioned, You may contain these 1 or more types.

更に、液状エポキシ樹脂の具体例としては、ナフタレン型のもの、ジフェニルチオエーテル(スルフィド)型のもの、トリチル型のもの、脂環式タイプのもの、下記アルコール類から調製されるもの、ジアリルビスA型のもの、メチルレゾルシノール型のもの、ビスフェノールAD型のもの、及びN,N,O−トリス(グリシジル)−p−アミノフェノール等が挙げられ、これらの一種以上含有してよい。  Further, specific examples of the liquid epoxy resin include naphthalene type, diphenylthioether (sulfide) type, trityl type, alicyclic type, those prepared from the following alcohols, diallylbis A type , Methylresorcinol type, bisphenol AD type, N, N, O-tris (glycidyl) -p-aminophenol and the like, and one or more of these may be contained.

好ましくは、液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、N,N,O−トリス(グリシジル)−p−アミノフェノール、ビスフェノールAD型エポキシ樹脂等が挙げられ、これらの1種以上含有してよい。  Preferably, the liquid epoxy resin includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, N, N, O-tris (glycidyl) -p-aminophenol, bisphenol AD type epoxy resin, etc. You may contain more than a seed.

光・熱硬化型樹脂組成物には成分[V]として、潜在性硬化剤を含有する。成分[V]は、加熱により第二段硬化反応を起こさせるものである。成分[V]としては、例えば第二段硬化反応開始温度が150〜300℃、特に150〜200℃となるものが好ましい。  The light / thermosetting resin composition contains a latent curing agent as component [V]. Component [V] causes a second-stage curing reaction by heating. As the component [V], for example, those having a second-stage curing reaction start temperature of 150 to 300 ° C., particularly 150 to 200 ° C. are preferable.

具体的には、成分[V]としては、ジシアンジアミド(DICY)類、イミダゾール類、BF−アミン錯体、アミンアダクト型硬化剤、アミン−酸無水物(ポリアミド)アダクト型硬化剤、ヒドラジド系硬化剤、アミン系硬化剤のカルボン酸塩、オニウム塩等が挙げられ、これらの一種以上含有してよい。Specifically, as component [V], dicyandiamide (DICY), imidazole, BF 3 -amine complex, amine adduct type curing agent, amine-acid anhydride (polyamide) adduct type curing agent, hydrazide type curing agent And carboxylic acid salts and onium salts of amine-based curing agents, and one or more of these may be contained.

具体的には、成分[V]において、アミンアダクト型硬化剤としては、イミダゾール系硬化剤[2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2,4−ジアミノ−6−(2’−メチルイミダゾリル−(1H))−エチル−S−トリアジン等]若しくはアミン系硬化剤(ジエチルアミン等)とエポキシ化合物、尿素若しくはイソシアネート化合物とのアダクト物等が挙げられる。ヒドラジド系硬化剤としては、アジピン酸ジヒドラジド(ADH)、セバチン酸ジヒドラジド(SDH)等が挙げられる。アミン系硬化剤のカルボン酸塩としては、例えばナイロン塩やATU(3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)・アジピン酸塩等が挙げられる。オニウム塩としては、スルホニウム塩、アンモニウム塩、ホスホニウム塩等が挙げられる。  Specifically, in the component [V], as the amine adduct type curing agent, an imidazole-based curing agent [2-ethyl-4-methylimidazole, 2-methylimidazole, 2,4-diamino-6- (2′- Methylimidazolyl- (1H))-ethyl-S-triazine and the like] or an adduct of an amine-based curing agent (such as diethylamine) and an epoxy compound, urea or an isocyanate compound. Examples of the hydrazide curing agent include adipic acid dihydrazide (ADH), sebacic acid dihydrazide (SDH), and the like. Examples of carboxylates of amine curing agents include nylon salts and ATU (3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane) / adipic acid Examples include salts. Examples of onium salts include sulfonium salts, ammonium salts, and phosphonium salts.

好ましくは、成分[V]としては、表4に示す式[化V−1]〜[化V−3]で表される各化合物等が挙げられ、これらの1種以上含有してよい。  Preferably, examples of component [V] include the compounds represented by the formulas [Chemical V-1] to [Chemical V-3] shown in Table 4, and one or more of these may be contained.

Figure 2007049106
Figure 2007049106

光・熱硬化型樹脂組成物には、必要に応じ、種々の添加剤を添加してよい。添加剤としては、例えば充填剤、有機・無機着色剤、難燃剤、消泡剤等が挙げられ、これらの一種以上含有してよい。  Various additives may be added to the light / thermosetting resin composition as necessary. Examples of the additive include a filler, an organic / inorganic colorant, a flame retardant, an antifoaming agent, and the like.

光・熱硬化型樹脂組成物の組成において、成分[I]100重量部に対し、成分[II]は100〜300重量部(特に150〜250重量部)、成分[III]は1〜50重量部(特に5〜15重量部)、成分[IV]は50〜200重量部(特に60〜120重量部)、成分[V]は1〜50重量部(特に5〜20重量部)、充填剤は200〜500重量部(特に250〜350重量部)が好ましい。  In the composition of the photo / thermosetting resin composition, the component [II] is 100 to 300 parts by weight (particularly 150 to 250 parts by weight) and the component [III] is 1 to 50 parts by weight with respect to 100 parts by weight of the component [I]. Parts (particularly 5 to 15 parts by weight), component [IV] is 50 to 200 parts by weight (particularly 60 to 120 parts by weight), component [V] is 1 to 50 parts by weight (particularly 5 to 20 parts by weight), filler Is preferably 200 to 500 parts by weight (particularly 250 to 350 parts by weight).

光・熱硬化型樹脂組成物の調製は、例えば各成分[I]〜[V]、並びに必要に応じ添加剤を混合し、均一に分散した後、真空脱泡して行ってよい。各配合成分の添加順序等は特に限定されず、各配合成分を順次に加え、若しくは全配合成分を一度に加えてもよい。  The light / thermosetting resin composition may be prepared, for example, by mixing the components [I] to [V] and additives as necessary, uniformly dispersing, and then vacuum degassing. The order of addition of each blending component is not particularly limited, and each blending component may be added sequentially or all blending components may be added at once.

上記のようにして調製される光・熱硬化型樹脂組成物は、プリント配線板への塗布性等を考慮すると、樹脂粘度(Pa・S、室温)10〜50、特に15〜30が好ましい。  The light / thermosetting resin composition prepared as described above preferably has a resin viscosity (Pa · S, room temperature) of 10 to 50, particularly 15 to 30 in consideration of applicability to a printed wiring board.

以下、本発明を、図面を用いて詳述する。  Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の平坦化樹脂被覆プリント配線板の製造法において、素材となるプリント配線板としては、貫通穴[図1A、103]を有するプリント配線板を使用する。貫通穴としては、プリント配線板中を貫通する、あらゆる種類の穴が含まれる。具体的には、貫通穴としては、貫通バイアホール、部品穴、その他スルーホール等が挙げられる。プリント配線板の種類としては、両面プリント配線板が挙げられる。両面プリント配線板は、リジッドプリント配線板、フレキシブルプリント配線板、リジッド・フレックスプリント配線板等が挙げられる。  In the method for producing a planarized resin-coated printed wiring board of the present invention, a printed wiring board having through holes [FIGS. 1A and 103] is used as a printed wiring board as a material. The through hole includes all kinds of holes penetrating through the printed wiring board. Specifically, examples of the through hole include a through via hole, a component hole, and other through holes. A double-sided printed wiring board is mentioned as a kind of printed wiring board. Examples of the double-sided printed wiring board include a rigid printed wiring board, a flexible printed wiring board, and a rigid / flex printed wiring board.

尚、貫通穴を有するプリント配線板は、導電層と樹脂層との密着性向上等のために、導電層表面[図1A、102]が粗化処理されているものが好ましい。導電層としては、導体金属層、特に回路層、貫通穴(スルーホール等)内壁のめっき金属層、金属箔層等が挙げられる。粗化処理としては、黒化処理、所謂「CZ(メックエッチボンド社製の化学粗化処理剤)処理」、黒化還元処理、針状合金めっき、物理的処理(サンドブラスト、ショットブラスト、バフ研磨等)が挙げられる。  The printed wiring board having the through holes is preferably one in which the surface of the conductive layer [FIGS. 1A and 102] is roughened in order to improve the adhesion between the conductive layer and the resin layer. Examples of the conductive layer include a conductive metal layer, particularly a circuit layer, a plated metal layer on the inner wall of a through hole (such as a through hole), and a metal foil layer. As the roughening treatment, blackening treatment, so-called “CZ (chemical roughening agent manufactured by Mech Etch Bond)”, blackening reduction treatment, acicular alloy plating, physical treatment (sand blasting, shot blasting, buffing) Etc.).

本発明の平坦化樹脂被覆プリント配線板の製造法において、先ず、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布する。  In the method for producing a flattened resin-coated printed wiring board of the present invention, first, a photo / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole.

光・熱硬化型樹脂組成物の塗布は、例えばスクリーン印刷(ポリエステルスクリーン若しくはステンレススクリーン等によるマスク印刷等)、メタルマスク印刷、ロールコート印刷等により行ってよい。  The application of the light / thermosetting resin composition may be performed by, for example, screen printing (mask printing using a polyester screen or stainless screen, etc.), metal mask printing, roll coating printing, or the like.

尚、真空印刷機を使用すれば、塗布樹脂中における気泡の発生を防ぐことができる。更に、塗布樹脂を加熱し(例えば80〜120℃、10〜60分)、樹脂粘度を低下させることにより、樹脂の脱泡を行うことができる。  In addition, if a vacuum printer is used, generation | occurrence | production of the bubble in coating resin can be prevented. Furthermore, defoaming of the resin can be performed by heating the coating resin (for example, 80 to 120 ° C., 10 to 60 minutes) to reduce the resin viscosity.

本発明においては、上述の塗布により、プリント配線板の表面全体が樹脂層[図1B、105]にて被覆されるが、特にプリント配線板表面上の凹部(回路間の凹部等)[図1B、104]及び貫通穴も、塗布樹脂にて充填(穴埋め)されることを特徴とする[図1B]。従来、プリント配線板の回路間の凹部は、樹脂にて予め充填されることなしに、レジスト、プリプレグ、半硬化樹脂、接着シートその他層間材料が被覆されていた。  In the present invention, the entire surface of the printed wiring board is coated with the resin layer [FIGS. 1B and 105] by the above-described application, but in particular, concave portions (such as concave portions between circuits) on the surface of the printed wiring board [FIG. , 104] and the through holes are also filled (filled) with a coating resin [FIG. 1B]. Conventionally, the recesses between the circuits of the printed wiring board are covered with a resist, a prepreg, a semi-cured resin, an adhesive sheet, and other interlayer materials without being filled with resin in advance.

しかし、回路間の凹部を予め充填していない場合、その後に、たとえ真空プレスにて層間材料を回路間の凹部に充填しようとしても、充填が難しく不完全になりやすい。特に、高密度回路ではラインとスペースが狭く、層間材料による回路間の凹部の充填は困難である。そのため、回路間の凹部に僅かながら間隙が生じ、この間隙中に空気が残存することがある。その結果、後工程における部品実装の際のリフロー等で高い温度(例えば200〜300℃)がプリント配線板にかかった場合、この残存空気が膨張し、塗膜表面のふくれ(所謂、ポップコーン現象)が発生することがある[図6E、625、及び図7C、725]。  However, if the recesses between the circuits are not filled in advance, even if an interlayer material is subsequently filled into the recesses between the circuits by vacuum pressing, filling is likely to be difficult and incomplete. In particular, in a high-density circuit, lines and spaces are narrow, and it is difficult to fill recesses between circuits with interlayer materials. Therefore, a slight gap is generated in the recesses between the circuits, and air may remain in the gap. As a result, when a high temperature (for example, 200 to 300 ° C.) is applied to the printed wiring board due to reflow during component mounting in the subsequent process, the remaining air expands and the surface of the coating film bulges (so-called popcorn phenomenon). May occur [FIGS. 6E, 625 and FIGS. 7C, 725].

