JP2007010785A - 永久パターン形成方法 - Google Patents
永久パターン形成方法 Download PDFInfo
- Publication number
- JP2007010785A JP2007010785A JP2005188722A JP2005188722A JP2007010785A JP 2007010785 A JP2007010785 A JP 2007010785A JP 2005188722 A JP2005188722 A JP 2005188722A JP 2005188722 A JP2005188722 A JP 2005188722A JP 2007010785 A JP2007010785 A JP 2007010785A
- Authority
- JP
- Japan
- Prior art keywords
- exposure
- pixel
- pixel part
- permanent pattern
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70791—Large workpieces, e.g. glass substrates for flat panel displays or solar panels
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70425—Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0073—Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces
- H05K3/0082—Masks not provided for in groups H05K3/02 - H05K3/46, e.g. for photomechanical production of patterned surfaces characterised by the exposure method of radiation-sensitive masks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
【課題】 パターン歪みによる露光量のばらつきの影響を均し、感光層上に結像させる像の歪みを抑制することにより、永久パターンを高精細に、かつ、効率よく形成可能な永久パターン形成方法の提供。
【解決手段】 感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、光照射手段、及び光変調手段を備えた露光ヘッドであって、走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、描素部制御手段により、指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現像することを特徴とする永久パターン形成方法である。
【選択図】 図10
【解決手段】 感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、光照射手段、及び光変調手段を備えた露光ヘッドであって、走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、前記露光ヘッドについて、使用描素部指定手段により、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、描素部制御手段により、指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現像することを特徴とする永久パターン形成方法である。
【選択図】 図10
Description
本発明は、画像データに応じて変調された光を感光層上に結像させて、該感光層を露光し、パッケージ基板を含むプリント配線基板分野、あるいは、半導体分野における高精細な永久パターン(保護膜、層間絶縁膜、及びソルダーレジストパターン)を効率よく形成する永久パターン形成方法に関する。
空間光変調素子等で変調された光を結像光学系に通し、この光による像を所定の感光層上に結像し、該感光層を露光する露光装置が公知となっている。該露光装置は、照射された光を各々制御信号に応じて変調する多数の描素部が2次元状に配列されてなる空間光変調素子と、該空間光変調素子に光を照射する光源と、該空間光変調素子により変調された光による像を感光層上に結像する結像光学系とを備えた露光ヘッドを備え、該露光ヘッドを前記感光層の被露光面上に対して相対移動させながら動作させることにより、所望の2次元パターンを前記感光層の被露光面上に形成することができる(非特許文献1及び特許文献1参照)。
前記露光装置の前記露光ヘッドにおいて、空間光変調素子として、一般的に入手可能な大きさのデジタル・マイクロミラー・デバイス(DMD)を用いる場合等、光源アレイの構成等によっては、単一の露光ヘッドで十分な大きさの露光面積をカバーすることが困難である。そのため、複数の前記露光ヘッドを並列使用し、該露光ヘッドを走査方向に対して傾斜させて用いる形態の露光装置が提案されている。
例えば、特許文献2には、マイクロミラーが矩形格子状に配されたDMDを有する複数の露光ヘッドが走査方向に対して傾斜させられ、傾斜しているDMDの両側部の三角形状の部分が、走査方向と直行する方向に隣接するDMD間で互いに補完し合うような設定で、各露光ヘッドが取り付けられた露光装置が記載されている。
また、特許文献3には、矩形格子状のDMDを有する複数の露光ヘッドが走査方向に対して傾斜させられずに又は微小角だけ傾斜させられ、走査方向と直行する方向に隣接するDMDによる露光領域が所定幅だけ重なり合うような設定で、各露光ヘッドが取り付けられ、各DMDの露光領域間の重なり合い部分に相当する個所において、駆動すべきマイクロミラーの数を一定の割合で漸減又は漸増させ、各DMDによる露光領域を平行四辺形状とした露光装置が記載されている。
しかしながら、前記露光ヘッドを複数用いて、走査方向に対して傾斜させて露光を行う場合、前記露光ヘッド間の相対位置や相対取付角度の微調整は一般に難しく、理想の相対位置及び相対取付角度からわずかにずれるという問題がある。
一方、解像度の向上等のため、前記露光ヘッドを、一の描素部からの光線の走査線が、別の描素部からの光線の走査線と一致するようにして用い、前記感光層の被露光面上の各点を実質的に複数回重ねて露光する多重露光形式の露光装置が提案されている。
たとえば、特許文献4には、被露光面上に形成される2次元パターンの解像度を向上させ、滑らかな斜め線を含むパターンの表現を可能にするため、複数のマイクロミラー(描素部)が2次元状に配された矩形のDMDを、走査方向に対して傾斜させて用い、近接するマイクロミラーからの露光スポットが被露光面上で一部重なり合うようになした露光装置が記載されている。
また、特許文献5には、やはり矩形のDMDを走査方向に対して傾斜させて用いることによって、被露光面上で露光スポットを重ね合わせて合計の照明色度を変化させることによるカラーイメージの表現や、マイクロレンズの一部欠陥等の要因によるイメージングエラーの抑制を可能とした露光装置が記載されている。
しかしながら、前記多重露光を行う場合においても、前記露光ヘッドの取付角度が理想の設定傾斜角度からずれることにより、露光される前記感光層の被露光面上の個所においては、露光スポットの密度や配列が、他の部分とは異なったものとなり、前記感光層上に結像させる像の解像度や濃度にむらが生じ、さらに、形成したパターンのエッジラフネスが大きくなるという問題がある。
さらに、前記露光ヘッドの取付位置や取付角度のずれのみならず、前記描素部と前記感光層の被露光面との間の光学系の各種収差や、前記描素部自体の歪み等によって生じるパターン歪みも、前記感光層の被露光面上に形成される前記パターンの解像度や濃度にむらを生じさせる原因となる。
これらの問題に対し、前記露光ヘッドの取付位置や取付角度の調整精度、及び光学系の調整精度等を向上させる方法が考えられるが、精度の向上を追求すると、製造コストが非常に高くなってしまうという問題がある。同様の問題は、前記露光装置のみならず、インクジェットプリンター等の各種描画装置において生じうるものである。
よって、前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより、保護膜、絶縁膜、及びソルダーレジストなどの永久パターンを高精細に、かつ効率よく形成可能な永久パターン形成方法は未だ提供されておらず、更なる改良開発が望まれているのが現状である。
本発明は、かかる現状に鑑みてなされたものであり、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより、保護膜、絶縁膜、及びソルダーレジストなどの永久パターンを高精細に、かつ効率よく形成可能な永久パターン形成方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤と、を少なくとも含む感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、
光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現像することを特徴とする永久パターン形成方法である。該<1>に記載の永久パターン形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<2> 感光層の形成が、感光性組成物を基材の表面に塗布し、乾燥することにより行われる前記<1>に記載の永久パターン形成方法である。該<2>に記載の永久パターン形成方法においては、前記感光性組成物が前記基材の表面に塗布され、乾燥される。その結果、前記感光層が前記基材上に形成される。
<3> 感光層の形成が、支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層することにより行われる前記<1>に記載の永久パターン形成方法である。該<3>に記載の永久パターン形成方法においては、前記支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する前記感光性フィルムが、加熱及び加圧の少なくともいずれかの下において前記基材の表面に積層される。その結果、前記感光層が前記基材上に転写されて形成される。
<4> 支持体が、合成樹脂を含み、かつ透明である前記<3>に記載の永久パターン形成方法である。
<5> 支持体が、長尺状である前記<3>から<4>のいずれかに記載の永久パターン形成方法である。
<6> 感光性フィルムが、長尺状であり、ロール状に巻かれてなる前記<3>から<5>のいずれかに記載の永久パターン形成方法である。
<7> 感光性フィルムが、感光層上に保護フィルムを有してなる前記<3>から<6>のいずれかに記載の永久パターン形成方法である。
<8> 感光層の厚みが、3〜100μmである前記<1>から<7>のいずれかに記載の永久パターン形成方法である。
<9> 基材が、配線形成済みのプリント配線基板である前記<1>から<8>のいずれかに記載の永久パターン形成方法である。該<9>に記載の永久パターン形成方法においては、前記基材が配線形成済みのプリント配線基板であるので、該永久パターン形成方法を利用することにより、半導体や部品の多層配線基板やビルドアップ配線基板などへの高密度実装が可能である。
<1> バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤と、を少なくとも含む感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、
光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現像することを特徴とする永久パターン形成方法である。該<1>に記載の永久パターン形成方法においては、前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部が指定され、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部が制御される。前記露光ヘッドを、前記感光層に対し走査方向に相対的に移動させて露光が行われることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<2> 感光層の形成が、感光性組成物を基材の表面に塗布し、乾燥することにより行われる前記<1>に記載の永久パターン形成方法である。該<2>に記載の永久パターン形成方法においては、前記感光性組成物が前記基材の表面に塗布され、乾燥される。その結果、前記感光層が前記基材上に形成される。
<3> 感光層の形成が、支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層することにより行われる前記<1>に記載の永久パターン形成方法である。該<3>に記載の永久パターン形成方法においては、前記支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する前記感光性フィルムが、加熱及び加圧の少なくともいずれかの下において前記基材の表面に積層される。その結果、前記感光層が前記基材上に転写されて形成される。
<4> 支持体が、合成樹脂を含み、かつ透明である前記<3>に記載の永久パターン形成方法である。
<5> 支持体が、長尺状である前記<3>から<4>のいずれかに記載の永久パターン形成方法である。
<6> 感光性フィルムが、長尺状であり、ロール状に巻かれてなる前記<3>から<5>のいずれかに記載の永久パターン形成方法である。
<7> 感光性フィルムが、感光層上に保護フィルムを有してなる前記<3>から<6>のいずれかに記載の永久パターン形成方法である。
<8> 感光層の厚みが、3〜100μmである前記<1>から<7>のいずれかに記載の永久パターン形成方法である。
<9> 基材が、配線形成済みのプリント配線基板である前記<1>から<8>のいずれかに記載の永久パターン形成方法である。該<9>に記載の永久パターン形成方法においては、前記基材が配線形成済みのプリント配線基板であるので、該永久パターン形成方法を利用することにより、半導体や部品の多層配線基板やビルドアップ配線基板などへの高密度実装が可能である。
<10> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定する前記<1>から<9>のいずれかに記載の永久パターン形成方法である。該<10>に記載の永久パターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<11> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<10>に記載の永久パターン形成方法である。該<11>に記載の永久パターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<12> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される前記<1>から<11>のいずれかに記載の永久パターン形成方法である。
<13> N重露光のNが、3以上の自然数である前記<1>から<12>のいずれかに記載の永久パターン形成方法である。該<13>に記載の永久パターン形成方法においては、N重露光のNが、3以上の自然数であることにより、多重描画が行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが、より精密に均される。
<11> 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する前記<10>に記載の永久パターン形成方法である。該<11>に記載の永久パターン形成方法においては、露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外におけるN重露光を実現するために使用する前記描素部が指定されることにより、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上のヘッド間つなぎ領域以外に形成される前記パターンの解像度のばらつきや濃度のむらが均される。この結果、前記感光層への露光が高精細に行われ、その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<12> 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される前記<1>から<11>のいずれかに記載の永久パターン形成方法である。
<13> N重露光のNが、3以上の自然数である前記<1>から<12>のいずれかに記載の永久パターン形成方法である。該<13>に記載の永久パターン形成方法においては、N重露光のNが、3以上の自然数であることにより、多重描画が行われる。この結果、埋め合わせの効果により、前記露光ヘッドの取付位置や取付角度のずれによる前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらが、より精密に均される。
<14> 使用描素部指定手段が、
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える前記<1>から<13>のいずれかに記載の永久パターン形成方法である。
<15> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定する前記<1>から<14>のいずれかに記載の永久パターン形成方法である。
描素部により生成され、被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える前記<1>から<13>のいずれかに記載の永久パターン形成方法である。
<15> 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定する前記<1>から<14>のいずれかに記載の永久パターン形成方法である。
<16> 光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ´を特定し、描素部選択手段が、前記実傾斜角度θ´と設定傾斜角度θとの誤差を吸収するように使用描素部を選択する前記<14>から<15>のいずれかに記載の永久パターン形成方法である。
<17> 実傾斜角度θ´が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである前記<16>に記載の永久パターン形成方法である。
<18> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する前記<16>から<17>のいずれかに記載の永久パターン形成方法である。
<19> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する前記<16>から<17>のいずれかに記載の永久パターン形成方法である。
<17> 実傾斜角度θ´が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである前記<16>に記載の永久パターン形成方法である。
<18> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する前記<16>から<17>のいずれかに記載の永久パターン形成方法である。
<19> 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する前記<16>から<17>のいずれかに記載の永久パターン形成方法である。
<20> 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである前記<14>から<19>に記載の永久パターン形成方法である。
<21> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかである前記<14>から<20>のいずれかに記載の永久パターン形成方法である。
<22> 不使用描素部が、行単位で特定される前記<21>に記載の永久パターン形成方法である。
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである前記<14>から<19>に記載の永久パターン形成方法である。
<21> 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかである前記<14>から<20>のいずれかに記載の永久パターン形成方法である。
<22> 不使用描素部が、行単位で特定される前記<21>に記載の永久パターン形成方法である。
<23> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光を行う前記<13>から<22>のいずれかに記載の永久パターン形成方法である。該<23>に記載の永久パターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<24> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部行を構成する前記描素部のみを使用して参照露光を行う前記<13>から<22>のいずれかに記載の永久パターン形成方法である。該<24>に記載の永久パターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<24> 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部行を構成する前記描素部のみを使用して参照露光を行う前記<13>から<22>のいずれかに記載の永久パターン形成方法である。該<24>に記載の永久パターン形成方法においては、使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部列を構成する前記描素部のみを使用して参照露光が行われ、略1重描画の単純なパターンが得られる。この結果、前記ヘッド間つなぎ領域における前記描素部が容易に指定される。
