WO2011018968A1 - Printed wiring board and method for producing the same - Google Patents

Printed wiring board and method for producing the same Download PDF

Info

Publication number
WO2011018968A1
WO2011018968A1 PCT/JP2010/063177 JP2010063177W WO2011018968A1 WO 2011018968 A1 WO2011018968 A1 WO 2011018968A1 JP 2010063177 W JP2010063177 W JP 2010063177W WO 2011018968 A1 WO2011018968 A1 WO 2011018968A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist film
copper
copper plating
pattern
forming
Prior art date
Application number
PCT/JP2010/063177
Other languages
French (fr)
Japanese (ja)
Inventor
聖夫 有馬
弦人 岩山
啓一 伊藤
敬文 竹内
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Publication of WO2011018968A1 publication Critical patent/WO2011018968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/045Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by making a conductive layer having a relief pattern, followed by abrading of the raised portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1415Applying catalyst after applying plating resist

Definitions

  • the present invention relates to a printed wiring board and a manufacturing method thereof, and more particularly to a high-density printed wiring board having a fine circuit pattern and a manufacturing method thereof.
  • a copper-clad laminate having a shape in which a copper foil or a copper alloy foil (generally referred to as a copper foil in this specification) is bonded to an insulating resin is used.
  • the photosensitive resist film is formed on the surface, the resist film is removed by selective exposure and development, and then the exposed portion of the copper foil is removed by etching, so-called etching method or copper film thinner than 5 ⁇ m is formed.
  • the resist film is removed by selective exposure and development, and then the exposed thin copper film is used as a plating electrode by electro copper plating.
  • any of the conventional methods described above forms a copper circuit pattern by selective etching or selective plating in a limited region, so that there are limitations on the circuit width accuracy, economy, mass productivity, etc.
  • the present invention has been made in view of the prior art as described above, and its purpose is to provide an ultrafine wire on the surface of a substrate such as various thermosetting resin composition laminates and thermosetting resin composition films.
  • An object of the present invention is to provide a method for manufacturing a printed wiring board capable of manufacturing a copper circuit pattern with high accuracy and economically.
  • a further object of the present invention is to provide a high-density printed wiring board having a high-precision and extremely fine copper circuit pattern manufactured by such a method.
  • Forming a resist film (B) Electroless copper plating is performed on the entire exposed surface of the substrate in the groove pattern portion and the patterned resist film surface, and then electrolytic copper plating is performed until the surface becomes almost smooth to cover the resist film. Forming a copper plating layer; (C) including a step of uniformly reducing the copper plating layer by mechanical polishing and / or chemical polishing or etching until the surface of the resist film is exposed to expose a copper circuit pattern on the surface.
  • a method for manufacturing a printed wiring board is provided.
  • step (c) further includes (d) a step of removing the resist film so that the surface layer portion is only a copper circuit pattern.
  • the resist film is preferably removed with an alkaline aqueous solution or removed by desmearing.
  • the substrate has a surface on which the copper foil of the copper clad laminate is removed by etching and the uneven surface of the copper foil is transferred.
  • the resist film is subjected to at least one treatment selected from the group consisting of ultraviolet irradiation, heat treatment and plasma treatment after pattern formation, and a copper plating layer is formed by electroless copper plating.
  • the resist film can be formed.
  • the photosensitive resist film formed on the substrate surface is selectively exposed by UV pattern exposure or UV direct drawing, and then developed to form a circuit.
  • a groove pattern of a portion to be formed is formed.
  • subjected to the said process (a) has a through hole as needed.
  • the resist film removing step (d) may be performed so that the surface layer portion is only a copper circuit pattern.
  • this invention has a copper circuit pattern and the resin insulation layer embedded between these patterns in the surface layer part produced by one of the said methods, From these copper circuit patterns and the resin insulation layer, Provided is a printed wiring board characterized in that a flat surface is formed.
  • the printed wiring board manufacturing method of the present invention is selected as a photosensitive resist film formed on the substrate surface.
  • the copper plating layer is uniformly reduced by mechanical polishing and / or chemical polishing or etching to expose the copper circuit pattern on the surface. Because of the is, without the need for special processes and materials in all steps, it can be formed with good productivity high-precision fine circuit patterns.
  • an ultrafine copper circuit having a width of up to about 5 ⁇ m can be easily formed, and a resist film forming step in which the groove pattern is formed, an electroless copper plating-electrolytic copper plating step, and Even in the case where a multilayer printed wiring board is manufactured by repeating the entire polishing or etching process, since the photosensitive resist is used for regulating the circuit pattern region, the alignment accuracy of the upper and lower copper circuit patterns is also good.
  • the obtained printed wiring board is excellent in circuit width accuracy and reliability, and can be suitably used for manufacturing a substrate for mounting a semiconductor chip and manufacturing an ultra-high density printed wiring board.
  • FIG. 3 is a schematic partial cross-sectional view showing an embodiment of a method for producing a printed wiring board including steps from resin insulation layer formation to copper circuit pattern formation according to the present invention on the printed wiring board shown in FIG. 2.
  • the method for manufacturing a printed wiring board according to the present invention is different from the conventional method of forming a copper circuit by selective etching or selective plating in a limited region, and the photosensitive circuit formed on the substrate surface.
  • a patterned resist that can be electrolessly plated with copper that is, a copper plating layer can be formed by electroless copper plating, by selectively exposing and developing the conductive resist film to form a groove pattern of a circuit forming portion. Electroless copper plating is performed on the entire exposed surface of the substrate in the groove pattern portion and the patterned resist film surface, and then the electrolytic copper plating is performed until the surface becomes almost smooth.
  • the copper plating layer is made uniform uniformly by mechanical polishing and / or chemical polishing or etching until the surface of the resist film is exposed. Small Toe is intended to expose the copper circuit pattern on the surface.
  • the conventional method for forming a copper circuit pattern is based on the premise that plating (catalyst) does not adhere to the surface of a resist film formed from a commercially available plating resist, and plating is formed on a portion where no resist film exists.
  • plating catalyst
  • the present inventors have intensively studied to form a plating layer on the resin surface of the base material including the resist film.
  • pre-treatment such as ultraviolet irradiation stronger than that at the time of exposure, heating at a temperature higher than the glass transition temperature (Tg) of the resist film, or plasma treatment with argon, oxygen or the like is effective. .
  • a substrate 1 having a photosensitive resist film 4 formed on the surface is prepared.
  • FIG. 1C shows the substrate 1 having the photosensitive resist film 4 formed on both surfaces
  • the substrate 1 may be a substrate having the photosensitive resist film 4 formed on one side.
  • the substrate 1 is not particularly limited as long as it is a known substrate used for a printed wiring board. Specifically, it is commonly used for non-woven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass defined in JIS, for example, epoxy resins, polyimide resins, cyanate ester resins, maleimide resins.
  • Double bond addition polyphenylene ether resins one or two or more resin compositions such as bromine and phosphorus-containing compounds of these resins, and, if necessary, known catalysts, curing agents, curing accelerators, etc.
  • resin substrate such as a polyimide substrate, a bismaleimide-triazine resin substrate, or a fluororesin substrate, a polyimide film, a PET film, a ceramic substrate, a wafer plate, or the like can be used.
  • These substrates are swollen by a known roughening treatment, for example, an alkaline solution such as an aqueous sodium hydroxide solution, in order to improve the adhesion to the photosensitive resist film by forming a fine uneven flat surface on the surface.
  • a known roughening treatment for example, an alkaline solution such as an aqueous sodium hydroxide solution
  • an alkaline solution such as an aqueous sodium hydroxide solution
  • Permanganate, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid-containing liquid treatment, and sulfuric acid aqueous solution, hydrochloric acid aqueous solution, etc. Treatment can also be performed.
  • a commercially available desmear liquid (roughening agent) can also be used for the roughening treatment.
  • the copper clad laminate 3 having the copper foil 2 bonded to both sides of the substrate 1 is used, and the copper foil 2 is completely removed by etching, as shown in FIG. 1 (B).
  • substrate 1 which has the surface to which the uneven
  • the roughening treatment described above is not required, and the photosensitive resist film 4 can be formed with good adhesion on the surface of the substrate 1 from which all the copper foil 2 has been removed by etching, and sufficient reliability as a wiring board can be obtained. It is done.
  • any conventionally known copper-clad laminate can be used, but a copper foil or a resin composite copper foil, for example, as described in JP-A-2007-242975
  • a copper-clad laminate obtained by laminating and molding a B-stage resin composition layer on the resin layer surface of a resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound is formed on one side of the copper foil is suitable.
  • the copper foil used for the resin composite copper foil is not particularly limited as long as it is a known copper foil used for printed wiring boards, but preferably an electrolytic copper foil, a rolled copper foil, a copper alloy thereof, or the like is used.
  • nickel, cobalt treatment, or a known surface treatment such as a silane treatment agent may be used on these copper foils.
  • the thickness of the copper foil is not particularly limited, but is preferably 35 ⁇ m or less.
  • the surface roughness (Rz) of the copper foil surface forming the resin layer is preferably 4 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • “Rz” is a ten-point average roughness defined in JIS B0601.
  • a known adhesive layer may be formed on the copper foil.
  • a method of etching and removing all the copper foil 2 of the copper-clad laminate 3 can be performed by a known method.
  • the etching solution is not particularly limited, but an aqueous solution of sulfuric acid monohydrogen peroxide, an aqueous solution of persulfate such as ammonium persulfate, sodium persulfate or potassium persulfate, an aqueous solution of ferric chloride or cupric chloride is suitable. Can be used.
  • the photosensitive resist film 4 is formed on the surface of the substrate 1 on which the fine uneven flat surface is formed.
  • the photosensitive resin composition used for forming the photosensitive resist film 4 may be in the form of a dry film in which a dry coating film is formed on a carrier film, or may be in a liquid state diluted in a solvent. In the case of dry film, it is laminated on the substrate with a hot roll laminator or vacuum laminator in the temperature range of about 40 to 130 ° C.
  • a photosensitive resist film 4 can be formed.
  • the film thickness of the photosensitive resist film 4 formed at this time is preferably in the range of about 3 to 30 ⁇ m, more preferably less than twice the minimum line width of the circuit formed by plating, more preferably less than or equal to the same.
  • the photosensitive resist film 4 preferably has sufficient alkali resistance and adhesion for fixing the electroless copper plating catalyst in the subsequent electroless copper plating step.
  • the film used for preparing the dry film is preferably a thermoplastic resin film such as polyethylene terephthalate, and a thickness in the range of 10 to 50 ⁇ m can be used. In order to improve handling, a film thickness of 25 to 50 ⁇ m is preferable. In order to obtain image quality, a film thickness of 10 to 25 ⁇ m is preferable. In order to eliminate this difference, a dry film designed so that the refractive index of the photosensitive resist film is preferably 1.50 or more, more preferably 1.55 to 1.60 is used to increase the thickness of the carrier film. However, it is preferable because good resolution can be obtained.
  • the photosensitive resin composition used for forming the photosensitive resist film 4 is a negative photosensitive resin composition in which an exposed portion (a portion irradiated with active energy rays) is cured and an unexposed portion is removed by development.
  • the unexposed part is insoluble in the developer because it has a crosslinked structure, but the exposed part is decomposed by an acid generated from a compound that generates an acid upon irradiation with active energy rays, and is removed by development.
  • Any of the resin compositions can be used.
  • an alkali development type photosensitive resin composition using an alkaline aqueous solution as a developer is desirable, and therefore it is preferable to contain a resin having a carboxyl group.
  • a film-forming carboxyl group-containing resin for example, a polymer unsaturated monomer containing a carboxyl group, as described in JP-A-6-295064 is disclosed.
  • a photosensitive resin composition comprising, as essential components, a group-containing resin, a compound containing two or more vinyl ether groups in one molecule, and a compound that generates an acid upon irradiation with active energy rays (photoacid generator), Resin obtained by reacting a polycarboxylic acid resin with a monovinyl ether compound and photoacid generation, as described in Kaihei 10-72923
  • a photosensitive resin composition containing, as essential components, a polyhemiacetal ester obtained from a polyaddition reaction of a dicarboxylic acid and a divinyl ether compound and a photoacid generator as described in Japanese Patent No.
  • the photosensitive resin composition contained as can be used.
  • the negative photosensitive resin composition in which the exposed portion cured by irradiation with active energy rays remains is electroless copper without performing a pretreatment process as described later. It is particularly preferable because it can be plated.
  • Such a negative photosensitive resin composition comprises (A) a carboxyl group-containing resin, (B) a photopolymerization initiator, (C) a photosensitive monomer, and a photosensitive resist film existing between copper circuits.
  • A a carboxyl group-containing resin
  • B a photopolymerization initiator
  • C a photosensitive monomer
  • D a thermosetting resin
  • E a filler
  • carboxyl group-containing resin (A) various conventionally known carboxyl group-containing resins having a carboxyl group in the molecule for the purpose of imparting alkali developability can be used.
  • a carboxyl group-containing photosensitive resin (A-1) having an ethylenically unsaturated double bond in the molecule is more preferable in terms of photocurability and development resistance.
  • the unsaturated double bond is preferably derived from acrylic acid, methacrylic acid or derivatives thereof.
  • two or more ethylenic groups in the molecule described later are used. It is necessary to use a compound (C) having an unsaturated group, that is, a photosensitive monomer.
  • a carboxyl group-containing resin (A) having a structure having an aromatic ring in the molecule is preferable because the refractive index is 1.50 to 1.60, and the refractive index with the carrier film described above is high. Since it becomes close, the resolution is improved.
  • carboxyl group-containing resin having an aromatic ring examples include styrene and its derivatives, an indene structure, a copolymer of an aromatic ring-containing (meth) acrylate such as benzyl (meth) acrylate and various (meth) acrylates, various acid-modified epoxies (meta ) Those obtained by adding an acid anhydride to an alkylene oxide modified product of acrylate or various phenol resins can be used.
  • Specific examples of the carboxyl group-containing resin (A) include the compounds listed below (any of oligomers and polymers).
  • a carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, polyethers
  • a carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • bisphenol A type epoxy resin hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
  • one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • the carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
  • a cyclic ether such as ethylene oxide or a cyclic carbonate such as propylene carbonate is added to a polyfunctional phenolic compound such as novolak, and the resulting hydroxyl group is partially esterified with (meth) acrylic acid, and the remaining hydroxyl group is polybasic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting an anhydride.
  • the resins (1) to (9) further have one epoxy group and one or more (meth) acryloyl groups in the molecule such as glycidyl (meth) acrylate and ⁇ -methylglycidyl (meth) acrylate.
  • carboxyl group-containing resins (A) can be used without being limited to those listed above, and can be used by mixing one kind or plural kinds.
  • (meth) acrylate is , Acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
  • the carboxyl group-containing resin (A) as described above has a large number of free carboxyl groups in the side chain of the backbone polymer, development with an aqueous alkali solution becomes possible.
  • the acid value of the carboxyl group-containing resin (A) is desirably in the range of 30 to 150 mgKOH / g, more preferably in the range of 40 to 110 mgKOH / g.
  • the acid value of the carboxyl group-containing resin is lower than 30 mgKOH / g, the solubility in an alkaline aqueous solution is lowered, and development of the formed coating film becomes difficult.
  • the concentration is higher than 150 mgKOH / g, dissolution of the exposed portion by the developer proceeds, so that the line fades more than necessary, or dissolution and peeling occurs with the developer without distinction between the exposed portion and the unexposed portion. It may be difficult to form a resist pattern.
  • the weight average molecular weight of the carboxyl group-containing resin (A) varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, the tack-free performance may be inferior, the moisture resistance of the coated film after exposure may be poor, the film may be reduced during development, and the resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
  • the blending amount of such a carboxyl group-containing resin (A) is 20 to 80% by mass, preferably 30 to 60% by mass in the total composition.
  • the blending amount of the carboxyl group-containing resin (B) is less than the above range, the film strength is lowered, which is not preferable.
  • the amount is larger than the above range, the viscosity of the composition is increased or the coating property is lowered, which is not preferable.
  • photopolymerization initiator (B) conventionally known photoinitiators can be used, and conventionally known photoinitiators and sensitizers can also be used.
  • Specific examples of photopolymerization initiators, photoinitiator assistants, and sensitizers include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, xanthone compounds, tertiary amine compounds, and the like. Can do.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • acetophenone compound examples include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, and 1,1-dichloroacetophenone.
  • anthraquinone compound examples include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, and 1-chloroanthraquinone.
  • thioxanthone compound examples include, for example, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone.
  • ketal compound examples include acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • benzophenone compound include, for example, benzophenone, 4-benzoyldiphenyl sulfide, 4-benzoyl-4′-methyldiphenyl sulfide, 4-benzoyl-4′-ethyldiphenyl sulfide, 4-benzoyl-4′-propyldiphenyl. Sulfide.
  • tertiary amine compound examples include, for example, an ethanolamine compound, a compound having a dialkylaminobenzene structure, such as 4,4′-dimethylaminobenzophenone (Nisso Cure MABP manufactured by Nippon Soda Co., Ltd.), 4,4′-diethylamino.
  • an ethanolamine compound a compound having a dialkylaminobenzene structure, such as 4,4′-dimethylaminobenzophenone (Nisso Cure MABP manufactured by Nippon Soda Co., Ltd.), 4,4′-diethylamino.
  • Dialkylamino benzophenones such as benzophenone (EAB manufactured by Hodogaya Chemical Co.), and dialkylamino groups such as 7- (diethylamino) -4-methyl-2H-1-benzopyran-2-one (7- (diethylamino) -4-methylcoumarin) Containing coumarin compound, ethyl 4-dimethylaminobenzoate (Kayacure EPA, Nippon Kayaku Co., Ltd.), ethyl 2-dimethylaminobenzoate (Quantacure DMB, International Bio-Synthetics), 4-dimethylaminobenzoic acid n-butoxy) ethyl (Quantacure BEA, manufactured by International Bio-Synthetics), p-dimethylaminobenzoic acid isoamyl ethyl ester (Kayacure DMBI manufactured by Nippon Kayaku Co., Ltd.), 2-ethy
  • ⁇ -aminoacetophenone photopolymerization initiator acylphosphine oxide photopolymerization initiator, oxime ester photopolymerization initiator, and the like can be used.
  • Examples of the ⁇ -aminoacetophenone photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N— Examples include dimethylaminoacetophenone. Examples of commercially available products include Irgacure 907, Irgacure 369, and Irgacure 379 manufactured by Ciba Japan.
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)- 2,4,4-trimethyl-pentylphosphine oxide and the like, and commercially available products include Lucilin TPO manufactured by BASF and Irgacure 819 manufactured by Ciba Japan.
  • oxime ester photopolymerization initiator examples include 2- (acetyloxyiminomethyl) thioxanthen-9-one, and commercially available products include CGI-325, IRGACURE OXE01, IRGA Examples include Cure OXE02 and N-1919 manufactured by Adeka Corporation.
  • any photopolymerization initiator may be used as long as it generates radical active species by light irradiation and assists the growth species, and is not limited to those described above. Moreover, although it does not raise
  • the photopolymerization initiator, photoinitiator assistant and sensitizer can be used alone or in combination of two or more.
  • the compounding quantity of a photoinitiator, a photoinitiator adjuvant, and a sensitizer is sufficient with a normal quantitative ratio, and generally 100 mass parts of carboxyl group-containing resin (A) (two or more kinds of carboxyl group-containing resins). In the case of using the total amount, the same applies hereinafter) to the range of 0.01 to 30 parts by mass, preferably 0.5 to 15 parts by mass.
  • the blending amount of the photopolymerization initiator (B) is less than 0.01 parts by mass, the photocurability is insufficient, and the coating film is peeled off or the coating film properties such as chemical resistance are deteriorated.
  • it exceeds 30 parts by mass light absorption on the surface of the coating film of the photopolymerization initiator (B) becomes violent and the deep curability tends to decrease, which is not preferable.
  • the compound (C) having two or more ethylenically unsaturated groups in the molecule used in the photosensitive resin composition of the present invention is photocured by irradiation with active energy rays, and the carboxyl group-containing resin (A). Is insolubilized in an aqueous alkali solution or assists insolubilization.
  • examples of such compounds include glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate, and the like.
  • Polyhydric acrylates such as polyhydric alcohols or their ethylene oxide adducts or propylene oxide adducts; Phenoxy acrylate, bisphenol A diacrylate, and polyhydric acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols
  • Phenoxy acrylate, bisphenol A diacrylate, and polyhydric acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols
  • Glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycy Ethers, polyvalent acrylates of glycidyl ethers such as triglycidyl isocyanurate; and melamine acrylate, and / or the like each methacrylates corresponding to the acrylates and the like, can be used alone or in combination of two or more.
  • an epoxy acrylate resin obtained by reacting acrylic acid with a polyfunctional epoxy resin such as a cresol novolac type epoxy resin, and further, a hydroxy acrylate such as pentaerythritol triacrylate and a diisocyanate such as isophorone diisocyanate on the hydroxyl group of the epoxy acrylate resin.
  • a polyfunctional epoxy resin such as a cresol novolac type epoxy resin
  • a hydroxy acrylate such as pentaerythritol triacrylate
  • a diisocyanate such as isophorone diisocyanate
  • the compounding amount of the compound (C) having two or more ethylenically unsaturated groups in the molecule is 5 to 100 parts by mass, more preferably 100 parts by mass of the carboxyl group-containing resin (A). A ratio of 1 to 70 parts by mass is appropriate.
  • the blending amount is less than 5 parts by mass, photocurability is lowered, and pattern formation becomes difficult by alkali development after irradiation with active energy rays, which is not preferable.
  • the amount exceeds 100 parts by mass the solubility in an alkaline aqueous solution is lowered, and the coating film becomes brittle.
  • thermosetting component (D) can be added to the photosensitive resin composition used in the present invention in order to impart heat resistance.
  • thermosetting component (D) amino resins such as melamine resin and benzoguanamine resin, bismaleimide compound, benzoxazine compound, oxazoline compound, carbodiimide resin, block isocyanate compound, cyclocarbonate compound, polyfunctional epoxy compound, polyfunctional oxetane compound
  • thermosetting resins such as episulfide resins and melamine derivatives can be used.
  • thermosetting component (D) is a thermosetting component having two or more cyclic ether groups and / or cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in one molecule.
  • cyclic (thio) ether groups for example, a polyfunctional epoxy compound having two or more epoxy groups in the molecule, a polyfunctional oxetane compound having two or more oxetanyl groups in the molecule, and an episulfide resin having two or more thioether groups in the molecule It is.
  • the amount of the thermosetting component (D) is preferably 0.6 to 2.5 equivalents, more preferably 0.8 to 2.1, based on 1 equivalent of the carboxyl group of the carboxyl group-containing resin (A). It is a range that becomes 0 equivalent.
  • thermosetting component (D) when the photosensitive resin composition contains the thermosetting component (D) as described above, it is preferable to further contain a thermosetting catalyst.
  • thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
  • Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
  • Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd. and U-CAT (registered by San Apro). Trademarks) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), and the like.
  • thermosetting catalyst for epoxy resins or oxetane compounds or a catalyst that promotes the reaction of epoxy groups and / or oxetanyl groups with carboxyl groups, either alone or in combination of two or more. Can be used.
  • thermosetting catalysts are sufficient in the usual quantitative ratio, for example, a carboxyl group-containing resin (A) or a thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule.
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass.
  • a filler (E) can be blended as necessary in order to increase the physical strength of the coating film.
  • a filler known and commonly used inorganic or organic fillers can be used.
  • barium sulfate, spherical silica and talc are preferably used.
  • metal hydroxides such as titanium oxide, metal oxide, and aluminum hydroxide can be used as extender pigment fillers.
  • the blending amount of the filler is preferably 75% by mass or less, more preferably 0.1 to 60% by mass of the total amount of the composition. If the blending amount of the filler exceeds 75% by mass of the total amount of the composition, the viscosity of the insulating composition is increased, and the coating and moldability are lowered, and the cured product becomes brittle.
  • the photosensitive resin composition used in the present invention is a ketone, an aromatic hydrocarbon, a glycol ether, a glycol ether acetate for adjusting the viscosity for preparing the composition or for applying to a substrate or a carrier film.
  • various organic solvents such as esters, alcohols, aliphatic hydrocarbons and petroleum solvents can be blended.
  • known conventional polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, phenothiazine, etc.
  • known conventional thickeners such as finely divided silica, organic bentonite, montmorillonite, pigments, dyes, silicones
  • Known and conventional additives such as antifoaming agents and / or leveling agents such as fluorinated and fluoropolymers, silane coupling agents such as imidazole, thiazole and triazole, antioxidants and rust inhibitors Can be blended.
  • Patterned resist film formation step As shown in FIG. 1 (C), through holes 6 were formed by drilling as necessary in the substrate 1 having the photosensitive resist film 4 formed on the surface. Thereafter, selective exposure and development are performed, and as shown in FIG. 2 (A), a patterned resist in which a groove pattern of a circuit forming portion is formed and a copper plating layer can be formed by electroless copper plating. A film (hereinafter simply referred to as a resist film or a resist pattern) 5 is formed.
  • the negative photosensitive resin composition is used to form the photosensitive resist film 4
  • the unexposed portion is removed by development
  • the positive photosensitive resin composition is used, the exposed portion is removed by development. Removed.
  • the selective exposure can be performed by an active energy ray selectively through a photomask having a pattern formed by a contact method (or non-contact method), or directly by a laser direct exposure machine.
  • the photosensitive resin composition used for forming the photosensitive resist film contains a thermosetting component (D)
  • the heat resistance, chemical resistance, Various characteristics such as moisture absorption resistance, adhesion, and electrical characteristics can be improved.
  • a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer
  • an exposure apparatus equipped with a metal halide lamp and an (ultra) high pressure mercury lamp.
  • a gas laser or a solid laser may be used as long as laser light having a maximum wavelength in the range of 350 to 410 nm is used.
  • the exposure amount varies depending on the film thickness and the like, but can be generally in the range of 5 to 200 mJ / cm 2 , preferably 5 to 100 mJ / cm 2 , more preferably 5 to 50 mJ / cm 2 .
  • the direct drawing apparatus for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus may be used as long as it oscillates laser light having a maximum wavelength of 350 to 410 nm. .
  • the developing method may be a dipping method, a shower method, a spray method, a brush method, or the like.
  • development with a solvent is possible, development is preferably performed using an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines and the like.
  • Electroless Copper Plating Electroless Copper Plating Step As shown in FIG. 2B, the electroless copper plating step is performed on the entire exposed surface of the substrate 1 and the surface of the resist pattern 5 in the groove pattern portion, Copper plating is performed, and then electrolytic copper plating is performed until the surface becomes substantially smooth, thereby forming a copper plating layer 7 covering the resist pattern 5.
  • the resist pattern 5 after development is further irradiated with ultraviolet rays stronger than at the time of exposure
  • a palladium catalyst is applied to the entire exposed surface of the substrate and the patterned resist film surface, and then immersed in an electroless copper plating solution to form a copper layer.
  • the thickness of the electroless copper plating layer is suitably in the range of about 0.5 to 2 ⁇ m. If necessary, heat treatment is performed at 100 ° C. to 200 ° C. after forming the electroless copper plating layer.
  • the heating time is not particularly limited, but is preferably selected from 30 minutes to 5 hours. In order not to oxidize the copper foil, heating in a vacuum or in an inert gas is preferable.
  • it is immersed in an electrolytic copper plating solution to cover the resist pattern 5 as shown in FIG. 2B, and an electrolytic copper plating layer is formed until the surface of the copper plating layer 7 becomes substantially smooth.
  • the thickness of the electrolytic copper plating layer can be arbitrarily selected.
  • Etching Step After forming the copper plating layer 7 as shown in FIG. 2 (B), the copper plating layer 7 until the surface of the resist pattern 5 is exposed as shown in FIG. 2 (C). Are uniformly reduced by mechanical polishing and / or chemical polishing or etching to expose the copper circuit pattern 8 on the surface. As a result, the upper and lower copper circuit patterns 8 are connected by the plated through holes 9.
  • a conventionally known method can be used for mechanical polishing and / or chemical polishing, and the etching solution is not particularly limited, but is an aqueous solution of sulfuric acid monohydrogen peroxide, ammonium persulfate, sodium persulfate, persulfate.
  • An aqueous solution of persulfate such as potassium or an aqueous solution of ferric chloride or cupric chloride can be preferably used.
  • the resist pattern 5 that is embedded between the copper circuit patterns 8 can be left as it is as an insulating layer without being stripped, but if necessary, only the resist pattern 5 can be used as an alkaline aqueous solution. , Swelling and peeling with a solvent and / or so-called desmear treatment with an alkali permanganate or the like, and removing, so that only the copper circuit pattern 8 was formed on the substrate 1 as shown in FIG. It can be a wiring board.
  • Interlayer resin insulation layer forming step When a multilayer printed wiring board is manufactured, a substrate having a resist pattern 5 and a copper circuit pattern 8 as shown in FIG. 2 (C) or FIG. 2 (D). As shown in FIG. 4, on the surface of the substrate having only the copper circuit pattern 8, for example, epoxy resin, polyimide resin, cyanate ester resin, maleimide resin, double bond addition polyphenylene ether resin, bromine or phosphorus-containing compounds of these resins 1 type or 2 or more types such as resin composition and the like, and if necessary, a thermosetting resin composition containing a known catalyst, curing agent, curing accelerator, etc. is applied and cured by heating, or glass Non-woven fabrics, woven fabrics, etc.
  • thermosetting resin composition are impregnated with thermosetting resin composition, and semi-cured semi-solid brigregs are laminated, or film-like resin is laminated by thermocompression bonding. Then, as shown in FIG. 3A, the interlayer resin insulating layer 10 is formed, and the roughening treatment as described above is performed on the surface as necessary.
  • a copper foil or a resin composite copper foil for example, a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound on one side of a copper foil as described in JP-A-2007-242975
  • the resin layer surface of the resin composite copper foil formed with the B-stage resin composition layer is laminated, the laminated copper-clad laminate is laminated, and then all the copper foil is removed by etching, whereby the fine uneven surface of the copper foil An interlayer resin insulation layer 10 having a surface to which is transferred is formed.
  • the roughening treatment described above becomes unnecessary, and a photosensitive resist film can be formed with good adhesion on the surface of the interlayer resin insulating layer 10 in a later process, and sufficient reliability as a wiring board can be obtained.
  • a copper clad laminate all conventionally known copper clad laminates can be used.
  • the photosensitive resin composition containing the thermosetting component (D) and the filler (E) described above is applied to the surface of the substrate, or the dry film is laminated, so that the active energy ray is entirely applied.
  • the interlayer resin insulation layer 10 can also be formed by irradiating and photocuring, and further heating and thermosetting.
  • additives can be blended as desired as long as the original characteristics of the composition are not impaired.
  • additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, poly Low molecular weight liquid to high molecular weight elastic rubbers such as isoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin, styrene-isoprene Rubber, acrylic rubber, core-shell rubber, polyethylene-propylene copolymer, 4-fluorinated ethylene-6-fluorinated ethylene copolymers; polycarbonate, polyphenylene ether, polysulfate, polyphenylene ether, polysul
  • organic or inorganic fillers dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic agents
  • additives such as are used in appropriate combination as desired.
  • an inorganic filler is suitably added to improve the hole shape.
  • generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, titanium oxide, and aluminum hydroxide are used.
  • the shape of these fillers may be any shape such as a needle shape or a spherical shape.
  • Resist pattern forming step A photosensitive resist film is formed as described above on the substrate 1 on which the interlayer resin insulating layer 10 is formed as shown in FIG. 3A, and via holes 11 are formed as necessary. Then, selective exposure and development are performed on the photosensitive resist film in the same manner as in the step (1), so that a groove pattern of a part for forming a circuit is formed as shown in FIG. Further, an outer layer resist pattern 12 that can form a copper plating layer is formed by electroless copper plating.
  • the photosensitive resin composition used for forming the photosensitive resist film contains a thermosetting component (D), for example, it is heated to a temperature of about 140 to 180 ° C.
  • thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule, resulting in heat resistance, chemical resistance, moisture absorption resistance, and adhesion. It is possible to form a cured film excellent in various characteristics such as electrical characteristics. Even when the thermosetting component (D) is not contained, the heat treatment causes the ethylenically unsaturated bond of the photocurable component remaining in an unreacted state at the time of exposure to undergo thermal radical polymerization, and the film characteristics are improved. In order to improve, heat treatment (thermosetting) may be performed depending on the purpose and application.
  • Electroless Copper Plating Electroless Copper Plating Step Thereafter, the exposed surface of the interlayer resin insulation layer 10 and the entire surface of the resist pattern 12 are shown in FIG. As described above, electroless copper plating is performed, and then electrolytic copper plating is performed until the surface becomes substantially smooth, so that an outer copper plating layer 13 covering the resist pattern 12 is formed. Also in this case, as in the step (2), prior to the electroless copper plating, as a pretreatment for forming the electroless copper plating on the surface of the resist pattern 12, the resist pattern 12 after development is applied. Further, it is preferable to perform ultraviolet irradiation stronger than that at the time of exposure, heating at a temperature equal to or higher than the glass transition temperature (Tg) of the resist film, or plasma treatment with argon, oxygen, or the like.
  • Tg glass transition temperature
  • the copper plating layer is used until the surface of the resist pattern 12 is exposed in the same manner as in the step (3). 13 is uniformly reduced by mechanical polishing and / or chemical polishing or etching, and as shown in FIG. 3D, the copper circuit pattern 14 of the outer layer is exposed on the surface.
  • the resist pattern 12 embedded between the copper circuit patterns 14 can be left as it is as an insulating layer without being peeled off, and if necessary, only the resist pattern 12 is swollen and peeled off with an alkaline aqueous solution, a solvent, And / or a so-called desmearing process can be performed to remove the surface layer portion, so that a wiring board having only the outer layer copper circuit pattern 14 formed on the surface layer portion can be obtained.
  • a multilayer printed wiring board can be produced with high productivity by repeating the steps (5) to (8) described above.
  • the circuit pattern formed by the method of the present invention as described above has excellent insulation reliability because no conductor can exist between the circuit patterns even when the line and space is thinner than 5 ⁇ m. Circuit.
  • each of the obtained photosensitive resist compositions was further diluted with propylene glycol methyl ether acetate to obtain a 10 dPa ⁇ s resist solution. It was applied to a polyethylene terephthalate film having a thickness of 16 ⁇ m with a film coater, and the temperature was gradually increased from 50 ° C. to 80 ° C. to dry, thereby obtaining a dry film having a resist thickness of 10 ⁇ m. Let the obtained dry film be the dry film A and the dry film B, respectively.
  • Example 1 BT resin copper-clad laminate (product name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Inc.) having an insulation layer thickness of 0.2 mm and double-sided copper foil (copper foil profile 3.3 ⁇ m) as a copper-clad laminate A through hole with a hole diameter of 75 ⁇ m is formed with a metal drill, and after swelling with desmear treatment (potassium permanganate desmear solution (Okuno Pharmaceutical Co., Ltd.)), desmear (dissolution), neutralized, washed with water, the surface copper foil layer Then, the dry film A was laminated with a vacuum laminator manufactured by Nichigo Morton under the conditions of 70 ° C., 0.5 MPa, 30 seconds, and then 355 nm using a laser direct exposure apparatus (Orbotech Co., Paragon).
  • desmear treatment potassium permanganate desmear solution (Okuno Pharmaceutical Co., Ltd.)
  • desmear dissolution
  • the dry film A was laminated with
  • electroless copper plating is performed using an electroless copper plating solution (Akusatsu Pharmaceutical Co., Ltd., ATS Adcopper CT) to form a 1 ⁇ m thick copper layer on the entire surface.
  • electrolytic plating was performed for 70 minutes at 1.5 amperes / dm 2 using a copper sulfate plating solution to form a copper layer having a thickness of about 10 ⁇ m.
  • the copper foil was etched flatly on the substrate on which the copper layer was formed using an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until the surface of the dry film was seen.
  • the substrate on which the circuit is formed is stripped with an alkali stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200) at 50 ° C. for 3 minutes, and the photosensitive resist is completely removed by a desmear process.
  • a circuit board having a line and space of 10 ⁇ m was obtained.
  • Example 2 After the circuit board obtained in Example 1 was subjected to CZ treatment by MEC, a B-stage resin composition sheet with copper foil (copper foil profile 3.3 ⁇ m) (manufactured by Mitsubishi Gas Chemical Co., Ltd., CRS-401) ) On both sides, heating conditions: 110 ° C. ⁇ 30 minutes + 180 ° C. ⁇ 90 minutes, pressurization conditions: 5 kgf / cm 2 ⁇ 15 minutes + 20 kgf / cm 2 , under the conditions up to the end, with a vacuum of 30 mmHg or less for 2 hours Lamination was performed under conditions.
  • the copper foil on the surface of the obtained four-layer plate was etched, and a blind via hole having a hole diameter of 60 ⁇ m was formed by irradiating one shot with a carbon dioxide laser (output: 13 mJ).
  • the dry film A was laminated under the above conditions, and thereafter, circuit formation was performed in the same manner as in Example 1 to obtain a four-layer circuit board having a minimum line and space of 10 ⁇ m.
  • Example 3 In Example 1, instead of the dry film A, the dry film B was similarly laminated on a copper-clad laminate obtained by etching the entire copper foil layer on the surface, and thereafter, similarly, a laser direct exposure apparatus (manufactured by Orbotech, Paragon) was used. A pattern having a minimum line and space of 20 ⁇ m was drawn using ultraviolet rays of 355 nm under the condition of 200 mJ / cm 2 . Thereafter, development was performed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. with a spray pressure of 2 atm, and washing with water was repeated twice to obtain a substrate on which a photosensitive resist pattern was formed. This was cured in a hot air drying furnace at 150 ° C.
  • a laser direct exposure apparatus manufactured by Orbotech, Paragon
  • electroless copper plating is performed using an electroless copper plating solution (Akusatsu Pharmaceutical Co., Ltd., ATS Adcopper CT) to form a 1 ⁇ m thick copper layer, which is heated in a heating furnace at 130 ° C. for 2 hours. After that, electrolytic copper plating was performed for 70 minutes at 1.5 ampere / dm 2 using a copper sulfate plating solution to form a copper layer having a thickness of about 10 ⁇ m.
  • the copper foil is etched flatly until the surface of the dry film is seen, and the minimum line and space is formed on the substrate on which the copper layer is formed. Obtained a circuit board of 20 ⁇ m.
  • Example 4 The circuit board obtained in Example 3 was subjected to CZ treatment by MEC and subjected to adhesion treatment, and then dry film B was laminated thereon in the same manner as in Example 1 to expose and develop the solder resist pattern. Thereafter, the substrate was thermally cured at 150 ° C. for 1 hour in a hot air drying furnace to obtain a circuit board on which a solder resist was formed.
  • Example 5 After the four-layer circuit board obtained in Example 2 was subjected to CZ treatment by MEC, a dry film solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410, 20 ⁇ m film thickness) was laminated in the same manner as in Example 1. The solder resist pattern was exposed and developed with a high-pressure mercury lamp at 600 mJ / cm 2 and then thermally cured at 150 ° C. for 1 hour in a hot air drying oven to obtain a circuit board on which the solder resist was formed.
  • a dry film solder resist manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410, 20 ⁇ m film thickness
  • Comparative Example 1 BT resin copper-clad laminate (product name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Inc.) with an insulating layer thickness of 0.2 mm and double-sided copper foil (copper foil profile 3.3 ⁇ m) as a copper-clad laminate
  • a through-hole with a hole diameter of 75 ⁇ m was formed with a metal drill, and then the copper foil layer on the surface was etched flat with an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until it became 2.0 ⁇ m, and desmear treatment (excessive treatment) After swelling, desmear (dissolution), neutralization, and washing with a potassium manganate desmear solution (Okuno Pharmaceutical Co., Ltd.), electroless copper plating is performed to form a copper layer of about 1 ⁇ m, and then at 130 ° C.
  • Heat treatment was performed for 2 hours, and a dry film for semi-additive (manufactured by Hitachi Chemical Co., Ltd., RY-3515) was vacuum-laminated by a Nichigo Morton vacuum laminator at 70 ° C., 0.5 MPa for 30 seconds. After that, a pattern having a minimum line and space of 10 ⁇ m was drawn under the condition of 100 mJ / cm 2 using ultraviolet exposure equipment (HAP-5020, manufactured by Hakuto Co., Ltd.). Development was performed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. under a spray pressure of 2 atm, and washing with water was repeated twice to obtain a substrate on which a photosensitive resist pattern was formed.
  • HAP-5020 ultraviolet exposure equipment
  • Electrolytic copper plating was performed at 5 amps / dm 2 for 70 minutes to form a copper pattern having a thickness of about 10 ⁇ m on the portion where the resist was not formed.
  • the substrate was then subjected to alkaline stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200) at 50 ° C. for 3 minutes, the semi-additive dry film is peeled off, and then the semi-additive dry film of the substrate on which the copper pattern is formed is formed.
  • an etching solution Mitsubishi Gas Chemical Co., Ltd., SE-07
  • a copper circuit is etched using the minimum line-and-space was obtained circuit board 10 [mu] m.
  • Comparative Example 2 After the circuit board prepared in Comparative Example 1 was subjected to CZ treatment by MEC, a thermosetting dry film (Ajinomoto Fine Techno Co., Ltd., ABF-GX13) was laminated on both sides, and a vacuum laminator manufactured by Nichigo Morton was used. Lamination was carried out under the conditions of 0 ° C., 0.5 Mpa, and 30 seconds, and then heat-cured at 170 ° C. for 60 minutes in a hot air drying furnace to laminate. The obtained substrate was irradiated with one shot with a carbon dioxide laser (output: 13 mJ) to form blind via holes having a hole diameter of 60 ⁇ m.
  • a thermosetting dry film Ajinomoto Fine Techno Co., Ltd., ABF-GX13
  • the semi-additive dry film was subjected to conditions of 70 ° C., 0.5 Mpa, 30 seconds with a vacuum laminator manufactured by Nichigo Morton. Thereafter, the minimum line and space is 10 ⁇ m under the condition of 100 mJ / cm 2 using ultraviolet exposure apparatus (manufactured by ORC). After that, the pattern was drawn, developed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. with a spray pressure of 2 atm, and washed twice with water to obtain a substrate on which a photosensitive resist pattern was formed.
  • electrolytic copper plating was performed at 1.5 ampere / dm 2 for 70 minutes using a copper sulfate plating solution to form a copper pattern having a thickness of about 10 ⁇ m on the portion where no resist was formed.
  • the semi-additive dry film was peeled off at 50 ° C. for 3 minutes using a stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200)
  • the semi-additive dry film on the substrate on which the copper pattern was formed was The copper circuit is etched using an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until the copper portion that has been formed disappears, and the minimum line and space A multilayer circuit board having a thickness of 10 ⁇ m was obtained.
  • Example 5 a solder resist pattern of a dry film solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410) was formed on this substrate to obtain a substrate on which the solder resist was formed.
  • a dry film solder resist manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410
  • Electroless gold plating suitability Each wiring board was subjected to electroless nickel plating, further electroless gold plating, and the presence or absence of abnormal deposition of plating due to etching residues during circuit formation was confirmed and evaluated according to the following criteria. ⁇ : No abnormal precipitation. X: Plating is deposited even on the resin without wiring.
  • the circuit board was formed by etching the entire copper foil and having the surface roughness of the copper foil profile, so the peel strength was high. Results were obtained.
  • the photosensitive resist film surface is Wiring boards formed by etching flat until exposed are high-definition and there is no history of conductive layer formation between completed circuits, so there is no possibility of abnormal deposition in nickel and gold plating due to etching failure. It was.
  • the wiring boards obtained in Example 3 and Example 4 were high-precision forming methods in which the circuit and the insulating layer were flat and the solder resist layer could be formed with a uniform film thickness.
  • the peel strength was relatively high. there were.
  • the profile on the base resin was large, peeling of fine lines, which seems to be caused by overetching when peeling the copper foil layer, was observed.
  • Comparative Example 2 since the unevenness was formed on the resin by the desmear process without using the copper foil profile, the peel strength of the completed circuit was lower than that of the example.
  • the method for manufacturing a printed wiring board of the present invention is suitable for manufacturing a high-density printed wiring board or a multilayer printed wiring board in which a highly accurate and extremely fine copper circuit pattern is formed on the surface of a substrate.
  • Substrate 2 Copper foil 3: Copper-clad laminate 4: Photosensitive resist film 5: Resist pattern 6: Through hole 7: Copper plating layer 8: Copper circuit pattern 9: Plating through hole 10: Interlayer resin insulation layer 11: Via hole 12: Resist pattern of outer layer 13: Copper plating layer of outer layer 14: Copper circuit pattern of outer layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Materials For Photolithography (AREA)