一方、回路間のスペースが大きい場合、完全に充填し得るが、完全に充填されたときは、この回路間の大きなスペース体積分の層間材料が充填用に使われることとなる結果、その分だけ被覆樹脂層表面に窪みが発生することがある[図6E、626、及び図7C、726]。以上の塗膜面の膨らみ及び窪みは、何れもプリント配線板の平坦性を著しく損なう。  On the other hand, if the space between the circuits is large, it can be completely filled. However, when the space is completely filled, the interlayer material corresponding to a large space volume between the circuits is used for filling. A depression may occur on the surface of the coating resin layer [FIGS. 6E and 626 and FIGS. 7C and 726]. Any of the above bulges and dents on the coating surface significantly impairs the flatness of the printed wiring board.

それ故、プリント配線板の高い平坦性を達成するためには、プリント配線板の貫通穴のみならず、プリント配線板表面上の凹部(回路間の凹部等)にも、光・熱硬化型樹脂を充填することが重要である。  Therefore, in order to achieve high flatness of the printed wiring board, not only the through hole of the printed wiring board but also the recess on the surface of the printed wiring board (such as a recess between circuits) is a light / thermosetting resin. It is important to fill

本発明の平坦化樹脂被覆プリント配線板の製造法において、上述の光・熱硬化型樹脂組成物を塗布充填した後、下記工程1)及び2)を順次、行う。即ち、
1)塗布樹脂表面を平坦化する工程。
2)塗布樹脂を光硬化させる工程。
In the method for producing a flattened resin-coated printed wiring board of the present invention, after the above-mentioned photo / thermosetting resin composition is applied and filled, the following steps 1) and 2) are sequentially performed. That is,
1) The process of planarizing the coating resin surface.
2) A step of photocuring the coating resin.

具体的には工程1)は、先ず上記塗布充填済みプリント配線板を2枚のカバーフィルム[図1C、106]の間に挟む。カバーフィルムは、後述の第一段光硬化後にプリント配線板から剥離可能なものであり、好ましくは良好に照射光を透過するものである。具体的には、そのようなカバーフィルムとしては、PETフィルム、PENフィルム、PPフィルム、PEフィルム等が挙げられる。カバーフィルムの膜厚は、例えば10〜200(典型的には25〜100)μmであってよい。  Specifically, in step 1), the printed and filled printed wiring board is first sandwiched between two cover films [FIGS. 1C and 106]. The cover film can be peeled off from the printed wiring board after first-stage light curing described below, and preferably transmits the irradiation light satisfactorily. Specifically, examples of such a cover film include a PET film, a PEN film, a PP film, and a PE film. The film thickness of the cover film may be, for example, 10 to 200 (typically 25 to 100) μm.

その後、上記カバーフィルムにて被覆されたプリント配線板を、加圧ロールにかける。加圧ロールは、例えばラミネータ等により行うことができる。即ち、先ず、上記カバーフィルムにて被覆されたプリント配線板を2本のローラー[図1D、107]の間に挟む。  Thereafter, the printed wiring board covered with the cover film is placed on a pressure roll. The pressure roll can be performed by a laminator or the like, for example. That is, first, the printed wiring board covered with the cover film is sandwiched between two rollers [FIG. 1D, 107].

この際、ローラーとローラーとの間隔は、プリント配線板の回路上における塗布樹脂の層厚[図1I、111]が樹脂硬化後に0.1〜10(特に0.1〜5)μmとなるように調節するのが好ましい。更に、プリント配線板の絶縁基板上の塗布樹脂層厚[図1I、112]は、樹脂硬化後に、回路銅箔の厚さ+0.1〜+10(特に+0.1〜+5)μmが好ましい。硬化樹脂の層厚が薄過ぎると、粗化された銅箔を充分に覆うことができなくなることがある。逆に、硬化樹脂の層厚が厚過ぎると、その後に硬化樹脂層を研磨して銅箔表面を露出させる必要が生じた場合、或いは後述の開口部を設ける必要が生じた場合、研磨作業或いは開口作業が容易でなくなることがある。その結果、プリント配線板の寸法変化が生じ、開口部に樹脂が残存し、或いはインピーダンスの設計値と実際の値の誤差が大きくなる、等の問題が発生することがある。  In this case, the distance between the rollers is such that the coating resin layer thickness [FIGS. 1I and 111] on the circuit of the printed wiring board is 0.1 to 10 (particularly 0.1 to 5) μm after the resin is cured. It is preferable to adjust to. Furthermore, the thickness of the coated resin layer on the insulating substrate of the printed wiring board [FIG. 1I, 112] is preferably +0.1 to +10 (particularly +0.1 to +5) μm after the resin is cured. If the layer thickness of the cured resin is too thin, the roughened copper foil may not be sufficiently covered. Conversely, if the thickness of the cured resin is too thick, it is necessary to polish the cured resin layer to expose the copper foil surface afterwards, or to provide an opening described later, Opening work may not be easy. As a result, the dimensional change of the printed wiring board occurs, and there may be a problem that the resin remains in the opening, or the error between the impedance design value and the actual value becomes large.

その後、プリント配線板の両面に被覆された、それぞれのカバーフィルム面上を、2本のローラーが上記ローラー間隔を維持しつつ全面に亘って移動[図1D、108]する。  Thereafter, the two rollers move over the entire surface of the cover film covered on both sides of the printed wiring board while maintaining the above-mentioned distance between the rollers [FIGS. 1D and 108].

ラミネート条件としては、具体的には、ラミネート圧力0.01〜10(典型的には0.1〜1)MPa、ラミネート速度0.1〜10(典型的には0.3〜3)m/分、ラミネート温度室温〜150(典型的には25〜100)℃、であってよい。  Specifically, the laminating conditions include a laminating pressure of 0.01 to 10 (typically 0.1 to 1) MPa, a laminating speed of 0.1 to 10 (typically 0.3 to 3) m / m. Minutes, lamination temperature from room temperature to 150 (typically 25 to 100) ° C.

本発明の平坦化樹脂被覆プリント配線板の製造法において、工程1)を行った後、工程2)を行う。工程2)において、光照射は、プリント配線板の両側から行うのが好ましい。この場合、プリント配線板の両側(表側及び裏側)から同時に光照射してもよいし、片側から、順次に光照射してもよい。塗布樹脂はカバーフィルムを介して光照射され、その結果、塗布樹脂の第一段光硬化が起こる[図1E、109]。  In the method for producing a flattened resin-coated printed wiring board of the present invention, after step 1) is performed, step 2) is performed. In step 2), the light irradiation is preferably performed from both sides of the printed wiring board. In this case, light may be irradiated simultaneously from both sides (front side and back side) of the printed wiring board, or light may be sequentially irradiated from one side. The coating resin is irradiated with light through the cover film, and as a result, first-stage photocuring of the coating resin occurs [FIG. 1E, 109].

光照射は、例えば、成分[III]の特性吸収波長領域の光、具体的には波長200〜400nmの紫外線を、0.5〜10J/cmの光照射量にて、−20〜80℃で、行ってよい。尚、光硬化は、特開平9−6010号公報及び特開平10−29247号公報に記載された液中露光装置を使用して行ってもよい。Light irradiation is, for example, light in the characteristic absorption wavelength region of component [III], specifically, ultraviolet light having a wavelength of 200 to 400 nm at a light irradiation amount of 0.5 to 10 J / cm 2 at −20 to 80 ° C. And you can go. The photocuring may be performed using an in-liquid exposure apparatus described in JP-A-9-6010 and JP-A-10-29247.

上記光硬化を行った後、プリント配線板の両面にそれぞれ被覆された各カバーフィルムを剥がして除去する。  After the photocuring, the cover films respectively covered on both sides of the printed wiring board are peeled off and removed.

本発明の平坦化樹脂被覆プリント配線板の製造法において、上記のようにして工程1)及び2)が完了した後、プリント配線板の他方の表面に対しても、光・熱硬化型樹脂組成物[図1F、105]を塗布する。塗布は、前記プリント配線板の一方の表面を塗布したと同様に行ってよい。  In the method for producing a flattened resin-coated printed wiring board of the present invention, after the steps 1) and 2) are completed as described above, the photo / thermosetting resin composition is also applied to the other surface of the printed wiring board. Apply the object [FIG. 1F, 105]. The application may be performed in the same manner as when one surface of the printed wiring board is applied.

その後、前記と同様にして、工程1)[図1G、図1H]及び2)を、順次に行う。本発明の平坦化樹脂被覆プリント配線板の製造法において、その後、下記工程3)を行う。
3)光硬化樹脂を熱硬化させる工程。
Thereafter, the steps 1) [FIG. 1G, FIG. 1H] and 2) are sequentially performed in the same manner as described above. In the method for producing a flattened resin-coated printed wiring board of the present invention, the following step 3) is then performed.
3) A step of thermosetting the photocurable resin.

工程3)により、前記工程2)にて第一段光硬化した塗布樹脂を第二段熱硬化して、完全硬化させる[図1I、110]。この完全硬化により、優れた、耐熱性、耐半田性、更には硬化樹脂とプリント配線板との密着性等が得られる。  In step 3), the coating resin cured in the first step in the step 2) is second-stage heat-cured to be completely cured [FIG. 1I, 110]. By this complete curing, excellent heat resistance, solder resistance, and adhesion between the cured resin and the printed wiring board can be obtained.

工程3)における加熱条件としては、光・熱硬化型樹脂組成物の成分[V]の反応開始温度(第二段熱硬化開始温度)以上、具体的には120〜300(特に140〜200)℃にて、30〜200分間、加熱するのが好ましい。  As heating conditions in the step 3), the reaction start temperature (second stage thermosetting start temperature) of the component [V] of the photo / thermosetting resin composition is higher than, specifically 120 to 300 (particularly 140 to 200). Heating at 30 ° C. for 30 to 200 minutes is preferred.

上述の通り、本発明の平坦化樹脂被覆プリント配線板の製造法においては、熱プレスを行う必要がない(即ち、加熱と加圧とを同時に行う必要がない)ので、樹脂の変形を防ぐことができ、プリント配線板の平坦性低下を防ぐことができる。  As described above, in the method for producing a flattened resin-coated printed wiring board according to the present invention, it is not necessary to perform hot pressing (that is, it is not necessary to perform heating and pressurizing simultaneously), so that deformation of the resin is prevented. It is possible to prevent the flatness of the printed wiring board from being lowered.

上記のようにして得られる本発明の平坦化樹脂被覆プリント配線板は、一般に表面の凹凸高低差の最大値は3(典型的には1)μm以下である。  The flattened resin-coated printed wiring board of the present invention obtained as described above generally has a maximum difference in unevenness on the surface of 3 (typically 1) μm or less.

上述のようにして製造される本発明の平坦化樹脂被覆プリント配線板[図1I]は、プリント配線板の凹部(特に回路間の凹部等)及び貫通穴が硬化樹脂にて充填されており、且つ表面が極めて平坦で均一な硬化樹脂層(膜)にて被覆されている。  The flattened resin-coated printed wiring board [FIG. 1I] of the present invention produced as described above has a recessed portion (particularly a recessed portion between circuits) and a through hole of the printed wiring board filled with a cured resin, And the surface is covered with a very flat and uniform cured resin layer (film).

それ故、本発明の平坦化樹脂被覆プリント配線板は、回路の密集度に係わらずプリント配線板全体(全領域)に亘ってその厚さが均一で、かつ導電回路層(回路銅箔)上の塗布樹脂層の厚さが一定である。  Therefore, the flattened resin-coated printed wiring board of the present invention has a uniform thickness over the entire printed wiring board (all areas) regardless of the density of the circuit, and on the conductive circuit layer (circuit copper foil). The thickness of the coated resin layer is constant.

上記本発明の平坦化樹脂被覆プリント配線板を素材として使用して、多層プリント配線板の内層用材料等として有用な多層プリント配線板(特に4層プリント配線板)を製造することができる。  A multilayer printed wiring board (particularly a four-layer printed wiring board) useful as an inner layer material of the multilayer printed wiring board can be produced using the planarized resin-coated printed wiring board of the present invention as a raw material.

即ち、本発明の多層プリント配線板は、先ず、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、工程1)及び2)を順次に行った後、下記工程Aを行う。  That is, in the multilayer printed wiring board of the present invention, first, a photo / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole, and steps 1) and 2) are sequentially performed. Next, after applying the photo / thermosetting resin composition to the other surface of the printed wiring board and sequentially performing steps 1) and 2), the following step A is performed.