<25> 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する前記<1>から<24>のいずれかに記載の永久パターン形成方法である。
<26> N重露光のNが、3以上7以下の自然数である前記<1>から<25>のいずれかに記載の永久パターン形成方法である。
<26> N重露光のNが、3以上7以下の自然数である前記<1>から<25>のいずれかに記載の永久パターン形成方法である。
<27> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<1>から<26>のいずれかに記載の永久パターン形成方法である。
<28> パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する変換手段を有する前記<1>から<27>のいずれかに記載の永久パターン形成方法である。
<29> 光変調手段が、空間光変調素子である前記<1>から<28>のいずれかに記載の永久パターン形成方法である。
<30> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<29>に記載の永久パターン形成方法である。
<31> 描素部が、マイクロミラーである前記<1>から<30>のいずれかに記載の永久パターン形成方法である。
<28> パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する変換手段を有する前記<1>から<27>のいずれかに記載の永久パターン形成方法である。
<29> 光変調手段が、空間光変調素子である前記<1>から<28>のいずれかに記載の永久パターン形成方法である。
<30> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<29>に記載の永久パターン形成方法である。
<31> 描素部が、マイクロミラーである前記<1>から<30>のいずれかに記載の永久パターン形成方法である。
<32> 光照射手段が、2以上の光を合成して照射可能である前記<1>から<31>のいずれかに記載の永久パターン形成方法である。該<32>に記載の永久パターン形成方法においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われ、その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<33> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<1>から<32>のいずれかに記載の永久パターン形成方法である。該<33>に記載の永久パターン形成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射されたレーザビームが前記集合光学系により集光され、前記マルチモード光ファイバに結合可能とすることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われ、その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<34> レーザ光の波長が395〜415nmである前記<33>に記載の永久パターン形成方法である。
<33> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<1>から<32>のいずれかに記載の永久パターン形成方法である。該<33>に記載の永久パターン形成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射されたレーザビームが前記集合光学系により集光され、前記マルチモード光ファイバに結合可能とすることにより、露光が焦点深度の深い露光光で行われる。この結果、前記感光層への露光が極めて高精細に行われ、その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<34> レーザ光の波長が395〜415nmである前記<33>に記載の永久パターン形成方法である。
<35> 現像が行われた後、感光層に対して硬化処理を行う前記<1>から<34>のいずれかに記載の永久パターン形成方法である。該<35>に記載の永久パターン形成方法においては、現像が行われた後、前記感光層に対して前記硬化処理が行われる。その結果、前記感光層の硬化領域の膜強度が高められる。
<36> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<35>に記載の永久パターン形成方法である。該<36>に記載の永久パターン形成方法においては、前記全面露光処理において、前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<37> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成する前記<1>から<36>のいずれかに記載の永久パターン形成方法である。
<36> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<35>に記載の永久パターン形成方法である。該<36>に記載の永久パターン形成方法においては、前記全面露光処理において、前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<37> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成する前記<1>から<36>のいずれかに記載の永久パターン形成方法である。
本発明によると、従来における問題を解決することができ、前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより、保護膜、絶縁膜、及びソルダーレジストなどの永久パターンを高精細に、かつ効率よく形成可能な永久パターン形成方法を提供することができる。
(永久パターン形成方法)
本発明の永久パターン形成方法は、露光工程と現像工程とを少なくとも含み、好ましくは硬化処理工程を含み、更に必要に応じて適宜選択したその他の工程を含む。
本発明の永久パターン形成方法は、露光工程と現像工程とを少なくとも含み、好ましくは硬化処理工程を含み、更に必要に応じて適宜選択したその他の工程を含む。
[露光工程]
前記露光工程は、感光層に対し、
光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う工程である。
前記露光工程は、感光層に対し、
光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光を行う工程である。
本発明において「N重露光」とは、前記感光層の被露光面上の露光領域の略すべての領域において、前記露光ヘッドの走査方向に平行な直線が、前記被露光面上に照射されたN本の光点列(画素列)と交わるような設定による露光を指す。ここで、「光点列(画素列)」とは、前記描素部により生成された描素単位としての光点(画素)の並びうち、前記露光ヘッドの走査方向となす角度がより小さい方向の並びを指すものとする。なお、前記描素部の配置は、必ずしも矩形格子状でなくてもよく、たとえば平行四辺形状の配置等であってもよい。 ここで、露光領域の「略すべての領域」と述べたのは、各描素部の両側縁部では、描素部列を傾斜させたことにより、前記露光ヘッドの走査方向に平行な直線と交わる使用描素部の描素部列の数が減るため、かかる場合に複数の露光ヘッドをつなぎ合わせるように使用したとしても、該露光ヘッドの取付角度や配置等の誤差により、走査方向に平行な直線と交わる使用描素部の描素部列の数がわずかに増減することがあるため、また、各使用描素部の描素部列間のつなぎの、解像度分以下のごくわずかな部分では、取付角度や描素部配置等の誤差により、走査方向と直交する方向に沿った描素部のピッチが他の部分の描素部のピッチと厳密に一致せず、走査方向に平行な直線と交わる使用描素部の描素部列の数が±1の範囲で増減することがあるためである。なお、以下の説明では、Nが2以上の自然数であるN重露光を総称して「多重露光」という。さらに、以下の説明では、本発明の永久パターン形成方法における露光方法を、描画方法として実施した形態について、「N重露光」及び「多重露光」に対応する用語として、「N重描画」及び「多重描画」という用語を用いるものとする。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
前記N重露光のNとしては、2以上の自然数であれば、特に制限はなく、目的に応じて適宜選択することができるが、3以上の自然数が好ましく、3以上7以下の自然数がより好ましい。
<パターン形成装置>
本発明の永久パターン形成方法に係るパターン形成装置の一例について図面を参照しながら説明する。
前記パターン形成装置としては、いわゆるフラットベッドタイプの露光装置とされており、図1に示すように、前記感光層が前記基材上に積層されてなるシート状の感光材料12(以下、「感光層12」ということがある)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、このパターン形成装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
本発明の永久パターン形成方法に係るパターン形成装置の一例について図面を参照しながら説明する。
前記パターン形成装置としては、いわゆるフラットベッドタイプの露光装置とされており、図1に示すように、前記感光層が前記基材上に積層されてなるシート状の感光材料12(以下、「感光層12」ということがある)を表面に吸着して保持する平板状の移動ステージ14を備えている。4本の脚部16に支持された厚い板状の設置台18の上面には、ステージ移動方向に沿って延びた2本のガイド20が設置されている。ステージ14は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド20によって往復移動可能に支持されている。なお、このパターン形成装置10には、ステージ14をガイド20に沿って駆動するステージ駆動装置(図示せず)が設けられている。
設置台18の中央部には、ステージ14の移動経路を跨ぐようにコの字状のゲート22が設けられている。コの字状のゲート22の端部の各々は、設置台18の両側面に固定されている。このゲート22を挟んで一方の側にはスキャナ24が設けられ、他方の側には感光材料12の先端及び後端を検知する複数(たとえば2個)のセンサ26が設けられている。スキャナ24及びセンサ26はゲート22に各々取り付けられて、ステージ14の移動経路の上方に固定配置されている。なお、スキャナ24及びセンサ26は、これらを制御する図示しないコントローラに接続されている。
ここで、説明のため、ステージ14の表面と平行な平面内に、図1に示すように、互いに直交するX軸及びY軸を規定する。
ステージ14の走査方向に沿って上流側(以下、単に「上流側」ということがある。)の端縁部には、X軸の方向に向かって開く「く」の字型に形成されたスリット28が、等間隔で10本形成されている。各スリット28は、上流側に位置するスリット28aと下流側に位置するスリット28bとからなっている。スリット28aとスリット28bとは互いに直交するとともに、X軸に対してスリット28aは−45度、スリット28bは+45度の角度を有している。
スリット28の位置は、前記露光ヘッド30の中心と略一致させられている。また、各スリット28の大きさは、対応する露光ヘッド30による露光エリア32の幅を十分覆う大きさとされている。また、スリット28の位置としては、隣接する露光済み領域34間の重複部分の中心位置と略一致させてもよい。この場合、各スリット28の大きさは、露光済み領域34間の重複部分の幅を十分覆う大きさとする。
ステージ14内部の各スリット28の下方の位置には、それぞれ、後述する使用描素部指定処理において、描素単位としての光点を検出する光点位置検出手段としての単一セル型の光検出器(図示せず)が組み込まれている。また、各光検出器は、後述する使用描素部指定処理において、前記描素部の選択を行う描素部選択手段としての演算装置(図示せず)に接続されている。
露光時における前記パターン形成装置の動作形態はとしては、露光ヘッドを常に移動させながら連続的に露光を行う形態であってもよいし、露光ヘッドを段階的に移動させながら、各移動先の位置で露光ヘッドを静止させて露光動作を行う形態であってもよい。
<<露光ヘッド>>
各露光ヘッド30は、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている。このため、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。図2及び図3Bに示す例では、2行5列の略マトリックス状に配列された10個の露光ヘッドが、スキャナ24に備えられている。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
各露光ヘッド30は、後述する内部のデジタル・マイクロミラー・デバイス(DMD)36の各描素部(マイクロミラー)列方向が、走査方向と所定の設定傾斜角度θをなすように、スキャナ24に取り付けられている。このため、各露光ヘッド30による露光エリア32は、走査方向に対して傾斜した矩形状のエリアとなる。ステージ14の移動に伴い、感光層12には露光ヘッド30ごとに帯状の露光済み領域34が形成される。図2及び図3Bに示す例では、2行5列の略マトリックス状に配列された10個の露光ヘッドが、スキャナ24に備えられている。
なお、以下において、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド30mnと表記し、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア32mnと表記する。
また、図3A及び図3Bに示すように、帯状の露光済み領域34のそれぞれが、隣接する露光済み領域34と部分的に重なるように、ライン状に配列された各行の露光ヘッド30の各々は、その配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施形態では2倍)ずらして配置されている。このため、1行目の露光エリア3211と露光エリア3212との間の露光できない部分は、2行目の露光エリア3221により露光することができる。
露光ヘッド30の各々は、図4及び図5に示すように、入射された光を画像データに応じて描素部ごとに変調する光変調手段(描素部ごとに変調する空間光変調素子)として、DMD36(米国テキサス・インスツルメンツ社製)を備えている。このDMD36は、データ処理部とミラー駆動制御部とを備えた描素部制御手段としてのコントローラに接続されている。このコントローラのデータ処理部では、入力された画像データに基づいて、露光ヘッド30ごとに、DMD36上の使用領域内の各マイクロミラーを駆動制御する制御信号を生成する。また、ミラー駆動制御部では、画像データ処理部で生成した制御信号に基づいて、露光ヘッド30ごとに、DMD36の各マイクロミラーの反射面の角度を制御する。
図4に示すように、DMD36の光入射側には、光ファイバの出射端部(発光点)が露光エリア32の長辺方向と一致する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源38、ファイバアレイ光源38から出射されたレーザ光を補正してDMD上に集光させるレンズ系40、このレンズ系40を透過したレーザ光をDMD36に向けて反射するミラー42がこの順に配置されている。なお図4では、レンズ系40を概略的に示してある。
上記レンズ系40は、図5に詳しく示すように、ファイバアレイ光源38から出射されたレーザ光を平行光化する1対の組合せレンズ44、平行光化されたレーザ光の光量分布が均一になるように補正する1対の組合せレンズ46、及び光量分布が補正されたレーザ光をDMD36上に集光する集光レンズ48で構成されている。
また、DMD36の光反射側には、DMD36で反射されたレーザ光を感光層12の被露光面上に結像するレンズ系50が配置されている。レンズ系50は、DMD36と感光層12の被露光面とが共役な関係となるように配置された、2枚のレンズ52及び54からなる。
本実施形態では、ファイバアレイ光源38から出射されたレーザ光は、実質的に5倍に拡大された後、DMD36上の各マイクロミラーからの光線が上記のレンズ系50によって約5μmに絞られるように設定されている。
‐光変調手段‐
前記光変調手段としては、n個(ただし、nは2以上の自然数)の2次元状に配列された前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間光変調素子が好ましい。
前記光変調手段としては、n個(ただし、nは2以上の自然数)の2次元状に配列された前記描素部を有し、前記パターン情報に応じて前記描素部を制御可能なものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間光変調素子が好ましい。
前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。
また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有することが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD36は図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。本実施形態では、1024列×768行のマイクロミラー58が配されてなるDMD36を使用するが、このうちDMD36に接続されたコントローラにより駆動可能すなわち使用可能なマイクロミラー58は、1024列×256行のみであるとする。DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して1ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用することにより1ライン当りの変調速度が速くなる。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36は図6に示すように、SRAMセル(メモリセル)56上に、各々描素(ピクセル)を構成する描素部として、多数のマイクロミラー58が格子状に配列されてなるミラーデバイスである。本実施形態では、1024列×768行のマイクロミラー58が配されてなるDMD36を使用するが、このうちDMD36に接続されたコントローラにより駆動可能すなわち使用可能なマイクロミラー58は、1024列×256行のみであるとする。DMD36のデータ処理速度には限界があり、使用するマイクロミラー数に比例して1ライン当りの変調速度が決定されるので、このように一部のマイクロミラーのみを使用することにより1ライン当りの変調速度が速くなる。各マイクロミラー58は支柱に支えられており、その表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、本実施形態では、各マイクロミラー58の反射率は90%以上であり、その配列ピッチは縦方向、横方向ともに13.7μmである。SRAMセル56は、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのものであり、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル(メモリセル)56に、所望の2次元パターンを構成する各点の濃度を2値で表した画像信号が書き込まれると、支柱に支えられた各マイクロミラー58が、対角線を中心としてDMD36が配置された基板側に対して±α度(たとえば±10度)のいずれかに傾く。図7Aは、マイクロミラー58がオン状態である+α度に傾いた状態を示し、図7Bは、マイクロミラー58がオフ状態である−α度に傾いた状態を示す。このように、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー58の傾きを、図6に示すように制御することによって、DMD36に入射したレーザ光Bはそれぞれのマイクロミラー58の傾き方向へ反射される。
図6には、DMD36の一部を拡大し、各マイクロミラー58が+α度又はα度に制御されている状態の一例を示す。それぞれのマイクロミラー58のオンオフ制御は、DMD36に接続された上記のコントローラによって行われる。また、オフ状態のマイクロミラー58で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
‐光照射手段‐
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ(以下、「合波レーザ」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、400nm〜450nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、400nm〜450nmが特に好ましい。
前記合波レーザを照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。
以下、前記合波レーザを照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。
ファイバアレイ光源38は、図8に示すように、複数(たとえば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図9に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
ファイバアレイ光源38は、図8に示すように、複数(たとえば14個)のレーザモジュール60を備えており、各レーザモジュール60には、マルチモード光ファイバ62の一端が結合されている。マルチモード光ファイバ62の他端には、マルチモード光ファイバ62より小さいクラッド径を有する光ファイバ64が結合されている。図9に詳しく示すように、光ファイバ64のマルチモード光ファイバ62と反対側の端部は走査方向と直交する方向に沿って7個並べられ、それが2列に配列されてレーザ出射部66が構成されている。