Abstract

Disclosed is a method for producing a high-density printed wiring board having a surface on which a high-precision and ultrafine copper circuit pattern is formed, which is comprised of (a) a process for forming a resist pattern (5) which is formed by selectively exposing and developing a photosensitive resist film formed on the substrate surface, to form a groove pattern for a circuit forming portion and which can be plated by electroless copper plating, (b) a process for forming a copper plating layer (7) which covers the resist pattern by plating an exposed surface of the groove pattern portion of a substrate and the entire surface of the patterned resist film by electroless copper plating and, thereafter, plating the surfaces by electrolytic copper plating until the surfaces are substantially flattened and smoothed, and (c) a process for exposing a copper circuit pattern (8) on the surface by mechanically grinding and/or chemically grinding or etching the copper plating layer to evenly reduce the copper plating layer until the surface of the resist film is exposed. It is preferable that the pattern-formed resist film is irradiated with ultraviolet rays, heat-treated and/or plasma-treated.

Description

プリント配線板及びその製造方法Printed wiring board and manufacturing method thereof
 本発明は、プリント配線板及びその製造方法に関し、さらに詳しくは、細密回路パターンを有する高密度プリント配線板及びその製造方法に関する。 The present invention relates to a printed wiring board and a manufacturing method thereof, and more particularly to a high-density printed wiring board having a fine circuit pattern and a manufacturing method thereof.
 電子機器に用いられる半導体部品等の電子部品を実装するためプリント配線板は、半導体回路の超高密度化と相俟って、その回路導体幅と回路間絶縁スペースはより極細線化(ファインパターン化)することが要求されつつある。 In order to mount electronic parts such as semiconductor parts used in electronic equipment, printed circuit boards, combined with the ultra-high density of semiconductor circuits, make their circuit conductor width and insulation space between circuits finer (fine pattern). ) Is being demanded.
 従来、プリント配線板の回路パターン形成方法としては、銅箔又は銅合金箔(本明細書においては、銅箔と総称する)を絶縁用樹脂と接着した形の銅張積層板を用い、銅箔表面に感光性レジスト膜を形成した後、選択的露光、現像によりレジスト膜を除去し、次いで、銅箔の露出部分をエッチングで除去する方法、所謂、エッチング法や、5μmより薄い銅膜を形成した絶縁用樹脂の表面に、感光性レジスト膜を形成した後、選択的露光、現像により回路形成する部分のレジスト膜を除去し、次いで、露出した薄い銅膜をめっき電極として、電気銅めっきにより、レジスト膜除去部分に銅を埋め込み、次いで、レジスト膜を除去した後、全表面を均一にエッチングすることにより、絶縁用樹脂表面の薄い銅膜を完全に除去し、電気銅めっきにより形成された部分からなる回路を形成する、所謂、セミサブトラクティブ法又はセミアディティブ法や、絶縁用樹脂表面に無電解めっき触媒を付与した後、感光性レジスト膜を形成し、次いで、選択的露光、現像により回路形成する部分のレジスト膜を除去した後、無電解銅めっきのみによりレジスト膜除去部に銅回路を形成する、所謂、フルアディティブ法や、さらには、めっき電極として用いる金属板の表面に、選択的にめっきレジスト膜を形成し、次いで、電気めっきにより、レジスト膜が形成されていない部分に銅めっき層を形成し、レジスト膜を除去するかもしくはレジスト膜を除去せずに、半硬化性樹脂と共に積層成形し、次いで金属板を取り除くことにより、樹脂に銅回路が埋め込まれた形の回路を形成する方法などが知られている(例えば、特許文献1~4参照)。 Conventionally, as a circuit pattern forming method of a printed wiring board, a copper-clad laminate having a shape in which a copper foil or a copper alloy foil (generally referred to as a copper foil in this specification) is bonded to an insulating resin is used. After the photosensitive resist film is formed on the surface, the resist film is removed by selective exposure and development, and then the exposed portion of the copper foil is removed by etching, so-called etching method or copper film thinner than 5 μm is formed. After forming a photosensitive resist film on the surface of the insulating resin, the resist film is removed by selective exposure and development, and then the exposed thin copper film is used as a plating electrode by electro copper plating. Then, copper is buried in the resist film removal part, and then the resist film is removed, and then the entire surface is uniformly etched to completely remove the thin copper film on the insulating resin surface, and electro copper plating A so-called semi-subtractive method or semi-additive method for forming a circuit composed of more formed portions, or applying an electroless plating catalyst to the insulating resin surface, forming a photosensitive resist film, and then selectively After removing the resist film in the part where the circuit is formed by exposure and development, a so-called full additive method for forming a copper circuit in the resist film removal part only by electroless copper plating, and further, a metal plate used as a plating electrode A plating resist film is selectively formed on the surface, and then, by electroplating, a copper plating layer is formed on a portion where the resist film is not formed, and the resist film is removed or the resist film is not removed. It is known how to form a circuit with a copper circuit embedded in the resin by laminating with a semi-curing resin and then removing the metal plate. (For example, see Patent Documents 1 to 4).
 しかしながら、前記した従来のいずれの方法も、制限された領域の選択的なエッチング又は選択的なめっきにより銅回路パターンを形成するため、回路の幅精度、経済性、量産性などに制限があり、より高密度の銅回路パターンを、より経済的に、且つ、より合理的な方法により製造可能な技術が要望されている。 However, any of the conventional methods described above forms a copper circuit pattern by selective etching or selective plating in a limited region, so that there are limitations on the circuit width accuracy, economy, mass productivity, etc. There is a need for a technique that can produce higher density copper circuit patterns more economically and in a more rational manner.
特開2003-249751公報JP 2003-249755 A 特開2003-298243公報JP 2003-298243 A 特開2004-193458公報JP 2004-193458 A 特開2007-242975公報JP 2007-242975 A
 本発明は、前記したような従来技術に鑑みなされたものであり、その目的は、各種の熱硬化性樹脂組成物積層板や熱硬化性樹脂組成物フィルム等の基板の表面に、極細線の銅回路パターンを、高精度で且つ経済的に製造することができるプリント配線板の製造方法を提供することにある。
 さらに本発明の目的は、このような方法により製造された高精度且つ極細密な銅回路パターンを有する高密度プリント配線板を提供することにある。
The present invention has been made in view of the prior art as described above, and its purpose is to provide an ultrafine wire on the surface of a substrate such as various thermosetting resin composition laminates and thermosetting resin composition films. An object of the present invention is to provide a method for manufacturing a printed wiring board capable of manufacturing a copper circuit pattern with high accuracy and economically.
A further object of the present invention is to provide a high-density printed wiring board having a high-precision and extremely fine copper circuit pattern manufactured by such a method.
 前記目的を達成するために、本発明によれば、
 (a)基板表面に形成された感光性レジスト膜に選択的露光及び現像を行って、回路形成する部分の溝パターンが形成された、無電解銅めっきにより銅めっき層を形成できるパターン化されたレジスト膜を形成する工程、
 (b)前記溝パターン部分の基板の露出表面及びパターン化されたレジスト膜表面の全体に無電解銅めっきを行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジスト膜を覆う銅めっき層を形成する工程、
 (c)前記レジスト膜の表面が露出するまで、銅めっき層を機械的研磨及び/又は化学的研磨又はエッチングにより均一に減少させ、表面に銅回路パターンを露出させる工程
を含むことを特徴とするプリント配線板の製造方法が提供される。
 別の態様においては、前記工程(c)の後に、さらに(d)表面層部分が銅回路パターンのみとなるように前記レジスト膜を除去する工程を含む。この工程(d)において、好適には、前記レジスト膜をアルカリ水溶液で剥離し、又はデスミヤ処理して取り除く。
In order to achieve the object, according to the present invention,
(A) The photosensitive resist film formed on the surface of the substrate was selectively exposed and developed to form a groove pattern of a part for forming a circuit, and a pattern capable of forming a copper plating layer by electroless copper plating. Forming a resist film;
(B) Electroless copper plating is performed on the entire exposed surface of the substrate in the groove pattern portion and the patterned resist film surface, and then electrolytic copper plating is performed until the surface becomes almost smooth to cover the resist film. Forming a copper plating layer;
(C) including a step of uniformly reducing the copper plating layer by mechanical polishing and / or chemical polishing or etching until the surface of the resist film is exposed to expose a copper circuit pattern on the surface. A method for manufacturing a printed wiring board is provided.
In another aspect, after the step (c), further includes (d) a step of removing the resist film so that the surface layer portion is only a copper circuit pattern. In this step (d), the resist film is preferably removed with an alkaline aqueous solution or removed by desmearing.
 好適な態様においては、前記基板は、銅張積層板の銅箔を全てエッチング除去し、銅箔の凹凸面が転写された表面を有するものである。
 別の好適な態様においては、前記レジスト膜は、パターン形成後に紫外線照射、加熱処理及びプラズマ処理よりなる群から選ばれたいずれか少なくとも1種の処理を行って、無電解銅めっきにより銅めっき層を形成できるレジスト膜としたものである。
In a preferred aspect, the substrate has a surface on which the copper foil of the copper clad laminate is removed by etching and the uneven surface of the copper foil is transferred.
In another preferred embodiment, the resist film is subjected to at least one treatment selected from the group consisting of ultraviolet irradiation, heat treatment and plasma treatment after pattern formation, and a copper plating layer is formed by electroless copper plating. The resist film can be formed.
 他の好適な態様においては、前記工程(a)において、基板表面に形成された感光性レジスト膜に紫外線のパターン露光又は紫外線の直接描画により選択的露光を行い、次いで現像を行って、回路形成する部分の溝パターンを形成する。また、前記工程(a)に付される基板は、必要に応じてスルーホールを有する。 In another preferred embodiment, in the step (a), the photosensitive resist film formed on the substrate surface is selectively exposed by UV pattern exposure or UV direct drawing, and then developed to form a circuit. A groove pattern of a portion to be formed is formed. Moreover, the board | substrate attached | subjected to the said process (a) has a through hole as needed.
 さらに多層のプリント配線板を作製する場合には、前記工程(c)の後、さらに層間樹脂絶縁層を形成した後に感光性レジスト膜を形成し、次いで前記工程(a)、(b)及び(c)を繰り返す。あるいは、前記工程(d)の後、さらに層間樹脂絶縁層を形成した後に感光性レジスト膜を形成し、次いで前記工程(a)、(b)及び(c)を繰り返し、多層プリント配線板を作製する。この場合、前記前記工程(a)、(b)及び(c)を繰り返した後、さらに表面層部分が銅回路パターンのみとなるように前記(d)のレジスト膜除去工程を行うこともできる。 Further, in the case of producing a multilayer printed wiring board, after the step (c), after forming an interlayer resin insulation layer, a photosensitive resist film is formed, and then the steps (a), (b) and ( Repeat c). Or after the said process (d), after forming an interlayer resin insulation layer, a photosensitive resist film is formed, and then the said process (a), (b) and (c) is repeated, and a multilayer printed wiring board is produced. To do. In this case, after the steps (a), (b), and (c) are repeated, the resist film removing step (d) may be performed so that the surface layer portion is only a copper circuit pattern.
 さらに本発明によれば、前記いずれかの方法により作製された、表面層部分に銅回路パターンと該パターン間に埋め込まれた樹脂絶縁層とを有し、これら銅回路パターンと樹脂絶縁層とから平坦な表面が形成されていることを特徴とするプリント配線板が提供される。 Furthermore, according to this invention, it has a copper circuit pattern and the resin insulation layer embedded between these patterns in the surface layer part produced by one of the said methods, From these copper circuit patterns and the resin insulation layer, Provided is a printed wiring board characterized in that a flat surface is formed.
 本発明のプリント配線板の製造方法は、従来の制限された領域の選択的なエッチング又は選択的なめっきにより銅回路を形成する方法とは異なり、基板表面に形成された感光性レジスト膜に選択的露光及び現像を行って、回路形成する部分の溝パターンが形成された、無電解銅めっきにより銅めっき層を形成できるパターン化されたレジスト膜に対して、溝パターン部分の基板の露出表面及びパターン化されたレジスト膜表面の全体に無電解銅めっき層を行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジスト膜を覆う銅めっき層を形成した後、上記レジスト膜の表面が露出するまで、銅めっき層を機械的研磨及び/又は化学的研磨又はエッチングにより全体的に均一に減少させ、表面に銅回路パターンを露出させるものであるため、全ての工程において特別な工程や材料を必要とせず、高精度な細密回路パターンを生産性よく形成することができる。このような方法によれば、5μm幅程度までの極細銅回路を容易に形成が可能であり、また、上記溝パターンが形成されたレジスト膜形成工程、無電解銅めっき-電解銅めっき工程、及び全体的研磨もしくはエッチング工程を繰り返して多層プリント配線板を作製する場合にも、回路パターン領域の規制に感光性レジストを使用するため、上下層の銅回路パターンの位置合わせ精度も良いものとなる。また、得られたプリント配線板は、回路の幅精度や信頼性に優れており、半導体チップ実装用のサブストレートや、超高密度プリント配線板製造に好適に使用できる。 Unlike the conventional method of forming a copper circuit by selective etching or selective plating in a limited area, the printed wiring board manufacturing method of the present invention is selected as a photosensitive resist film formed on the substrate surface. The exposed surface of the substrate in the groove pattern portion and the patterned resist film in which the copper plating layer can be formed by electroless copper plating, in which the groove pattern of the circuit forming portion is formed by performing the general exposure and development, and An electroless copper plating layer is applied to the entire surface of the patterned resist film, and then electrolytic copper plating is performed until the surface is substantially smooth to form a copper plating layer covering the resist film. Until the surface is exposed, the copper plating layer is uniformly reduced by mechanical polishing and / or chemical polishing or etching to expose the copper circuit pattern on the surface. Because of the is, without the need for special processes and materials in all steps, it can be formed with good productivity high-precision fine circuit patterns. According to such a method, an ultrafine copper circuit having a width of up to about 5 μm can be easily formed, and a resist film forming step in which the groove pattern is formed, an electroless copper plating-electrolytic copper plating step, and Even in the case where a multilayer printed wiring board is manufactured by repeating the entire polishing or etching process, since the photosensitive resist is used for regulating the circuit pattern region, the alignment accuracy of the upper and lower copper circuit patterns is also good. The obtained printed wiring board is excellent in circuit width accuracy and reliability, and can be suitably used for manufacturing a substrate for mounting a semiconductor chip and manufacturing an ultra-high density printed wiring board.
基板表面に感光性レジスト膜を形成するまでの工程の好適な実施態様を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the suitable embodiment of the process until it forms a photosensitive resist film on a substrate surface. 基板表面に形成された感光性レジスト膜に対する溝パターン形成工程、無電解銅めっき-電解銅めっき工程、全体的研磨もしくはエッチング工程及びレジスト膜剥離工程を含む本発明のプリント配線板製造方法の一実施態様を示す概略部分断面図である。An embodiment of the printed wiring board manufacturing method of the present invention including a groove pattern forming step, an electroless copper plating-electrolytic copper plating step, an overall polishing or etching step, and a resist film peeling step for a photosensitive resist film formed on a substrate surface It is a general | schematic fragmentary sectional view which shows an aspect. 図2に示すプリント配線板に、さらに本発明に従って樹脂絶縁層形成から銅回路パターン形成までの工程を含むプリント配線板製造方法の一実施態様を示す概略部分断面図である。FIG. 3 is a schematic partial cross-sectional view showing an embodiment of a method for producing a printed wiring board including steps from resin insulation layer formation to copper circuit pattern formation according to the present invention on the printed wiring board shown in FIG. 2.
 前記したように、本発明のプリント配線板の製造方法は、従来の制限された領域の選択的なエッチング又は選択的なめっきにより銅回路を形成する方法とは異なり、基板表面に形成された感光性レジスト膜に選択的露光及び現像を行って、回路形成する部分の溝パターンが形成された、無電解銅めっき可能な、即ち無電解銅めっきにより銅めっき層を形成できる、パターン化されたレジスト膜に対して、溝パターン部分の基板の露出表面及びパターン化されたレジスト膜表面の全体に無電解銅めっきを行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジスト膜を覆う銅めっき層を形成した後、上記レジスト膜の表面が露出するまで、銅めっき層を機械的研磨及び/又は化学的研磨又はエッチングにより全体的に均一に減少させ、表面に銅回路パターンを露出させるものである。 As described above, the method for manufacturing a printed wiring board according to the present invention is different from the conventional method of forming a copper circuit by selective etching or selective plating in a limited region, and the photosensitive circuit formed on the substrate surface. A patterned resist that can be electrolessly plated with copper, that is, a copper plating layer can be formed by electroless copper plating, by selectively exposing and developing the conductive resist film to form a groove pattern of a circuit forming portion. Electroless copper plating is performed on the entire exposed surface of the substrate in the groove pattern portion and the patterned resist film surface, and then the electrolytic copper plating is performed until the surface becomes almost smooth. After forming the covering copper plating layer, the copper plating layer is made uniform uniformly by mechanical polishing and / or chemical polishing or etching until the surface of the resist film is exposed. Small Toe is intended to expose the copper circuit pattern on the surface.
 一般に、従来の銅回路パターンの形成方法では、市販のめっきレジストから形成されたレジスト膜表面にはめっき(触媒)が付着しないことを前提としており、レジスト膜が存在しない部分にめっきが形成されるように設計されている。このような従来の先入観に対して、本発明者らは、レジスト膜も含めて基材の樹脂表面にもめっき層を形成するために鋭意検討した結果、適切な処理により無電解銅めっき可能であること、特に露光時よりも強い紫外線の照射、もしくはレジスト膜のガラス転移温度(Tg)以上の温度での加熱、又はアルゴン、酸素等のプラズマ処理などの前処理が有効であることを見出した。このような前処理を行うことにより、レジスト膜上に無電解銅めっきが析出するだけでなく、溶出などが減少し、めっき液の汚染が抑えられ、めっき表面の変色、光沢不良、ピンホールがないめっきの析出も可能になった。さらに、耐アルカリ性やレジスト膜の膨潤も抑えられ、形成された回路の形状も安定することが明らかとなった。このことは予想だにしない驚くべき効果であった。 In general, the conventional method for forming a copper circuit pattern is based on the premise that plating (catalyst) does not adhere to the surface of a resist film formed from a commercially available plating resist, and plating is formed on a portion where no resist film exists. Designed to be In response to such a preconception, the present inventors have intensively studied to form a plating layer on the resin surface of the base material including the resist film. In particular, it has been found that pre-treatment such as ultraviolet irradiation stronger than that at the time of exposure, heating at a temperature higher than the glass transition temperature (Tg) of the resist film, or plasma treatment with argon, oxygen or the like is effective. . By performing such pretreatment, not only electroless copper plating is deposited on the resist film, but also elution is reduced, contamination of the plating solution is suppressed, discoloration of the plating surface, poor gloss, and pinholes. No plating deposition was possible. Furthermore, it became clear that the alkali resistance and the swelling of the resist film were suppressed, and the shape of the formed circuit was stable. This was an unexpected effect.
 以下、本発明のプリント配線基板の製造方法について、添付図面を参照しながら具体的に説明する。
 まず、図1(C)に示されるような、表面に感光性レジスト膜4が形成された基板1を準備する。尚、図1(C)には、両表面に感光性レジスト膜4が形成された基板1が示されているが、片面に感光性レジスト膜4が形成された基板であってもよい。基板1としては、プリント配線板に使用される公知の基板であれば、特に限定されない。具体的には、JISに規定されるE、NE、D、S、Tガラス等の一般に公知のガラス繊維の不織布、織布等に、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、二重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などの1種又は2種以上と、必要に応じて、公知の触媒、硬化剤、硬化促進剤等を配合した熱硬化性樹脂組成物を含浸させ、硬化させた基板が挙げられる。また、ポリイミド基板、ビスマレイミド-トリアジン樹脂基板、フッ素樹脂基板などの樹脂基板や、ポリイミドフィルム、PETフィルム、セラミック基板、ウエハ板などを用いることもできる。これらの基板は、その表面に微細な凹凸状の平坦面を形成して感光性レジスト膜との密着性を向上させるために、公知の粗化処理、例えば水酸化ナトリウム水溶液などのアルカリ溶液による膨潤、過マンガン酸塩、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤を含有する液による処理、及び硫酸水溶液、塩酸水溶液等による酸処理の一連の化学的処理(酸化剤処理)を施すこともできる。粗化処理には、市販のデスミヤ液(粗化剤)を用いることもできる。
Hereinafter, a method for producing a printed wiring board of the present invention will be specifically described with reference to the accompanying drawings.