A)工程3)を行い、次いでプリント配線板を圧着材料で挟んで積層プレスして圧着材料を圧着する工程。  A) A step of performing step 3), and then laminating and pressing the printed wiring board by sandwiching the printed wiring board with the pressure bonding material.

上記工程A)において、工程3)を完了した段階で、前述の通り、先ず、上記本発明の平坦化樹脂被覆プリント配線板が得られる。  In the step A), when the step 3) is completed, as described above, first, the planarized resin-coated printed wiring board of the present invention is obtained.

その後、この本発明の平坦化樹脂被覆プリント配線板を圧着材料[図2A、213]で挟んで、積層プレスすることにより、圧着材料を圧着する。圧着材料としては、プリプレグ、樹脂付き銅箔、半硬化樹脂膜、接着シート、ドライフィルム、レジスト等が挙げられるが、典型的にはプリプレグである。圧着材料の厚さは、例えば50〜100μmであってよい。圧着材料は必要に応じ複数枚使用しても良い。  Thereafter, the flattened resin-coated printed wiring board of the present invention is sandwiched between the pressure-bonding materials [FIG. 2A, 213] and laminated and pressed to pressure-bond the pressure-sensitive material. Examples of the pressure-bonding material include a prepreg, a copper foil with resin, a semi-cured resin film, an adhesive sheet, a dry film, a resist, and the like. Typically, a prepreg is used. The thickness of the pressure bonding material may be, for example, 50 to 100 μm. A plurality of pressure-bonding materials may be used as necessary.

積層プレスは、圧着材料が半熱硬化樹脂である場合は、加熱下に行うのが好ましい。尚、加熱を、前記光・熱硬化型樹脂組成物の第二段熱硬化温度以上(特に、成分[V]の反応開始温度以上)にて行う場合は、前述の平坦化樹脂被覆プリント配線板の製造法において工程3)を省略することができる。  The lamination press is preferably performed under heating when the pressure-bonding material is a semi-thermosetting resin. In the case where the heating is performed at a temperature equal to or higher than the second-stage thermosetting temperature of the light / thermosetting resin composition (particularly, the reaction start temperature of the component [V]), the above-described flattened resin-coated printed wiring board. In step (3), step 3) can be omitted.

即ち、この場合は、先ず、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、工程1)及び2)を順次に行った後、下記工程Bを行う。  That is, in this case, first, a light / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole, and steps 1) and 2) are sequentially performed, After applying the thermosetting resin composition to the other surface of the printed wiring board and sequentially performing steps 1) and 2), the following step B is performed.

B)プリント配線板を圧着材料で挟んで光硬化樹脂の熱硬化温度以上にて積層プレスして圧着材料の圧着と工程3)とを同時に行う工程。  B) A step in which a printed wiring board is sandwiched between pressure-bonding materials and laminated and pressed at a temperature equal to or higher than the thermosetting temperature of the photo-curing resin to simultaneously press the pressure-bonding material and the step 3).

上記工程B)において、熱硬化温度以上にて積層プレスすることにより、圧着材料の圧着(及び完全熱硬化)と光硬化樹脂の第二段熱硬化[即ち、工程3)]とが同時に行われる。  In the step B), the press-bonding (and complete thermosetting) of the pressure-bonding material and the second-stage thermosetting of the photo-curing resin [ie, step 3)] are simultaneously performed by laminating and pressing at the thermosetting temperature or higher. .

工程A)又はB)において、積層プレス条件としては、例えば120〜200(特に135〜180)℃、30〜180(特に60〜150)分、圧力10〜100(特に15〜40)kgf/cmが好ましい。In the step A) or B), the lamination press conditions are, for example, 120 to 200 (particularly 135 to 180) ° C., 30 to 180 (particularly 60 to 150) minutes, pressure 10 to 100 (particularly 15 to 40) kgf / cm. 2 is preferred.

積層プレスは、例えば開放式積層装置、真空式積層装置等にて行うことができる。更に、これらの積層装置は、例えば油圧プレス、オートクレーブ・プレス等であってよい。更に、真空式油圧プレスは、枠タイプ、ボックスタイプ等であってよい。  The lamination press can be performed by, for example, an open lamination apparatus, a vacuum lamination apparatus, or the like. Furthermore, these laminating apparatuses may be, for example, a hydraulic press, an autoclave press or the like. Furthermore, the vacuum hydraulic press may be a frame type, a box type, or the like.

本発明の多層プリント配線板の製造法において、上記工程A)又はB)を行った後、圧着材料表面から導体層(例えば回路層)に到るまで穴あけを行い、ブラインドホールのマイクロビア[図2B、214]を形成する。このマイクロビアは、後工程にて形成される回路層との層間接続用コンフォーマルビアとして利用される。穴あけは、例えばレーザ(UVレーザ、COレーザ、エキシマレーザ、Nd:YAGレーザ等)又はプラズマを用いる方法により行うことができる。マイクロビアの直径は、例えば10〜200(特に20〜70)μmが好ましい。In the method for producing a multilayer printed wiring board according to the present invention, after performing the above-mentioned step A) or B), drilling is performed from the surface of the pressure-bonding material to the conductor layer (for example, the circuit layer). 2B, 214]. This micro via is used as a conformal via for interlayer connection with a circuit layer formed in a later process. Drilling can be performed by a method using a laser (UV laser, CO 2 laser, excimer laser, Nd: YAG laser, etc.) or plasma, for example. The diameter of the micro via is preferably, for example, 10 to 200 (particularly 20 to 70) μm.

次いで、本発明の多層プリント配線板の製造法において、全面めっき[図2C、215]を施す。全面めっきは、両面行うのが好ましい。この全面めっきにより、全露出表面(圧着材料表面、マイクロビア内壁面、マイクロビアにより開口した導体層露出面等)がめっき層にて被覆される。このめっき層は、層間接続及び後工程の回路形成等に使用される。  Next, in the method for producing a multilayer printed wiring board according to the present invention, the entire surface is plated [FIG. 2C, 215]. The entire surface plating is preferably performed on both sides. By this whole surface plating, the entire exposed surface (the surface of the pressure bonding material, the inner wall surface of the micro via, the exposed surface of the conductor layer opened by the micro via, etc.) is covered with the plating layer. This plating layer is used for interlayer connection and circuit formation in a subsequent process.

全面めっきは、先ず無電解めっきをして、所謂、下地作りを行い、その後、更に電解めっきを行うのが好ましい。無電解めっき及び電解めっきにおける「めっき」としては、例えば銅めっき、ニッケルめっき、金めっき、ニッケル−金めっき、はんだめっき等が挙げられ、同一めっきであっても二種組み合わせてもよい。無電解めっきの層厚は0.1〜10(特に0.5〜5)μm、電解めっきの層厚は10〜50(特に15〜30)μmが、それぞれ好ましい。  In the entire surface plating, it is preferable to first perform electroless plating to form a so-called base, and then perform further electrolytic plating. Examples of “plating” in electroless plating and electrolytic plating include copper plating, nickel plating, gold plating, nickel-gold plating, solder plating, and the like. The layer thickness of electroless plating is preferably 0.1 to 10 (particularly 0.5 to 5) μm, and the layer thickness of electrolytic plating is preferably 10 to 50 (particularly 15 to 30) μm.

次いで、本発明の多層プリント配線板の製造法において、上記全面めっき層より回路[図2D、216]を形成する。回路形成は、例えばサブトラクティブ法又はアディティブ法等によって行うことができる。  Next, in the method for producing a multilayer printed wiring board of the present invention, a circuit [FIG. 2D, 216] is formed from the entire plating layer. The circuit formation can be performed, for example, by a subtractive method or an additive method.

次いで、本発明の多層プリント配線板の製造法において、表面をレジスト[図2E、217]にて被覆する。レジストとしては、ソルダーレジスト、ポリイミドレジスト、ポリイミドフィルム等が挙げられるが、典型的にはソルダーレジストである。  Next, in the method for producing a multilayer printed wiring board of the present invention, the surface is coated with a resist [FIG. 2E, 217]. Examples of the resist include a solder resist, a polyimide resist, a polyimide film, and the like. Typically, the resist is a solder resist.

レジストの被覆は、例えば感光性レジストインク若しくはドライフィルムを用いて露光・現像する写真法、並びにレジストインクを用いる印刷法等によって行うことができる。  The resist can be coated by, for example, a photographic method in which exposure and development are performed using a photosensitive resist ink or a dry film, a printing method using a resist ink, and the like.

レジストは、必要に応じ、開口部を設けていてもよい。この場合、開口部を有するレジストパターンが得られるように、露光・現像又はインク印刷が行われる。レジストの開口部は、具体的には、多層プリント配線板にパッド[図2E、218]及び/又は端子部[図2E、219]を設けるためのものであってよい。この場合、多層プリント配線板は、パッド及び/又は端子部以外がレジストマスクにて被覆される。  The resist may have openings as necessary. In this case, exposure / development or ink printing is performed so that a resist pattern having an opening is obtained. Specifically, the openings of the resist may be provided for providing pads [FIGS. 2E and 218] and / or terminal portions [FIGS. 2E and 219] on the multilayer printed wiring board. In this case, the multilayer printed wiring board is covered with a resist mask except for the pads and / or terminals.

レジストの開口部により露出しているパッド表面及び/又は端子部表面は、耐摩擦性を向上するために、更にパッドめっき[図2F、220]及び/又は端子めっき[図2F、221]を施してよい。パッドめっき及び/又は端子めっきは、例えば先ずニッケルめっきを行い、その後、更に金めっきを行って、形成してもよい。めっきの層厚は、0.1〜20(特に0.5〜10)μmが好ましい。  The pad surface and / or the terminal portion surface exposed by the resist openings are further subjected to pad plating [FIG. 2F, 220] and / or terminal plating [FIG. 2F, 221] in order to improve the friction resistance. It's okay. The pad plating and / or terminal plating may be formed, for example, by first performing nickel plating and then further performing gold plating. The plating layer thickness is preferably 0.1 to 20 (particularly 0.5 to 10) μm.

上記のようにして製造される本発明の多層プリント配線板[図2F]は、コア部分(即ち、素材として使用した本発明の前記平坦化樹脂被覆プリント配線板に相当する部分)の回路の密集度に係わらず、表面に膨れや窪みが全く存在せず、極めて優れた平坦性が達成されており、かつコア部分の導電回路層(回路銅箔)上の絶縁層(硬化樹脂層及び圧着材料層)の厚さも極めて一定である。  The multilayer printed wiring board of the present invention manufactured as described above [FIG. 2F] has a dense circuit of the core portion (that is, the portion corresponding to the flattened resin-coated printed wiring board of the present invention used as a material). Regardless of the degree, there are no bulges or depressions on the surface, extremely excellent flatness has been achieved, and an insulating layer (cured resin layer and pressure bonding material) on the conductive circuit layer (circuit copper foil) in the core part The thickness of the layer) is also very constant.

本発明の平坦化樹脂被覆プリント配線板を素材として使用して、多層プリント配線板の外層用材料等として有用なプリント配線板(特に両面プリント配線板)を製造することができる。即ち、本発明のプリント配線板の製造法において、光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、工程1)〜3)を順次に行って、本発明の平坦化樹脂被覆プリント配線板を先ず、得る[図3A]。  Using the flattened resin-coated printed wiring board of the present invention as a raw material, a printed wiring board (particularly a double-sided printed wiring board) useful as an outer layer material of a multilayer printed wiring board can be produced. That is, in the method for producing a printed wiring board of the present invention, a photo / thermosetting resin composition is applied to one surface and a through hole of a printed wiring board having a through hole, and steps 1) and 2) are sequentially performed. Next, a photo / thermosetting resin composition is applied to the other surface of the printed wiring board, and steps 1) to 3) are sequentially performed to obtain the flattened resin-coated printed wiring board of the present invention [ FIG. 3A].

次いで、この平坦化樹脂被覆プリント配線板の被覆樹脂(硬化樹脂)層に開口部を設ける。この態様においては、被覆樹脂層がレジストとして機能する[図3B]。  Next, an opening is provided in the coating resin (cured resin) layer of the flattened resin-coated printed wiring board. In this embodiment, the coating resin layer functions as a resist [FIG. 3B].