光ファイバ64の端部で構成されるレーザ出射部66は、図9に示すように、表面が平坦な2枚の支持板68に挟み込まれて固定されている。また、光ファイバ64の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。光ファイバ64の光出射端面は、光密度が高いため集塵しやすく劣化しやすいが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
このような光ファイバは、例えば、図25に示すように、クラッド径が大きいマルチモード光ファイバ62のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ64を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ64の入射端面が、マルチモード光ファイバ62の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ64のコア64aの径は、マルチモード光ファイバ62のコア62aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ62の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ64を、マルチモード光ファイバ62の出射端部と称する場合がある。
マルチモード光ファイバ62及び光ファイバ64としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ62及び光ファイバ64は、ステップインデックス型光ファイバであり、マルチモード光ファイバ62は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ64は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。従って、クラッド径を60μmと小さくすることができる。
但し、光ファイバのクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ64のクラッド径は10μm以上が好ましい。
レーザモジュール60は、図26に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック110上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1、LD2、LD3、LD4、LD5、LD6、及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズL1、L2、L3、L4、L5、L6及びL7と、1つの集光レンズ200と、1本のマルチモード光ファイバ62と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図27及び図28に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ400内に収納されている。パッケージ400は、その開口を閉じるように作成されたパッケージ蓋410を備えており、脱気処理後に封止ガスを導入し、パッケージ400の開口をパッケージ蓋410で閉じることにより、パッケージ400とパッケージ蓋410とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ400の底面にはベース板420が固定されており、このベース板420の上面には、前記ヒートブロック110と、集光レンズ200を保持する集光レンズホルダー450と、マルチモード光ファイバ62の入射端部を保持するファイバホルダー460とが取り付けられている。マルチモード光ファイバ62の出射端部は、パッケージ400の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック110の側面にはコリメータレンズホルダー440が取り付けられており、コリメータレンズL1〜L7が保持されている。パッケージ400の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線470がパッケージ外に引き出されている。
なお、図28においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズL7にのみ番号を付している。
図29は、前記コリメータレンズL1〜L7の取り付け部分の正面形状を示すものである。コリメータレンズL1〜L7の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズL1〜L7は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図29の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズL1〜L7に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズL1〜L7の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズL1〜L7の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ200は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズL1〜L7の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ200は、焦点距離f2=23mm、NA=0.2である。この集光レンズ200も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図30に示すように、ヒートブロック110上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図31Aに示す、複数(例えば、5個)の発光点111aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ111は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザビームを合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ111に撓みが発生し易くなるため、発光点111aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ111や、図31Bに示すように、ヒートブロック110上に、複数のマルチキャビティレーザ111が各チップの発光点111aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図32に示すように、複数(例えば、3個)の発光点111aを有するチップ状のマルチキャビティレーザ111を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ111と、1本のマルチモード光ファイバ62と、集光レンズ200と、を備えて構成されている。マルチキャビティレーザ111は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、集光レンズ200によって集光され、マルチモード光ファイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ111の複数の発光点111aを、上記マルチモード光ファイバ62のコア径と略等しい幅内に並設すると共に、集光レンズ200として、マルチモード光ファイバ62のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ111からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザビームBのマルチモード光ファイバ62への結合効率を上げることができる。
また、図33に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ111を用い、ヒートブロック110上に複数(例えば、9個)のマルチキャビティレーザ111が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ111は、各チップの発光点111aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ111に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザビームLは、集光レンズ200によって集光され、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図34A及び図34Bに示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ111が、各チップの発光点111aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ111のレーザ光出射側には、各チップの発光点111aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザビームの拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ62と、このマルチモード光ファイバ62の入射端にレーザビームを集光して結合する集光レンズ200と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ111の複数の発光点111aの各々から出射したレーザビームBの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ200によって集光されて、マルチモード光フアイバ62のコア62aに入射する。コア62aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、本発明のパターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ62の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
<<使用描素部指定手段>>
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
前記使用描素部指定手段としては、描素単位としての光点の位置を被露光面上において検出する光点位置検出手段と、前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段とを少なくとも備えることが好ましい。
以下、前記使用描素部指定手段による、N重露光に使用する描素部の指定方法の例について説明する。
(1)単一露光ヘッド内における使用描素部の指定方法
本実施形態(1)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(1)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、各露光ヘッド30の取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
露光ヘッド30の走査方向に対する描素部(マイクロミラー58)の列方向の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部を使用してちょうど2重露光となる角度θidealよりも、若干大きい角度を採用するものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
となる。本実施形態(1)では、上記のとおりs=256、N=2であるので、前記式3より、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図10は、上記のように初期調整されたパターン形成装置10において、1つの露光ヘッド30の取付角度誤差、及びパターン歪みの影響により、被露光面上のパターンに生じるむらの例を示した説明図である。以下の図面及び説明においては、各描素部(マイクロミラー)により生成され、被露光面上の露光領域を構成する描素単位としての光点について、第m行目の光点をr(m)、第n列目の光点をc(n)、第m行第n列の光点をP(m,n)とそれぞれ表記するものとする。
図10の上段部分は、ステージ14を静止させた状態で感光材料12の被露光面上に投影される、使用可能なマイクロミラー58からの光点群のパターンを示し、下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を示したものである。
なお、図10では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
なお、図10では、説明の便宜のため、使用可能なマイクロミラー58の奇数列による露光パターンと偶数列による露光パターンを分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図10の例では、設定傾斜角度θを上記の角度θidealよりも若干大きい角度を採用した結果として、また露光ヘッド30の取付角度の微調整が困難であるために、実際の取付角度と上記の設定傾斜角度θとが誤差を有する結果として、被露光面上のいずれの領域においても濃度むらが生じている。具体的には、奇数列のマイクロミラーによる露光パターン及び偶数列のマイクロミラーによる露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域において、理想的な2重露光に対して露光過多となり、描画が冗長となる領域が生じ、濃度むらが生じている。
さらに、図10の例では、被露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。このような角度歪みが生じる原因としては、DMD36と被露光面間の光学系の各種収差やアラインメントずれ、及びDMD36自体の歪みやマイクロミラーの配置誤差等が挙げられる。
図10の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
図10の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど小さく、図の右方の列ほど大きくなっている形態の歪みである。この角度歪みの結果として、露光過多となっている領域は、図の左方に示した被露光面上ほど小さく、図の右方に示した被露光面上ほど大きくなっている。
上記したような、複数の描素部列により形成された、被露光面上の重複露光領域における濃度むらを軽減するために、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド30ごとに実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として前記光検出器に接続された前記演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
実傾斜角度θ´は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図11及び12を用いて、前記実傾斜角度θ´の特定、及び使用画素選択処理について説明する。
実傾斜角度θ´は、光点位置検出手段が検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす角度により特定される。
以下、図11及び12を用いて、前記実傾斜角度θ´の特定、及び使用画素選択処理について説明する。
−実傾斜角度θ´の特定−
図11は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ´として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1,512)及びP(256,512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ´として特定する。
図11は、1つのDMD36による露光エリア32と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光エリア32の幅を十分覆う大きさとされている。
本実施形態(1)の例では、露光エリア32の略中心に位置する第512列目の光点列と露光ヘッド30の走査方向とがなす角度を、上記の実傾斜角度θ´として測定する。具体的には、DMD36上の第1行目第512列目のマイクロミラー58、及び第256行目第512列目のマイクロミラー58をオン状態とし、それぞれに対応する被露光面上の光点P(1,512)及びP(256,512)の位置を検出し、それらを結ぶ直線と露光ヘッドの走査方向とがなす角度を実傾斜角度θ´として特定する。
図12は、光点P(256,512)の位置の検出手法を説明した上面図である。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
まず、第256行目第512列目のマイクロミラー58を点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,512)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図12における右方に相対移動させる。そして、図12において二点鎖線で示すように、光点P(256,512)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y1)を、光点P(256,512)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図12における左方に相対移動させる。そして、図12において二点鎖線で示すように、光点P(256,512)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を光点P(256,512)の位置として記録する。
以上の測定結果から、光点P(256,512)の被露光面上における位置を示す座標(X,Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。同様の測定により、P(1,512)の位置を示す座標も決定し、それぞれの座標を結ぶ直線と、露光ヘッド30の走査方向とがなす傾斜角度を導出し、これを実傾斜角度θ´として特定する。
‐使用描素部の選択‐
このようにして特定された実傾斜角度θ´を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
このようにして特定された実傾斜角度θ´を用い、前記光検出器に接続された前記演算装置は、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを導出し、DMD36上の1行目からT行目のマイクロミラーを、本露光時に実際に使用するマイクロミラーとして選択する処理を行う。これにより、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域と、露光不足となる領域との面積合計が最小となるようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、値t以下の最大の自然数を導出することとしてもよい。その場合、第512列目付近の露光領域において、理想的な2重露光に対して、露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
図13は、上記のようにして実際に使用するマイクロミラーとして選択されたマイクロミラーが生成した光点のみを用いて行った露光において、図10に示した被露光面上のむらがどのように改善されるかを示した説明図である。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図13に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
この例では、上記の自然数TとしてT=253が導出され、第1行目から第253行目のマイクロミラーが選択されたものとする。選択されなかった第254行目から第256行目のマイクロミラーに対しては、前記描素部制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。図13に示すとおり、第512列目付近の露光領域では、露光過多及び露光不足は、ほぼ完全に解消され、理想的な2重露光に極めて近い均一な露光が実現される。
一方、図13の左方の領域(図中のc(1)付近)では、前記角度歪みにより、被露光面上における光点列の傾斜角度が中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも小さくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーのみによる露光では、偶数列による露光パターン及び奇数列による露光パターンのそれぞれにおいて、理想的な2重露光に対して露光不足となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光量不足となる領域が互いに補完され、前記角度歪みによる露光むらを、2重露光による埋め合わせの効果で最小とすることができる。
また、図13の右方の領域(図中のc(1024)付近)では、前記角度歪みにより、被露光面上における光線列の傾斜角度が、中央付近(図中のc(512)付近)の領域における光線列の傾斜角度よりも大きくなっている。したがって、c(512)を基準として測定された実傾斜角度θ´に基づいて選択されたマイクロミラーによる露光では、図に示すように、理想的な2重露光に対して露光過多となる領域がわずかに生じてしまう。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
しかしながら、図示の奇数列による露光パターンと偶数列による露光パターンとを重ね合わせてなる実際の露光パターンにおいては、露光過多となる領域が互いに補完され、前記角度歪による濃度むらを、2重露光による埋め合わせの効果で最小とすることができる。