First, as shown in FIG. 1C, a substrate 1 having a photosensitive resist film 4 formed on the surface is prepared. Although FIG. 1C shows the substrate 1 having the photosensitive resist film 4 formed on both surfaces, the substrate 1 may be a substrate having the photosensitive resist film 4 formed on one side. The substrate 1 is not particularly limited as long as it is a known substrate used for a printed wiring board. Specifically, it is commonly used for non-woven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass defined in JIS, for example, epoxy resins, polyimide resins, cyanate ester resins, maleimide resins. , Double bond addition polyphenylene ether resins, one or two or more resin compositions such as bromine and phosphorus-containing compounds of these resins, and, if necessary, known catalysts, curing agents, curing accelerators, etc. Examples include a substrate that is impregnated with a blended thermosetting resin composition and cured. In addition, a resin substrate such as a polyimide substrate, a bismaleimide-triazine resin substrate, or a fluororesin substrate, a polyimide film, a PET film, a ceramic substrate, a wafer plate, or the like can be used. These substrates are swollen by a known roughening treatment, for example, an alkaline solution such as an aqueous sodium hydroxide solution, in order to improve the adhesion to the photosensitive resist film by forming a fine uneven flat surface on the surface. , Permanganate, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid-containing liquid treatment, and sulfuric acid aqueous solution, hydrochloric acid aqueous solution, etc. Treatment) can also be performed. A commercially available desmear liquid (roughening agent) can also be used for the roughening treatment.
 しかしながら、特に、図1(A)に示されるような基板1の両面に銅箔2が張り合わされた銅張積層板3を用い、銅箔2を全てエッチング除去し、図1(B)に示されるような銅箔の凹凸面が転写された表面を有する基板1を使用することが好ましい。この場合、前記した粗化処理が不要となり、銅箔2を全てエッチング除去した基板1の表面にそのまま感光性レジスト膜4を密着性良く形成することができ、配線板として十分な信頼性が得られる。このような銅張積層板3としては、従来公知の全ての銅張積層板を用いることができるが、銅箔もしくは樹脂複合銅箔、例えば特開2007-242975号公報に記載されているような銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形した銅張積層板を好適に用いることができる。樹脂複合銅箔に使用される銅箔は、プリント配線板に使用される公知の銅箔であれば特に限定されないが、好適には電解銅箔、圧延銅箔、これらの銅合金等が使用される。これらの銅箔に、例えばニッケル、コバルト処理、シラン処理剤などの公知の表面処理が施されたものも使用可能である。銅箔の厚さは特に限定されないが、好適には35μm以下である。樹脂層を形成する銅箔面の表面粗さ(Rz)は、4μm以下が好適であり、2μm以下がより好適である。ここで、「Rz」とは、JIS B0601で規定される十点平均粗さである。また、銅箔には公知の接着層が形成されていてもよい。 However, in particular, as shown in FIG. 1 (A), the copper clad laminate 3 having the copper foil 2 bonded to both sides of the substrate 1 is used, and the copper foil 2 is completely removed by etching, as shown in FIG. 1 (B). It is preferable to use the board | substrate 1 which has the surface to which the uneven | corrugated surface of copper foil was transcribe | transferred. In this case, the roughening treatment described above is not required, and the photosensitive resist film 4 can be formed with good adhesion on the surface of the substrate 1 from which all the copper foil 2 has been removed by etching, and sufficient reliability as a wiring board can be obtained. It is done. As such a copper-clad laminate 3, any conventionally known copper-clad laminate can be used, but a copper foil or a resin composite copper foil, for example, as described in JP-A-2007-242975 A copper-clad laminate obtained by laminating and molding a B-stage resin composition layer on the resin layer surface of a resin composite copper foil in which a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound is formed on one side of the copper foil is suitable. Can be used. The copper foil used for the resin composite copper foil is not particularly limited as long as it is a known copper foil used for printed wiring boards, but preferably an electrolytic copper foil, a rolled copper foil, a copper alloy thereof, or the like is used. The For example, nickel, cobalt treatment, or a known surface treatment such as a silane treatment agent may be used on these copper foils. The thickness of the copper foil is not particularly limited, but is preferably 35 μm or less. The surface roughness (Rz) of the copper foil surface forming the resin layer is preferably 4 μm or less, and more preferably 2 μm or less. Here, “Rz” is a ten-point average roughness defined in JIS B0601. In addition, a known adhesive layer may be formed on the copper foil.
 銅張積層板3の銅箔2を全てエッチング除去する方法は、公知の方法で行うことができる。エッチング液としては、特に制限はないが、硫酸一過酸化水素の水溶液、過硫酸アンモニウムや過硫酸ナトリウム、過硫酸カリウムなどの過硫酸塩水溶液、塩化第二鉄や塩化第二銅の水溶液などを好適に用いることができる。 A method of etching and removing all the copper foil 2 of the copper-clad laminate 3 can be performed by a known method. The etching solution is not particularly limited, but an aqueous solution of sulfuric acid monohydrogen peroxide, an aqueous solution of persulfate such as ammonium persulfate, sodium persulfate or potassium persulfate, an aqueous solution of ferric chloride or cupric chloride is suitable. Can be used.
 前記したように微細な凹凸状の平坦面が形成された基板1の表面には、感光性レジスト膜4が形成される。感光性レジスト膜4の形成に用いられる感光性樹脂組成物は、キャリアフィルム上に乾燥塗膜を形成したドライフィルムの形態でもよいし、溶剤に希釈した液状の状態でもよい。ドライフィルムの場合には、約40~130℃の温度範囲で熱ロール式のラミネーターや真空ラミネーターで基板上にラミネートし、液状の場合には、スクリーン印刷、スプレーコーター、ダイコーター、スリットコーター、カーテンコーター、ロールコーター等でコーティングし、約60~150℃の温度の熱風循環式乾燥炉若しくは遠赤外線乾燥炉で約1~30分乾燥し、溶剤を揮発(仮乾燥)させることにより、タックフリーの感光性レジスト膜4を形成できる。このとき形成する感光性レジスト膜4の膜厚は約3~30μmの範囲が好ましく、さらに好ましいのはめっきで形成する回路の最小ライン幅の2倍以下、さらに好ましくは等倍以下が好ましい。尚、感光性レジスト膜4は、後の無電解銅めっき工程において無電解銅めっき触媒が定着するに十分な耐アルカリ性及び密着性を有することが好ましい。 As described above, the photosensitive resist film 4 is formed on the surface of the substrate 1 on which the fine uneven flat surface is formed. The photosensitive resin composition used for forming the photosensitive resist film 4 may be in the form of a dry film in which a dry coating film is formed on a carrier film, or may be in a liquid state diluted in a solvent. In the case of dry film, it is laminated on the substrate with a hot roll laminator or vacuum laminator in the temperature range of about 40 to 130 ° C. In the case of liquid, screen printing, spray coater, die coater, slit coater, curtain Tack-free by coating with a coater, roll coater, etc., drying for about 1 to 30 minutes in a hot-air circulating drying furnace or far-infrared drying furnace at a temperature of about 60 to 150 ° C., and volatilizing the solvent (temporary drying). A photosensitive resist film 4 can be formed. The film thickness of the photosensitive resist film 4 formed at this time is preferably in the range of about 3 to 30 μm, more preferably less than twice the minimum line width of the circuit formed by plating, more preferably less than or equal to the same. The photosensitive resist film 4 preferably has sufficient alkali resistance and adhesion for fixing the electroless copper plating catalyst in the subsequent electroless copper plating step.
 ドライフィルム作成に使用するフィルムはポリエチレンテレフタレート等の熱可塑性樹脂フィルムが好ましく、厚みは10~50μmの範囲が使用できるが、ハンドリングを良くするためには25~50μmの膜厚が好ましく、良好な解像性を得るためには10~25μmの膜厚が好ましい。この差を無くすために、感光性レジスト膜の屈折率が、好ましくは1.50以上、さらに好ましくは1.55~1.60の範囲になるように設計されたドライフィルムが、キャリアフィルムを厚くしても良好な解像性が得られるので好ましい。 The film used for preparing the dry film is preferably a thermoplastic resin film such as polyethylene terephthalate, and a thickness in the range of 10 to 50 μm can be used. In order to improve handling, a film thickness of 25 to 50 μm is preferable. In order to obtain image quality, a film thickness of 10 to 25 μm is preferable. In order to eliminate this difference, a dry film designed so that the refractive index of the photosensitive resist film is preferably 1.50 or more, more preferably 1.55 to 1.60 is used to increase the thickness of the carrier film. However, it is preferable because good resolution can be obtained.
 感光性レジスト膜4の形成に用いられる感光性樹脂組成物としては、露光部(活性エネルギー線が照射された部分)が硬化し、未露光部が現像により除去されるネガ型感光性樹脂組成物や、未露光部は架橋構造を有することにより現像液に不溶であるが、露光部が活性エネルギー線照射により酸を発生する化合物から発生した酸により分解され、現像により除去されるポジ型感光性樹脂組成物のいずれも使用可能である。これらの感光性樹脂組成物としては、環境問題への配慮から、現像液としてアルカリ水溶液を用いるアルカリ現像型の感光性樹脂組成物が望ましく、そのためカルボキシル基を有する樹脂を含有することが好ましい。 The photosensitive resin composition used for forming the photosensitive resist film 4 is a negative photosensitive resin composition in which an exposed portion (a portion irradiated with active energy rays) is cured and an unexposed portion is removed by development. In addition, the unexposed part is insoluble in the developer because it has a crosslinked structure, but the exposed part is decomposed by an acid generated from a compound that generates an acid upon irradiation with active energy rays, and is removed by development. Any of the resin compositions can be used. As these photosensitive resin compositions, in consideration of environmental problems, an alkali development type photosensitive resin composition using an alkaline aqueous solution as a developer is desirable, and therefore it is preferable to contain a resin having a carboxyl group.
 例えば、ポジ型感光性樹脂組成物としては、特開平6-295064号公報に記載されているような、皮膜形成性のカルボキシル基含有樹脂、例えば、カルボキシル基を含有する重合体不飽和単量体の単独重合体、該カルボキシル基含有単量体と他の共重合可能な単量体との共重合体、分子鎖中又は分子末端にカルボキシル基を有するポリエステル系、ポリウレタン系、ポリアミド系などのカルボキシル基含有樹脂と、一分子中に2個以上のビニルエーテル基を含む化合物と、活性エネルギー線照射により酸を発生する化合物(光酸発生剤)とを必須成分として含有する感光性樹脂組成物、特開平10-72923号公報に記載されているような、ポリカルボン酸樹脂にモノビニルエーテル化合物を反応せしめて得られる樹脂及び光酸発生剤を必須成分として含有する感光性樹脂組成物、特許第4031593号公報に記載されているような、ジカルボン酸とジビニルエーテル化合物との重付加反応から得られるポリヘミアセタールエステル及び光酸発生剤を必須成分として含有する感光性樹脂組成物、国際公開WO 99-15935Aに記載されているような、フェノール性水酸基又はカルボキシル基を有するアルカリ可溶性重合体と、ビニルエーテル化合物と、光酸発生剤とを必須成分として含有する感光性樹脂組成物などを用いることができる。しかしながら、活性エネルギー線が照射されて硬化した露光部が残存するネガ型感光性樹脂組成物の方が、用いるカルボキシル基含有樹脂によっては、後述するような前処理プロセスを行わなくても無電解銅めっき可能であることから、特に好ましい。 For example, as a positive photosensitive resin composition, a film-forming carboxyl group-containing resin, for example, a polymer unsaturated monomer containing a carboxyl group, as described in JP-A-6-295064 is disclosed. Homopolymers, copolymers of the carboxyl group-containing monomers and other copolymerizable monomers, polyesters having a carboxyl group in the molecular chain or at the molecular terminal, polyurethanes, polyamides, etc. A photosensitive resin composition comprising, as essential components, a group-containing resin, a compound containing two or more vinyl ether groups in one molecule, and a compound that generates an acid upon irradiation with active energy rays (photoacid generator), Resin obtained by reacting a polycarboxylic acid resin with a monovinyl ether compound and photoacid generation, as described in Kaihei 10-72923 A photosensitive resin composition containing, as essential components, a polyhemiacetal ester obtained from a polyaddition reaction of a dicarboxylic acid and a divinyl ether compound and a photoacid generator as described in Japanese Patent No. 4031593 A photosensitive resin composition contained as an ingredient, an alkali-soluble polymer having a phenolic hydroxyl group or a carboxyl group, a vinyl ether compound, and a photoacid generator as described in International Publication WO 99-15935A The photosensitive resin composition contained as can be used. However, depending on the carboxyl group-containing resin to be used, the negative photosensitive resin composition in which the exposed portion cured by irradiation with active energy rays remains is electroless copper without performing a pretreatment process as described later. It is particularly preferable because it can be plated.
 このようなネガ型の感光性樹脂組成物は、(A)カルボキシル基含有樹脂、(B)光重合開始剤、(C)感光性モノマーを含有し、銅回路間に存在する感光性レジスト膜を剥離しないで絶縁層として残す場合には、さらに(D)熱硬化性樹脂や(E)フィラーを加えたものが好ましい。 Such a negative photosensitive resin composition comprises (A) a carboxyl group-containing resin, (B) a photopolymerization initiator, (C) a photosensitive monomer, and a photosensitive resist film existing between copper circuits. When leaving as an insulating layer without peeling off, it is preferable to further add (D) a thermosetting resin or (E) a filler.
 前記カルボキシル基含有樹脂(A)としては、アルカリ現像性を付与する目的で分子中にカルボキシル基を有している従来公知の各種カルボキシル基含有樹脂を使用できる。特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂(A-1)が、光硬化性や耐現像性の面からより好ましい。そして、その不飽和二重結合は、アクリル酸もしくはメタアクリル酸又はそれらの誘導体由来のものが好ましい。尚、エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂(A-2)のみを用いる場合、組成物を光硬化性とするためには、後述する分子中に2個以上のエチレン性不飽和基を有する化合物(C)、即ち感光性モノマーを併用する必要がある。 As the carboxyl group-containing resin (A), various conventionally known carboxyl group-containing resins having a carboxyl group in the molecule for the purpose of imparting alkali developability can be used. In particular, a carboxyl group-containing photosensitive resin (A-1) having an ethylenically unsaturated double bond in the molecule is more preferable in terms of photocurability and development resistance. And the unsaturated double bond is preferably derived from acrylic acid, methacrylic acid or derivatives thereof. In the case where only the carboxyl group-containing resin (A-2) having no ethylenically unsaturated double bond is used, in order to make the composition photocurable, two or more ethylenic groups in the molecule described later are used. It is necessary to use a compound (C) having an unsaturated group, that is, a photosensitive monomer.
 また、分子内に芳香環を有している構造のカルボキシル基含有樹脂(A)が、屈折率が1.50~1.60にするために好ましく、先に述べたキャリアフィルムとの屈折率が近くなることから解像性が良好になる。芳香環を有するカルボキシル基含有樹脂としては、スチレン及びその誘導体、インデン構造、ベンジル(メタ)アクリレート等の芳香環含有(メタ)アクリレートと各種(メタ)アクリレートの共重合物、各種酸変性エポキシ(メタ)アクリレート、各種フェノール樹脂のアルキレンオキサイド変性物に酸無水物を付加させたものなどが使用できる。
 カルボキシル基含有樹脂(A)の具体例としては、以下に列挙するような化合物(オリゴマー及びポリマーのいずれでもよい)が挙げられる。
In addition, a carboxyl group-containing resin (A) having a structure having an aromatic ring in the molecule is preferable because the refractive index is 1.50 to 1.60, and the refractive index with the carrier film described above is high. Since it becomes close, the resolution is improved. Examples of the carboxyl group-containing resin having an aromatic ring include styrene and its derivatives, an indene structure, a copolymer of an aromatic ring-containing (meth) acrylate such as benzyl (meth) acrylate and various (meth) acrylates, various acid-modified epoxies (meta ) Those obtained by adding an acid anhydride to an alkylene oxide modified product of acrylate or various phenol resins can be used.
Specific examples of the carboxyl group-containing resin (A) include the compounds listed below (any of oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, α-methylstyrene, lower alkyl (meth) acrylate, and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物及びポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, polyethers A carboxyl group-containing urethane resin by a polyaddition reaction of a diol compound such as a polyol, a polyester-based polyol, a polyolefin-based polyol, an acrylic polyol, a bisphenol A-based alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基及びアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanate, branched aliphatic diisocyanate, alicyclic diisocyanate, aromatic diisocyanate, polycarbonate polyol, polyether polyol, polyester polyol, polyolefin polyol, acrylic polyol, bisphenol A type A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with a terminal of a urethane resin by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物及びジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
 (5)上記(2)又は(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of the above (2) or (4), a compound having one hydroxyl group and one or more (meth) acryloyl groups in a molecule such as hydroxyalkyl (meth) acrylate is added, and the terminal ( (Meth) acrylic carboxyl group-containing urethane resin.
 (6)上記(2)又は(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of (2) or (4) above, one isocyanate group and one or more (meth) acryloyl groups are present in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate. The carboxyl group-containing urethane resin which added the compound which has and was terminally (meth) acrylated.
 (7)後述するような2官能又はそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (7) (meth) acrylic acid is reacted with a bifunctional or higher polyfunctional (solid) epoxy resin as described later, and phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride are added to the hydroxyl group present in the side chain. A carboxyl group-containing photosensitive resin to which a dibasic acid anhydride such as
 (8)後述するような2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。 (8) (meth) acrylic acid is reacted with a polyfunctional epoxy resin obtained by epoxidizing the hydroxyl group of a bifunctional (solid) epoxy resin as described later with epichlorohydrin, and a dibasic acid anhydride is added to the resulting hydroxyl group. Added carboxyl group-containing photosensitive resin.
 (9)ノボラックのごとき多官能フェノール化合物にエチレンオキサイドのごとき環状エーテル、プロピレンカーボネートのごとき環状カーボネートを付加させ、得られた水酸基を(メタ)アクリル酸で部分エステル化し、残りの水酸基に多塩基酸無水物を反応させたカルボキシル基含有感光性樹脂。 (9) A cyclic ether such as ethylene oxide or a cyclic carbonate such as propylene carbonate is added to a polyfunctional phenolic compound such as novolak, and the resulting hydroxyl group is partially esterified with (meth) acrylic acid, and the remaining hydroxyl group is polybasic acid. A carboxyl group-containing photosensitive resin obtained by reacting an anhydride.
 (10)上記(1)~(9)の樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。 (10) The resins (1) to (9) further have one epoxy group and one or more (meth) acryloyl groups in the molecule such as glycidyl (meth) acrylate and α-methylglycidyl (meth) acrylate. A carboxyl group-containing photosensitive resin obtained by adding a compound.
 これらカルボキシル基含有樹脂(A)は、前記列挙したものに限らず使用することができ、1種類でも複数種混合しても使用することができる
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
These carboxyl group-containing resins (A) can be used without being limited to those listed above, and can be used by mixing one kind or plural kinds. In this specification, (meth) acrylate is , Acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
 上記のようなカルボキシル基含有樹脂(A)は、バックボーン・ポリマーの側鎖に多数の遊離のカルボキシル基を有するため、アルカリ水溶液による現像が可能になる。
 また、前記カルボキシル基含有樹脂(A)の酸価は、30~150mgKOH/gの範囲が望ましく、より好ましくは40~110mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が30mgKOH/gよりも低い場合には、アルカリ水溶液に対する溶解性が低下し、形成した塗膜の現像が困難になる。一方、150mgKOH/gよりも高くなると、現像液による露光部の溶解が進むために、必要以上にラインが痩せたり、露光部と未露光部の区別なく現像液で溶解剥離してしまい、正常なレジストパターンの形成が困難となる場合がある。
Since the carboxyl group-containing resin (A) as described above has a large number of free carboxyl groups in the side chain of the backbone polymer, development with an aqueous alkali solution becomes possible.
The acid value of the carboxyl group-containing resin (A) is desirably in the range of 30 to 150 mgKOH / g, more preferably in the range of 40 to 110 mgKOH / g. When the acid value of the carboxyl group-containing resin is lower than 30 mgKOH / g, the solubility in an alkaline aqueous solution is lowered, and development of the formed coating film becomes difficult. On the other hand, if the concentration is higher than 150 mgKOH / g, dissolution of the exposed portion by the developer proceeds, so that the line fades more than necessary, or dissolution and peeling occurs with the developer without distinction between the exposed portion and the unexposed portion. It may be difficult to form a resist pattern.
 また、上記カルボキシル基含有樹脂(A)の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000、好ましくは5,000~100,000の範囲にあることが望ましい。重量平均分子量が2,000未満であると、タックフリー性能が劣ることがあり、露光後の塗膜の耐湿性が悪く、現像時に膜減りが生じ、解像度が大きく劣ることがある。一方、重量平均分子量が150,000を超えると、現像性が著しく悪くなることがあり、貯蔵安定性が劣ることがある。 The weight average molecular weight of the carboxyl group-containing resin (A) varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, preferably 5,000 to 100,000. If the weight average molecular weight is less than 2,000, the tack-free performance may be inferior, the moisture resistance of the coated film after exposure may be poor, the film may be reduced during development, and the resolution may be greatly inferior. On the other hand, when the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