被覆樹脂層の開口部は、前述と同様、例えばレーザ(UVレーザ、COレーザ、エキシマレーザ、Nd:YAGレーザ等)又はプラズマを用いる方法等によって形成してよい。被覆樹脂層の開口部は、具体的には、プリント配線板にパッド[図3B、318]及び/又は端子部[図3B、319]を設けるためのものであってよい。更に、パッド表面及び/又は端子部表面は、パッドめっき[図3C、320]及び/又は端子めっき[図3C、321]を施してよい。The opening of the coating resin layer may be formed by a method using a laser (UV laser, CO 2 laser, excimer laser, Nd: YAG laser, etc.) or plasma, as described above. Specifically, the opening of the covering resin layer may be provided for providing a pad [FIG. 3B, 318] and / or a terminal portion [FIG. 3B, 319] on the printed wiring board. Furthermore, the pad surface and / or the terminal portion surface may be subjected to pad plating [FIGS. 3C and 320] and / or terminal plating [FIGS. 3C and 321].

上記のようにして製造される本発明のプリント配線板[図3C]は、その表面に膨れや窪みが全く無く、極めて高い平坦性が達成されている。それ故、微小部品の高密度実装時の位置精度に優れ、回路の密集度に係わらずプリント配線板全体に亘ってその厚さが均一で、且つ平坦な樹脂層(特にソルダーレジスト膜)にて被覆されている。その結果、狭ピッチBGA(ボール・グリッド・アレイ)、例えばバンプのピッチが100μm以下のBGA等を実装した際のアンダーフィルの入り込み性にも優れる。  The printed wiring board of the present invention produced as described above [FIG. 3C] has no bulges or depressions on its surface, and extremely high flatness is achieved. Therefore, it is excellent in the positional accuracy at the time of high-density mounting of minute parts, and the thickness is uniform over the entire printed wiring board regardless of the density of the circuit, and a flat resin layer (especially a solder resist film). It is covered. As a result, the penetration of the underfill is excellent when a narrow pitch BGA (ball grid array), for example, a BGA having a bump pitch of 100 μm or less is mounted.

以上、本発明について説明したが、当業者であれば本発明を更に改変・拡張することは容易である。例えば、本発明の多層プリント配線板の製造法において、「全面めっきを施し、めっき層より回路を形成」する替わりに、「めっきレジスト[図4A、422]を形成し、めっきレジストで覆われていない部分にめっき[図4B、415]を施し、回路[図4C、416]を形成」してもよい。  Although the present invention has been described above, it is easy for those skilled in the art to further modify and extend the present invention. For example, in the method for producing a multilayer printed wiring board according to the present invention, instead of performing “entire plating and forming a circuit from a plating layer”, “plating resist [FIG. 4A, 422] is formed and covered with plating resist”. Plating [FIGS. 4B and 415] may be applied to the non-existing portions to form circuits [FIGS. 4C and 416].

更に、本発明の多層プリント配線板の製造法における各製造工程を繰り返すことにより、所望の層数の多層プリント配線板を製造することができる。  Furthermore, a multilayer printed wiring board having a desired number of layers can be produced by repeating each production process in the method for producing a multilayer printed wiring board of the present invention.

更に、本発明の多層プリント配線板の製造法において、「圧着材料」として「樹脂付き銅箔」[図5A、523及び524]を使用してもよい。この場合は、後工程の「全面めっき」を省略することもできる。[図5]  Furthermore, in the method for producing a multilayer printed wiring board of the present invention, “copper foil with resin” [FIGS. 5A, 523 and 524] may be used as the “crimping material”. In this case, the “entire plating” in the subsequent step can be omitted. [Fig. 5]

更に、本発明の平坦化樹脂被覆プリント配線板、多層プリント配線板、及びプリント配線板を、内層材又は外層材として適宜、複数枚、組み合わせ、これらを積層プレスすれば、層数がより多く且つ層構造がより複雑な所望の穴埋め多層プリント配線板を製造することができる。  Furthermore, if the flattening resin-coated printed wiring board, multilayer printed wiring board, and printed wiring board of the present invention are appropriately combined and used as an inner layer material or an outer layer material, and these are laminated and pressed, the number of layers is increased. A desired hole-filling multilayer printed wiring board having a more complicated layer structure can be manufactured.

更に、本発明の如何なる製造法においても、プリプレグの替わりに、他の接着シートその他層間材料又は樹脂付き銅箔を使用することができ、その結果、所望の層構造の穴埋め多層プリント配線板を製造することができる。  Furthermore, in any production method of the present invention, instead of the prepreg, other adhesive sheets, other interlayer materials, or resin-coated copper foil can be used, and as a result, a hole-filled multilayer printed wiring board having a desired layer structure is produced. can do.

更に、本発明の製造法において、工程1)を、カバーフィルムを用い加圧ロールにより行う場合を説明したが、フィルム以外の他のもの(型、板、シートその他)を使用してよく、更には加圧ロールの替わりに塗布樹脂表面を平坦化できる、その他の如何なる方法でも用いることができる。  Furthermore, in the production method of the present invention, the case where step 1) is performed by a pressure roll using a cover film has been described, but other than the film (mold, plate, sheet, etc.) may be used. Can be used by any other method capable of flattening the surface of the coated resin instead of the pressure roll.

以下本発明を図を用い、実施例にて更に具体的に説明する。
<光・熱硬化型樹脂組成物の調製>
・調製例1
下記に示す各配合成分を撹拌混合した。次いで、3本ロールミルにて均一に分散させた。得られた均一分散物を真空脱泡して、光・熱硬化型樹脂組成物(調製例1)を調製した。
Hereinafter, the present invention will be described more specifically with reference to the drawings.
<Preparation of light / thermosetting resin composition>
Preparation Example 1
Each compounding component shown below was stirred and mixed. Subsequently, it was uniformly dispersed with a three-roll mill. The obtained uniform dispersion was vacuum degassed to prepare a photo / thermosetting resin composition (Preparation Example 1).

光・熱硬化型樹脂組成物(重量部):
ジシクロペンタジエンフェノール型エポキシ樹脂の40%メタクリル酸付加物(100)、ジシクロペンタニルメタクリレート(30)、トリメチロールプロパントリアクリレート(70)、ジペンタエリスリトールヘキサアクリレート(80)、2−メチル−1[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン(10)、ジエチルチオキサントン(1)、ビスフェノールA型エポキシ樹脂1)(80)、ビスフェノールAD型エポキシ樹脂(20)、ジシアンジアミド(10)、シリカ(250)、表面処理コロイダルシリカ(6)、ポリジメチルシロキサン(3)。
Light / thermosetting resin composition (parts by weight):
40% methacrylic acid adduct of dicyclopentadiene phenol type epoxy resin (100), dicyclopentanyl methacrylate (30), trimethylolpropane triacrylate (70), dipentaerythritol hexaacrylate (80), 2-methyl-1 [4- (Methylthio) phenyl] -2-morpholinopropan-1-one (10), diethylthioxanthone (1), bisphenol A type epoxy resin 1) (80), bisphenol AD type epoxy resin (20), dicyandiamide ( 10), silica (250), surface-treated colloidal silica (6), polydimethylsiloxane (3).

1):前記式[化IVl−1]において、n=0のもの(86重量%)とn=1のもの(14重量%)との混合物、平均分子量380。    1): A mixture of n = 0 (86 wt%) and n = 1 (14 wt%) in the above formula [Formula IVl-1], average molecular weight 380.

<熱・熱硬化型樹脂組成物の調製>
・調製例2
下記に示す各配合成分を撹拌混合した。次いで、3本ロールミルにて均一に分散させた。得られた均一分散物を真空脱泡して、熱・熱硬化型樹脂組成物(調製例2)を調製した。
<Preparation of thermosetting / thermosetting resin composition>
Preparation Example 2
Each compounding component shown below was stirred and mixed. Subsequently, it was uniformly dispersed with a three-roll mill. The obtained uniform dispersion was vacuum degassed to prepare a thermo-thermosetting resin composition (Preparation Example 2).

熱・熱硬化型樹脂組成物(重量部):
トリフェニルメタン型エポキシ樹脂(19)、N,N,O−トリス(グリシジル)−p−アミノフェノール(28)、ジシアンジアミド(2)、エポキシ樹脂アミンアダクト(1)、水酸化アルミニウム(49)、ベントナイト(0.5)、ポリジメチルシロキサン(0.5)。
Thermo-thermosetting resin composition (parts by weight):
Triphenylmethane type epoxy resin (19), N, N, O-tris (glycidyl) -p-aminophenol (28), dicyandiamide (2), epoxy resin amine adduct (1), aluminum hydroxide (49), bentonite (0.5), polydimethylsiloxane (0.5).

<プリント配線板の製造>
・実施例1
両面プリント配線板として、絶縁基板[厚さ0.930mm、図1A、101]の両面に回路層[図1A、102]を備え、且つスルーホール[図1A、103]の内壁が銅張されたもの[銅回路厚が40μm、ライン/スペース(L/S)=20μm/40μm、スルーホール径がめっき後で100μm]を使用した。尚、導電層表面(回路及びスルーホール内壁の銅張部分)が、「メックエッチボンドCZ−8101」(メック社製、化学粗化薬品)にて予め粗化処理されているものを使用した。
<Manufacture of printed wiring boards>
Example 1
As a double-sided printed wiring board, a circuit layer [FIGS. 1A, 102] is provided on both sides of an insulating substrate [thickness 0.930 mm, FIGS. 1A, 101], and inner walls of through holes [FIGS. 1A, 103] are copper-clad. [Copper circuit thickness is 40 μm, line / space (L / S) = 20 μm / 40 μm, through hole diameter is 100 μm after plating]. The surface of the conductive layer (the copper-clad portion of the inner wall of the circuit and the through hole) was subjected to roughening treatment in advance with “MEC etch bond CZ-8101” (manufactured by MEC, chemical roughening chemical).

光・熱硬化型樹脂組成物(調製例1)[図1B、105]を、下記表5に示す印刷条件にてスクリーン印刷を行い、上記プリント配線板の一方の片面(先行面)に全面塗布し、スルーホール及び回路間の凹部[図1B、104]を充填、穴埋めした。  The photo / thermosetting resin composition (Preparation Example 1) [FIGS. 1B and 105] is screen-printed under the printing conditions shown in Table 5 below, and is applied to one side (leading side) of the printed wiring board. The through holes and the recesses between the circuits [FIG. 1B, 104] were filled and filled.

Figure 2007049106
Figure 2007049106

次いで、このプリント配線板を水平ラックに載せ、BOX乾燥機で80℃、30分間加熱し、粘度を低下させ、塗布樹脂中の気泡を除去した。尚、この光・熱硬化型樹脂組成物(調製例1)を50倍の顕微鏡により調べ、回路間に気泡は存在しないことを確認した。  Next, the printed wiring board was placed on a horizontal rack and heated with a BOX dryer at 80 ° C. for 30 minutes to reduce the viscosity and remove bubbles in the coating resin. This photo / thermosetting resin composition (Preparation Example 1) was examined with a 50 × microscope, and it was confirmed that no bubbles were present between the circuits.

次いで、このプリント配線板を、膜厚100μmのPETフィルム[図1C、106]で挟んで、ラミネータにかけた。即ち、このフィルム被覆プリント配線板を、2本のステンレススチール製ローラー[図1D、107]の間に挟み(ラミネート圧力0.1MPa、ラミネート速度0.5m/min、ラミネート温度100℃)、ローラーをフィルム上にて移動させた[図1D、108]。こうして、プリント配線板の表面上の塗布樹脂層を平坦・薄膜化させた[図1D]。  Next, the printed wiring board was sandwiched between 100 μm-thick PET films [FIG. 1C, 106] and applied to a laminator. That is, this film-coated printed wiring board is sandwiched between two stainless steel rollers [FIG. 1D, 107] (lamination pressure 0.1 MPa, laminating speed 0.5 m / min, laminating temperature 100 ° C.), Moved on film [FIG. 1D, 108]. Thus, the coated resin layer on the surface of the printed wiring board was flattened and thinned [FIG. 1D].