本実施形態(1)では、上述のとおり、第512列目の光線列の実傾斜角度θ´が測定され、該実傾斜角度θ´を用い、前記式(4)により導出されたTに基づいて使用するマイクロミラー58を選択したが、前記実傾斜角度θ´の特定方法としては、複数の描素部の列方向(光点列)と、前記露光ヘッドの走査方向とがなす複数の実傾斜角度をそれぞれ測定し、それらの平均値、中央値、最大値、及び最小値のいずれかを実傾斜角度θ´として特定し、前記式4等によって実際の露光時に実際に使用するマイクロミラーを選択する形態としてもよい。
前記平均値又は前記中央値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
さらに、前記最小値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
前記平均値又は前記中央値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域と露光不足となる領域とのバランスがよい露光を実現することができる。例えば、露光過多となる領域と、露光量不足となる領域との合計面積が最小に抑えられ、かつ、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるような露光を実現することが可能である。
また、前記最大値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光過多となる領域の排除をより重要視した露光を実現することができ、例えば、露光不足となる領域の面積を最小に抑え、かつ、露光過多となる領域が生じないような露光を実現することが可能である。
さらに、前記最小値を実傾斜角度θ´とすれば、理想的なN重露光に対して露光不足となる領域の排除をより重要視した露光を実現することができ、例えば、露光過多となる領域の面積を最小に抑え、かつ、露光不足となる領域が生じないような露光を実現することが可能である。
一方、前記実傾斜角度θ´の特定は、同一の描素部の列(光点列)中の少なくとも2つの光点の位置に基づく方法に限定されない。例えば、同一描素部列c(n)中の1つ又は複数の光点の位置と、該c(n)近傍の列中の1つ又は複数の光点の位置とから求めた角度を、実傾斜角度θ´として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。さらに、c(n)列近傍の光点列中の少なくとも2つの光点(たとえば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ´として特定してもよい。
具体的には、c(n)中の1つの光点位置と、露光ヘッドの走査方向に沿って直線上かつ近傍の光点列に含まれる1つ又は複数の光点位置とを検出し、これらの位置情報から、実傾斜角度θ´を求めることができる。さらに、c(n)列近傍の光点列中の少なくとも2つの光点(たとえば、c(n)を跨ぐように配置された2つの光点)の位置に基づいて求めた角度を、実傾斜角度θ´として特定してもよい。
以上のように、パターン形成装置10を用いた本実施形態(1)の使用描素部の指定方法によれば、各露光ヘッドの取付角度誤差やパターン歪みの影響による解像度のばらつきや濃度のむらを軽減し、理想的なN重露光を実現することができる。
(2)複数露光ヘッド間における使用描素部の指定方法<1>
本実施形態(2)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(2)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30すなわち各DMD36の設定傾斜角度θとしては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部マイクロミラー58を使用してちょうど2重露光となる角度θidealを採用するものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、パターン形成装置10は、各露光ヘッド30すなわち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
この角度θidealは、上記の実施形態(1)と同様にして前記式1〜3から求められる。本実施形態(2)において、パターン形成装置10は、各露光ヘッド30すなわち各DMD36の取付角度がこの角度θidealとなるように、初期調整されているものとする。
図14は、上記のように初期調整されたパターン形成装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の、理想的な状態からのずれの影響により、被露光面上のパターンに生じる濃度むらの例を示した説明図である。各露光ヘッドのX軸方向に関する相対位置のずれは、露光ヘッド間の相対位置の微調整が困難であるために生じ得るものである。
図14の上段部分は、ステージ14を静止させた状態で感光材料12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した図である。図14の下段部分は、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示したものである。
なお、図14では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
なお、図14では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示してあるが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図14の例では、上記したX軸方向に関する露光ヘッド3012と3021との間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光の状態よりも露光量過多な部分が生じてしまっている。
上記したような、複数の前記露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域に現れる濃度むらを軽減するために、本実施形態(2)では、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021からの光点群のうち、被露光面上に形成される前記ヘッド間つなぎ領域を構成する光点のいくつかについて、その位置(座標)を検出する。該位置(座標)に基づいて、前記描素部選択手段として前記光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−位置(座標)の検出−
図15は、図14と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図15は、図14と同様の露光エリア3212及び3221と、対応するスリット28との位置関係を示した上面図である。スリット28の大きさは、露光ヘッド3012と3021による露光済み領域34間の重複部分の幅を十分覆う大きさ、すなわち、露光ヘッド3012と3021により被露光面上に形成される前記ヘッド間つなぎ領域を十分覆う大きさとされている。
図16は、一例として露光エリア3221の光点P(256,1024)の位置を検出する際の検出手法を説明した上面図である。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
まず、第256行目第1024列目のマイクロミラーを点灯させた状態で、ステージ14をゆっくり移動させてスリット28をY軸方向に沿って相対移動させ、光点P(256,1024)が上流側のスリット28aと下流側のスリット28bの間に来るような任意の位置に、スリット28を位置させる。このときのスリット28aとスリット28bとの交点の座標を(X0,Y0)とする。この座標(X0,Y0)の値は、ステージ14に与えられた駆動信号が示す上記の位置までのステージ14の移動距離、及び、既知であるスリット28のX方向位置から決定され、記録される。
次に、ステージ14を移動させ、スリット28をY軸に沿って図16における右方に相対移動させる。そして、図16において二点鎖線で示すように、光点P(256,1024)の光が左側のスリット28bを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y1)を、光点P(256,1024)の位置として記録する。
次いで、ステージ14を反対方向に移動させ、スリット28をY軸に沿って図16における左方に相対移動させる。そして、図16において二点鎖線で示すように、光点P(256,1024)の光が右側のスリット28aを通過して光検出器で検出されたところでステージ14を停止させる。このときのスリット28aとスリット28bとの交点の座標(X0,Y2)を、光点P(256,1024)として記録する。
以上の測定結果から、光点P(256,1024)の被露光面における位置を示す座標(X,Y)を、X=X0+(Y1−Y2)/2、Y=(Y1+Y2)/2の計算により決定する。
−不使用描素部の特定−
図14の例では、まず、露光エリア3212の光点P(256,1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256,1024)、P(256,1023)・・・と順番に検出していき、露光エリア3212の光点P(256,1)よりも大きいX座標を示す露光エリア3221の光点P(256,n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図14において、露光エリア3221の光点P(256,1020)が、露光エリア3212の光点P(256,1)よりも大きいX座標を示し、その露光エリア3221の光点P(256,1020)が検出されたところで検出動作が終了したとすると、図17において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
図14の例では、まず、露光エリア3212の光点P(256,1)の位置を、上記の光点位置検出手段としてスリット28と光検出器の組により検出する。続いて、露光エリア3221の第256行目の光点行r(256)上の各光点の位置を、P(256,1024)、P(256,1023)・・・と順番に検出していき、露光エリア3212の光点P(256,1)よりも大きいX座標を示す露光エリア3221の光点P(256,n)が検出されたところで、検出動作を終了する。そして、露光エリア3221の光点光点列c(n+1)からc(1024)を構成する光点に対応するマイクロミラーを、本露光時に使用しないマイクロミラー(不使用描素部)として特定する。
例えば、図14において、露光エリア3221の光点P(256,1020)が、露光エリア3212の光点P(256,1)よりも大きいX座標を示し、その露光エリア3221の光点P(256,1020)が検出されたところで検出動作が終了したとすると、図17において斜線で覆われた部分70に相当する露光エリア3221の第1021行から第1024行を構成する光点に対応するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定される。
次に、N重露光の数Nに対して、露光エリア3212の光点P(256,N)の位置が検出される。本実施形態(2)では、N=2であるので、光点P(256,2)の位置が検出される。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1,1020)から順番にP(1,1020)、P(2,1020)・・・と検出していき、露光エリア3212の光点P(256,2)よりも大きいX座標を示す光点P(m,1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標とが比較され、露光エリア3221の光点P(m,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
さらに、露光エリア3212の光点P(256,N−1)すなわち光点P(256,1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
続いて、露光エリア3221の光点列のうち、上記で本露光時に使用しないマイクロミラーに対応する光点列として特定されたものを除き、最も右側の第1020列を構成する光点の位置を、P(1,1020)から順番にP(1,1020)、P(2,1020)・・・と検出していき、露光エリア3212の光点P(256,2)よりも大きいX座標を示す光点P(m,1020)が検出されたところで、検出動作を終了する。
その後、前記光検出器に接続された演算装置において、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標とが比較され、露光エリア3221の光点P(m,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーが本露光時に使用しないマイクロミラーとして特定される。
また、露光エリア3221の光点P(m−1,1020)のX座標の方が露光エリア3212の光点P(256,2)のX座標に近い場合は、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。
さらに、露光エリア3212の光点P(256,N−1)すなわち光点P(256,1)の位置と、露光エリア3221の次列である第1019列を構成する各光点の位置についても、同様の検出処理及び使用しないマイクロミラーの特定が行われる。
その結果、たとえば、図17において網掛けで覆われた領域72を構成する光点に対応するマイクロミラーが、実際の露光時に使用しないマイクロミラーとして追加される。これらのマイクロミラーには、常時、そのマイクロミラーの角度をオフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に使用されない。
このように、実際の露光時に使用しないマイクロミラーを特定し、該使用しないマイクロミラーを除いたものを、実際の露光時に使用するマイクロミラーとして選択することにより、露光エリア3212と3221の前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができ、図17の下段に示すように、理想的な2重露光に極めて近い均一な露光を実現することができる。
なお、上記の例においては、図17において網掛けで覆われた領域72を構成する光点の特定に際し、露光エリア3212の光点P(256,2)のX座標と、露光エリア3221の光点P(m,1020)及びP(m−1,1020)のX座標との比較を行わずに、ただちに、露光エリア3221の光点P(1,1020)からP(m−2,1020)に対応するマイクロミラーを、本露光時に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光過多となる領域の面積が最小になり、かつ露光不足となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
また、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
さらに、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
また、露光エリア3221の光点P(1,1020)からP(m−1,1020)に対応するマイクロミラーを、本露光に使用しないマイクロミラーとして特定してもよい。その場合、前記ヘッド間つなぎ領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようなマイクロミラーを、実際に使用するマイクロミラーとして選択することができる。
さらに、前記ヘッド間つなぎ領域において、理想的な2重描画に対して露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、実際に使用するマイクロミラーを選択することとしてもよい。
以上のように、パターン形成装置10を用いた本実施形態(2)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれに起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
(3)複数露光ヘッド間における使用描素部の指定方法<2>
本実施形態(3)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
本実施形態(3)では、パターン形成装置10により、感光材料12に対して2重露光を行う場合であって、複数の露光ヘッド30により形成された被露光面上の重複露光領域であるヘッド間つなぎ領域において、2つの露光ヘッド(一例として露光ヘッド3012と3021)のX軸方向に関する相対位置の理想的な状態からのずれ、並びに各露光ヘッドの取付角度誤差、及び2つの露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的な2重露光を実現するための使用描素部の指定方法を説明する。
各露光ヘッド30すなわち各DMD36の設定傾斜角度としては、露光ヘッド30の取付角度誤差等がない理想的な状態であれば、使用可能な1024列×256行の描素部(マイクロミラー58)を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用するものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
この角度θidealは、前記式1〜3を用いて上記(1)の実施形態と同様にして求められる値であり、本実施形態では、上記のとおりs=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度程度の角度を採用するとよい。パターン形成装置10は、調整可能な範囲内で、各露光ヘッド30すなわち各DMD36の取付角度がこの設定傾斜角度θに近い角度となるように、初期調整されているものとする。
図18は、上記のように各露光ヘッド30すなわち各DMD36の取付角度が初期調整されたパターン形成装置10において、2つの露光ヘッド(一例として露光ヘッド3012と3021)の取付角度誤差、並びに各露光ヘッド3012と3021間の相対取付角度誤差及び相対位置のずれの影響により、被露光面上のパターンに生じるむらの例を示した説明図である。
図18の例では、図14の例と同様の、X軸方向に関する露光ヘッド3012と3021の相対位置のずれの結果として、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、露光エリア3212と3221の被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光量過多な領域74が生じ、これが濃度むらを引き起こしている。
さらに、図18の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
さらに、図18の例では、各露光ヘッドの設定傾斜角度θを前記式(1)を満たす角度θidealよりも若干大きくしたことによる結果、及び各露光ヘッドの取付角度の微調整が困難であるために、実際の取付角度が上記の設定傾斜角度θからずれてしまったことの結果として、被露光面上の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域以外の領域でも、一列おきの光点群(画素列群A及びB)による露光パターンの双方で、複数の描素部列により形成された、被露光面上の重複露光領域である描素部列間つなぎ領域において、理想的な2重露光の状態よりも露光過多となる領域76が生じ、これがさらなる濃度むらを引き起こしている。
本実施形態(3)では、まず、各露光ヘッド3012と3021の取付角度誤差及び相対取付角度のずれの影響による濃度むらを軽減するための使用画素選択処理を行う。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
具体的には、前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012と3021のそれぞれについて、実傾斜角度θ´を特定し、該実傾斜角度θ´に基づき、前記描素部選択手段として光検出器に接続された演算装置を用いて、実際の露光に使用するマイクロミラーを選択する処理を行うものとする。
−実傾斜角度θ´の特定−
実傾斜角度θ´の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
実傾斜角度θ´の特定は、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を、それぞれ上述した実施形態(2)で用いたスリット28と光検出器の組により検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定することにより行われる。
−不使用描素部の特定−
そのようにして特定された実傾斜角度θ´を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図19において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
そのようにして特定された実傾斜角度θ´を用いて、光検出器に接続された演算装置は、上述した実施形態(1)における演算装置と同様、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出し、DMD36上の第(T+1)行目から第256行目のマイクロミラーを、本露光に使用しないマイクロミラーとして特定する処理を行う。
例えば、露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255が導出されたとすると、図19において斜線で覆われた部分78及び80を構成する光点に対応するマイクロミラーが、本露光に使用しないマイクロミラーとして特定される。これにより、露光エリア3212と3221のうちヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