 このようなカルボキシル基含有樹脂(A)の配合量は、全組成物中に、20~80質量%、好ましくは30~60質量%の範囲が適当である。カルボキシル基含有樹脂(B)の配合量が上記範囲より少ない場合、皮膜強度が低下したりするので好ましくない。一方、上記範囲より多い場合、組成物の粘性が高くなったり、塗布性等が低下するので好ましくない。 The blending amount of such a carboxyl group-containing resin (A) is 20 to 80% by mass, preferably 30 to 60% by mass in the total composition. When the blending amount of the carboxyl group-containing resin (B) is less than the above range, the film strength is lowered, which is not preferable. On the other hand, when the amount is larger than the above range, the viscosity of the composition is increased or the coating property is lowered, which is not preferable.
 光重合開始剤(B)としては、慣用公知のものが使用でき、また慣用公知の光開始助剤、増感剤も使用することができる。具体的な光重合開始剤、光開始助剤及び増感剤の例としては、ベンゾイン化合物、アセトフェノン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、キサントン化合物、3級アミン化合物等を挙げることができる。 As the photopolymerization initiator (B), conventionally known photoinitiators can be used, and conventionally known photoinitiators and sensitizers can also be used. Specific examples of photopolymerization initiators, photoinitiator assistants, and sensitizers include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, xanthone compounds, tertiary amine compounds, and the like. Can do.
 ベンゾイン化合物の具体例を挙げると、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルである。
 アセトフェノン化合物の具体例を挙げると、例えば、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノンである。
Specific examples of the benzoin compound include benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
Specific examples of the acetophenone compound include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, and 1,1-dichloroacetophenone.
 アントラキノン化合物の具体例を挙げると、例えば、2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノンである。
 チオキサントン化合物の具体例を挙げると、例えば、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントンである。
Specific examples of the anthraquinone compound include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, and 1-chloroanthraquinone.
Specific examples of the thioxanthone compound include, for example, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone.
 ケタール化合物の具体例を挙げると、例えば、アセトフェノンジメチルケタール、ベンジルジメチルケタールである。
 ベンゾフェノン化合物の具体例を挙げると、例えば、ベンゾフェノン、4-ベンゾイルジフェニルスルフィド、4-ベンゾイル-4’-メチルジフェニルスルフィド、4-ベンゾイル-4’-エチルジフェニルスルフィド、4-ベンゾイル-4’-プロピルジフェニルスルフィドである。
Specific examples of the ketal compound include acetophenone dimethyl ketal and benzyl dimethyl ketal.
Specific examples of the benzophenone compound include, for example, benzophenone, 4-benzoyldiphenyl sulfide, 4-benzoyl-4′-methyldiphenyl sulfide, 4-benzoyl-4′-ethyldiphenyl sulfide, 4-benzoyl-4′-propyldiphenyl. Sulfide.
 3級アミン化合物の具体例を挙げると、例えば、エタノールアミン化合物、ジアルキルアミノベンゼン構造を有する化合物、例えば、4,4’-ジメチルアミノベンゾフェノン(日本曹達社製ニッソキュアーMABP)、4,4’-ジエチルアミノベンゾフェノン(保土ヶ谷化学社製EAB)などのジアルキルアミノベンゾフェノン、7-(ジエチルアミノ)-4-メチル-2H-1-ベンゾピラン-2-オン(7-(ジエチルアミノ)-4-メチルクマリン)等のジアルキルアミノ基含有クマリン化合物、4-ジメチルアミノ安息香酸エチル(日本化薬社製カヤキュアーEPA)、2-ジメチルアミノ安息香酸エチル(インターナショナルバイオ-シンセエティックス社製Quantacure DMB)、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル(インターナショナルバイオ-シンセエティックス社製Quantacure BEA)、p-ジメチルアミノ安息香酸イソアミルエチルエステル(日本化薬社製カヤキュアーDMBI)、4-ジメチルアミノ安息香酸2-エチルヘキシル(Van Dyk社製Esolol 507)、4,4’-ジエチルアミノベンゾフェノン(保土ヶ谷化学社製EAB)である。 Specific examples of the tertiary amine compound include, for example, an ethanolamine compound, a compound having a dialkylaminobenzene structure, such as 4,4′-dimethylaminobenzophenone (Nisso Cure MABP manufactured by Nippon Soda Co., Ltd.), 4,4′-diethylamino. Dialkylamino benzophenones such as benzophenone (EAB manufactured by Hodogaya Chemical Co.), and dialkylamino groups such as 7- (diethylamino) -4-methyl-2H-1-benzopyran-2-one (7- (diethylamino) -4-methylcoumarin) Containing coumarin compound, ethyl 4-dimethylaminobenzoate (Kayacure EPA, Nippon Kayaku Co., Ltd.), ethyl 2-dimethylaminobenzoate (Quantacure DMB, International Bio-Synthetics), 4-dimethylaminobenzoic acid n-butoxy) ethyl (Quantacure BEA, manufactured by International Bio-Synthetics), p-dimethylaminobenzoic acid isoamyl ethyl ester (Kayacure DMBI manufactured by Nippon Kayaku Co., Ltd.), 2-ethylhexyl 4-dimethylaminobenzoic acid (Van Dyk) Esol 507), 4,4′-diethylaminobenzophenone (EAB manufactured by Hodogaya Chemical Co., Ltd.).
 前記光重合開始剤の他にも、α-アミノアセトフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤、オキシムエステル系光重合開始剤などを用いることができる。α-アミノアセトフェノン系光重合開始剤としては、例えば2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパノン-1、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノンなどが挙げられる。市販品としては、チバ・ジャパン社製のイルガキュアー907、イルガキュアー369、イルガキュアー379などが挙げられる。アシルホスフィンオキサイド系光重合開始剤としては、例えば2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイドなどが挙げられ、市販品としては、BASF社製のルシリンTPO、チバ・ジャパン社製のイルガキュアー819などが挙げられる。オキシムエステル系光重合開始剤としては、例えば2-(アセチルオキシイミノメチル)チオキサンテン-9-オンなどが挙げられ、市販品としては、チバ・ジャパン社製のCGI-325、イルガキュアーOXE01、イルガキュアーOXE02、アデカ社製のN-1919等が挙げられる。 In addition to the photopolymerization initiator, α-aminoacetophenone photopolymerization initiator, acylphosphine oxide photopolymerization initiator, oxime ester photopolymerization initiator, and the like can be used. Examples of the α-aminoacetophenone photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4- Morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N, N— Examples include dimethylaminoacetophenone. Examples of commercially available products include Irgacure 907, Irgacure 369, and Irgacure 379 manufactured by Ciba Japan. Examples of the acylphosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)- 2,4,4-trimethyl-pentylphosphine oxide and the like, and commercially available products include Lucilin TPO manufactured by BASF and Irgacure 819 manufactured by Ciba Japan. Examples of the oxime ester photopolymerization initiator include 2- (acetyloxyiminomethyl) thioxanthen-9-one, and commercially available products include CGI-325, IRGACURE OXE01, IRGA Examples include Cure OXE02 and N-1919 manufactured by Adeka Corporation.
 上記に代表的な光重合開始剤類を列挙したが、光照射によりラジカル活性種を発生するもの、またその成長種の働きを助けるものであればよく、前記したものに限定されない。また、それ自身はラジカル発生を起こさないが、前記光重合開始剤に対して増感効果のある慣用公知の増感剤も使用することができる。前記光重合開始剤、光開始助剤及び増感剤は、単独で又は2種類以上を組み合わせて使用することができる。また、光重合開始剤、光開始助剤及び増感剤の配合量は、通常の量的割合で充分であり、一般にカルボキシル基含有樹脂(A)100質量部(カルボキシル基含有樹脂の2種以上を使用する場合には合計量、以下同様)に対して、0.01~30質量部、好ましくは0.5~15質量部の範囲が適当である。光重合開始剤(B)の配合量が0.01質量部未満であると、光硬化性が不足し、塗膜が剥離したり、耐薬品性等の塗膜特性が低下するので好ましくない。一方、30質量部を超えると、光重合開始剤(B)の塗膜表面での光吸収が激しくなり、深部硬化性が低下する傾向があるために好ましくない。 Although typical photopolymerization initiators are listed above, any photopolymerization initiator may be used as long as it generates radical active species by light irradiation and assists the growth species, and is not limited to those described above. Moreover, although it does not raise | generate radical itself, the conventionally well-known sensitizer which has a sensitization effect with respect to the said photoinitiator can also be used. The photopolymerization initiator, photoinitiator assistant and sensitizer can be used alone or in combination of two or more. Moreover, the compounding quantity of a photoinitiator, a photoinitiator adjuvant, and a sensitizer is sufficient with a normal quantitative ratio, and generally 100 mass parts of carboxyl group-containing resin (A) (two or more kinds of carboxyl group-containing resins). In the case of using the total amount, the same applies hereinafter) to the range of 0.01 to 30 parts by mass, preferably 0.5 to 15 parts by mass. When the blending amount of the photopolymerization initiator (B) is less than 0.01 parts by mass, the photocurability is insufficient, and the coating film is peeled off or the coating film properties such as chemical resistance are deteriorated. On the other hand, if it exceeds 30 parts by mass, light absorption on the surface of the coating film of the photopolymerization initiator (B) becomes violent and the deep curability tends to decrease, which is not preferable.
 本発明の感光性樹脂組成物に用いられる分子中に2個以上のエチレン性不飽和基を有する化合物(C)は、活性エネルギー線照射により、光硬化して、前記カルボキシル基含有樹脂(A)を、アルカリ水溶液に不溶化、又は不溶化を助けるものである。このような化合物としては、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコール又はこれらのエチレオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、及びこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;及びメラミンアクリレート、及び/又は上記アクリレートに対応する各メタクリレート類などが挙げられ、単独で又は2種以上を組み合わせて用いることができる。 The compound (C) having two or more ethylenically unsaturated groups in the molecule used in the photosensitive resin composition of the present invention is photocured by irradiation with active energy rays, and the carboxyl group-containing resin (A). Is insolubilized in an aqueous alkali solution or assists insolubilization. Examples of such compounds include glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate, and the like. Polyhydric acrylates such as polyhydric alcohols or their ethylene oxide adducts or propylene oxide adducts; Phenoxy acrylate, bisphenol A diacrylate, and polyhydric acrylates such as ethylene oxide adducts or propylene oxide adducts of these phenols Glycerin diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycy Ethers, polyvalent acrylates of glycidyl ethers such as triglycidyl isocyanurate; and melamine acrylate, and / or the like each methacrylates corresponding to the acrylates and the like, can be used alone or in combination of two or more.
 さらに、クレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に、アクリル酸を反応させたエポキシアクリレート樹脂や、さらにそのエポキシアクリレート樹脂の水酸基に、ペンタエリスリトールトリアクリレートなどのヒドロキシアクリレートとイソホロンジイソシアネートなどのジイソシアネートのハーフウレタン化合物を反応させたエポキシウレタンアクリレート化合物などが挙げられる。このようなエポキシアクリレート系樹脂は、指触乾燥性を低下させることなく、光硬化性を向上させることができる Further, an epoxy acrylate resin obtained by reacting acrylic acid with a polyfunctional epoxy resin such as a cresol novolac type epoxy resin, and further, a hydroxy acrylate such as pentaerythritol triacrylate and a diisocyanate such as isophorone diisocyanate on the hydroxyl group of the epoxy acrylate resin. Examples thereof include an epoxy urethane acrylate compound obtained by reacting a half urethane compound. Such an epoxy acrylate resin can improve photocurability without deteriorating the touch drying property.
 このような分子中に2個以上のエチレン性不飽和基を有する化合物(C)の配合量は、前記カルボキシル基含有樹脂(A)100質量部に対して、5~100質量部、より好ましくは、1~70質量部の割合が適当である。前記配合量が、5質量部未満の場合、光硬化性が低下し、活性エネルギー線照射後のアルカリ現像により、パターン形成が困難となるので、好ましくない。一方、100質量部を超えた場合、アルカリ水溶液に対する溶解性が低下して、塗膜が脆くなるので、好ましくない。 The compounding amount of the compound (C) having two or more ethylenically unsaturated groups in the molecule is 5 to 100 parts by mass, more preferably 100 parts by mass of the carboxyl group-containing resin (A). A ratio of 1 to 70 parts by mass is appropriate. When the blending amount is less than 5 parts by mass, photocurability is lowered, and pattern formation becomes difficult by alkali development after irradiation with active energy rays, which is not preferable. On the other hand, when the amount exceeds 100 parts by mass, the solubility in an alkaline aqueous solution is lowered, and the coating film becomes brittle.
 さらに本発明で用いる感光性樹脂組成物には、耐熱性を付与するために、熱硬化性成分(D)を加えることができる。熱硬化成分(D)としては、メラミン樹脂、ベンゾグアナミン樹脂などのアミノ樹脂、ビスマレイミド化合物、ベンゾオキサジン化合物、オキサゾリン化合物、カルボジイミド樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、多官能エポキシ化合物、多官能オキセタン化合物、エピスルフィド樹脂、メラミン誘導体などの公知慣用の熱硬化性樹脂が使用できる。これらの中でも、特に好ましい熱硬化成分(D)は、1分子中に2個以上の環状エーテル基及び/又は環状チオエーテル基(以下、環状(チオ)エーテル基と略称する)を有する熱硬化性成分であり、例えば、分子中に2つ以上のエポキシ基を有する多官能エポキシ化合物、分子中に2つ以上のオキセタニル基を有する多官能オキセタン化合物、分子中に2つ以上のチオエーテル基を有するエピスルフィド樹脂である。熱硬化性成分(D)の配合量は、前記カルボキシル基含有樹脂(A)のカルボキシル基1当量に対して、好ましくは0.6~2.5当量、より好ましくは、0.8~2.0当量となる範囲である。 Furthermore, a thermosetting component (D) can be added to the photosensitive resin composition used in the present invention in order to impart heat resistance. As thermosetting component (D), amino resins such as melamine resin and benzoguanamine resin, bismaleimide compound, benzoxazine compound, oxazoline compound, carbodiimide resin, block isocyanate compound, cyclocarbonate compound, polyfunctional epoxy compound, polyfunctional oxetane compound Well-known and commonly used thermosetting resins such as episulfide resins and melamine derivatives can be used. Among these, a particularly preferable thermosetting component (D) is a thermosetting component having two or more cyclic ether groups and / or cyclic thioether groups (hereinafter abbreviated as cyclic (thio) ether groups) in one molecule. For example, a polyfunctional epoxy compound having two or more epoxy groups in the molecule, a polyfunctional oxetane compound having two or more oxetanyl groups in the molecule, and an episulfide resin having two or more thioether groups in the molecule It is. The amount of the thermosetting component (D) is preferably 0.6 to 2.5 equivalents, more preferably 0.8 to 2.1, based on 1 equivalent of the carboxyl group of the carboxyl group-containing resin (A). It is a range that becomes 0 equivalent.
 感光性樹脂組成物が前記したような熱硬化性成分(D)を含有する場合、さらに熱硬化触媒を含有することが好ましい。そのような熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物などが挙げられる。また、市販されているものとしては、例えば四国化成工業社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ社製のU-CAT(登録商標)3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物及びその塩)などが挙げられる。特に、これらに限られるものではなく、エポキシ樹脂やオキセタン化合物の熱硬化触媒、もしくはエポキシ基及び/又はオキセタニル基とカルボキシル基の反応を促進するものであればよく、単独で又は2種以上を混合して使用してもかまわない。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を前記熱硬化触媒と併用する。これら熱硬化触媒の配合量は、通常の量的割合で充分であり、例えばカルボキシル基含有樹脂(A)又は分子中に2つ以上の環状(チオ)エーテル基を有する熱硬化性成分(D)100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~15.0質量部である。 When the photosensitive resin composition contains the thermosetting component (D) as described above, it is preferable to further contain a thermosetting catalyst. Examples of such thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole. Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine. Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd. and U-CAT (registered by San Apro). Trademarks) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), and the like. In particular, it is not limited to these, as long as it is a thermosetting catalyst for epoxy resins or oxetane compounds, or a catalyst that promotes the reaction of epoxy groups and / or oxetanyl groups with carboxyl groups, either alone or in combination of two or more. Can be used. Guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6-diamino S-triazine derivatives such as -S-triazine / isocyanuric acid adducts and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adducts can also be used. A compound that also functions in combination with the thermosetting catalyst. The blending amount of these thermosetting catalysts is sufficient in the usual quantitative ratio, for example, a carboxyl group-containing resin (A) or a thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule. The amount is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass.
 本発明で用いる感光性樹脂組成物には、その塗膜の物理的強度等を上げるために、必要に応じて、フィラー(E)を配合することができる。このようなフィラーとしては、公知慣用の無機又は有機フィラーが使用できるが、特に硫酸バリウム、球状シリカ及びタルクが好ましく用いられる。さらに、白色の外観や難燃性を得るために酸化チタンや金属酸化物、水酸化アルミなどの金属水酸化物を体質顔料フィラーとしても使用することができる。フィラーの配合量は、好ましくは組成物全体量の75質量%以下、より好ましくは0.1~60質量%の割合である。フィラーの配合量が、組成物全体量の75質量%を超えた場合、絶縁組成物の粘度が高くなり、塗布、成形性が低下したり、硬化物が脆くなるので好ましくない。 In the photosensitive resin composition used in the present invention, a filler (E) can be blended as necessary in order to increase the physical strength of the coating film. As such a filler, known and commonly used inorganic or organic fillers can be used. In particular, barium sulfate, spherical silica and talc are preferably used. Furthermore, in order to obtain a white appearance and flame retardancy, metal hydroxides such as titanium oxide, metal oxide, and aluminum hydroxide can be used as extender pigment fillers. The blending amount of the filler is preferably 75% by mass or less, more preferably 0.1 to 60% by mass of the total amount of the composition. If the blending amount of the filler exceeds 75% by mass of the total amount of the composition, the viscosity of the insulating composition is increased, and the coating and moldability are lowered, and the cured product becomes brittle.
 本発明で用いる感光性樹脂組成物は、組成物の調製のため、又は基板やキャリアフィルムに塗布するための粘度調整のため、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などの各種有機溶剤を配合することができる。さらに必要に応じて、ハイドロキノン、ハイドロキノンモノメチルエーテル、t-ブチルカテコール、ピロガロール、フェノチアジンなどの公知慣用の重合禁止剤、微粉シリカ、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、顔料、染料、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系等のシランカップリング剤、酸化防止剤、防錆剤などのような公知慣用の添加剤類を配合することができる。 The photosensitive resin composition used in the present invention is a ketone, an aromatic hydrocarbon, a glycol ether, a glycol ether acetate for adjusting the viscosity for preparing the composition or for applying to a substrate or a carrier film. In addition, various organic solvents such as esters, alcohols, aliphatic hydrocarbons and petroleum solvents can be blended. Further, if necessary, known conventional polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, phenothiazine, etc., known conventional thickeners such as finely divided silica, organic bentonite, montmorillonite, pigments, dyes, silicones Known and conventional additives such as antifoaming agents and / or leveling agents such as fluorinated and fluoropolymers, silane coupling agents such as imidazole, thiazole and triazole, antioxidants and rust inhibitors Can be blended.
 (1)パターン化されたレジスト膜形成工程
 前記図1(C)に示されるように表面に感光性レジスト膜4が形成された基板1に、必要に応じて穴あけしてスルーホール6を形成した後、選択的露光及び現像を行って、図2(A)に示されるように、回路形成する部分の溝パターンが形成された、無電解銅めっきにより銅めっき層を形成できるパターン化されたレジスト膜(以下、単にレジスト膜又はレジストパターンという)5を形成する。感光性レジスト膜4の形成にネガ型感光性樹脂組成物を用いた場合には、未露光部が現像により除去され、ポジ型感光性樹脂組成物を用いた場合には、露光部が現像により除去される。選択的露光は、接触式(又は非接触方式)により、パターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光することもできるし、あるいはレーザーダイレクト露光機により直接パターン露光することもできる。また、感光性レジスト膜の形成に用いられる感光性樹脂組成物が熱硬化性成分(D)を含有する場合には、さらに加熱して硬化させることにより、レジスト膜の耐熱性、耐薬品性、耐吸湿性、密着性、電気特性などの諸特性を向上させることができる。
(1) Patterned resist film formation step As shown in FIG. 1 (C), through holes 6 were formed by drilling as necessary in the substrate 1 having the photosensitive resist film 4 formed on the surface. Thereafter, selective exposure and development are performed, and as shown in FIG. 2 (A), a patterned resist in which a groove pattern of a circuit forming portion is formed and a copper plating layer can be formed by electroless copper plating. A film (hereinafter simply referred to as a resist film or a resist pattern) 5 is formed. When the negative photosensitive resin composition is used to form the photosensitive resist film 4, the unexposed portion is removed by development, and when the positive photosensitive resin composition is used, the exposed portion is removed by development. Removed. The selective exposure can be performed by an active energy ray selectively through a photomask having a pattern formed by a contact method (or non-contact method), or directly by a laser direct exposure machine. Further, when the photosensitive resin composition used for forming the photosensitive resist film contains a thermosetting component (D), by further heating and curing, the heat resistance, chemical resistance, Various characteristics such as moisture absorption resistance, adhesion, and electrical characteristics can be improved.