次いで、上記プリント配線板を、高圧水銀ランプを用いて、露光量1200mj/cmにて光照射して、第一段光硬化物[図1E、109]を形成した後、上記両面のPETフィルムを剥がして除去した[図1E]。Next, the printed wiring board was irradiated with light at an exposure amount of 1200 mj / cm 2 using a high-pressure mercury lamp to form a first-stage photocured product [FIG. 1E, 109], and then the PET film on both sides. Was removed by stripping [FIG. 1E].

次いで、上記プリント配線板の裏面(後行面)についても先行面と同様に処理した。即ち、光・熱硬化型樹脂組成物(調製例1)[図1F、105]を、表5に示す印刷条件にてスクリーン印刷を行い、上記配線板の他方の片面(後行面)に全面塗布し、回路間の凹部[図1F、104]を充填した[図1F]。  Next, the back surface (following surface) of the printed wiring board was treated in the same manner as the preceding surface. That is, the photo / thermosetting resin composition (Preparation Example 1) [FIGS. 1F and 105] was screen-printed under the printing conditions shown in Table 5, and the entire surface of the other side (following side) of the wiring board was formed. It was applied and filled the recesses [FIG. 1F, 104] between the circuits [FIG. 1F].

次いで、このプリント配線板を水平ラックに載せ、BOX乾燥機で80℃30分間加熱し、粘度を低下させ、塗布樹脂中の気泡を除去した。尚、この光・熱硬化型樹脂組成物(調製例1)を50倍の顕微鏡により調べ、回路間に気泡は存在しないことを確認した。  Next, the printed wiring board was placed on a horizontal rack and heated with a BOX dryer at 80 ° C. for 30 minutes to reduce the viscosity and remove bubbles in the coating resin. This photo / thermosetting resin composition (Preparation Example 1) was examined with a 50 × microscope, and it was confirmed that no bubbles were present between the circuits.

次いで、このプリント配線板を、膜厚100μmのPETフィルム[図1G、106]で挟んだ。このフィルム被覆プリント配線板を、2本のステンレススチール製ローラー[図1G、107]に挟み(ラミネート圧力0.1MPa、ラミネート速度0.5m/min、ラミネート温度100℃)、ローラーをフィルム上にて移動させた[図1G、108]。こうして、プリント配線板の表面上の塗布樹脂層を平坦・薄膜化させた[図1H]。  Next, this printed wiring board was sandwiched between PET films having a thickness of 100 μm [FIGS. 1G, 106]. This film-covered printed wiring board is sandwiched between two stainless steel rollers [FIG. 1G, 107] (lamination pressure 0.1 MPa, laminating speed 0.5 m / min, laminating temperature 100 ° C.), and the roller is placed on the film. Moved [FIG. 1G, 108]. Thus, the coating resin layer on the surface of the printed wiring board was flattened and thinned [FIG. 1H].

次いで、上記プリント配線板を、高圧水銀ランプを用いて、露光量1200mj/cmにて光照射して、第一段光硬化物を形成した後、上記両面のPETフィルムを剥がして除去した。Next, the printed wiring board was irradiated with light at an exposure amount of 1200 mj / cm 2 using a high-pressure mercury lamp to form a first-stage photocured product, and then the PET films on both sides were peeled off and removed.

その後、このプリント配線板を150℃、30分間加熱して光硬化樹脂の第二段熱硬化[図1I、110]を行って、全厚が1.018mmの本発明の平坦化樹脂被覆プリント配線板(実施例1)を製造した[図1I]。  Thereafter, the printed wiring board is heated at 150 ° C. for 30 minutes to perform second-stage thermosetting of the photocurable resin [FIG. 1I, 110], and the flattened resin-coated printed wiring according to the present invention having a total thickness of 1.018 mm. A plate (Example 1) was produced [FIG. 1I].

・実施例2
両面プリント配線板として、厚さ0.930mmの絶縁基板の両面に回路層を備え、且つスルーホールの内壁が銅張されたもの[銅回路厚が40μm、L/S=20μm/40μm、スルーホール径がめっき後で100μm]を使用した。尚、導電層表面(回路及びスルーホール内壁の銅張部分)を、メックエッチボンドCZ−8101にて予め粗化処理したものを使用した。
Example 2
As a double-sided printed wiring board, a circuit layer is provided on both sides of an insulating substrate with a thickness of 0.930 mm, and the inner wall of the through hole is copper-clad [copper circuit thickness is 40 μm, L / S = 20 μm / 40 μm, through hole The diameter was 100 μm after plating]. Note that the surface of the conductive layer (the copper-clad portion of the inner wall of the circuit and the through hole) was roughened with Mec Etch Bond CZ-8101 in advance.

光・熱硬化型樹脂組成物(調製例1)を、真空印刷機を用いて、表5に示す印刷条件にてスクリーン印刷を行い、上記配線基板の一方の片面(先行面)に全面塗布し、スルーホール及び回路間の凹部を充填・穴埋めした。  The photo / thermosetting resin composition (Preparation Example 1) is screen-printed under the printing conditions shown in Table 5 using a vacuum printing machine, and is applied to the entire surface of one side (leading side) of the wiring board. The through holes and the recesses between the circuits were filled and filled.

次いで、このプリント配線板を、膜厚100μmのPETフィルムで挟んで、ラミネータにかけた。即ち、このフィルム被覆プリント配線板を2本のステンレススチール製ローラーの間に挟み(ラミネート圧力0.1MPa、ラミネート速度0.5m/min、ラミネート温度室温)、ローラーをフィルム上にて移動させた。こうして、プリント配線板の表面上の塗布樹脂層を平坦・薄膜化させた。  Next, the printed wiring board was sandwiched between 100 μm-thick PET films and applied to a laminator. That is, this film-coated printed wiring board was sandwiched between two stainless steel rollers (lamination pressure 0.1 MPa, laminating speed 0.5 m / min, laminating temperature room temperature), and the roller was moved on the film. Thus, the coating resin layer on the surface of the printed wiring board was made flat and thin.

次いで、上記プリント配線板を、高圧水銀ランプを用いて、露光量1200mj/cmにて光照射し、第一段光硬化物を形成した後、上記両面のPETフィルムを剥がして除去した。Next, the printed wiring board was irradiated with light at an exposure amount of 1200 mj / cm 2 using a high-pressure mercury lamp to form a first-stage photocured product, and then the PET films on both sides were peeled off and removed.

次いで、上記プリント配線板の裏面(後行面)についても先行面と同様に処理した。即ち、光・熱硬化型樹脂組成物(調製例1)を、真空印刷機を用いて、表5に示す印刷条件にてスクリーン印刷を行い、上記配線基板の他方の片面(後行面)に前面塗布し、回路間の凹部を充填した。  Next, the back surface (following surface) of the printed wiring board was treated in the same manner as the preceding surface. That is, the photo / thermosetting resin composition (Preparation Example 1) was screen-printed under the printing conditions shown in Table 5 using a vacuum printing machine, and the other one side (rear side) of the wiring board was used. The front surface was applied to fill the recesses between the circuits.

次いで、このプリント配線板を、膜厚100μmのPETフィルムで挟んだ。このフィルム被覆プリント配線板を、2本のステンレススチール製ローラーの間に挟み、(ラミネート圧力0.1MPa、ラミネート速度0.5m/min、ラミネート温度室温)、ローラーをフィルム上にて移動させた。こうして、プリント配線板の表面上の塗布樹脂層を平坦・薄膜化させた。  Next, this printed wiring board was sandwiched between PET films having a film thickness of 100 μm. This film-coated printed wiring board was sandwiched between two stainless steel rollers (lamination pressure 0.1 MPa, laminating speed 0.5 m / min, laminating temperature room temperature), and the roller was moved on the film. Thus, the coating resin layer on the surface of the printed wiring board was made flat and thin.

次いで、上記プリント配線板を、高圧水銀ランプを用いて、露光量1200mj/cmにて光照射して、第一段光硬化物を形成した後、上記両面のPETフィルムを剥がして除去した。Next, the printed wiring board was irradiated with light at an exposure amount of 1200 mj / cm 2 using a high-pressure mercury lamp to form a first-stage photocured product, and then the PET films on both sides were peeled off and removed.

その後、このプリント配線板を150℃、30分間加熱して光硬化樹脂の第二段熱硬化を行って、全厚が1.030mmの本発明の平坦化樹脂被覆プリント配線板(実施例2)を製造した。  Thereafter, this printed wiring board is heated at 150 ° C. for 30 minutes to perform second-stage thermosetting of the photocurable resin, and the flattened resin-coated printed wiring board of the present invention having a total thickness of 1.030 mm (Example 2) Manufactured.

・実施例3
上記プリント配線板(実施例1)を素材として使用して、4層プリント配線板を製造した。即ち、先ず上記プリント配線板(実施例1)の両表面上に、厚さ0.1mmのプリプレグ[図2A、213]を被覆して挟んだ。
Example 3
A four-layer printed wiring board was manufactured using the printed wiring board (Example 1) as a material. That is, first, a 0.1 mm thick prepreg [FIG. 2A, 213] was covered and sandwiched on both surfaces of the printed wiring board (Example 1).

次いで、表6のプレス条件に従って、上記プリント配線板を加熱真空プレスし、プリプレグを圧着した。  Subsequently, according to the press conditions of Table 6, the said printed wiring board was heated and vacuum-pressed, and the prepreg was crimped | bonded.

Figure 2007049106
Figure 2007049106

次いで、上記プリント配線板のプリプレグ表面からレーザ照射し、回路層[図2B、202]を露出させ、マイクロビア(ビア径70μm)[図2B、214]を形成した[図2B]。  Next, laser irradiation was performed from the surface of the prepreg of the printed wiring board to expose the circuit layer [FIG. 2B, 202] to form micro vias (via diameter 70 μm) [FIG. 2B, 214] [FIG. 2B].

次いで、上記プリント配線板の両表面上及びマイクロビア内壁表面に、銅めっき(始めに無電解銅めっき、続けて電解銅めっき)を行い[図2C、215]、ビアとプリプレグの表面を銅箔で覆い、両面銅張積層板を形成した。尚、めっき厚は、無電解銅めっき1μm、電解めっき14μmであった。  Next, copper plating (first electroless copper plating and then electrolytic copper plating) is performed on both surfaces of the printed wiring board and the inner wall surface of the micro via [FIG. 2C, 215], and the surfaces of the via and the prepreg are made of copper foil. And a double-sided copper-clad laminate was formed. The plating thickness was 1 μm for electroless copper plating and 14 μm for electrolytic plating.

次いで、上記両面銅張積層板の両表面上に以下のようにして回路[図2D、216]を形成させた。先ず、ドライフィルム(ラミネート)法にて、エッチングレジストを形成した。即ち、ドライフィルムを上記両面銅張積層板の両表面にラミネートし、ネガ型フィルム(パターンマスク)を重ね合わせ、超高圧水銀灯にて、露光・硬化した。  Next, a circuit [FIG. 2D, 216] was formed on both surfaces of the double-sided copper-clad laminate as follows. First, an etching resist was formed by a dry film (laminate) method. That is, a dry film was laminated on both surfaces of the double-sided copper-clad laminate, a negative film (pattern mask) was overlaid, and exposed and cured with an ultra-high pressure mercury lamp.

次いで、ドライフィルムのキャリアフィルムを剥離し、露出したレジスト面へ現像液(1%炭酸ナトリウム溶液)をスプレーノズルから吹き付け現像し、その後水洗して、レジストパターンを形成した。  Next, the carrier film of the dry film was peeled off, and a developer (1% sodium carbonate solution) was sprayed and developed on the exposed resist surface from a spray nozzle, and then washed with water to form a resist pattern.

次いで、エッチングを行った。即ち、上記レジスト被覆両面銅張積層板の両面に、塩化第二鉄溶液(36重量%)をスプレーノズルから吹き付けて、不要銅箔を溶解除去した。上記エッチング完了後、3%水酸化ナトリウム水溶液をスプレーノズルから噴射して、エッチングレジストを膨潤させながら洗い流した。  Next, etching was performed. That is, a ferric chloride solution (36% by weight) was sprayed from both sides of the resist-coated double-sided copper-clad laminate from a spray nozzle to dissolve and remove unnecessary copper foil. After completion of the etching, a 3% aqueous sodium hydroxide solution was sprayed from a spray nozzle to wash away the etching resist while swelling.