ここで、上記の値tに最も近い自然数を導出することに代えて、値t以上の最小の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光量過多となる面積が最小になり、かつ露光量不足となる面積が生じないようになすことができる。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
あるいは、値t以下の最大の自然数を導出することとしてもよい。その場合、露光エリア3212と3221の、複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光不足となる領域の面積が最小になり、かつ露光過多となる領域が生じないようになすことができる。
複数の露光ヘッドにより形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して、露光過多となる領域の描素単位数(光点数)と、露光不足となる領域の描素単位数(光点数)とが等しくなるように、本露光時に使用しないマイクロミラーを特定することとしてもよい。
その後、図19において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、図14から17を用いて説明した本実施形態(3)と同様の処理がなされ、図19において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加される。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しない。
以上のように、パターン形成装置10を用いた本実施形態(3)の使用描素部の指定方法によれば、複数の露光ヘッドのX軸方向に関する相対位置のずれ、並びに各露光ヘッドの取付角度誤差、及び露光ヘッド間の相対取付角度誤差に起因する解像度のばらつきと濃度むらとを軽減し、理想的なN重露光を実現することができる。
以上、パターン形成装置10による使用描素部指定方法ついて詳細に説明したが、上記実施形態(1)〜(3)は一例に過ぎず、本発明の範囲を逸脱することなく種々の変更が可能である。
また、上記の実施形態(1)〜(3)では、被露光面上の光点の位置を検出するための手段として、スリット28と単一セル型の光検出器の組を用いたが、これに限られずいかなる形態のものを用いてもよく、たとえば2次元検出器等を用いてもよい。
さらに、上記の実施形態(1)〜(3)では、スリット28と光検出器の組による被露光面上の光点の位置検出結果から実傾斜角度θ´を求め、その実傾斜角度θ´に基づいて使用するマイクロミラーを選択したが、実傾斜角度θ´の導出を介さずに使用可能なマイクロミラーを選択する形態としてもよい。さらには、たとえばすべての使用可能なマイクロミラーを用いた参照露光を行い、参照露光結果の目視による解像度や濃度のむらの確認等により、操作者が使用するマイクロミラーを手動で指定する形態も、本発明の範囲に含まれるものである。
なお、被露光面上に生じ得るパターン歪みには、上記の例で説明した角度歪みの他にも、種々の形態が存在する。
一例としては、図20Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図20のBに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で被露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と被露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
さらに別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で被露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と被露光面間の光学要素(たとえば1枚レンズである図5のレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
一例としては、図20Aに示すように、DMD36上の各マイクロミラー58からの光線が、異なる倍率で露光面上の露光エリア32に到達してしまう倍率歪みの形態がある。
また、別の例として、図20のBに示すように、DMD36上の各マイクロミラー58からの光線が、異なるビーム径で被露光面上の露光エリア32に到達してしまうビーム径歪みの形態もある。これらの倍率歪み及びビーム径歪みは、主として、DMD36と被露光面間の光学系の各種収差やアラインメントずれに起因して生じる。
さらに別の例として、DMD36上の各マイクロミラー58からの光線が、異なる光量で被露光面上の露光エリア32に到達してしまう光量歪みの形態もある。この光量歪みは、各種収差やアラインメントずれのほか、DMD36と被露光面間の光学要素(たとえば1枚レンズである図5のレンズ52及び54)の透過率の位置依存性や、DMD36自体による光量むらに起因して生じる。これらの形態のパターン歪みも、被露光面上に形成されるパターンに解像度や濃度のむらを生じさせる。
上記の実施形態(1)〜(3)によれば、本露光に実際に使用するマイクロミラーを選択した後の、これらの形態のパターン歪みの残留要素も、上記の角度歪みの残留要素と同様、多重露光による埋め合わせの効果で均すことができ、解像度や濃度のむらを、各露光ヘッドの露光領域全体にわたって軽減することができる。
<<参照露光>>
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
上記の実施形態(1)〜(3)の変更例として、使用可能なマイクロミラーのうち、(N−1)列おきのマイクロミラー列、又は全光点行のうち1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行い、均一な露光を実現できるように、前記参照露光に使用されたマイクロミラー中、実際の露光時に使用しないマイクロミラーを特定することとしてもよい。
前記参照露光手段による参照露光の結果をサンプル出力し、該出力された参照露光結果に対し、解像度のばらつきや濃度のむらを確認し、実傾斜角度を推定するなどの分析を行う。前記参照露光の結果の分析は、操作者の目視による分析であってもよい。
図21は、単一露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図21Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図21Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図21Aに実線で示した奇数列の光点列に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図21Bに斜線で覆って示す光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点列を構成するマイクロミラー中、本露光において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列の光点列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図22は、複数の露光ヘッドを用い、(N−1)列おきのマイクロミラーのみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図22に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図22に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図22に実線で示した、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)の奇数列の光点列に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを確認したり、実傾斜角度を推定したりすることで、本露光時において使用するマイクロミラーを指定することができる。
例えば、図22に斜線で覆って示す領域86及び網掛けで示す領域88内の光点列に対応するマイクロミラー以外のマイクロミラーが、奇数列の光点を構成するマイクロミラー中、本露光時において実際に使用されるものとして指定される。偶数列の光点列については、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、奇数列目の画素列に対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に実際に使用するマイクロミラーを指定することにより、奇数列及び偶数列双方のマイクロミラーを使用した本露光においては、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において、理想的な2重露光に近い状態が実現できる。
図23は、単一露光ヘッドを用い、全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図23Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図23Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図23Aに実線で示した1行目から128(=256/2)行目の光点に対応するマイクロミラーのみを使用して参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、本露光時において使用するマイクロミラーを指定することができる。
例えば、図23Bに斜線で覆って示す光点群に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定され得る。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光時に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、全体のマイクロミラーを使用した本露光においては、理想的な2重露光に近い状態が実現できる。
図24は、複数の露光ヘッドを用い、X軸方向に関して隣接する2つの露光ヘッド(一例として露光ヘッド3012と3021)について、それぞれ全光点行数の1/N行に相当する隣接する行を構成するマイクロミラー群のみを使用して参照露光を行う形態の一例を示した説明図である。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図24に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図24に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
この例では、本露光時は2重露光とするものとし、したがってN=2である。まず、図24に実線で示した第1行目から第128(=256/2)行目の光点に対応するマイクロミラーのみを使用して、参照露光を行い、参照露光結果をサンプル出力する。前記サンプル出力された参照露光結果に基づき、2つの露光ヘッドにより被露光面上に形成されるヘッド間つなぎ領域以外の領域における解像度のばらつきや濃度のむらを最小限に抑えた本露光が実現できるように、本露光時において使用するマイクロミラーを指定することができる。
例えば、図24に斜線で覆って示す領域90及び網掛けで示す領域92内の光点列に対応するマイクロミラー以外のマイクロミラーが、第1行目から第128行目のマイクロミラー中、本露光時において実際に使用されるものとして指定される。第129行目から第256行目のマイクロミラーについては、別途同様に参照露光を行って、本露光に使用するマイクロミラーを指定してもよいし、第1行目から第128行目のマイクロミラーに対するパターンと同一のパターンを適用してもよい。
このようにして本露光時に使用するマイクロミラーを指定することにより、2つの露光ヘッドにより被露光面上に形成される前記ヘッド間つなぎ領域以外の領域において理想的な2重露光に近い状態が実現できる。
以上の実施形態(1)〜(3)及び変更例においては、いずれも本露光を2重露光とする場合について説明したが、これに限定されず、2重露光以上のいかなる多重露光としてもよい。特に3重露光から7重露光程度とすることにより、高解像度を確保し、解像度のばらつき及び濃度むらが軽減された露光を実現することができる。
また、上記の実施形態及び変更例に係る露光装置には、さらに、画像データが表す2次元パターンの所定部分の寸法が、選択された使用画素により実現できる対応部分の寸法と一致するように、画像データを変換する機構が設けられていることが好ましい。そのように画像データを変換することによって、所望の2次元パターンどおりの高精細なパターンを被露光面上に形成することができる。
〔積層体〕
前記露光の対象としては、バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤とを少なくとも含む感光性組成物を用いて基材の表面に形成された感光層である限り、特に制限はなく、目的に応じて適宜選択することができる。
前記感光層としては、前記感光性組成物を基材の表面に塗布し、乾燥することにより形成される第1の態様の感光層、及び支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層することにより形成される第2の態様の感光層が挙げられる。
前記露光の対象としては、バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤とを少なくとも含む感光性組成物を用いて基材の表面に形成された感光層である限り、特に制限はなく、目的に応じて適宜選択することができる。
前記感光層としては、前記感光性組成物を基材の表面に塗布し、乾燥することにより形成される第1の態様の感光層、及び支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層することにより形成される第2の態様の感光層が挙げられる。
〔基材〕
前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられるが、これらの中でも、プリント配線板形成用基板が好ましく、多層配線基板やビルドアップ配線基板などへの半導体等の高密度実装化が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好ましい。
前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられるが、これらの中でも、プリント配線板形成用基板が好ましく、多層配線基板やビルドアップ配線基板などへの半導体等の高密度実装化が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好ましい。
〔感光性組成物〕
前記感光性組成物としては、バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤とを少なくとも含み、更に必要に応じて、着色顔料、体質顔料、熱重合禁止剤、界面活性剤などのその他の成分を含む。
前記感光性組成物としては、バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤とを少なくとも含み、更に必要に応じて、着色顔料、体質顔料、熱重合禁止剤、界面活性剤などのその他の成分を含む。
<バインダー>
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記バインダーとしては、例えば、アルカリ性水溶液に対して膨潤性であるのが好ましく、アルカリ性水溶液に対して可溶性であるのがより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられる。
前記バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開昭51−131706号、特開昭52−94388号、特開昭64−62375号、特開平2−97513号、特開平3−289656号、特開平61−243869号、特開2002−296776号などの各公報に記載の酸性基を有するエポキシアクリレート化合物が挙げられる。具体的には、フェノールノボラック型エポキシアクリレート、あるいは、クレゾールノボラックエポキシアクリレート、ビスフェノールA型エポキシアクリレート等であって、例えばエポキシ樹脂や多官能エポキシ化合物に(メタ)アクリル酸等のカルボキシル基含有モノマーを反応させ、更に無水フタル酸等の二塩基酸無水物を付加させたものである。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
前記エポキシアクリレート化合物の分子量は、1,000〜200,000が好ましく、2,000〜100,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、200,000を超えると、現像性が劣化することがある。
また、特開平6−295060号公報記載の酸性基及び二重結合等の重合可能な基を少なくとも1つ有するアクリル樹脂も用いることができる。具体的には、分子内に少なくとも1つの重合可能な二重結合、例えば、(メタ)アクリレート基又は(メタ)アクリルアミド基等のアクリル基、カルボン酸のビニルエステル、ビニルエーテル、アリルエーテル等の各種重合性二重結合を用いることができる。より具体的には、酸性基としてカルボキシル基を含有するアクリル樹脂に、グリシジルアクリレート、グリシジルメタクリレート、桂皮酸等の不飽和脂肪酸のグリシジルエステルや、同一分子中にシクロヘキセンオキシド等のエポキシ基と(メタ)アクリロイル基を有する化合物等のエポキシ基含有の重合性化合物を付加させて得られる化合物などが挙げられる。また、酸性基及び水酸基を含有するアクリル樹脂に、イソシアナートエチル(メタ)アクリレート等のイソシアネート基含有の重合性化合物を付加させて得られる化合物、無水物基を含有するアクリル樹脂に、ヒドロキシアルキル(メタ)アクリレート等の水酸基を含有する重合性化合物を付加させて得られる化合物なども挙げられる。これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER) A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER) M−200;ダイセル化学工業(株)製」などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
更に、特開昭50−59315号公報記載のヒドロキシアルキルアクリレート又はヒドロキシアルキルメタクリレートとポリカルボン酸無水物及びエピハロヒドリンのいずれかとの反応物などを用いることができる。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレートに酸無水物を付加させて得られる化合物、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平2−097502号公報や特開2003−20310号公報記載のアミド基を含有するスチレン又はスチレン誘導体と酸無水物共重合体、特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記アクリル樹脂、フルオレン骨格を有するエポキシアクリレート、ポリアミド(イミド)、アミド基含有スチレン/酸無水物共重合体、あるいは、ポリイミド前駆体などのバインダーの分子量は、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物固形分中の固形分含有量は、5〜80質量%が好ましく、10〜70質量%がより好ましい。該固形分含有量が、5質量%未満であると、感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、80質量%を超えると、露光感度が低下することがある。
<重合性化合物>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、5〜50質量%が好ましく、10〜40質量%がより好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
<光重合開始剤>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、オキサジアゾール骨格を有するもの等)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
本発明で好適に用いられるオキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタン等)、N−フェニルグリシン等、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号公報等に記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBII等)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレット等)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフルオロホスフェート(1−)等)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
また、後述する感光層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ及び可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ及び可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン等)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン等があげられ、他に特開平5-19475号、特開平7-271028号、特開2002-363206号、特開2002-363207号、特開2002-363208号、特開2002-363209号等の各公報に記載のクマリン化合物など)が挙げられる。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