 上記活性エネルギー線照射に用いられる露光機としては、直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)、メタルハライドランプを搭載した露光機、(超)高圧水銀ランプを搭載した露光機、水銀ショートアークランプを搭載した露光機、もしくは(超)高圧水銀ランプなどの紫外線ランプを使用した直接描画装置を用いることができる。活性エネルギー線としては、最大波長が350~410nmの範囲にあるレーザー光を用いていればガスレーザー、固体レーザーどちらでもよい。また、その露光量は膜厚等によって異なるが、一般には5~200mJ/cm、好ましくは5~100mJ/cm、さらに好ましくは5~50mJ/cmの範囲内とすることができる。上記直接描画装置としては、例えば日本オルボテック社製、ペンタックス社製等のものを使用することができ、最大波長が350~410nmのレーザー光を発振する装置であればいずれの装置を用いてもよい。 As the exposure apparatus used for the active energy ray irradiation, a direct drawing apparatus (for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer), an exposure apparatus equipped with a metal halide lamp, and an (ultra) high pressure mercury lamp. , An exposure machine equipped with a mercury short arc lamp, or a direct drawing apparatus using an ultraviolet lamp such as a (super) high pressure mercury lamp. As the active energy ray, either a gas laser or a solid laser may be used as long as laser light having a maximum wavelength in the range of 350 to 410 nm is used. The exposure amount varies depending on the film thickness and the like, but can be generally in the range of 5 to 200 mJ / cm 2 , preferably 5 to 100 mJ / cm 2 , more preferably 5 to 50 mJ / cm 2 . As the direct drawing apparatus, for example, those manufactured by Nippon Orbotech, Pentax, etc. can be used, and any apparatus may be used as long as it oscillates laser light having a maximum wavelength of 350 to 410 nm. .
 前記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができる。現像は、溶剤現像も可能ではあるが、好ましくは、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液を用いて行う。 The developing method may be a dipping method, a shower method, a spray method, a brush method, or the like. Although development with a solvent is possible, development is preferably performed using an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines and the like.
 (2)無電解銅めっき-電解銅めっき工程
 前記溝パターン部分の基板1の露出表面及びレジストパターン5の表面の全体に、公知の方法に従って、図2(B)に示されるように、無電解銅めっきを行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジストパターン5を覆う銅めっき層7を形成する。
 この際、無電解銅めっきに先立って、レジストパターン5の表面に無電解銅めっきを形成するための前処理として、現像後のレジストパターン5に対してさらに、露光時よりも強い紫外線の照射、もしくはレジスト膜のガラス転移温度(Tg)以上の温度での加熱、又はアルゴン、酸素等のプラズマ処理を行うことが好ましい。このような前処理を行うことにより、レジストパターン5上に無電解銅めっきが析出するだけでなく、溶出などが減少し、めっき液の汚染が抑えられ、めっき表面の変色、光沢不良、ピンホールがないめっきの析出も可能になる。さらに、耐アルカリ性やレジスト膜の膨潤も抑えられ、形成された回路の形状も安定する。
(2) Electroless Copper Plating—Electrolytic Copper Plating Step As shown in FIG. 2B, the electroless copper plating step is performed on the entire exposed surface of the substrate 1 and the surface of the resist pattern 5 in the groove pattern portion, Copper plating is performed, and then electrolytic copper plating is performed until the surface becomes substantially smooth, thereby forming a copper plating layer 7 covering the resist pattern 5.
At this time, prior to the electroless copper plating, as a pretreatment for forming the electroless copper plating on the surface of the resist pattern 5, the resist pattern 5 after development is further irradiated with ultraviolet rays stronger than at the time of exposure, Alternatively, it is preferable to perform heating at a temperature equal to or higher than the glass transition temperature (Tg) of the resist film or plasma treatment with argon, oxygen, or the like. By performing such pretreatment, not only electroless copper plating is deposited on the resist pattern 5, but also elution is reduced, contamination of the plating solution is suppressed, discoloration of the plating surface, poor gloss, pinholes, etc. It is also possible to deposit plating without any metal. Furthermore, alkali resistance and resist film swelling are suppressed, and the shape of the formed circuit is stabilized.
 無電解銅めっきは、一般には、パラヂウム触媒を基板の露出表面及びパターン化されたレジスト膜表面の全体に付与し、続いて、無電解銅めっき液中に浸漬して、銅層を形成する。無電解銅めっき層の厚さは、一般に約0.5~2μmの範囲が適当である。また、必要に応じて、無電解銅めっき層を形成後に100℃~200℃で加熱処理をする。加熱時間は特に制限はないが、好適には30分~5時間が選択される。銅箔を酸化させないために、真空中や、不活性ガス中での加熱が好ましい。次いで、電解銅めっき液中に浸漬して、図2(B)に示されるようにレジストパターン5を覆い、且つ銅めっき層7の表面がほぼ平滑になるまで、電解銅めっき層を形成する。電解銅めっき層の厚さは、任意に選択できる。 In electroless copper plating, generally, a palladium catalyst is applied to the entire exposed surface of the substrate and the patterned resist film surface, and then immersed in an electroless copper plating solution to form a copper layer. In general, the thickness of the electroless copper plating layer is suitably in the range of about 0.5 to 2 μm. If necessary, heat treatment is performed at 100 ° C. to 200 ° C. after forming the electroless copper plating layer. The heating time is not particularly limited, but is preferably selected from 30 minutes to 5 hours. In order not to oxidize the copper foil, heating in a vacuum or in an inert gas is preferable. Next, it is immersed in an electrolytic copper plating solution to cover the resist pattern 5 as shown in FIG. 2B, and an electrolytic copper plating layer is formed until the surface of the copper plating layer 7 becomes substantially smooth. The thickness of the electrolytic copper plating layer can be arbitrarily selected.
 (3)エッチング工程
 図2(B)に示されるように銅めっき層7を形成した後、図2(C)に示されるように、前記レジストパターン5の表面が露出するまで、銅めっき層7を機械的研磨及び/又は化学的研磨又はエッチングにより均一に減少させ、表面に銅回路パターン8を露出させる。これにより、上下の銅回路パターン8はめっきスルーホール9により接続された状態となる。機械的研磨及び/又は化学的研磨には従来公知の方法を用いることができ、またエッチング液としては、特に制限はないが、硫酸一過酸化水素の水溶液、過硫酸アンモニウムや過硫酸ナトリウム、過硫酸カリウムなどの過硫酸塩水溶液、塩化第二鉄や塩化第二銅の水溶液などを好適に用いることができる。
(3) Etching Step After forming the copper plating layer 7 as shown in FIG. 2 (B), the copper plating layer 7 until the surface of the resist pattern 5 is exposed as shown in FIG. 2 (C). Are uniformly reduced by mechanical polishing and / or chemical polishing or etching to expose the copper circuit pattern 8 on the surface. As a result, the upper and lower copper circuit patterns 8 are connected by the plated through holes 9. A conventionally known method can be used for mechanical polishing and / or chemical polishing, and the etching solution is not particularly limited, but is an aqueous solution of sulfuric acid monohydrogen peroxide, ammonium persulfate, sodium persulfate, persulfate. An aqueous solution of persulfate such as potassium or an aqueous solution of ferric chloride or cupric chloride can be preferably used.
 (4)レジスト膜剥離工程
 銅回路パターン8間に埋め込まれた状態で存在するレジストパターン5は、剥離しないで絶縁層としてそのまま残すこともできるが、必要に応じて、レジストパターン5のみをアルカリ水溶液、溶剤などで膨潤剥離し、及び/又は過マンガン酸アルカリ塩等による所謂デスミヤ処理を行って取り除き、図2(D)に示されるように、基板1上に銅回路パターン8だけが形成された配線板とすることができる。
(4) Resist film stripping step The resist pattern 5 that is embedded between the copper circuit patterns 8 can be left as it is as an insulating layer without being stripped, but if necessary, only the resist pattern 5 can be used as an alkaline aqueous solution. , Swelling and peeling with a solvent and / or so-called desmear treatment with an alkali permanganate or the like, and removing, so that only the copper circuit pattern 8 was formed on the substrate 1 as shown in FIG. It can be a wiring board.
 (5)層間樹脂絶縁層形成工程
 さらに多層のプリント配線板を作製する場合には、前記図2(C)に示されるようにレジストパターン5と銅回路パターン8を有する基板又は図2(D)に示されるように銅回路パターン8のみを有する基板の表面に、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、二重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などの1種又は2種以上と、必要に応じて、公知の触媒、硬化剤、硬化促進剤等を配合した熱硬化性樹脂組成物を塗布し、加熱硬化させ、あるいはガラス繊維の不織布、織布等に熱硬化性樹脂組成物を含浸させ、半硬化させた半固形のブリブレグをラミネートし、又はフィルム状の樹脂を熱圧着してラミネートして、図3(A)に示されるように層間樹脂絶縁層10を形成し、必要に応じてその表面に前記したような粗化処理を行う。この場合にも、好ましくは、銅箔もしくは樹脂複合銅箔、例えば特開2007-242975号公報に記載されているような銅箔の片面にブロック共重合ポリイミド樹脂とポリマレイミド化合物を含有する樹脂層を形成した樹脂複合銅箔の樹脂層面に、Bステージ樹脂組成物層を重ね、積層成形した銅張積層板をラミネートし、次いで銅箔を全てエッチング除去することにより、銅箔の微細な凹凸面が転写された表面を有する層間樹脂絶縁層10を形成する。この場合、前記した粗化処理が不要となり、後の工程で層間樹脂絶縁層10の表面に感光性レジスト膜を密着性良く形成することができ、配線板として十分な信頼性が得られる。このような銅張積層板としては、従来公知の全ての銅張積層板を用いることができる。あるいはまた、上記基板の表面に、前記した熱硬化性成分(D)及びフィラー(E)を含有する感光性樹脂組成物を塗布し、またはそのドライフィルムをラミネートし、全体的に活性エネルギー線を照射して光硬化させた後、さらに加熱して熱硬化させることにより、層間樹脂絶縁層10を形成することもできる。
(5) Interlayer resin insulation layer forming step When a multilayer printed wiring board is manufactured, a substrate having a resist pattern 5 and a copper circuit pattern 8 as shown in FIG. 2 (C) or FIG. 2 (D). As shown in FIG. 4, on the surface of the substrate having only the copper circuit pattern 8, for example, epoxy resin, polyimide resin, cyanate ester resin, maleimide resin, double bond addition polyphenylene ether resin, bromine or phosphorus-containing compounds of these resins 1 type or 2 or more types such as resin composition and the like, and if necessary, a thermosetting resin composition containing a known catalyst, curing agent, curing accelerator, etc. is applied and cured by heating, or glass Non-woven fabrics, woven fabrics, etc. are impregnated with thermosetting resin composition, and semi-cured semi-solid brigregs are laminated, or film-like resin is laminated by thermocompression bonding. Then, as shown in FIG. 3A, the interlayer resin insulating layer 10 is formed, and the roughening treatment as described above is performed on the surface as necessary. Also in this case, preferably, a copper foil or a resin composite copper foil, for example, a resin layer containing a block copolymerized polyimide resin and a polymaleimide compound on one side of a copper foil as described in JP-A-2007-242975 The resin layer surface of the resin composite copper foil formed with the B-stage resin composition layer is laminated, the laminated copper-clad laminate is laminated, and then all the copper foil is removed by etching, whereby the fine uneven surface of the copper foil An interlayer resin insulation layer 10 having a surface to which is transferred is formed. In this case, the roughening treatment described above becomes unnecessary, and a photosensitive resist film can be formed with good adhesion on the surface of the interlayer resin insulating layer 10 in a later process, and sufficient reliability as a wiring board can be obtained. As such a copper clad laminate, all conventionally known copper clad laminates can be used. Alternatively, the photosensitive resin composition containing the thermosetting component (D) and the filler (E) described above is applied to the surface of the substrate, or the dry film is laminated, so that the active energy ray is entirely applied. The interlayer resin insulation layer 10 can also be formed by irradiating and photocuring, and further heating and thermosetting.
 Bステージ樹脂組成物層に使用する樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状~高分子量の弾性なゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。その他、公知の有機もしくは無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。特に炭酸ガスレーザーで孔あけする場合、孔形状を良好にするためは無機の充填剤が好適に添加される。例えば、シリカ、球状シリカ、アルミナ、タルク、焼成タルク、ウォラストナイト、合成雲母、酸化チタン、水酸化アルミニウム等の一般に公知のものが使用される。これらのフィラーの形状は、針状、球状等、任意の形状でよい。 In the resin composition used for the B-stage resin composition layer, various additives can be blended as desired as long as the original characteristics of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, poly Low molecular weight liquid to high molecular weight elastic rubbers such as isoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin, styrene-isoprene Rubber, acrylic rubber, core-shell rubber, polyethylene-propylene copolymer, 4-fluorinated ethylene-6-fluorinated ethylene copolymers; polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide High molecular weight prepolymers or oligomers such as id, polyurethane, etc. are exemplified, are appropriately used. Other known organic or inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic agents Various additives such as are used in appropriate combination as desired. In particular, when drilling with a carbon dioxide laser, an inorganic filler is suitably added to improve the hole shape. For example, generally known materials such as silica, spherical silica, alumina, talc, calcined talc, wollastonite, synthetic mica, titanium oxide, and aluminum hydroxide are used. The shape of these fillers may be any shape such as a needle shape or a spherical shape.
 (6)レジストパターン形成工程
 前記図3(A)に示されるように層間樹脂絶縁層10が形成された基板1に、前記したように感光性レジスト膜を形成し、必要に応じてバイアホール11を形成した後、前記工程(1)と同様にして感光性レジスト膜に対して選択的露光及び現像を行い、図3(B)に示されるように、回路形成する部分の溝パターンが形成された、無電解銅めっきにより銅めっき層を形成できる外層のレジストパターン12を形成する。感光性レジスト膜の形成に用いられる感光性樹脂組成物が熱硬化性成分(D)を含有する場合には、さらに例えば約140~180℃の温度に加熱して熱硬化させることにより、前記カルボキシル基含有樹脂(A)のカルボキシル基と、分子中に2個以上の環状(チオ)エーテル基を有する熱硬化性成分(D)が反応し、耐熱性、耐薬品性、耐吸湿性、密着性、電気特性などの諸特性に優れた硬化皮膜を形成することができる。尚、熱硬化性成分(D)を含有していない場合でも、熱処理することにより、露光時に未反応の状態で残った光硬化性成分のエチレン性不飽和結合が熱ラジカル重合し、皮膜特性が向上するため、目的・用途により、熱処理(熱硬化)してもよい。
(6) Resist pattern forming step A photosensitive resist film is formed as described above on the substrate 1 on which the interlayer resin insulating layer 10 is formed as shown in FIG. 3A, and via holes 11 are formed as necessary. Then, selective exposure and development are performed on the photosensitive resist film in the same manner as in the step (1), so that a groove pattern of a part for forming a circuit is formed as shown in FIG. Further, an outer layer resist pattern 12 that can form a copper plating layer is formed by electroless copper plating. In the case where the photosensitive resin composition used for forming the photosensitive resist film contains a thermosetting component (D), for example, it is heated to a temperature of about 140 to 180 ° C. to be thermally cured, whereby the carboxyl The carboxyl group of the group-containing resin (A) reacts with the thermosetting component (D) having two or more cyclic (thio) ether groups in the molecule, resulting in heat resistance, chemical resistance, moisture absorption resistance, and adhesion. It is possible to form a cured film excellent in various characteristics such as electrical characteristics. Even when the thermosetting component (D) is not contained, the heat treatment causes the ethylenically unsaturated bond of the photocurable component remaining in an unreacted state at the time of exposure to undergo thermal radical polymerization, and the film characteristics are improved. In order to improve, heat treatment (thermosetting) may be performed depending on the purpose and application.
 (7)無電解銅めっき-電解銅めっき工程
 その後、前記層間樹脂絶縁層10の露出表面及びレジストパターン12の表面の全体に、前記工程(2)と同様にして、図3(C)に示されるように、無電解銅めっきを行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジストパターン12を覆う外層の銅めっき層13を形成する。この場合にも、前記工程(2)と同様に、無電解銅めっきに先立って、レジストパターン12の表面に無電解銅めっきを形成するための前処理として、現像後のレジストパターン12に対してさらに、露光時よりも強い紫外線の照射、もしくはレジスト膜のガラス転移温度(Tg)以上の温度での加熱、又はアルゴン、酸素等のプラズマ処理を行うことが好ましい。
(7) Electroless Copper Plating—Electrolytic Copper Plating Step Thereafter, the exposed surface of the interlayer resin insulation layer 10 and the entire surface of the resist pattern 12 are shown in FIG. As described above, electroless copper plating is performed, and then electrolytic copper plating is performed until the surface becomes substantially smooth, so that an outer copper plating layer 13 covering the resist pattern 12 is formed. Also in this case, as in the step (2), prior to the electroless copper plating, as a pretreatment for forming the electroless copper plating on the surface of the resist pattern 12, the resist pattern 12 after development is applied. Further, it is preferable to perform ultraviolet irradiation stronger than that at the time of exposure, heating at a temperature equal to or higher than the glass transition temperature (Tg) of the resist film, or plasma treatment with argon, oxygen, or the like.
 (8)エッチング工程
 図3(C)に示されるように外層の銅めっき層13を形成した後、前記工程(3)と同様にして、前記レジストパターン12の表面が露出するまで、銅めっき層13を機械的研磨及び/又は化学的研磨又はエッチングにより均一に減少させ、図3(D)に示されるように、表面に外層の銅回路パターン14を露出させる。銅回路パターン14間に埋め込まれた状態で存在するレジストパターン12は、剥離しないで絶縁層としてそのまま残すこともでき、必要に応じて、レジストパターン12のみをアルカリ水溶液、溶剤などで膨潤剥離し、及び/又は所謂デスミヤ処理を行って取り除き、表層部には外層の銅回路パターン14だけが形成された配線板とすることもできる。
(8) Etching Step After forming the outer copper plating layer 13 as shown in FIG. 3C, the copper plating layer is used until the surface of the resist pattern 12 is exposed in the same manner as in the step (3). 13 is uniformly reduced by mechanical polishing and / or chemical polishing or etching, and as shown in FIG. 3D, the copper circuit pattern 14 of the outer layer is exposed on the surface. The resist pattern 12 embedded between the copper circuit patterns 14 can be left as it is as an insulating layer without being peeled off, and if necessary, only the resist pattern 12 is swollen and peeled off with an alkaline aqueous solution, a solvent, And / or a so-called desmearing process can be performed to remove the surface layer portion, so that a wiring board having only the outer layer copper circuit pattern 14 formed on the surface layer portion can be obtained.
 さらに多層のプリント配線板は、前記した工程(5)~(8)を繰り返すことによって生産性良く作製することができる。
 前記したような本発明の方法により形成された回路パターンは、ライン・アンド・スペースが5μmよりも細い場合であっても、回路パターン間に導電体が存在し得ないので、絶縁信頼性に優れた回路になる。
Furthermore, a multilayer printed wiring board can be produced with high productivity by repeating the steps (5) to (8) described above.
The circuit pattern formed by the method of the present invention as described above has excellent insulation reliability because no conductor can exist between the circuit patterns even when the line and space is thinner than 5 μm. Circuit.
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではないことはもとよりである。尚、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. However, the present invention is not limited to the following examples. In the following description, “parts” and “%” are based on mass unless otherwise specified.
 感光性レジスト組成物の調製:
 下記表1に示す種々の成分を表1に示す割合(質量部)にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、感光性レジスト組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
Preparation of photosensitive resist composition:
Various components shown in Table 1 below were blended in proportions (parts by mass) shown in Table 1, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a photosensitive resist composition.
Figure JPOXMLDOC01-appb-T000001
 ドライフィルムの作製:
 得られたそれぞれの感光性レジスト組成物をプロピレングリコールメチルエーテルアセテートでさらに希釈し、10dPa・sのレジスト溶液とした。それをフィルムコーターにて16μmの厚さのポリエチレンテレフタレートフィルムに塗布し、50℃から80℃まで徐々に温度を上げて乾燥し、レジスト厚み10μmのドライフィルムを得た。得られたドライフィルムを、それぞれドライフィルムA及びドライフィルムBとする。
Production of dry film:
Each of the obtained photosensitive resist compositions was further diluted with propylene glycol methyl ether acetate to obtain a 10 dPa · s resist solution. It was applied to a polyethylene terephthalate film having a thickness of 16 μm with a film coater, and the temperature was gradually increased from 50 ° C. to 80 ° C. to dry, thereby obtaining a dry film having a resist thickness of 10 μm. Let the obtained dry film be the dry film A and the dry film B, respectively.
 実施例1
 銅張積層板として絶縁層厚さ0.2mm、12μm両面銅箔(銅箔のプロファイル3.3μm)のBTレジン銅張積層板(三菱瓦斯化学(株)製、商品名:CCL-HL830)を金属ドリルで孔径75μmの貫通孔を形成し、デスミア処理(過マンガン酸カリウム系デスミア溶液(奥野製薬(株)製)で膨潤、デスミア(溶解)、中和、水洗した後に、表面の銅箔層を全てエッチングし、次いでドライフィルムAをニチゴーモートン社製真空ラミネーターで70℃、0.5MPa、30秒の条件でラミネートした。その後、レーザーダイレクト露光装置(オルボテック社製、Paragon)を用いて355nmの紫外線を100mJ/cmの条件で最小ライン・アンド・スペースが10μmであるパターンを描画した。その後、30℃の1wt%炭酸ソーダ水溶液を用いて2気圧のスプレー圧で現像し、水洗を2回繰り返し、感光性レジストパターンが形成された基板を得た。
 これを、高圧水銀灯が搭載されたUVコンベア装置で300mJ/cmの条件でUV硬化した後、酸素プラズマで500W、250mTorr、60秒の条件でプラズマ処理を行った。
 次いで、無電解銅めっき液(奥野製薬(株)製、ATSアドカッパーCT)を用いて無電解銅めっきを行い、厚さ1μmの銅層を全面に形成して、130℃の加熱炉で2時間加熱した後、硫酸銅めっき液を用いて1.5アンペア/dmで70分間の電解めっきを行い、約10μm厚さの銅層を形成した。この銅層を形成した基板を、エッチング液(三菱瓦斯化学(株)製、SE-07)を用いてドライフィルムの表面が見えるまで平坦に銅箔をエッチングした。回路が形成された基板をアルカリ剥離液(三菱瓦斯化学(株)製、R-200)で50℃、3分の条件で剥離し、さらにデスミヤ工程で感光性レジストを完全に除去して、最小ライン・アンド・スペースが10μmの回路基板を得た。