上記のようにして、回路を形成した後、ソルダーレジストインキを塗布し、ソルダーレジスト[図2E、217]を形成した。即ち、先ず、回路が形成された両表面に紫外線・熱硬化型アクリレート/エポキシ混合樹脂を150メッシュのテトロンスクリーンを介してスキージ(スキージ硬度75)にてスクリーン印刷した。  After forming a circuit as described above, a solder resist ink was applied to form a solder resist [FIG. 2E, 217]. That is, first, UV / thermosetting acrylate / epoxy mixed resin was screen printed on both surfaces on which the circuit was formed with a squeegee (squeegee hardness 75) through a 150 mesh Tetron screen.

次いで、75〜80℃にて温風乾燥炉中にてブレベークした後、ネガフィルムを密着させて露光(300mj/cm)硬化した。そして、1%炭酸ナトリウム溶液(30℃、2.5kg/cm)にて現像して、開口部(パッド部[図2E、218]、及び端子部[図2E、219])を形成した。その後、150℃にて30分間加熱して、熱硬化を行った。Next, after baked in a warm air drying oven at 75 to 80 ° C., a negative film was adhered and cured by exposure (300 mj / cm 2 ). Then, development was performed with a 1% sodium carbonate solution (30 ° C., 2.5 kg / cm 2 ) to form openings (pad portions [FIG. 2E, 218] and terminal portions [FIG. 2E, 219]). Then, it heated at 150 degreeC for 30 minutes, and performed thermosetting.

その後、パッド部[図2E、218]及び端子部[図2E、219]については先ず電解ニッケル、続いて金めっきを施した[図2F、220及び221]。  Thereafter, the pad portions [FIGS. 2E and 218] and the terminal portions [FIGS. 2E and 219] were first subjected to electrolytic nickel and then gold plating [FIGS. 2F, 220 and 221].

上記のようにして、コア部における回路密集部上の絶縁層の厚さが一定(均一)であり且つ回路過疎部上の絶縁層の厚さが一定(均一)であり、表面に膨れや窪みが無く全体に亘って平坦な、本発明の4層プリント配線板(実施例3)[図2F]を製造した。  As described above, the thickness of the insulating layer on the circuit dense portion in the core portion is constant (uniform), and the thickness of the insulating layer on the circuit depopulated portion is constant (uniform), and the surface is swollen or depressed. A four-layer printed wiring board of the present invention (Example 3) [Fig.

・実施例4
上記プリント配線板(実施例2)を素材として使用して、両面プリント配線板を製造した。即ち、先ず上記プリント配線板(実施例2)の被覆硬化樹脂層[図3A、310]をレーザ照射して、パッド部[図3B、318]及び端子部分[図3B、319]における回路層の銅箔を露出させた[図3B]。
Example 4
A double-sided printed wiring board was manufactured using the printed wiring board (Example 2) as a material. That is, first, the coated cured resin layer [FIG. 3A, 310] of the printed wiring board (Example 2) is irradiated with laser, and the circuit layer of the pad portion [FIG. 3B, 318] and the terminal portion [FIG. The copper foil was exposed [FIG. 3B].

その後、パッド部[図3C、318]及び端子部分[図3C、319]に、先ず電解ニッケル、引き続き電解金めっき[図3C、321]を施した。  Then, electrolytic nickel and then electrolytic gold plating [FIGS. 3C and 321] were applied to the pad portions [FIGS. 3C and 318] and the terminal portions [FIGS. 3C and 319].

上記のようにして、回路密集部上の絶縁層の厚さが一定(均一)であり且つ回路過疎部上の絶縁層の厚さが一定(均一)であり、表面に膨れや窪みが無く全体に亘って平坦な、全厚が1.030mmの本発明の両面プリント配線板(実施例4)を製造した[図3C]。  As described above, the thickness of the insulating layer on the circuit dense portion is constant (uniform) and the thickness of the insulating layer on the circuit depopulated portion is constant (uniform), and there is no swelling or depression on the surface. A double-sided printed wiring board according to the present invention (Example 4) having a total thickness of 1.030 mm was produced [FIG. 3C].

・比較例1
両面プリント配線板として、厚さ0.930mmの絶縁基板[図6A、601]の両面に回路層[図6A、602]を備え、且つスルーホールの内壁が銅張されたもの[銅回路厚が40μm、L/S=20μm/40μm、スルーホール径がめっき後で100μm]を使用した。尚、導電層表面(回路及びスルーホール内壁の銅張部分)を、メックエッチボンドCZ−8101にて予め粗化処理したものを使用した。
Comparative example 1
A double-sided printed wiring board having a circuit layer [FIGS. 6A, 602] on both sides of an insulating substrate [FIGS. 6A, 601] having a thickness of 0.930 mm, and the inner wall of the through hole being copper-clad [copper circuit thickness is 40 μm, L / S = 20 μm / 40 μm, and through-hole diameter of 100 μm after plating] was used. Note that the surface of the conductive layer (the copper-clad portion of the inner wall of the circuit and the through hole) was roughened with Mec Etch Bond CZ-8101 in advance.

上記プリント配線板上に、熱・熱硬化型樹脂組成物(調製例2)[図6A、605]を、表5に示す印刷条件にてスクリーン印刷を行い、回路間の凹部には樹脂充填せず、スルーホールのみを充填、穴埋めした。  On the printed wiring board, the thermo-thermosetting resin composition (Preparation Example 2) [FIG. 6A, 605] is screen-printed under the printing conditions shown in Table 5, and the recesses between the circuits are filled with the resin. Instead, only through holes were filled and filled.

次いで、上記プリント配線板を130℃、60分間加熱して、第一段熱硬化物[図6B、609]を形成した[図6B]後、上記プリント配線板の両面を、先ず400番セラミックバフにて1回研磨し、更に600番バフにて4回研磨した[図6C]。  Next, the printed wiring board was heated at 130 ° C. for 60 minutes to form a first-stage thermoset [FIG. 6B, 609] [FIG. 6B]. Was polished once with a No. 600 and further polished four times with a 600 buff [FIG. 6C].

次いで、上記プリント配線板の両表面上に、プリプレグ[図6D、613]を被覆して挟んだ。尚、プリプレグの厚さは0.1mmであった。  Next, a prepreg [FIG. 6D, 613] was covered and sandwiched on both surfaces of the printed wiring board. The thickness of the prepreg was 0.1 mm.

次いで、表6のプレス条件に従って、上記プリント配線板を加熱真空プレスし、プリプレグの圧着と、第一段熱硬化樹脂の第二段熱硬化を同時に行い、プリント配線板を製造した[図6E](比較例1)。  Next, the printed wiring board was heated and vacuum-pressed according to the pressing conditions shown in Table 6, and the prepreg crimping and the first-stage thermosetting resin were simultaneously performed to produce a printed-wiring board [FIG. 6E]. (Comparative Example 1).

得られたプリント配線板(比較例1)について、下記の不具合が見られた。即ち、L/S=20μm/40μmの回路密集部において、プリプレグによる充填が不完全であり、回路間に空気が残存し、表面が膨らんだ[図6E、625]。  About the obtained printed wiring board (comparative example 1), the following malfunction was seen. That is, in the densely packed portion of L / S = 20 μm / 40 μm, filling with the prepreg was incomplete, air remained between the circuits, and the surface swelled [FIGS. 6E and 625].

更に、L/S=20μm/200μmの回路過疎部において、プリプレグによる充填は完全であったが、回路間にプリプレグが充填消費されることによる窪みが生じた[図6E、626]。  Furthermore, in the circuit depopulated portion of L / S = 20 μm / 200 μm, the filling with the prepreg was complete, but a depression due to filling and consumption of the prepreg was generated between the circuits [FIGS. 6E and 626].

・比較例2
上記プリント配線板(比較例1)を素材として使用して、4層プリント配線板を製造した。即ち、プリント配線板として、実施例1の替わりに比較例1を使用した以外は、実施例3と同様にして、4層プリント配線板(比較例2)を製造した。
Comparative example 2
A four-layer printed wiring board was manufactured using the printed wiring board (Comparative Example 1) as a material. That is, a four-layer printed wiring board (Comparative Example 2) was produced in the same manner as in Example 3 except that Comparative Example 1 was used instead of Example 1 as the printed wiring board.

しかし、素材(コア材)のプリント配線板(比較例1)表面に膨れ[図6E、625]や窪み[図6E、626]が存在することに因り、製造された4層プリント配線板(比較例2)表面にも膨れ[図9A、925]や窪み[図9B、926]を生ずることとなった。  However, a four-layer printed wiring board manufactured (comparative) due to the presence of swelling [FIGS. 6E, 625] and depressions [FIGS. 6E, 626] on the surface of the printed wiring board (Comparative Example 1) of the material (core material). Example 2) The surface also swelled [FIGS. 9A, 925] and dents [FIGS. 9B, 926].

<バンプ形成BGA部品実装プリント配線板の製造>
・製造例1及び比較製造例1
BGA部品におけるバンプ[バンプ高さの平均値33.4μm、バンプ高さの標準偏差1.5]と、4層プリント配線板(各実施例3及び比較例2)のパッド部とをバンプ接続して、BGA部品実装プリント配線板を製造した(各製造例1及び比較製造例1)。
<Manufacture of bump-formed BGA component-mounted printed wiring board>
Production Example 1 and Comparative Production Example 1
Bumps in BGA parts [average value of bump height 33.4 μm, standard deviation of bump height 1.5] and a pad portion of a four-layer printed wiring board (each Example 3 and Comparative Example 2) are bump-connected. Thus, BGA component-mounted printed wiring boards were produced (Each Production Example 1 and Comparative Production Example 1).

<プリント配線板の特性評価>
各プリント配線板について、回路上及び絶縁基板上における塗布樹脂の各硬化膜厚(各実施例1及び2)、(4層)プリント配線板表面上の最大膨れ量及び最大窪み量(各実施例1及び2、比較例1、並びに製造例1及び比較製造例1)、(4層)プリント配線板の平坦性の標準偏差(プリント配線板の各部位における厚みのバラツキの大きさ)(各実施例1及び2、比較例1、並びに製造例1及び比較製造例1)、BGA部品実装後のバンプ高さの平均値(製造例1及び比較製造例1)、並びにバンプ接合性(製造例1及び比較製造例1)について、測定・評価した。
<Characteristic evaluation of printed wiring board>
For each printed wiring board, each cured film thickness of the coated resin on the circuit and on the insulating substrate (Examples 1 and 2), (four layers) maximum swelling and maximum depression on each printed wiring board surface (each Example 1 and 2, Comparative Example 1, Manufacturing Example 1 and Comparative Manufacturing Example 1), (4-layer) standard deviation of flatness of printed wiring board (size of variation in thickness at each part of printed wiring board) Examples 1 and 2, Comparative Example 1, Manufacturing Example 1 and Comparative Manufacturing Example 1), average value of bump height after mounting a BGA component (Manufacturing Example 1 and Comparative Manufacturing Example 1), and bump bondability (Manufacturing Example 1) And Comparative Production Example 1) were measured and evaluated.

評価に使用したBGAは、サイズ16.0mm×16.0mm、板厚0.4mm、バンプピッチが75μm、バンプ数148のものであった。  The BGA used for the evaluation had a size of 16.0 mm × 16.0 mm, a plate thickness of 0.4 mm, a bump pitch of 75 μm, and a number of bumps of 148.

Figure 2007049106
Figure 2007049106

Figure 2007049106
Figure 2007049106

表7及び表8中、「膨れ量」及び「窪み量」は、(4層)プリント配線板表面の内、「膨れ」及び「窪み」が生じていない表面部分(即ち平坦面部分)を基準面としたときの、それぞれ膨れの高さ及び窪みの深さを表す。  In Tables 7 and 8, “blowing amount” and “dent amount” are based on the surface portion (ie, flat surface portion) of the (4-layer) printed wiring board surface where “swell” and “dent” do not occur. The height of the bulge and the depth of the dent, respectively, when the surface is used.