前記光重合開始剤の前記感光性組成物における含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
<熱架橋剤>
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記エポキシ樹脂化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記エポキシ樹脂化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
前記エポキシ樹脂化合物又はオキセタン化合物の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を生ずる、あるいは、半田耐熱性や耐無電解メッキ性等などが低下することがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。
また、前記エポキシ樹脂化合物や前記オキセタン化合物の熱硬化を促進するため、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等のブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ樹脂、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
前記エポキシ樹脂、前記オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性組成物固形分中の固形分含有量は、通常0.01〜15質量%である。
また、前記熱架橋剤としては、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物は、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。具体的には、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリン等との多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体等の環式三量体;などが挙げられる。
更に、本発明の感光性組成物、あるいは、本発明の感光性フィルムの保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類;フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
前記イソシアネート基ブロック剤としては、イソプロパノール、tert.−ブタノール等のアルコール類;ε−カプロラクタム等のラクタム類;フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノール等のフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリン等の複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシム等の活性メチレン化合物;などが挙げられる。これらの他、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチルもしくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメチル化メチロールメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。
前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、1〜40質量%が好ましく、3〜20質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、40質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。
<その他の成分>
前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤(着色顔料あるいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする感光性組成物あるいは後述する感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。
前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤(着色顔料あるいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする感光性組成物あるいは後述する感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。
<<熱重合禁止剤>>
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
<<着色顔料>>
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用することができる。
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。また、必要に応じて、公知の染料の中から、適宜選択した染料を使用することができる。
前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には0.05〜10質量%が好ましく、0.1〜5質量%がより好ましい。
<<体質顔料>>
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m2/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m2/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記体質顔料の添加量は、5〜60質量%が好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。
−密着促進剤−
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報などに記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。
前記密着促進剤の含有量としては、前記感光性組成物中の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
前記感光層の形成方法としては、第1の態様として、前記感光性組成物を前記基材の表面に塗布し、乾燥する方法が挙げられ、第2の態様として、感光性フィルムを加熱及び加圧の少なくともいずれかの下において基材の表面に積層する方法が挙げられる。
前記第1の態様の感光層の形成方法は、前記基材上に、前記感光性組成物を塗布及び乾燥して感光層を形成する。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記基材の表面に、前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記基材に直接塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3〜100μmが好ましく、5〜70μmがより好ましい。
前記第2の態様の感光層の形成方法は、前記基材の表面に支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを加熱及び加圧の少なくともいずれかを行いながら積層する。なお、前記感光性フィルムが後述する保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
〔感光性フィルム〕
前記感光性フィルムは、少なくとも支持体と、感光層とを有してなり、好ましくは保護フィルムを有してなり、更に必要に応じて、クッション層、酸素遮断層(PC層)などのその他の層を有してなる。
前記感光性フィルムの形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、前記感光層、前記保護膜フィルムをこの順に有してなる形態、前記支持体上に、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態、前記支持体上に、前記クッション層、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
前記感光性フィルムは、少なくとも支持体と、感光層とを有してなり、好ましくは保護フィルムを有してなり、更に必要に応じて、クッション層、酸素遮断層(PC層)などのその他の層を有してなる。
前記感光性フィルムの形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、前記感光層、前記保護膜フィルムをこの順に有してなる形態、前記支持体上に、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態、前記支持体上に、前記クッション層、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
<支持体>
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフルオロエチレン、ポリトリフルオロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、4〜300μmが好ましく、5〜175μmがより好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。
−感光性フィルムにおける感光層−
前記感光性フィルムにおける感光層は、前記感光性組成物により形成される。
前記感光層の前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記支持体上に積層される。
前記感光性フィルムにおける感光層は、前記感光性組成物により形成される。
前記感光層の前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記支持体上に積層される。
前記感光性フィルムにおける感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3〜100μmが好ましく、5〜70μmがより好ましい。
前記感光性フィルムにおける感光層の形成は、前記基材への前記感光性組成物溶液の塗布及び乾燥(前記第1の態様の感光層の形成方法)と同様な方法で行うことができ、例えば、該感光性組成物溶液をスピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて塗布する方法が挙げられる。
<保護フィルム>
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
また、前記感光層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。
前記クッション層は、常温ではタック性が無く、真空・加熱条件で積層した場合に溶融し、流動する層である。
前記PC層は、通常ポリビニルアルコールを主成分として形成された0.5〜5μm程度の被膜である。
また、前記感光層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。
前記クッション層は、常温ではタック性が無く、真空・加熱条件で積層した場合に溶融し、流動する層である。
前記PC層は、通常ポリビニルアルコールを主成分として形成された0.5〜5μm程度の被膜である。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜130℃が好ましく、80〜110℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。
前記感光性フィルムは、プリント配線板、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の永久パターン形成方法に好適に用いることができる。
特に、前記感光性フィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、前記基材への積層がより精細に行われる。
特に、前記感光性フィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、前記基材への積層がより精細に行われる。
なお、前記第2の態様の感光層の形成方法により形成された感光層を有する積層体への露光としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体、クッション層及びPC層を介して前記感光層を露光してもよく、前記支持体を剥離した後、前記クッション層及びPC層を介して前記感光層を露光してもよく、前記支持体及びクッション層を剥離した後、前記PC層を介して前記感光層を露光してもよく、前記支持体、クッション層及びPC層を剥離した後、前記感光層を露光してもよい。
〔現像工程〕
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成する工程である。
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成する工程である。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ金属又はアルカリ土類金属の水酸化物若しくは炭酸塩、炭酸水素塩、アンモニア水、4級アンモニウム塩の水溶液などが好適に挙げられる。これらの中でも、炭酸ナトリウム水溶液が特に好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、ベンジルアミン、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
〔硬化処理工程〕
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターンにおける感光層に対して硬化処理を行う工程である。
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターンにおける感光層に対して硬化処理を行う工程である。
前記硬化処理としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜、絶縁膜(層間絶縁膜)、あるいはソルダーレジストとしての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜、絶縁膜(層間絶縁膜)、あるいはソルダーレジストとしての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
本発明の永久パターン形成方法においては、保護膜、層間絶縁膜、及びソルダーレジストの少なくともいずれかを形成するのが好ましい。
前記永久パターン形成方法により形成された前記永久パターンは、配線を外部からの衝撃や曲げから保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装に有用である。
前記永久パターン形成方法により形成された前記永久パターンは、配線を外部からの衝撃や曲げから保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装に有用である。
本発明の永久パターン形成方法は、感光層上に結像させる像の歪みを抑制することにより、永久パターンを高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な永久パターンの形成に好適に使用することができる。
以下、実施例により本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
−感光性組成物の調製−
下記組成に基づいて、感光性組成物(溶液)を調製した。
[感光性組成物]
硫酸バリウム(堺化学工業社製、B30)分散液 104.74質量部
PCR−1157H(日本化薬社製、エポキシアクリレート61.8質量% エチレン
グリコールモノエチルエーテルアクリレート溶液) 46.14質量部
R712(日本化薬社製、2官能アクリルモノマー) 9.79質量部
ジペンタエリトリトールヘキサアクリレート 19.33質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製) 7.84質量部
MW30HM(三和ケミカル社製、ヘキサメトキシメチル化メラミン)8.00質量部
ハイドロキノンモノメチルエーテル 0.049質量部
フタロシアニングリーン 3.98質量部
メチルエチルケトン 60.00質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム(堺化学社製、B30)30質量部と、上記PCR−1157Hのジエチレングリコールモノメチルエーテルアセテート61.2質量%溶液34.29質量部と、メチルエチルケトン35.71質量部と、を予め混合した後、モーターミルM−200(アイガー社製)で、直径1.0mmのジルコニアビーズを用い、周速9m/sにて3.5時間分散して調製した。
−感光性組成物の調製−
下記組成に基づいて、感光性組成物(溶液)を調製した。
[感光性組成物]
硫酸バリウム(堺化学工業社製、B30)分散液 104.74質量部
PCR−1157H(日本化薬社製、エポキシアクリレート61.8質量% エチレン
グリコールモノエチルエーテルアクリレート溶液) 46.14質量部
R712(日本化薬社製、2官能アクリルモノマー) 9.79質量部
ジペンタエリトリトールヘキサアクリレート 19.33質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製) 7.84質量部
MW30HM(三和ケミカル社製、ヘキサメトキシメチル化メラミン)8.00質量部
ハイドロキノンモノメチルエーテル 0.049質量部
フタロシアニングリーン 3.98質量部
メチルエチルケトン 60.00質量部
なお、上記硫酸バリウム分散液は、硫酸バリウム(堺化学社製、B30)30質量部と、上記PCR−1157Hのジエチレングリコールモノメチルエーテルアセテート61.2質量%溶液34.29質量部と、メチルエチルケトン35.71質量部と、を予め混合した後、モーターミルM−200(アイガー社製)で、直径1.0mmのジルコニアビーズを用い、周速9m/sにて3.5時間分散して調製した。
−感光性フィルムの製造−
得られた感光性組成物溶液を、前記支持体としての厚み20μmのPET(ポリエチレンテレフタレート)フィルム上に、塗布し、乾燥させて、膜厚35μmの感光層を形成した。次いで、該感光層の上に、前記保護フィルムとして12μm厚のポリプロピレンフィルムをラミネートで積層し、感光性フィルムを製造した。
得られた感光性組成物溶液を、前記支持体としての厚み20μmのPET(ポリエチレンテレフタレート)フィルム上に、塗布し、乾燥させて、膜厚35μmの感光層を形成した。次いで、該感光層の上に、前記保護フィルムとして12μm厚のポリプロピレンフィルムをラミネートで積層し、感光性フィルムを製造した。
−永久パターンの形成−
−−積層体の調製−−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(名機製作所製、MVLP500)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着温度90℃、圧着圧力0.4MPa、ラミネート速度1m/分とした。
−−積層体の調製−−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(名機製作所製、MVLP500)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着温度90℃、圧着圧力0.4MPa、ラミネート速度1m/分とした。
−−露光工程−−
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明するパターン形成装置を用いて、波長が405nmのレーザ光を、直径の異なる穴部が形成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明するパターン形成装置を用いて、波長が405nmのレーザ光を、直径の異なる穴部が形成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
<<パターン形成装置>>
前記光照射手段として図8〜9及び図25〜29に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5に示した光を前記パターン形成材料に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
前記光照射手段として図8〜9及び図25〜29に示した合波レーザ光源と、前記光変調手段として図6に概略図を示した主走査方向にマイクロミラー58が1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD36と、図5に示した光を前記パターン形成材料に結像する光学系とを有する露光ヘッド30を備えたパターン形成装置10を用いた。
各露光ヘッド30すなわち各DMD36の設定傾斜角度としては、使用可能な1024列×256行のマイクロミラー58を使用してちょうど2重露光となる角度θidealよりも若干大きい角度を採用した。この角度θidealは、N重露光の数N、使用可能なマイクロミラー58の列方向の個数s、使用可能なマイクロミラー58の列方向の間隔p、及び露光ヘッド30を傾斜させた状態においてマイクロミラーによって形成される走査線のピッチδに対し、下記式1、
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度を採用した。
spsinθideal≧Nδ(式1)