Example 1
BT resin copper-clad laminate (product name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Inc.) having an insulation layer thickness of 0.2 mm and double-sided copper foil (copper foil profile 3.3 μm) as a copper-clad laminate A through hole with a hole diameter of 75 μm is formed with a metal drill, and after swelling with desmear treatment (potassium permanganate desmear solution (Okuno Pharmaceutical Co., Ltd.)), desmear (dissolution), neutralized, washed with water, the surface copper foil layer Then, the dry film A was laminated with a vacuum laminator manufactured by Nichigo Morton under the conditions of 70 ° C., 0.5 MPa, 30 seconds, and then 355 nm using a laser direct exposure apparatus (Orbotech Co., Paragon). minimum line and space ultraviolet under the conditions of 100 mJ / cm 2 is drawing the pattern is 10 [mu] m. Thereafter, the 30 ° C. With wt% sodium carbonate aqueous solution was developed at a spray pressure of 2 atm, washed with water twice, to obtain a substrate with a photosensitive resist pattern is formed.
This was UV cured under a condition of 300 mJ / cm 2 with a UV conveyor device equipped with a high-pressure mercury lamp, and then subjected to plasma treatment with oxygen plasma under conditions of 500 W, 250 mTorr, and 60 seconds.
Subsequently, electroless copper plating is performed using an electroless copper plating solution (Akusatsu Pharmaceutical Co., Ltd., ATS Adcopper CT) to form a 1 μm thick copper layer on the entire surface. After heating for a period of time, electrolytic plating was performed for 70 minutes at 1.5 amperes / dm 2 using a copper sulfate plating solution to form a copper layer having a thickness of about 10 μm. The copper foil was etched flatly on the substrate on which the copper layer was formed using an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until the surface of the dry film was seen. The substrate on which the circuit is formed is stripped with an alkali stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200) at 50 ° C. for 3 minutes, and the photosensitive resist is completely removed by a desmear process. A circuit board having a line and space of 10 μm was obtained.
 実施例2
 実施例1で得られた回路基板をメック社のCZ処理を施した後、銅箔(銅箔のプロファイル3.3μm)付きBステージ樹脂組成物シート(三菱瓦斯化学(株)製、CRS-401)を両面に張り合わせ、加熱条件:110℃×30分+180℃×90分、加圧条件:5kgf/cm×15分+20kgf/cmで最後までの条件で、真空度30mmHg以下で2時間の条件で積層成形した。得られた4層板の表面の銅箔をエッチングし、炭酸ガスレーザー(出力13mJ)で1ショット照射して孔径60μmのブラインドビア孔をあけた。次いで、ドライフィルムAを前記条件でラミネートし、以降は実施例1と同様に回路形成を行い、最小ライン・アンド・スペースが10μmの4層回路基板を得た。
Example 2
After the circuit board obtained in Example 1 was subjected to CZ treatment by MEC, a B-stage resin composition sheet with copper foil (copper foil profile 3.3 μm) (manufactured by Mitsubishi Gas Chemical Co., Ltd., CRS-401) ) On both sides, heating conditions: 110 ° C. × 30 minutes + 180 ° C. × 90 minutes, pressurization conditions: 5 kgf / cm 2 × 15 minutes + 20 kgf / cm 2 , under the conditions up to the end, with a vacuum of 30 mmHg or less for 2 hours Lamination was performed under conditions. The copper foil on the surface of the obtained four-layer plate was etched, and a blind via hole having a hole diameter of 60 μm was formed by irradiating one shot with a carbon dioxide laser (output: 13 mJ). Next, the dry film A was laminated under the above conditions, and thereafter, circuit formation was performed in the same manner as in Example 1 to obtain a four-layer circuit board having a minimum line and space of 10 μm.
 実施例3
 実施例1において、ドライフィルムAに代えてドライフィルムBを同様に表面の銅箔層を全てエッチングした銅張積層板にラミネートし、その後同様に、レーザーダイレクト露光装置(オルボテック社製、Paragon)を用いて355nmの紫外線を200mJ/cmの条件で最小ライン・アンド・スペースが20μmであるパターンを描画した。その後、30℃の1wt%炭酸ソーダ水溶液を用いて2気圧のスプレー圧で現像し、水洗を2回繰り返し感光性レジストパターンが形成された基板を得た。
 これを、熱風乾燥炉にて150℃で1時間硬化した後、酸素プラズマで500w、250mTorr、60秒の条件でプラズマ処理を行った。
 次いで、無電解銅めっき液(奥野製薬(株)製、ATSアドカッパーCT)を用いて無電解銅めっきを行い、厚さ1μmの銅層を形成して、130℃の加熱炉で2時間加熱した後、硫酸銅めっき液を用いて1.5アンペア/dmで70分間の電解銅めっきを行い、約10μm厚さの銅層を形成した。この銅層を形成した基板を、エッチング液(三菱瓦斯化学(株)製、SE-07)を用いて、ドライフィルムの表面が見えるまで平坦に銅箔をエッチングして、最小ライン・アンド・スペースが20μmの回路基板を得た。
Example 3
In Example 1, instead of the dry film A, the dry film B was similarly laminated on a copper-clad laminate obtained by etching the entire copper foil layer on the surface, and thereafter, similarly, a laser direct exposure apparatus (manufactured by Orbotech, Paragon) was used. A pattern having a minimum line and space of 20 μm was drawn using ultraviolet rays of 355 nm under the condition of 200 mJ / cm 2 . Thereafter, development was performed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. with a spray pressure of 2 atm, and washing with water was repeated twice to obtain a substrate on which a photosensitive resist pattern was formed.
This was cured in a hot air drying furnace at 150 ° C. for 1 hour, and then plasma treatment was performed with oxygen plasma under conditions of 500 w, 250 mTorr, and 60 seconds.
Next, electroless copper plating is performed using an electroless copper plating solution (Akusatsu Pharmaceutical Co., Ltd., ATS Adcopper CT) to form a 1 μm thick copper layer, which is heated in a heating furnace at 130 ° C. for 2 hours. After that, electrolytic copper plating was performed for 70 minutes at 1.5 ampere / dm 2 using a copper sulfate plating solution to form a copper layer having a thickness of about 10 μm. Using this etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Inc.), the copper foil is etched flatly until the surface of the dry film is seen, and the minimum line and space is formed on the substrate on which the copper layer is formed. Obtained a circuit board of 20 μm.
 実施例4
 実施例3で得られた回路基板をメック社のCZ処理を行い、密着性処理を施した後、その上にドライフィルムBを実施例1と同様にラミネートし、ソルダーレジストパターンを露光、現像した後、熱風乾燥炉で150℃で1時間熱硬化して、ソルダーレジストが形成された回路基板を得た。
Example 4
The circuit board obtained in Example 3 was subjected to CZ treatment by MEC and subjected to adhesion treatment, and then dry film B was laminated thereon in the same manner as in Example 1 to expose and develop the solder resist pattern. Thereafter, the substrate was thermally cured at 150 ° C. for 1 hour in a hot air drying furnace to obtain a circuit board on which a solder resist was formed.
 実施例5
 実施例2で得られた4層回路基板をメック社のCZ処理を施した後、ドライフィルムソルダーレジスト(太陽インキ製造(株)製、AUS410、膜厚20μm品)を実施例1と同様にラミネートし、高圧水銀灯で600mJ/cmの条件でソルダーレジストパターンを露光、現像した後、熱風乾燥炉で150℃で1時間熱硬化して、ソルダーレジストが形成された回路基板を得た。
Example 5
After the four-layer circuit board obtained in Example 2 was subjected to CZ treatment by MEC, a dry film solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410, 20 μm film thickness) was laminated in the same manner as in Example 1. The solder resist pattern was exposed and developed with a high-pressure mercury lamp at 600 mJ / cm 2 and then thermally cured at 150 ° C. for 1 hour in a hot air drying oven to obtain a circuit board on which the solder resist was formed.
 比較例1
 銅張り積層板として絶縁層厚さ0.2mm、12μm両面銅箔(銅箔のプロファイル3.3μm)のBTレジン銅張積層板(三菱瓦斯化学(株)製、商品名:CCL-HL830)を金属ドリルで孔径75μmの貫通孔を形成し、次いで表面の銅箔層をエッチング液(三菱瓦斯化学(株)製、SE-07)で平坦に2.0μmになるまでエッチングし、デスミア処理(過マンガン酸カリウム系デスミア溶液(奥野製薬(株)製)で膨潤、デスミア(溶解)、中和、水洗した後に、無電解銅めっきを行って約1μmの銅層を形成し、その後、130℃で2時間加熱処理を施し、そして、セミアディティブ用ドライフィルム(日立化成(株)製、RY-3515)をニチゴーモートン社製真空ラミネーターで70℃、0.5MPa、30秒の条件でラミネートを行った。その後、紫外線露光装置(伯東(株)製、HAP-5020)を用いて紫外線を100mJ/cmの条件で最小ライン・アンド・スペースが10μmであるパターンを描画した。その後、30℃の1wt%炭酸ソーダ水溶液を用いて2気圧のスプレー圧で現像し、水洗を2回繰り返し、感光性レジストパターンが形成された基板を得た。次いで、硫酸銅めっき液を用いて1.5アンペア/dmで70分間の電解銅めっきを行い、レジストが形成されていない部分に約10μm厚さの銅パターンを形成した。次いで、基板をアルカリ剥離液(三菱瓦斯化学(株)製、R-200)で50℃、3分の条件でセミアディティブ用ドライフィルムを剥離した後、この銅パターンを形成した基板のセミアディティブ用ドライフィルムが形成されていた部分がなくなるまで、エッチング液(三菱瓦斯化学(株)製、SE-07)を用いて銅回路をエッチングし、最小ライン・アンド・スペースが10μmの回路基板を得た。
Comparative Example 1
BT resin copper-clad laminate (product name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Inc.) with an insulating layer thickness of 0.2 mm and double-sided copper foil (copper foil profile 3.3 μm) as a copper-clad laminate A through-hole with a hole diameter of 75 μm was formed with a metal drill, and then the copper foil layer on the surface was etched flat with an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until it became 2.0 μm, and desmear treatment (excessive treatment) After swelling, desmear (dissolution), neutralization, and washing with a potassium manganate desmear solution (Okuno Pharmaceutical Co., Ltd.), electroless copper plating is performed to form a copper layer of about 1 μm, and then at 130 ° C. Heat treatment was performed for 2 hours, and a dry film for semi-additive (manufactured by Hitachi Chemical Co., Ltd., RY-3515) was vacuum-laminated by a Nichigo Morton vacuum laminator at 70 ° C., 0.5 MPa for 30 seconds. After that, a pattern having a minimum line and space of 10 μm was drawn under the condition of 100 mJ / cm 2 using ultraviolet exposure equipment (HAP-5020, manufactured by Hakuto Co., Ltd.). Development was performed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. under a spray pressure of 2 atm, and washing with water was repeated twice to obtain a substrate on which a photosensitive resist pattern was formed. Electrolytic copper plating was performed at 5 amps / dm 2 for 70 minutes to form a copper pattern having a thickness of about 10 μm on the portion where the resist was not formed.The substrate was then subjected to alkaline stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200) at 50 ° C. for 3 minutes, the semi-additive dry film is peeled off, and then the semi-additive dry film of the substrate on which the copper pattern is formed is formed. Until there is no beam has been formed portion, an etching solution (Mitsubishi Gas Chemical Co., Ltd., SE-07) a copper circuit is etched using the minimum line-and-space was obtained circuit board 10 [mu] m.
 比較例2
 比較例1で作成した回路板をメック社のCZ処理を施した後、熱硬化性ドライフィルム(味の素ファインテクノ(株)製、ABF-GX13)を両面に張り合わせ、ニチゴーモートン社製真空ラミネーターで70℃、0.5Mpa、30秒の条件でラミネートした後、熱風乾燥炉にて170℃で60分間熱硬化し、積層成形した。得られた基板に、炭酸ガスレーザー(出力13mJ)で1ショット照射して孔径60μmのブラインドビア孔をあけた。次いで、デスミア処理(過マンガン酸カリウム系デスミア溶液(日本マクダーミッド(株)製)で膨潤、デスミア(溶解)、中和してブラインドビア孔のスミヤの除去と熱硬化ドライフィルムの硬化面の凹凸処理を行った。このときの樹脂表面の凹凸はRz5.3μmであった。この基板に対して、無電解銅めっき液(奥野製薬(株)製、ATSアドカッパーCT)を用いて無電解銅めっきを行い、厚さ1μmの銅層を形成して、130℃の加熱炉で2時間加熱した後、セミアディティブ用ドライフィルムをニチゴーモートン社製真空ラミネーターで70℃、0.5Mpa、30秒の条件でラミネートした。その後、紫外線露光装置(ORC社製)を用いて紫外線を100mJ/cmの条件で最小ライン・アンド・スペースが10μmであるパターンを描画した。その後、30℃の1wt%炭酸ソーダ水溶液を用いて2気圧のスプレー圧で現像し、水洗を2回繰り返し、感光性レジストパターンが形成された基板を得た。そして、この基板に対して、硫酸銅めっき液を用いて1.5アンペア/dmで70分間の電解銅めっきを行い、レジストが形成されていない部分に約10μm厚さの銅パターンを形成した。次いで、アルカリ剥離液(三菱瓦斯化学(株)製、R-200)を用いて50℃、3分の条件でセミアディティブ用ドライフィルムを剥離した後、この銅パターンを形成した基板のセミアディティブ用ドライフィルムが形成されていた銅部分がなくなるまで、エッチング液(三菱瓦斯化学(株)製、SE-07)を用いて銅回路をエッチングし、最小ライン・アンド・スペースが10μmの多層回路基板を得た。
 さらに、この基板に、実施例5と同様に、ドライフィルムソルダーレジスト(太陽インキ製造(株)製、AUS410)のソルダーレジストパターンを形成して、ソルダーレジストが形成された基板を得た。
Comparative Example 2
After the circuit board prepared in Comparative Example 1 was subjected to CZ treatment by MEC, a thermosetting dry film (Ajinomoto Fine Techno Co., Ltd., ABF-GX13) was laminated on both sides, and a vacuum laminator manufactured by Nichigo Morton was used. Lamination was carried out under the conditions of 0 ° C., 0.5 Mpa, and 30 seconds, and then heat-cured at 170 ° C. for 60 minutes in a hot air drying furnace to laminate. The obtained substrate was irradiated with one shot with a carbon dioxide laser (output: 13 mJ) to form blind via holes having a hole diameter of 60 μm. Next, it is swollen, desmeared (dissolved), neutralized by desmear treatment (potassium permanganate-based desmear solution (manufactured by Nihon McDermid Co., Ltd.)), and removal of smears in blind via holes and uneven treatment of the cured surface of the thermosetting dry film The unevenness of the resin surface at this time was Rz 5.3 μm, and electroless copper plating was performed on this substrate using an electroless copper plating solution (ATS ADCAPPER CT, manufactured by Okuno Pharmaceutical Co., Ltd.). After forming a copper layer having a thickness of 1 μm and heating in a heating furnace at 130 ° C. for 2 hours, the semi-additive dry film was subjected to conditions of 70 ° C., 0.5 Mpa, 30 seconds with a vacuum laminator manufactured by Nichigo Morton. Thereafter, the minimum line and space is 10 μm under the condition of 100 mJ / cm 2 using ultraviolet exposure apparatus (manufactured by ORC). After that, the pattern was drawn, developed using a 1 wt% sodium carbonate aqueous solution at 30 ° C. with a spray pressure of 2 atm, and washed twice with water to obtain a substrate on which a photosensitive resist pattern was formed. On the other hand, electrolytic copper plating was performed at 1.5 ampere / dm 2 for 70 minutes using a copper sulfate plating solution to form a copper pattern having a thickness of about 10 μm on the portion where no resist was formed. After the semi-additive dry film was peeled off at 50 ° C. for 3 minutes using a stripping solution (Mitsubishi Gas Chemical Co., Ltd., R-200), the semi-additive dry film on the substrate on which the copper pattern was formed was The copper circuit is etched using an etching solution (SE-07, manufactured by Mitsubishi Gas Chemical Co., Ltd.) until the copper portion that has been formed disappears, and the minimum line and space A multilayer circuit board having a thickness of 10 μm was obtained.
Further, in the same manner as in Example 5, a solder resist pattern of a dry film solder resist (manufactured by Taiyo Ink Manufacturing Co., Ltd., AUS410) was formed on this substrate to obtain a substrate on which the solder resist was formed.
 前記各実施例及び比較例で作成した回路基板に対して、後述するような特性試験を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
A characteristic test as described later was performed on the circuit boards prepared in each of the examples and comparative examples. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 (1)ピール強度:
 JIS C6481に準じて、3回測定したピール強度の平均値で示した。
(1) Peel strength:
In accordance with JIS C6481, the average value of the peel strength measured three times was shown.
 (2)はんだ耐熱性:
 121℃、203kPaで4時間処理後に260℃のはんだ液中に30秒間浸漬してから回路の剥がれ、樹脂の剥離等の異常の有無を観察し、以下の基準で評価した。
 ○:異常なし
 ×:一部に膨れ有り
(2) Solder heat resistance:
After being treated at 121 ° C. and 203 kPa for 4 hours and immersed in a solder solution at 260 ° C. for 30 seconds, the presence or absence of abnormalities such as circuit peeling and resin peeling was observed and evaluated according to the following criteria.
○: No abnormality ×: Partial swelling
 (3)細線形成性:
 形成したL/S(ライン/スペース)=10/10μm又はL/S=20/20μmの細線が形成できているかどうかを顕微鏡で確認し、以下の基準で評価した。
 ○:問題なく形成されている。
 △:ごく一部に剥離が見られる。
 ×:剥離が見られる。
(3) Fine wire formability:
It was confirmed with a microscope whether the formed fine line of L / S (line / space) = 10/10 μm or L / S = 20/20 μm was formed, and evaluated according to the following criteria.
○: Formed without problems.
(Triangle | delta): Peeling is seen in a part.
X: Peeling is observed.
 (4)無電解金めっき適性:
 各配線板に無電解ニッケルめっきを行い、さらに無電解金めっきを行い、回路形成時のエッチング残渣によるめっきの異常析出の有無を確認し、以下の基準で評価した。
 ○:異常析出なし。
 ×:配線がない樹脂上までめっきが析出している。
(4) Electroless gold plating suitability:
Each wiring board was subjected to electroless nickel plating, further electroless gold plating, and the presence or absence of abnormal deposition of plating due to etching residues during circuit formation was confirmed and evaluated according to the following criteria.
○: No abnormal precipitation.
X: Plating is deposited even on the resin without wiring.
 表2に示される結果の通り、実施例1~5の場合、配線板は銅箔を全てエッチングして銅箔のプロファイルの表面粗さを有したまま回路形成しているためにピール強度が高い結果が得られた。また、基材と感光性レジスト膜の表面全体に電解銅めっきのシード層(導通層)を無電解銅めっきで形成し、次いで電解銅めっき層を全面に形成した後、感光性レジスト膜表面が露出するまで平坦にエッチングして形成した配線板は高精細であり、完成した回路間に導電層形成の履歴がないため、エッチング不良によるニッケル及び金めっきに異常析出の可能性がないものであった。
 また、実施例3及び実施例4で得られた配線板は、回路と絶縁層が平坦であり、ソルダーレジスト層も均一膜厚で形成することができる高精度な形成方法であった。
 一方、比較例1の場合、実施例と同様に配線板の銅箔を全てエッチングして銅箔のプロファイルの表面粗さを有したまま回路形成しているために比較的ピール強度が高い結果であった。しかしながら、基材樹脂上のプロファイルが大きいため、銅箔層を剥離するときのオーバーエッチによると思われる細線の剥離が見られた。一方、比較例2では、銅箔のプロファイルを用いないでデスミヤ工程により樹脂上に凹凸形成したため、完成した回路のピール強度は実施例よりも低いものであった。さらに、配線板の後処理である無電解ニッケル、無電解金めっきを形成した際、配線以外の樹脂上にもめっきが異常析出してしまった。これは細線間(感光性レジスト膜の下)に無電解銅めっきを形成していたため、エッチングしても無電解銅めっきの触媒であるパラジウムがエッチングされずに残っていたためと思われる。
As shown in Table 2, in Examples 1 to 5, the circuit board was formed by etching the entire copper foil and having the surface roughness of the copper foil profile, so the peel strength was high. Results were obtained. In addition, after forming an electrolytic copper plating seed layer (conductive layer) on the entire surface of the substrate and the photosensitive resist film by electroless copper plating, and then forming an electrolytic copper plating layer on the entire surface, the photosensitive resist film surface is Wiring boards formed by etching flat until exposed are high-definition and there is no history of conductive layer formation between completed circuits, so there is no possibility of abnormal deposition in nickel and gold plating due to etching failure. It was.
Further, the wiring boards obtained in Example 3 and Example 4 were high-precision forming methods in which the circuit and the insulating layer were flat and the solder resist layer could be formed with a uniform film thickness.
On the other hand, in the case of the comparative example 1, since all the copper foil of the wiring board was etched and the circuit was formed with the surface roughness of the copper foil profile as in the example, the peel strength was relatively high. there were. However, since the profile on the base resin was large, peeling of fine lines, which seems to be caused by overetching when peeling the copper foil layer, was observed. On the other hand, in Comparative Example 2, since the unevenness was formed on the resin by the desmear process without using the copper foil profile, the peel strength of the completed circuit was lower than that of the example. Furthermore, when electroless nickel or electroless gold plating, which is a post-treatment of the wiring board, was formed, the plating was abnormally deposited on the resin other than the wiring. This is presumably because the electroless copper plating was formed between the thin wires (under the photosensitive resist film), so that palladium which was the catalyst for the electroless copper plating remained unetched even after etching.
 本発明のプリント配線板の製造方法は、基板表面に高精度且つ極細密な銅回路パターンが形成された高密度プリント配線板や多層プリント配線板の製造に適している。 The method for manufacturing a printed wiring board of the present invention is suitable for manufacturing a high-density printed wiring board or a multilayer printed wiring board in which a highly accurate and extremely fine copper circuit pattern is formed on the surface of a substrate.
 1:基板
 2:銅箔
 3:銅張積層板
 4:感光性レジスト膜
 5:レジストパターン
 6:スルーホール
 7:銅めっき層
 8:銅回路パターン
 9:めっきスルーホール
 10:層間樹脂絶縁層
 11:バイアホール
 12:外層のレジストパターン
 13:外層の銅めっき層
 14:外層の銅回路パターン
1: Substrate 2: Copper foil 3: Copper-clad laminate 4: Photosensitive resist film 5: Resist pattern 6: Through hole 7: Copper plating layer 8: Copper circuit pattern 9: Plating through hole 10: Interlayer resin insulation layer 11: Via hole 12: Resist pattern of outer layer 13: Copper plating layer of outer layer 14: Copper circuit pattern of outer layer