尚、塗布樹脂の硬化膜厚、表面上の膨れ量及び窪み量、並びにBGA部品実装後のバンプ高さは、クロスセクション法にて測定した。プリント配線板(各実施例1及び2、並びに比較例1)表面の平坦性の標準偏差は、プリント配線板表面上に2mm間隔の升目を想定し、縦横25個ずつの交点におけるプリント配線板の各全厚を測定して求めた。4層プリント配線板(各実施例3及び比較例2)表面の平坦性の標準偏差sは、表面上の各パッドめっき部における全厚を測定して求めた。  The cured film thickness of the coated resin, the amount of swelling and depression on the surface, and the bump height after mounting the BGA component were measured by a cross section method. The standard deviation of the flatness of the surface of the printed wiring board (Embodiments 1 and 2 and Comparative Example 1) is assumed on the surface of the printed wiring board at 2 mm intervals, and the printed wiring board at the intersection of 25 vertical and horizontal lines. Each total thickness was measured and determined. The standard deviation s of the flatness of the surface of the four-layer printed wiring board (each Example 3 and Comparative Example 2) was obtained by measuring the total thickness of each pad plating part on the surface.

更に、バンプ接合性は、以下のようにして評価した。即ち、バンプ接続前のバンプ高さの平均値h(=33.4μm)、バンプ接続後(BGA部品実装後)のバンプ高さの平均値h’、4層プリント配線板表面の平坦性の標準偏差s、並びにバンプ接続前のバンプ高さの標準偏差ρ(=1.5)が、表9中、式(1)を満足する関係にあるときは「○(バンプ接合良好)」、式(2)を満足する関係にあるときは「×(バンプ接合不良)」と評価した。式(1)又は(2)において、左辺はバンプ潰れ量(以下「バンプの潰れ」ということがある。)を表し、右辺は4層プリント配線板表面の平坦性のばらつきとバンプ高さのばらつきとの合計ばらつき量(以下「ばらつき」ということがある。)を表す。  Furthermore, the bump bondability was evaluated as follows. That is, the average value h (= 33.4 μm) of bump height before bump connection, the average value h ′ of bump height after bump connection (after mounting BGA components), and the standard of flatness on the surface of the four-layer printed wiring board When the deviation s and the standard deviation ρ (= 1.5) of the bump height before the bump connection are in a relationship satisfying the formula (1) in Table 9, “◯ (good bump bonding)”, formula ( When the relationship satisfying 2) was satisfied, it was evaluated as “× (defective bump bonding)”. In formula (1) or (2), the left side represents the bump crushing amount (hereinafter sometimes referred to as “bump crushing”), and the right side represents the variation in flatness and bump height on the surface of the four-layer printed wiring board. And the total variation amount (hereinafter also referred to as “variation”).

Figure 2007049106
Figure 2007049106

表7及び表8から、以下のことが明らかである。即ち、本願の平坦化樹脂被覆プリント配線板(実施例1及び2)並びに4層プリント配線板(実施例3)は、従来の(4層)プリント配線板(比較例1及び比較製造例1)に比し、(最大膨れ量と最大窪み量との和が小さいので)プリント配線板表面上の凹凸が小さく、且つ(平坦性の標準偏差が小さいので)プリント配線板表面が極めて平坦である。  From Tables 7 and 8, the following is clear. That is, the flattened resin-coated printed wiring board (Examples 1 and 2) and the four-layer printed wiring board (Example 3) of the present application are the same as the conventional (four-layer) printed wiring board (Comparative Example 1 and Comparative Manufacturing Example 1). As compared with the above, the unevenness on the surface of the printed wiring board is small (because the sum of the maximum swelling amount and the maximum depression amount is small), and the printed wiring board surface is extremely flat (because the standard deviation of flatness is small).

更に、BGA部品を本願の4層プリント配線板(実施例3)に実装(バンプ接続)した場合(製造例1)は、(バンプ潰れ量が合計ばらつき量よりも大きいことから)「バンプの潰れ」により「ばらつき」を吸収できるので、総てのバンプが確実に接合される。  Further, when the BGA component is mounted (bump connection) on the four-layer printed wiring board of the present application (Example 3) (Manufacturing Example 1), “the bump collapse amount is larger than the total variation amount”. Can absorb the "variation", so that all the bumps are securely bonded.

一方、BGA部品を従来の4層プリント配線板(比較例2)に実装(バンプ接続)した場合(比較製造例1)は、(バンプ潰れ量が合計ばらつき量よりも小さいことから)「バンプの潰れ」により「ばらつき」を吸収できないので、一部のバンプが接合され得ない。  On the other hand, when the BGA component is mounted (bump connection) on a conventional four-layer printed wiring board (Comparative Example 2) (Comparative Production Example 1), the “bump crushing amount is smaller than the total variation amount”. Since “variation” cannot be absorbed by “crushed”, some bumps cannot be joined.

即ち、図9Aに示すように、膨れ量が大き過ぎる場合、膨れ925に存在するバンプ932aは、パッドめっき920とバンプ932bとが接合できる程度にまで、潰れることができない(何故なら、バンプ932aの「バンプの潰れ」量がもはや限界に達しているからである)。その結果、バンプ932bは、パッドめっき920とバンプ接続され得ないこととなる。  That is, as shown in FIG. 9A, when the amount of swelling is too large, the bump 932a existing on the swelling 925 cannot be crushed to the extent that the pad plating 920 and the bump 932b can be joined (because the bump 932a Because the amount of “collapsed bumps” has already reached its limit). As a result, the bump 932b cannot be bump-connected to the pad plating 920.

同様に、図9Bに示すように、窪み量が大き過ぎる場合、バンプ932aは、窪み926に存在するパッドめっき920とバンプ932bとが接合できる程度にまで、潰れることができない(何故なら、バンプ932aの「バンプの潰れ」量がもはや限界に達しているからである)。その結果、バンプ932bは、パッドめっき920とバンプ接続され得ないこととなる。  Similarly, as shown in FIG. 9B, when the amount of depression is too large, the bump 932a cannot be crushed to the extent that the pad plating 920 and the bump 932b existing in the depression 926 can be joined (because the bump 932a Because the amount of “collapsed bumps” has already reached its limit). As a result, the bump 932b cannot be bump-connected to the pad plating 920.

本発明に係る平坦化樹脂被覆プリント配線板(特に実施例1)の製造工程図である。It is a manufacturing-process figure of the planarization resin coating printed wiring board (especially Example 1) which concerns on this invention. 本発明に係る4層プリント配線板(特に実施例3)の製造工程図である。It is a manufacturing-process figure of the 4 layer printed wiring board (especially Example 3) which concerns on this invention. 本発明に係る両面プリント配線板(特に実施例4)の製造工程図である。It is a manufacturing-process figure of the double-sided printed wiring board (especially Example 4) which concerns on this invention. 本発明に係る4層プリント配線板を改変・拡張した態様の4層プリント配線板の製造工程図である。It is a manufacturing-process figure of the 4 layer printed wiring board of the aspect which modified / expanded the 4 layer printed wiring board based on this invention. 本発明に係る4層プリント配線板を改変・拡張した別の態様の4層プリント配線板の製造工程図である。It is a manufacturing-process figure of the 4 layer printed wiring board of another aspect which modified / expanded the 4 layer printed wiring board based on this invention. 比較例1の、研磨を行う穴埋プリント配線板の製造工程図である。It is a manufacturing-process figure of the hole-filled printed wiring board which grind | polishes of the comparative example 1. FIG. 従来法における、回路間の凹部に予め樹脂充填しない穴埋プリント配線板の製造工程図である。It is a manufacturing-process figure of the hole-filled printed wiring board which does not fill resin into the recessed part between circuits in the conventional method previously. 窪みと膨れを有する従来のプリント配線板における、膨れ周縁部の部分拡大図(A)、並びに窪み周縁部の部分拡大図(B)である。It is the elements on larger scale (A) of a swelling peripheral part, and the elements on larger scale (B) of a peripheral part of a hollow in the conventional printed wiring board which has a hollow and a swelling. 窪みと膨れを有する従来の4層プリント配線板にBGA部品をバンプ接続した場合に、バンプ接合不良が発生すること示すための、バンプ接合部近傍の部分拡大断面図である。Aは、4層プリント配線板表面の膨れ近傍におけるバンプ接合不良を示す部分拡大断面図である。Bは、4層プリント配線板表面の窪み近傍におけるバンプ接合不良を示す部分拡大断面図である。It is a partial expanded sectional view in the vicinity of a bump bonding part to show that a bump bonding defect occurs when a BGA component is bump-connected to a conventional four-layer printed wiring board having a depression and a swelling. A is a partially enlarged cross-sectional view showing bump bonding failure in the vicinity of swelling on the surface of the four-layer printed wiring board. B is a partially enlarged cross-sectional view showing bump bonding failure in the vicinity of a dent on the surface of the four-layer printed wiring board.

符号の説明Explanation of symbols

101,601,701,801 絶縁基板
102,202,502,602,702,802
導電回路層
103 貫通穴(スルーホール)
104,704a,704b 回路間の凹部
105,605,705 未硬化樹脂組成物
106 カバーフィルム
107 ローラー
108 ローラーが移動する方向
109,609 第一段硬化物
110,310,610 第二段硬化物
111 回路上の塗布樹脂膜厚
112 絶縁基板上の塗布樹脂膜厚
213,613 圧着材料(プリプレグ)
214,514 マイクロビア
215,415,515 めっき層
216,416,516 導体回路(導体パターン)
217,517 レジスト
218,318,518,918 パッド部
219,319,519 端子部
220,320,520,920 パッドめっき(電解ニッケル−金めっき)
221,321,521 端子めっき(電解ニッケル−金めっき)
422 めっきレジスト
523 樹脂付き銅箔の銅箔部分
524 樹脂付き銅箔の樹脂部分
625,725,825,925 膨れ
626,726,826,926 窪み
727 硬化性レジスト
728,828 硬化樹脂
729 膨れ周縁部
730 窪み周縁部
831 導電回路層上の絶縁層の厚さ
932a,932b バンプ
933 4層プリント配線板の表層部
934 BGA部品
101,601,701,801 Insulating substrate 102,202,502,602,702,802
Conductive circuit layer 103 Through hole (through hole)
104, 704a, 704b Recesses 105, 605, 705 between circuits Uncured resin composition 106 Cover film 107 Roller 108 Direction in which the roller moves 109, 609 First-stage cured product 110, 310, 610 Second-stage cured product 111 Circuit Coating resin film thickness on 112 Coating resin film thickness on insulating substrate 213, 613 Pressure bonding material (prepreg)
214,514 Microvia 215,415,515 Plating layer 216,416,516 Conductor circuit (conductor pattern)
217,517 Resist 218,318,518,918 Pad part 219,319,519 Terminal part 220,320,520,920 Pad plating (electrolytic nickel-gold plating)
221,321,521 Terminal plating (electrolytic nickel-gold plating)
422 Plating resist 523 Copper foil portion 524 of resin-attached copper foil Resin portion 625, 725, 825, 925 Swelling 626, 726, 826, 926 Depression 727 Curing resist 728, 828 Curing resin 729 Swelling peripheral edge 730 Indentation peripheral portion 831 Thickness of insulating layer on conductive circuit layer 932a, 932b Bump 933 Surface layer portion 934 of 4-layer printed wiring board BGA component

Claims (7)