により与えられる。本実施形態におけるDMD36は、上記のとおり、縦横の配置間隔が等しい多数のマイクロミラー58が矩形格子状に配されたものであるので、
pcosθideal=δ(式2)
であり、上記式1は、
stanθideal=N(式3)
であり、s=256、N=2であるので、角度θidealは約0.45度である。したがって、設定傾斜角度θとしては、たとえば0.50度を採用した。
まず、2重露光における解像度のばらつきと露光むらを補正するため、被露光面の露光パターンの状態を調べた。結果を図18に示した。図18においては、ステージ14を静止させた状態で感光層12の被露光面上に投影される、露光ヘッド3012と3021が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、露光エリア3212と3221について示した。なお、図18では、説明の便宜のため、使用可能なマイクロミラー58の1列おきの露光パターンを、画素列群Aによる露光パターンと画素列群Bによる露光パターンとに分けて示したが、実際の被露光面上における露光パターンは、これら2つの露光パターンを重ね合わせたものである。
図18に示したとおり、露光ヘッド3012と3021の間の相対位置の、理想的な状態からのずれの結果として、画素列群Aによる露光パターンと画素列群Bによる露光パターンとの双方で、露光エリア3212と3221の前記露光ヘッドの走査方向と直交する座標軸上で重複する露光領域において、理想的な2重露光の状態よりも露光過多な領域が生じていることが判る。
前記光点位置検出手段としてスリット28及び光検出器の組を用い、露光ヘッド3012ついては露光エリア3212内の光点P(1,1)とP(256,1)の位置を、露光ヘッド3021については露光エリア3221内の光点P(1,1024)とP(256,1024)の位置を検出し、それらを結ぶ直線の傾斜角度と、露光ヘッドの走査方向とがなす角度を測定した。
実傾斜角度θ´を用いて、下記式4
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図19において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
ttanθ´=N(式4)
の関係を満たす値tに最も近い自然数Tを、露光ヘッド3012と3021のそれぞれについて導出した。露光ヘッド3012についてはT=254、露光ヘッド3021についてはT=255がそれぞれ導出された。その結果、図19において斜線で覆われた部分78及び80を構成するマイクロミラーが、本露光時に使用しないマイクロミラーとして特定された。
その後、図19において斜線で覆われた領域78及び80を構成する光点以外の光点に対応するマイクロミラーに関して、同様にして図19において斜線で覆われた領域82及び網掛けで覆われた領域84を構成する光点に対応するマイクロミラーが特定され、本露光時に使用しないマイクロミラーとして追加された。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
これらの露光時に使用しないものとして特定されたマイクロミラーに対して、前記描素部素制御手段により、常時オフ状態の角度に設定する信号が送られ、それらのマイクロミラーは、実質的に露光に関与しないように制御した。
これにより、露光エリア3212と3221のうち、複数の前記露光ヘッドで形成された被露光面上の重複露光領域であるヘッド間つなぎ領域以外の各領域において、理想的な2重露光に対して露光過多となる領域、及び露光不足となる領域の合計面積を最小とすることができる。
−−現像工程−−
室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、アルカリ現像液として、1質量%炭酸ソーダ水溶液を用い、30℃にて60秒間シャワー現像し、未硬化の領域を溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、アルカリ現像液として、1質量%炭酸ソーダ水溶液を用い、30℃にて60秒間シャワー現像し、未硬化の領域を溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
−−硬化処理工程−−
前記永久パターンが形成された積層体の全面に対して、160℃で30分間、加熱処理を施し、永久パターンの表面を硬化し、膜強度を高めた。該永久パターンを目視で観察したところ、永久パターンの表面に気泡は認められなかった。
また、前記永久パターン形成済みのプリント配線基板に対して、常法に従い金メッキを行った後、水溶性フラックス処理を行った。次いで、260℃に設定された半田槽に5秒間にわたって、3回浸漬し、フラックスを水洗で除去した。そして、該フラックス除去後の永久パターンについて、JIS K−5400に基づいて、鉛筆硬度を測定した。
その結果、鉛筆硬度は5H以上であった。目視観察を行ったところ、前記永久パターンにおける硬化膜の剥がれ、ふくれ、変色は認められなかった。
前記永久パターンが形成された積層体の全面に対して、160℃で30分間、加熱処理を施し、永久パターンの表面を硬化し、膜強度を高めた。該永久パターンを目視で観察したところ、永久パターンの表面に気泡は認められなかった。
また、前記永久パターン形成済みのプリント配線基板に対して、常法に従い金メッキを行った後、水溶性フラックス処理を行った。次いで、260℃に設定された半田槽に5秒間にわたって、3回浸漬し、フラックスを水洗で除去した。そして、該フラックス除去後の永久パターンについて、JIS K−5400に基づいて、鉛筆硬度を測定した。
その結果、鉛筆硬度は5H以上であった。目視観察を行ったところ、前記永久パターンにおける硬化膜の剥がれ、ふくれ、変色は認められなかった。
前記形成した永久パターンについて、(a)露光感度、(b)解像度、(c)エッジラフネスの評価を行った。結果を表1に示す。
<(a)露光感度>
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明するパターン形成装置を用いて、0.1mJ/cm2から21/2倍間隔で200mJ/cm2までの光エネルギー量の異なる光を照射して2重露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体から前記支持体を剥がし取り、銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚みとの関係をプロットして感度曲線を得た。該感度曲線から、硬化領域の厚みが露光前の感光層と同じ35μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、25mJ/cm2であった。
前記調製した積層体における感光層に対し、前記支持体側から、以下に説明するパターン形成装置を用いて、0.1mJ/cm2から21/2倍間隔で200mJ/cm2までの光エネルギー量の異なる光を照射して2重露光し、前記感光層の一部の領域を硬化させた。室温にて10分間静置した後、前記積層体から前記支持体を剥がし取り、銅張積層板上の感光層の全面に、30℃の1質量%炭酸ナトリウム水溶液をスプレー圧0.15MPaにて前記(1)で求めた最短現像時間の2倍の時間スプレーし、未硬化の領域を溶解除去して、残った硬化領域の厚みを測定した。次いで、光の照射量と、硬化層の厚みとの関係をプロットして感度曲線を得た。該感度曲線から、硬化領域の厚みが露光前の感光層と同じ35μmとなった時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
この結果、前記感光層を硬化させるために必要な光エネルギー量は、25mJ/cm2であった。
<(b)解像度>
得られた前記永久パターン形成済みのプリント配線基板の表面を光学顕微鏡で観察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
得られた前記永久パターン形成済みのプリント配線基板の表面を光学顕微鏡で観察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。
<(c)エッジラフネス>
前記感光層に、前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直交する方向の横線パターンが形成されるように照射して2重露光し、永久パターンを形成した。得られた永久パターンのうち、ライン幅40μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。
前記感光層に、前記パターン形成装置を用いて、前記露光ヘッドの走査方向と直交する方向の横線パターンが形成されるように照射して2重露光し、永久パターンを形成した。得られた永久パターンのうち、ライン幅40μmのラインの任意の5箇所について、レーザ顕微鏡(VK−9500、キーエンス(株)製;対物レンズ50倍)を用いて観察し、視野内のエッジ位置のうち、最も膨らんだ箇所(山頂部)と、最もくびれた箇所(谷底部)との差を絶対値として求め、観察した5箇所の平均値を算出し、これをエッジラフネスとした。該エッジラフネスは、値が小さい程、良好な性能を示すため好ましい。
(実施例2)
実施例1において、感光性組成物の組成を、下記組成に代え、常法に従い、ロールミルで混練を行った以外は、実施例1と同様な方法により、感光性組成物を調製した。
実施例1において、感光性組成物の組成を、下記組成に代え、常法に従い、ロールミルで混練を行った以外は、実施例1と同様な方法により、感光性組成物を調製した。
−感光性組成物の調製−
下記組成に基づいて、感光性組成物を調製した。
[感光性組成物]
硫酸バリウム(堺化学工業社製、B30) 50.00質量部
PCR−1157H(日本化薬社製、エポキシアクリレート61.8質量% エチレン
グリコールモノエチルエーテルアクリレート溶液) 81.70質量部
ジペンタエリトリトールヘキサアクリレート 13.16質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製) 6.82質量部
YX4000(ジャパンエポキシレジン社製、エポキシ樹脂) 20.00質量部
RE306(日本化薬社製、エポキシ樹脂) 5.00質量部
ジシアンジアミド 0.13質量部
ハイドロキノンモノメチルエーテル 0.024質量部
フタロシアニングリーン 0.42質量部
下記組成に基づいて、感光性組成物を調製した。
[感光性組成物]
硫酸バリウム(堺化学工業社製、B30) 50.00質量部
PCR−1157H(日本化薬社製、エポキシアクリレート61.8質量% エチレン
グリコールモノエチルエーテルアクリレート溶液) 81.70質量部
ジペンタエリトリトールヘキサアクリレート 13.16質量部
IRGACURE819(チバ・スペシャルティー・ケミカルズ製) 6.82質量部
YX4000(ジャパンエポキシレジン社製、エポキシ樹脂) 20.00質量部
RE306(日本化薬社製、エポキシ樹脂) 5.00質量部
ジシアンジアミド 0.13質量部
ハイドロキノンモノメチルエーテル 0.024質量部
フタロシアニングリーン 0.42質量部
−感光性フィルムの製造−
得られた感光性組成物を用いて、実施例1と同様にして、感光性フィルムを製造した。
得られた感光性組成物を用いて、実施例1と同様にして、感光性フィルムを製造した。
−永久パターンの形成−
得られた感光性フィルムを用いて、永久パターンを形成した。該永久パターンの表面を目視で観察したところ、永久パターンにおける硬化膜の表面に気泡は認められなかった。
得られた感光性フィルムを用いて、永久パターンを形成した。該永久パターンの表面を目視で観察したところ、永久パターンにおける硬化膜の表面に気泡は認められなかった。
得られた永久パターンについて、実施例1と同様にして、(a)露光感度、(b)解像度、(c)エッジラフネスの評価を行った。結果を表1に示す。
(比較例1)
実施例1のパターン形成装置において、前記式3に基づきN=1として設定傾斜角度θを算出し、前記式4に基づきttanθ´=1の関係を満たす値tに最も近い自然数Tを導出し、N重露光(N=1)を行ったこと以外は、実施例1と同様にして(a)露光感度、(b)解像度、(c)エッジラフネスの評価を行った。結果を表1に示す。
実施例1のパターン形成装置において、前記式3に基づきN=1として設定傾斜角度θを算出し、前記式4に基づきttanθ´=1の関係を満たす値tに最も近い自然数Tを導出し、N重露光(N=1)を行ったこと以外は、実施例1と同様にして(a)露光感度、(b)解像度、(c)エッジラフネスの評価を行った。結果を表1に示す。
比較例1における被露光面の露光の状態の例を、図35に示した。図35においては、ステージ14を静止させた状態で感光層12の被露光面上に投影される、一の露光ヘッド(例えば、3012)が有するDMD36の使用可能なマイクロミラー58からの光点群のパターンを示した。また、下段部分に、上段部分に示したような光点群のパターンが現れている状態でステージ14を移動させて連続露光を行った際に、被露光面上に形成される露光パターンの状態を、一の露光エリア(例えば、3212)について示した。
前記一の露光ヘッド(例えば、3012)の理想的な状態からのずれの結果として、被露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。図35の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど大きく、図の右方の列ほど小さくなっている形態の歪みである。この角度歪みの結果として、図の左方に示した被露光面上に露光過多となる領域が生じ、図の右方に示した被露光面上に露光不足となる領域が生じる。
前記一の露光ヘッド(例えば、3012)の理想的な状態からのずれの結果として、被露光面上に現れるパターン歪みの一例であって、被露光面上に投影された各画素列の傾斜角度が均一ではなくなる「角度歪み」が生じている。図35の例に現れている角度歪みは、走査方向に対する傾斜角度が、図の左方の列ほど大きく、図の右方の列ほど小さくなっている形態の歪みである。この角度歪みの結果として、図の左方に示した被露光面上に露光過多となる領域が生じ、図の右方に示した被露光面上に露光不足となる領域が生じる。
表1の結果から、比較例1の配線パターンと比較して、2重露光における解像度のばらつきと露光むらを補正した実施例1及び2の永久パターンは高精細であり、エッジラフネスも小さいことがわかった。
前記露光ヘッドの取付位置や取付角度のずれ、並びに前記描素部と前記感光層の被露光面との間の光学系の各種収差、及び前記描素部自体の歪み等に起因するパターン歪みによる露光量のばらつきの影響を均し、前記感光層の被露光面上に形成される前記パターンの解像度のばらつきや濃度のむらを軽減することにより、パッケージ基板を含むプリント配線基板分野における永久パターン(層間絶縁膜、ソルダーレジストパターン等の保護膜)を高精細に、かつ、効率よく形成可能であるため、高精細な露光が必要とされる各種パターンの形成などに好適に使用することができ、特に高精細な永久パターンの形成に好適に使用することができる。
B1〜B7 レーザビーム
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 パターン形成装置
12 感光層(感光材料)
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ
28 スリット
30 露光ヘッド
32 露光エリア
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
L1〜L7 コリメータレンズ
LD1〜LD7 GaN系半導体レーザ
10 パターン形成装置
12 感光層(感光材料)
14 移動ステージ
18 設置台
20 ガイド
22 ゲート
24 スキャナ
26 センサ
28 スリット
30 露光ヘッド
32 露光エリア
36 デジタル・マイクロミラー・デバイス(DMD)
38 ファイバアレイ光源
58 マイクロミラー(描素部)
60 レーザモジュール
62 マルチモード光ファイバ
64 光ファイバ
66 レーザ出射部
110 ヒートブロック
111 マルチキャビティレーザ
113 ロッドレンズ
114 レンズアレイ
140 レーザアレイ
200 集光レンズ
Claims (35)
- バインダーと、重合性化合物と、光重合開始剤と、熱架橋剤と、を少なくとも含む感光性組成物を用いて基材の表面に感光層を形成した後、該感光層に対し、
光照射手段、及び前記光照射手段からの光を受光し出射するn個(ただし、nは2以上の自然数)の2次元状に配列された描素部を有し、パターン情報に応じて前記描素部を制御可能な光変調手段を備えた露光ヘッドであって、該露光ヘッドの走査方向に対し、前記描素部の列方向が所定の設定傾斜角度θをなすように配置された露光ヘッドを用い、
前記露光ヘッドについて、使用描素部指定手段により、使用可能な前記描素部のうち、N重露光(ただし、Nは2以上の自然数)に使用する前記描素部を指定し、
前記露光ヘッドについて、描素部制御手段により、前記使用描素部指定手段により指定された前記描素部のみが露光に関与するように、前記描素部の制御を行い、
前記感光層に対し、前記露光ヘッドを走査方向に相対的に移動させて露光し、現像することを特徴とする永久パターン形成方法。 - 感光層の形成が、感光性組成物を基材の表面に塗布し、乾燥することにより行われる請求項1に記載の永久パターン形成方法。
- 感光層の形成が、支持体と該支持体上に感光性組成物が積層されてなる感光層とを有する感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層することにより行われる請求項1に記載の永久パターン形成方法。
- 支持体が、合成樹脂を含み、かつ透明である請求項3に記載の永久パターン形成方法。
- 支持体が、長尺状である請求項3から4のいずれかに記載の永久パターン形成方法。
- 感光性フィルムが、長尺状であり、ロール状に巻かれてなる請求項3から5のいずれかに記載の永久パターン形成方法。
- 感光性フィルムが、感光層上に保護フィルムを有してなる請求項3から6のいずれかに記載の永久パターン形成方法。
- 感光層の厚みが、3〜100μmである請求項1から7のいずれかに記載の永久パターン形成方法。
- 基材が、配線形成済みのプリント配線基板である請求項1から8のいずれかに記載の永久パターン形成方法。
- 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域の露光に関与する描素部のうち、前記ヘッド間つなぎ領域におけるN重露光を実現するために使用する前記描素部を指定する請求項1から9のいずれかに記載の永久パターン形成方法。
- 露光が複数の露光ヘッドにより行われ、使用描素部指定手段が、複数の前記露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域以外の露光に関与する描素部のうち、前記ヘッド間つなぎ領域以外の領域におけるN重露光を実現するために使用する前記描素部を指定する請求項10に記載の永久パターン形成方法。
- 設定傾斜角度θが、N重露光数のN、描素部の列方向の個数s、前記描素部の列方向の間隔p、及び露光ヘッドを傾斜させた状態において該露光ヘッドの走査方向と直交する方向に沿った描素部の列方向のピッチδに対し、次式、spsinθideal≧Nδを満たすθidealに対し、θ≧θidealの関係を満たすように設定される請求項1から11のいずれかに記載の永久パターン形成方法。
- 使用描素部指定手段が、
描素部により生成されて被露光面上の露光領域を構成する描素単位としての光点位置を、被露光面上において検出する光点位置検出手段と、
前記光点位置検出手段による検出結果に基づき、N重露光を実現するために使用する描素部を選択する描素部選択手段と
を備える請求項1から12のいずれかに記載の永久パターン形成方法。 - 使用描素部指定手段が、N重露光を実現するために使用する使用描素部を、行単位で指定する請求項1から13のいずれかに記載の永久パターン形成方法。
- 光点位置検出手段が、検出した少なくとも2つの光点位置に基づき、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす実傾斜角度θ´を特定し、描素部選択手段が、前記実傾斜角度θ´と設定傾斜角度θとの誤差を吸収するように使用描素部を選択する請求項13から14のいずれかに記載の永久パターン形成方法。
- 実傾斜角度θ´が、露光ヘッドを傾斜させた状態における被露光面上の光点の列方向と前記露光ヘッドの走査方向とがなす複数の実傾斜角度の平均値、中央値、最大値、及び最小値のいずれかである請求項15に記載の永久パターン形成方法。
- 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における1行目から前記T行目の前記描素部を、使用描素部として選択する請求項15から16のいずれかに記載の永久パターン形成方法。
- 描素部選択手段が、実傾斜角度θ´に基づき、ttanθ´=N(ただし、NはN重露光数のNを表す)の関係を満たすtに近い自然数Tを導出し、m行(ただし、mは2以上の自然数を表す)配列された描素部における、(T+1)行目からm行目の前記描素部を、不使用描素部として特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する請求項15から16のいずれかに記載の永久パターン形成方法。
- 描素部選択手段が、複数の描素部列により形成される被露光面上の重複露光領域を少なくとも含む領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、使用描素部を選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、使用描素部を選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、使用描素部を選択する手段、及び
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、使用描素部を選択する手段
のいずれかである請求項13から18に記載の永久パターン形成方法。 - 描素部選択手段が、複数の露光ヘッドにより形成される被露光面上の重複露光領域であるヘッド間つなぎ領域において、