Claims (12)

  1.  (a)基板表面に形成された感光性レジスト膜に選択的露光及び現像を行って、回路形成する部分の溝パターンが形成された、無電解銅めっきにより銅めっき層を形成できるパターン化されたレジスト膜を形成する工程、
     (b)前記溝パターン部分の基板の露出表面及びパターン化されたレジスト膜表面の全体に無電解銅めっきを行い、次いで表面がほぼ平滑になるまで電解銅めっきを行って、上記レジスト膜を覆う銅めっき層を形成する工程、
     (c)前記レジスト膜の表面が露出するまで、銅めっき層を機械的研磨及び/又は化学的研磨又はエッチングにより均一に減少させ、表面に銅回路パターンを露出させる工程
    を含むことを特徴とするプリント配線板の製造方法。
    (A) The photosensitive resist film formed on the surface of the substrate was selectively exposed and developed to form a groove pattern of a part for forming a circuit, and a pattern capable of forming a copper plating layer by electroless copper plating. Forming a resist film;
    (B) Electroless copper plating is performed on the entire exposed surface of the substrate in the groove pattern portion and the patterned resist film surface, and then electrolytic copper plating is performed until the surface becomes almost smooth to cover the resist film. Forming a copper plating layer;
    (C) including a step of uniformly reducing the copper plating layer by mechanical polishing and / or chemical polishing or etching until the surface of the resist film is exposed to expose a copper circuit pattern on the surface. Manufacturing method of printed wiring board.
  2.  前記工程(c)の後に、さらに(d)表面層部分が銅回路パターンのみとなるように前記レジスト膜を除去する工程を含むことを特徴とする請求項1に記載の方法。 The method according to claim 1, further comprising the step of (d) removing the resist film so that the surface layer portion is only a copper circuit pattern after the step (c).
  3.  前記基板が、銅張積層板の銅箔を全てエッチング除去し、銅箔の凹凸面が転写された表面を有するものであることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the substrate has a surface on which the copper foil of the copper-clad laminate is removed by etching and the uneven surface of the copper foil is transferred.
  4.  前記レジスト膜が、パターン形成後に紫外線照射、加熱処理及びプラズマ処理よりなる群から選ばれたいずれか少なくとも1種の処理を行って、無電解銅めっきにより銅めっき層を形成できるレジスト膜としたものであることを特徴とする請求項1に記載の方法。 The resist film is a resist film capable of forming a copper plating layer by electroless copper plating by performing at least one treatment selected from the group consisting of ultraviolet irradiation, heat treatment and plasma treatment after pattern formation. The method of claim 1, wherein:
  5.  前記工程(a)において、基板表面に形成された感光性レジスト膜に紫外線のパターン露光又は紫外線の直接描画により選択的露光を行い、次いで現像を行って、回路形成する部分の溝パターンを形成することを特徴とする請求項1に記載の方法。 In the step (a), the photosensitive resist film formed on the surface of the substrate is selectively exposed by UV pattern exposure or direct UV exposure, and then developed to form a groove pattern of a circuit forming portion. The method according to claim 1.
  6.  前記工程(d)において、前記レジスト膜をアルカリ水溶液で剥離し、又はデスミヤ処理して取り除くことを特徴とする請求項2に記載の方法。 3. The method according to claim 2, wherein in the step (d), the resist film is removed with an alkaline aqueous solution or removed by desmear treatment.
  7.  前記工程(a)に付される基板がスルーホールを有することを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the substrate subjected to the step (a) has a through hole.
  8.  前記工程(c)の後、さらに層間樹脂絶縁層を形成した後に感光性レジスト膜を形成し、次いで前記工程(a)、(b)及び(c)を繰り返し、多層プリント配線板を作製することを特徴とする請求項1に記載の方法。 After the step (c), after forming an interlayer resin insulation layer, a photosensitive resist film is formed, and then the steps (a), (b) and (c) are repeated to produce a multilayer printed wiring board. The method of claim 1, wherein:
  9.  前記工程(d)の後、さらに層間樹脂絶縁層を形成した後に感光性レジスト膜を形成し、次いで前記工程(a)、(b)及び(c)を繰り返し、多層プリント配線板を作製することを特徴とする請求項2に記載の方法。 After the step (d), after forming an interlayer resin insulation layer, a photosensitive resist film is formed, and then the steps (a), (b) and (c) are repeated to produce a multilayer printed wiring board. The method according to claim 2.
  10.  前記前記工程(a)、(b)及び(c)を繰り返した後、さらに表面層部分が銅回路パターンのみとなるように前記(d)のレジスト膜除去工程を行うことを特徴とする請求項8に記載の方法。 The resist film removing step (d) is performed after the steps (a), (b) and (c) are repeated, so that the surface layer portion is only a copper circuit pattern. 9. The method according to 8.
  11.  前記前記工程(a)、(b)及び(c)を繰り返した後、さらに表面層部分が銅回路パターンのみとなるように前記(d)のレジスト膜除去工程を行うことを特徴とする請求項9に記載の方法。 The resist film removing step (d) is performed after the steps (a), (b) and (c) are repeated, so that the surface layer portion is only a copper circuit pattern. 9. The method according to 9.
  12.  前記請求項1又は3乃至9のいずれか一項に記載の方法により作製された、表面層部分に銅回路パターンと該パターン間に埋め込まれた樹脂絶縁層とを有し、これら銅回路パターンと樹脂絶縁層とから平坦な表面が形成されていることを特徴とするプリント配線板。 A copper circuit pattern and a resin insulating layer embedded between the patterns, which are produced by the method according to claim 1 or 3 to 9, and are embedded between the patterns. A printed wiring board, wherein a flat surface is formed from a resin insulating layer.
PCT/JP2010/063177 2009-08-10 2010-08-04 Printed wiring board and method for producing the same WO2011018968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009185685A JP5408655B2 (en) 2009-08-10 2009-08-10 Printed wiring board and manufacturing method thereof
JP2009-185685 2009-08-10