光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、下記工程1)及び2)を順次に行った後、光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、下記工程1)〜3)を順次に行うことを特徴とするプリント配線板の製造法。
1)塗布樹脂表面を平坦化する工程。
2)塗布樹脂を光硬化させる工程。
3)光硬化樹脂を熱硬化させる工程。
A light / thermosetting resin composition is applied to one surface of a printed wiring board having a through hole and a through hole, and the following steps 1) and 2) are sequentially performed, followed by the light / thermosetting resin composition. Is applied to the other surface of the printed wiring board, and the following steps 1) to 3) are sequentially performed.
1) The process of planarizing the coating resin surface.
2) A step of photocuring the coating resin.
3) A step of thermosetting the photocurable resin.
光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、下記工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、下記工程1)及び2)を順次に行った後、
A)下記工程3)を行い、次いでプリント配線板を圧着材料で挟んで積層プレスして圧着材料を圧着し、又は
B)プリント配線板を圧着材料で挟んで光硬化樹脂の熱硬化温度以上にて積層プレスして圧着材料の圧着と下記工程3)とを同時に行い、
圧着材料表面から導体層まで穴あけしてマイクロビアを形成し、全面めっきを施し、めっき層より回路を形成した後、レジストを被覆することを特徴とする多層プリント配線板の製造法。
1)塗布樹脂表面を平坦化する工程。
2)塗布樹脂を光硬化させる工程。
3)光硬化樹脂を熱硬化させる工程。
The light / thermosetting resin composition is applied to one surface of the printed wiring board having the through hole and the through hole, and the following steps 1) and 2) are sequentially performed, and then the light / thermosetting resin composition is applied. After applying to the other surface of the printed wiring board and performing the following steps 1) and 2) sequentially,
A) The following step 3) is performed, and then the printed wiring board is sandwiched between the crimping materials and laminated and pressed to crimp the crimping material, or B) the printed wiring board is sandwiched between the crimping materials and the temperature is higher than the thermosetting temperature of the photo-curing resin. And then press the layers together to perform crimping of the crimping material and the following step 3),
A method for producing a multilayer printed wiring board, comprising: drilling from the surface of a pressure-bonding material to a conductor layer to form a micro via, plating the entire surface, forming a circuit from the plated layer, and then covering the resist.
1) The process of planarizing the coating resin surface.
2) A step of photocuring the coating resin.
3) A step of thermosetting the photocurable resin.
レジストが開口部を有することを特徴とする請求項2に記載の多層プリント配線板の製造法。  The method for producing a multilayer printed wiring board according to claim 2, wherein the resist has an opening. 光・熱硬化型樹脂組成物を、貫通穴を有するプリント配線板の一方の表面及び貫通穴に塗布し、下記工程1)及び2)を順次に行い、次いで光・熱硬化型樹脂組成物をプリント配線板の他方の表面に塗布し、下記工程1)〜3)を順次に行った後、被覆樹脂層に開口部を設けることを特徴とするプリント配線板の製造法。
1)塗布樹脂表面を平坦化する工程。
2)塗布樹脂を光硬化させる工程。
3)光硬化樹脂を熱硬化させる工程。
The light / thermosetting resin composition is applied to one surface of the printed wiring board having the through hole and the through hole, and the following steps 1) and 2) are sequentially performed, and then the light / thermosetting resin composition is applied. A method for producing a printed wiring board, comprising: applying to the other surface of the printed wiring board, sequentially performing the following steps 1) to 3), and then providing an opening in the coating resin layer.
1) The process of planarizing the coating resin surface.
2) A step of photocuring the coating resin.
3) A step of thermosetting the photocurable resin.
開口部により露出した表面をめっきにて被覆することを特徴とする請求項3又は4に記載のプリント配線板の製造法。  The method for producing a printed wiring board according to claim 3 or 4, wherein the surface exposed by the opening is coated by plating. 貫通穴を有するプリント配線板の導電層表面が粗化処理されていることを特徴とする請求項1〜5に記載のプリント配線板の製造法。  The method for producing a printed wiring board according to claim 1, wherein the surface of the conductive layer of the printed wiring board having a through hole is roughened. 請求項1〜6の何れかに記載の製造法にて製造されるプリント配線板。  The printed wiring board manufactured by the manufacturing method in any one of Claims 1-6.
JP2005259874A 2005-08-11 2005-08-11 Multilayer printed wiring board and manufacturing method thereof Active JP4915639B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005259874A JP4915639B2 (en) 2005-08-11 2005-08-11 Multilayer printed wiring board and manufacturing method thereof
TW095128091A TWI331002B (en) 2005-08-11 2006-08-01 Flattened resin coating printed-wiring board
DE102006037273.5A DE102006037273B4 (en) 2005-08-11 2006-08-09 Flattened, printed circuit board coated with resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259874A JP4915639B2 (en) 2005-08-11 2005-08-11 Multilayer printed wiring board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011225315A Division JP5610310B2 (en) 2011-09-22 2011-09-22 Flattened resin-coated printed wiring board

Publications (2)

Publication Number Publication Date
JP2007049106A true JP2007049106A (en) 2007-02-22
JP4915639B2 JP4915639B2 (en) 2012-04-11

Family

ID=37832772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259874A Active JP4915639B2 (en) 2005-08-11 2005-08-11 Multilayer printed wiring board and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP4915639B2 (en)
DE (1) DE102006037273B4 (en)
TW (1) TWI331002B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137421A1 (en) * 2009-05-29 2010-12-02 イビデン株式会社 Wiring board and method for manufacturing same
US9313903B2 (en) 2008-12-25 2016-04-12 Mitsubishi Electric Corporation Method of manufacturing printed wiring board
CN110831338A (en) * 2019-11-28 2020-02-21 南京宏睿普林微波技术股份有限公司 Process method for plugging holes with resin by using press
WO2023167267A1 (en) * 2022-03-02 2023-09-07 太陽ホールディングス株式会社 Curable resin composition, cured product, and printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467469B2 (en) 2011-01-04 2014-04-09 山栄化学株式会社 Method of surface mounting on printed wiring board

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191020A (en) * 1992-07-20 1993-07-30 Ibiden Co Ltd Printed wiring board with solder resist film
JPH05198929A (en) * 1992-01-20 1993-08-06 Nec Toyama Ltd Manufacture of printed wiring board
JPH10335837A (en) * 1997-04-02 1998-12-18 Ibiden Co Ltd Manufacture of multilayered printed wiring board
JPH114071A (en) * 1997-06-12 1999-01-06 Nec Toyama Ltd Manufacture of multilayer printed wiring board
JPH11340626A (en) * 1998-05-26 1999-12-10 Nec Toyama Ltd Manufacture of multilayer printed wiring board
JP2000349440A (en) * 1999-06-09 2000-12-15 Hitachi Chem Co Ltd Manufacture of multilayer copper clad circuit board containing inner layer circuit
JP2001237543A (en) * 1997-04-02 2001-08-31 Ibiden Co Ltd Printed wiring board
JP2001267740A (en) * 2000-03-14 2001-09-28 Sumitomo Metal Electronics Devices Inc Method for manufacturing multilayer wiring board for electronic part
JP2002236229A (en) * 2000-12-06 2002-08-23 Ibiden Co Ltd Multilayer printed circuit board
JP2003341010A (en) * 2003-06-20 2003-12-03 Micro-Tec Co Ltd Screen printing machine and screen printing method
JP2004027145A (en) * 2002-06-28 2004-01-29 Tamura Kaken Co Ltd Curable resin composition for coating, multilayer printed circuit board, printed circuit board, and dry film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3459380B2 (en) 1999-06-30 2003-10-20 日本特殊陶業株式会社 Manufacturing method of printed wiring board and mask
JP2001111214A (en) 1999-10-12 2001-04-20 Nippon Circuit Kogyo Kk Method of forming protective film
JP2003105061A (en) * 2001-09-27 2003-04-09 Sanei Kagaku Kk Photo-thermally curable resin composition, production method for hole-filled printed circuit board, and hole- filled printed circuit board
JP3799551B2 (en) 2002-08-14 2006-07-19 山栄化学株式会社 Photo / thermosetting resin composition, smooth plate manufacturing method and smooth plate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198929A (en) * 1992-01-20 1993-08-06 Nec Toyama Ltd Manufacture of printed wiring board
JPH05191020A (en) * 1992-07-20 1993-07-30 Ibiden Co Ltd Printed wiring board with solder resist film
JPH10335837A (en) * 1997-04-02 1998-12-18 Ibiden Co Ltd Manufacture of multilayered printed wiring board
JP2001237543A (en) * 1997-04-02 2001-08-31 Ibiden Co Ltd Printed wiring board
JPH114071A (en) * 1997-06-12 1999-01-06 Nec Toyama Ltd Manufacture of multilayer printed wiring board
JPH11340626A (en) * 1998-05-26 1999-12-10 Nec Toyama Ltd Manufacture of multilayer printed wiring board
JP2000349440A (en) * 1999-06-09 2000-12-15 Hitachi Chem Co Ltd Manufacture of multilayer copper clad circuit board containing inner layer circuit
JP2001267740A (en) * 2000-03-14 2001-09-28 Sumitomo Metal Electronics Devices Inc Method for manufacturing multilayer wiring board for electronic part
JP2002236229A (en) * 2000-12-06 2002-08-23 Ibiden Co Ltd Multilayer printed circuit board
JP2004027145A (en) * 2002-06-28 2004-01-29 Tamura Kaken Co Ltd Curable resin composition for coating, multilayer printed circuit board, printed circuit board, and dry film
JP2003341010A (en) * 2003-06-20 2003-12-03 Micro-Tec Co Ltd Screen printing machine and screen printing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9313903B2 (en) 2008-12-25 2016-04-12 Mitsubishi Electric Corporation Method of manufacturing printed wiring board
WO2010137421A1 (en) * 2009-05-29 2010-12-02 イビデン株式会社 Wiring board and method for manufacturing same
CN102293071A (en) * 2009-05-29 2011-12-21 揖斐电株式会社 Wiring board and method for manufacturing same
US8299366B2 (en) 2009-05-29 2012-10-30 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
KR101248713B1 (en) * 2009-05-29 2013-04-02 이비덴 가부시키가이샤 Wiring board and method for manufacturing same
CN102293071B (en) * 2009-05-29 2014-04-23 揖斐电株式会社 Wiring board and method for manufacturing same
CN110831338A (en) * 2019-11-28 2020-02-21 南京宏睿普林微波技术股份有限公司 Process method for plugging holes with resin by using press
WO2023167267A1 (en) * 2022-03-02 2023-09-07 太陽ホールディングス株式会社 Curable resin composition, cured product, and printed wiring board

Also Published As

Publication number Publication date
DE102006037273B4 (en) 2020-07-09
DE102006037273A1 (en) 2007-03-29
DE102006037273A9 (en) 2007-07-26
JP4915639B2 (en) 2012-04-11
TW200718311A (en) 2007-05-01
TWI331002B (en) 2010-09-21

Similar Documents

Publication Publication Date Title
TWI287414B (en) Printed wiring board and manufacturing method of printed wiring board
US8065797B2 (en) Fabricating method for printed circuit board
JP3911690B2 (en) Thermosetting resin composition, smooth plate manufacturing method and smooth plate
EP1298155B1 (en) Photo-setting and thermosetting resin composition, process for preparing plugged-through-hole printed wiring substrate
JP5572714B2 (en) Method for forming solder resist
JP4915639B2 (en) Multilayer printed wiring board and manufacturing method thereof
WO2011018968A1 (en) Printed wiring board and method for producing the same
JP3242009B2 (en) Resin filler
JP5610310B2 (en) Flattened resin-coated printed wiring board
JP2010056179A (en) Conductor forming sheet, and method of manufacturing wiring board using conductor forming sheet
JP4735815B2 (en) Hole-filled multilayer printed wiring board and manufacturing method thereof
JPH05136575A (en) Manufacture of multilayer printed board and photosetting interlayer insulating film thereof
JPH08316642A (en) Multilayer printed wiring board with interstitial via hole
JP2015195364A (en) Manufacturing method of laminate structure
JP2013138124A (en) Multilayer printed board manufacturing method, multilayer printed board manufactured by the manufacturing method, and curable resin composition used in the manufacturing method
JPH09235355A (en) Photocurable-thermosetting resin composition and production of multilayer printed wiring board using the same
JP2006100463A (en) Interlayer insulating layer for printed wiring board, printed wiring board and manufacturing method thereof
JP2010165848A (en) Coated flexible wiring board, liquid crystal display module, and method of manufacturing coated flexible wiring board
JP3799551B2 (en) Photo / thermosetting resin composition, smooth plate manufacturing method and smooth plate
JPH10200265A (en) Multilayer printed wiring board
JP2954163B1 (en) Method for manufacturing multilayer printed wiring board
JPH11261219A (en) Manufacture of build-up multilayered printed wiring board
CN106916261B (en) Curable resin composition for filling holes, cured product thereof, and printed wiring board
JP5112944B2 (en) Combination unit and printed wiring board of thermosetting resin composition for hole filling and photocurable / thermosetting resin composition for solder mask formation
JPH1022639A (en) Manufacture of plastic flow sheet for multilayer printed wiring board and manufacture of multilayer wiring board using the sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4915639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250