(1)理想的なN重露光に対し、露光過多となる領域、及び露光不足となる領域の合計面積が最小となるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(2)理想的なN重露光に対し、露光過多となる領域の描素単位数と、露光不足となる領域の描素単位数とが等しくなるように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
(3)理想的なN重露光に対し、露光過多となる領域の面積が最小となり、かつ、露光不足となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、及び、
(4)理想的なN重露光に対し、露光不足となる領域の面積が最小となり、かつ、露光過多となる領域が生じないように、前記ヘッド間つなぎ領域の露光に関与する描素部から、不使用描素部を特定し、該不使用描素部を除いた前記描素部を、使用描素部として選択する手段、
のいずれかである請求項13から19のいずれかに記載の永久パターン形成方法。 - 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、(N−1)列毎の描素部列を構成する前記描素部のみを使用して参照露光を行う請求項13から20のいずれかに記載の永久パターン形成方法。
- 使用描素部指定手段において使用描素部を指定するために、使用可能な前記描素部のうち、N重露光のNに対し、1/N行毎の描素部行を構成する前記描素部のみを使用して参照露光を行う請求項13から20のいずれかに記載の永久パターン形成方法。
- 使用描素部指定手段が、光点位置検出手段としてスリット及び光検出器、並びに描素部選択手段として前記光検出器と接続された演算装置を有する請求項1から22のいずれかに記載の永久パターン形成方法。
- N重露光のNが、3以上7以下の自然数である請求項1から23のいずれかに記載の永久パターン形成方法。
- 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる請求項1から24のいずれかに記載の永久パターン形成方法。
- パターン情報が表すパターンの所定部分の寸法が、指定された使用描素部により実現できる対応部分の寸法と一致するように前記パターン情報を変換する変換手段を有する請求項1から25のいずれかに記載の永久パターン形成方法。
- 光変調手段が、空間光変調素子である請求項1から26のいずれかに記載の永久パターン形成方法。
- 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である請求項27に記載の永久パターン形成方法。
- 描素部が、マイクロミラーである請求項1から28のいずれかに記載の永久パターン形成方法。
- 光照射手段が、2以上の光を合成して照射可能である請求項1から29のいずれかに記載の永久パターン形成方法。
- 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザビームを集光して前記マルチモード光ファイバに結合させる集合光学系とを有する請求項1から30のいずれかに記載の永久パターン形成方法。
- レーザ光の波長が395〜415nmである請求項31に記載の永久パターン形成方法。
- 現像が行われた後、感光層に対して硬化処理を行う請求項1から32のいずれかに記載の永久パターン形成方法。
- 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである請求項33に記載の永久パターン形成方法。
- 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成する請求項1から34のいずれかに記載の永久パターン形成方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005188722A JP2007010785A (ja) | 2005-06-28 | 2005-06-28 | 永久パターン形成方法 |
CNA2006800198209A CN101189557A (zh) | 2005-06-28 | 2006-06-08 | 永久图案形成方法 |
PCT/JP2006/311503 WO2007000885A1 (ja) | 2005-06-28 | 2006-06-08 | 永久パターン形成方法 |
KR1020077019405A KR20080020591A (ko) | 2005-06-28 | 2006-06-08 | 영구 패턴 형성 방법 |
TW095122940A TW200707100A (en) | 2005-06-28 | 2006-06-26 | Process for forming permanent pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005188722A JP2007010785A (ja) | 2005-06-28 | 2005-06-28 | 永久パターン形成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007010785A true JP2007010785A (ja) | 2007-01-18 |
Family
ID=37595139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005188722A Pending JP2007010785A (ja) | 2005-06-28 | 2005-06-28 | 永久パターン形成方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2007010785A (ja) |
KR (1) | KR20080020591A (ja) |
CN (1) | CN101189557A (ja) |
TW (1) | TW200707100A (ja) |
WO (1) | WO2007000885A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007123022A1 (ja) | 2006-04-18 | 2007-11-01 | Fujifilm Corporation | 金属パターン形成方法、金属パターン、及びプリント配線板 |
JP2012047832A (ja) * | 2010-08-24 | 2012-03-08 | Hitachi Chem Co Ltd | 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182913B2 (ja) * | 2006-09-13 | 2013-04-17 | 大日本スクリーン製造株式会社 | パターン描画装置およびパターン描画方法 |
WO2010086850A2 (en) | 2009-01-29 | 2010-08-05 | Digiflex Ltd. | Process for producing a photomask on a photopolymeric surface |
TWI449084B (zh) * | 2009-06-26 | 2014-08-11 | 羅門哈斯電子材料有限公司 | 形成電子裝置之方法 |
DE102009046809B4 (de) * | 2009-11-18 | 2019-11-21 | Kleo Ag | Belichtungsanlage |
PT2538960T (pt) * | 2010-02-27 | 2016-09-05 | Univ Stellenbosch | Composições surfactantes compreendendo complexos peptídicos |
CN104583874B (zh) * | 2012-08-28 | 2017-11-03 | 株式会社尼康 | 衬底支承装置及曝光装置 |
CN102890426B (zh) * | 2012-09-18 | 2014-05-14 | 天津芯硕精密机械有限公司 | 一种直写式光刻系统中倾斜扫描显示方法 |
CN105068384B (zh) * | 2015-08-12 | 2017-08-15 | 杭州思看科技有限公司 | 一种手持激光三维扫描仪的激光投影器曝光时间控制方法 |
US11460777B2 (en) * | 2016-12-20 | 2022-10-04 | Ev Group E. Thallner Gmbh | Method and device for exposure of photosensitive layer |
TWI725468B (zh) * | 2019-07-05 | 2021-04-21 | 新代科技股份有限公司 | 光加熱固化裝置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02210443A (ja) * | 1988-09-20 | 1990-08-21 | M & T Chem Inc | 被覆能力を有するソルダーマスク被膜形成用紫外線硬化性組成物 |
JPH086246A (ja) * | 1994-06-15 | 1996-01-12 | Tokyo Ohka Kogyo Co Ltd | 耐熱性感光性樹脂組成物 |
JP2001500628A (ja) * | 1996-02-28 | 2001-01-16 | ケニス シー ジョンソン | マイクロリトグラフィ用マイクロレンズスキャナ及び広フィールド共焦顕微鏡 |
JP2003195512A (ja) * | 2001-12-28 | 2003-07-09 | Pentax Corp | 多重露光描画装置および多重露光描画方法 |
JP2003223007A (ja) * | 2002-01-30 | 2003-08-08 | Fuji Photo Film Co Ltd | 平版印刷版の製版方法 |
JP2004001244A (ja) * | 2002-04-10 | 2004-01-08 | Fuji Photo Film Co Ltd | 露光ヘッド及び露光装置 |
JP2004009595A (ja) * | 2002-06-07 | 2004-01-15 | Fuji Photo Film Co Ltd | 露光ヘッド及び露光装置 |
JP2004056100A (ja) * | 2000-11-14 | 2004-02-19 | Ball Semiconductor Inc | スムーズなデジタル成分をデジタルフォトリソグラフィーシステムで作成するためのシステムおよび方法 |
JP2004061584A (ja) * | 2002-07-25 | 2004-02-26 | Fuji Photo Film Co Ltd | 平版印刷版の製版方法 |
JP2004219618A (ja) * | 2003-01-14 | 2004-08-05 | Fuji Photo Film Co Ltd | 画像形成方法 |
JP2005062847A (ja) * | 2003-07-31 | 2005-03-10 | Fuji Photo Film Co Ltd | 露光ヘッド |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07261388A (ja) * | 1994-03-25 | 1995-10-13 | Hitachi Chem Co Ltd | 感光性樹脂組成物、これを用いた感光性エレメント及びめっきレジストの製造法 |
JPH09152660A (ja) * | 1995-09-27 | 1997-06-10 | Fuji Photo Film Co Ltd | 画像プリンタ |
JP3496674B2 (ja) * | 1997-11-28 | 2004-02-16 | 日立化成工業株式会社 | 光硬化性樹脂組成物及びこれを用いた感光性エレメント |
JP4036550B2 (ja) * | 1998-11-25 | 2008-01-23 | 日本化薬株式会社 | 感放射線性ポリエステル樹脂及びそれを用いるネガ型レジスト組成物 |
JP2001040174A (ja) * | 1999-07-29 | 2001-02-13 | Nippon Kayaku Co Ltd | 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物 |
JP2003295326A (ja) * | 2002-04-02 | 2003-10-15 | Noritsu Koki Co Ltd | プリント装置およびプリント調整方法 |
JP3938714B2 (ja) * | 2002-05-16 | 2007-06-27 | 大日本スクリーン製造株式会社 | 露光装置 |
JP4150250B2 (ja) * | 2002-12-02 | 2008-09-17 | 富士フイルム株式会社 | 描画ヘッド、描画装置及び描画方法 |
JP4390189B2 (ja) * | 2003-04-10 | 2009-12-24 | 大日本スクリーン製造株式会社 | パターン描画装置 |
JP4486323B2 (ja) * | 2003-06-10 | 2010-06-23 | 富士フイルム株式会社 | 画素位置特定方法、画像ずれ補正方法、および画像形成装置 |
JP2005022250A (ja) * | 2003-07-02 | 2005-01-27 | Fuji Photo Film Co Ltd | 画像記録方法及び画像記録装置 |
JP2005055881A (ja) * | 2003-07-22 | 2005-03-03 | Fuji Photo Film Co Ltd | 描画方法および描画装置 |
JP4823581B2 (ja) * | 2004-06-17 | 2011-11-24 | 富士フイルム株式会社 | 描画装置および描画方法 |
JP2006030966A (ja) * | 2004-06-17 | 2006-02-02 | Fuji Photo Film Co Ltd | 描画方法および装置 |
-
2005
- 2005-06-28 JP JP2005188722A patent/JP2007010785A/ja active Pending
-
2006
- 2006-06-08 CN CNA2006800198209A patent/CN101189557A/zh active Pending
- 2006-06-08 KR KR1020077019405A patent/KR20080020591A/ko not_active Application Discontinuation
- 2006-06-08 WO PCT/JP2006/311503 patent/WO2007000885A1/ja active Application Filing
- 2006-06-26 TW TW095122940A patent/TW200707100A/zh unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02210443A (ja) * | 1988-09-20 | 1990-08-21 | M & T Chem Inc | 被覆能力を有するソルダーマスク被膜形成用紫外線硬化性組成物 |
JPH086246A (ja) * | 1994-06-15 | 1996-01-12 | Tokyo Ohka Kogyo Co Ltd | 耐熱性感光性樹脂組成物 |
JP2001500628A (ja) * | 1996-02-28 | 2001-01-16 | ケニス シー ジョンソン | マイクロリトグラフィ用マイクロレンズスキャナ及び広フィールド共焦顕微鏡 |
JP2004056100A (ja) * | 2000-11-14 | 2004-02-19 | Ball Semiconductor Inc | スムーズなデジタル成分をデジタルフォトリソグラフィーシステムで作成するためのシステムおよび方法 |
JP2004514280A (ja) * | 2000-11-14 | 2004-05-13 | ボール セミコンダクター インコーポレイテッド | スムーズなデジタル成分を作成するためのデジタルフォトリソグラフィーシステム |
JP2003195512A (ja) * | 2001-12-28 | 2003-07-09 | Pentax Corp | 多重露光描画装置および多重露光描画方法 |
JP2003223007A (ja) * | 2002-01-30 | 2003-08-08 | Fuji Photo Film Co Ltd | 平版印刷版の製版方法 |
JP2004001244A (ja) * | 2002-04-10 | 2004-01-08 | Fuji Photo Film Co Ltd | 露光ヘッド及び露光装置 |
JP2004009595A (ja) * | 2002-06-07 | 2004-01-15 | Fuji Photo Film Co Ltd | 露光ヘッド及び露光装置 |
JP2004061584A (ja) * | 2002-07-25 | 2004-02-26 | Fuji Photo Film Co Ltd | 平版印刷版の製版方法 |
JP2004219618A (ja) * | 2003-01-14 | 2004-08-05 | Fuji Photo Film Co Ltd | 画像形成方法 |
JP2005062847A (ja) * | 2003-07-31 | 2005-03-10 | Fuji Photo Film Co Ltd | 露光ヘッド |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007123022A1 (ja) | 2006-04-18 | 2007-11-01 | Fujifilm Corporation | 金属パターン形成方法、金属パターン、及びプリント配線板 |
JP2012047832A (ja) * | 2010-08-24 | 2012-03-08 | Hitachi Chem Co Ltd | 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造の形成方法及び電子部品 |
Also Published As
Publication number | Publication date |
---|---|
CN101189557A (zh) | 2008-05-28 |
TW200707100A (en) | 2007-02-16 |
KR20080020591A (ko) | 2008-03-05 |
WO2007000885A1 (ja) | 2007-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007010785A (ja) | 永久パターン形成方法 | |
JP2007178500A (ja) | 感光性フイルム、並びに、永久パターン及びその形成方法 | |
JP2007256669A (ja) | 感光性フィルム、永久パターン形成方法、及びプリント基板 | |
JP2007199532A (ja) | パターン形成方法 | |
JP2007093801A (ja) | 感光性フィルム、並びに永久パターン形成方法及びパターン | |
JP2007248925A (ja) | 感光性組成物、感光性フィルム、永久パターン形成方法、及びプリント基板 | |
JP2007139878A (ja) | 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及びパターン | |
JP2007199205A (ja) | 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及びパターン | |
JP2006243543A (ja) | 永久パターン形成方法 | |
JP4603496B2 (ja) | 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及び永久パターン | |
JP2007025275A (ja) | 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 | |
JP2007226115A (ja) | 感光性組成物及び感光性フィルム、並びに永久パターン形成方法 | |
JP2006235101A (ja) | 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 | |
JP4583916B2 (ja) | パターン形成材料、並びにパターン形成装置及び永久パターン形成方法 | |
JP2005311305A (ja) | 永久パターン形成方法 | |
JPWO2006075633A1 (ja) | パターン形成材料、並びにパターン形成装置及び永久パターン形成方法 | |
JP4657955B2 (ja) | 感光性組成物、感光性フィルム、永久パターン形成方法、及びプリント基板 | |
JP2006330655A (ja) | 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 | |
JP2007232789A (ja) | 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及び永久パターン | |
JP2007171246A (ja) | 感光性組成物及びパターン形成材料、並びに、パターン形成装置及びパターン形成方法 | |
JP2006048031A (ja) | 感光性フィルム及びその製造方法、並びに永久パターンの形成方法 | |
JP4546349B2 (ja) | パターン形成材料、並びにパターン形成方法及びパターン | |
JP2006243552A (ja) | 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 | |
JP2007093793A (ja) | 感光性フィルム、並びに永久パターン形成方法及びパターン | |
JP2007033675A (ja) | 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100817 |