Publications (1)

Publication Number Publication Date
WO2011018968A1 true WO2011018968A1 (en) 2011-02-17

Family

ID=43586146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063177 WO2011018968A1 (en) 2009-08-10 2010-08-04 Printed wiring board and method for producing the same

Country Status (3)

Country Link
JP (1) JP5408655B2 (en)
TW (1) TWI496521B (en)
WO (1) WO2011018968A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173241A1 (en) * 2011-06-17 2012-12-20 太陽インキ製造株式会社 Flame-retardant curable resin composition, dry film using same, and printed wiring board
WO2013121641A1 (en) * 2012-02-14 2013-08-22 太陽ホールディングス株式会社 Resin composition for plating resist, multilayer printed wiring board, and method for producing multilayer printed wiring board
WO2016060051A1 (en) * 2014-10-18 2016-04-21 豊田鉄工株式会社 Circuit substrate equipped with heat sink, and method for manufacuring circuit substrate equipped with heat sink
CN112930040A (en) * 2021-01-25 2021-06-08 肇庆市武大环境技术研究院 Method for improving copper wire gap on surface of circuit board
CN114921825A (en) * 2022-04-24 2022-08-19 江苏富乐华功率半导体研究院有限公司 DPC ceramic substrate copper plating pretreatment method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105847813B (en) 2010-07-13 2018-11-06 日本电气株式会社 Video decoder and video encoding/decoding method
JP2012256636A (en) * 2011-06-07 2012-12-27 Taiyo Holdings Co Ltd Resin composition for plating resist and multilayer printed wiring board
WO2013002387A1 (en) 2011-06-29 2013-01-03 株式会社日本触媒 Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same
KR102008983B1 (en) * 2012-09-14 2019-08-12 김정식 ultra micro metal products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267724A (en) * 2000-03-23 2001-09-28 Victor Co Of Japan Ltd Printed board and its manufacturing method
JP2002314208A (en) * 2001-04-18 2002-10-25 Asahi Kasei Corp Electronic component and its manufacturing method
JP2009512176A (en) * 2005-10-06 2009-03-19 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Structure and method for making interconnect elements having metal traces embedded in the surface of a dielectric

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178241A (en) * 1996-12-17 1998-06-30 Multi:Kk Printed wiring board and method for manufacturing the same
KR20070068445A (en) * 2004-10-06 2007-06-29 테세라 인터커넥트 머터리얼즈, 인크. Structure and method of making interconnect element having metal traces embedded in surface of dielectric
TWM359174U (en) * 2008-10-30 2009-06-11 Mao Bang Electronic Co Ltd Improved structure of circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267724A (en) * 2000-03-23 2001-09-28 Victor Co Of Japan Ltd Printed board and its manufacturing method
JP2002314208A (en) * 2001-04-18 2002-10-25 Asahi Kasei Corp Electronic component and its manufacturing method
JP2009512176A (en) * 2005-10-06 2009-03-19 テセラ・インターコネクト・マテリアルズ,インコーポレイテッド Structure and method for making interconnect elements having metal traces embedded in the surface of a dielectric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173241A1 (en) * 2011-06-17 2012-12-20 太陽インキ製造株式会社 Flame-retardant curable resin composition, dry film using same, and printed wiring board
WO2013121641A1 (en) * 2012-02-14 2013-08-22 太陽ホールディングス株式会社 Resin composition for plating resist, multilayer printed wiring board, and method for producing multilayer printed wiring board
WO2016060051A1 (en) * 2014-10-18 2016-04-21 豊田鉄工株式会社 Circuit substrate equipped with heat sink, and method for manufacuring circuit substrate equipped with heat sink
JP2016082108A (en) * 2014-10-18 2016-05-16 豊田鉄工株式会社 Circuit board with heat sink, and manufacturing method of circuit board with heat sink
CN112930040A (en) * 2021-01-25 2021-06-08 肇庆市武大环境技术研究院 Method for improving copper wire gap on surface of circuit board
CN112930040B (en) * 2021-01-25 2022-07-29 肇庆市武大环境技术研究院 Method for improving copper wire gap on surface of circuit board
CN114921825A (en) * 2022-04-24 2022-08-19 江苏富乐华功率半导体研究院有限公司 DPC ceramic substrate copper plating pretreatment method
CN114921825B (en) * 2022-04-24 2023-04-07 江苏富乐华功率半导体研究院有限公司 DPC ceramic substrate copper plating pretreatment method

Also Published As

Publication number Publication date
TW201127238A (en) 2011-08-01
JP2011040530A (en) 2011-02-24
TWI496521B (en) 2015-08-11
JP5408655B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408655B2 (en) Printed wiring board and manufacturing method thereof
US5928839A (en) Method of forming a multilayer printed circuit board and product thereof
JP5285257B2 (en) Photocurable / thermosetting resin composition and cured product thereof
JP5144323B2 (en) Method for manufacturing printed wiring board
KR20180103101A (en) Dry film and printed wiring board
WO2012137838A1 (en) Photosensitive composition, hardened coating films therefrom, and printed wiring boards using same
CN108475015B (en) Photosensitive resin composition, dry film and printed wiring board
JP3121213B2 (en) Photosensitive resin composition
JP2009169416A (en) Photocurable/thermosetting resin composition and dry film, and printed wiring board using the same
JP2001302871A (en) Photocurable/thermosetting resin composition and printed wiring board having solder resist coating film and resin insulating layer formed by using the same
JP2013539072A (en) Photosensitive resin composition, dry film solder resist and circuit board
KR20170104843A (en) Photosensitive resin composition and photoimageable dielectric film
CN109791354B (en) Photosensitive resin composition, dry film and printed wiring board
JPH0940751A (en) Impact-resistant insulating resin composition
JP5393959B2 (en) Photocurable / thermosetting resin composition and cured product thereof
WO2020241595A1 (en) Photosensitive resin composition, photosensitive resin film, printed wiring board, semiconductor package, and method for producing printed wiring board
JP4095163B2 (en) Photosensitive resin composition for printed wiring board and printed wiring board having solder resist film and resin insulating layer formed therefrom
JP2018163207A (en) Photosensitive resin composition, and dry film, printed wiring board, and method for manufacturing printed wiring board, using the same
JPH11242330A (en) Photosensitive resin composition, multilayered printed circuit board using that, and its production
WO2022030045A1 (en) Photosensitive resin composition, photosensitive resin film, multilayered printed wiring board, semiconductor package, and method for producing multilayered printed wiring board
KR20230110674A (en) Photosensitive resin composition, photosensitive resin film, multilayer printed wiring board and semiconductor package, and manufacturing method of multilayer printed wiring board
EP0691802A1 (en) Method of forming a multilayer printed circuit board and product thereof
KR102032952B1 (en) Build-up method for semeconductor devices
WO2024219251A1 (en) Method for manufacturing printed wiring board, photosensitive resin composition, photosensitive resin film, printed wiring board, and semiconductor package
JP5835416B2 (en) Photosensitive resin composition, photosensitive film, and method for forming resist pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808151

Country of ref document: EP

Kind code of ref document: A1