JP2006337041A - 金属体の欠陥検出方法及びスキャニング式磁気検出器 - Google Patents

金属体の欠陥検出方法及びスキャニング式磁気検出器 Download PDF

Info

Publication number
JP2006337041A
JP2006337041A JP2005158753A JP2005158753A JP2006337041A JP 2006337041 A JP2006337041 A JP 2006337041A JP 2005158753 A JP2005158753 A JP 2005158753A JP 2005158753 A JP2005158753 A JP 2005158753A JP 2006337041 A JP2006337041 A JP 2006337041A
Authority
JP
Japan
Prior art keywords
metal body
magnetic
magnetic field
defect
impedance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005158753A
Other languages
English (en)
Other versions
JP4619864B2 (ja
Inventor
Yosuke Muranaga
陽介 村永
Kazuyuki Izawa
和幸 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Uchihashi Estec Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2005158753A priority Critical patent/JP4619864B2/ja
Publication of JP2006337041A publication Critical patent/JP2006337041A/ja
Application granted granted Critical
Publication of JP4619864B2 publication Critical patent/JP4619864B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

【課題】磁性金属体の欠陥を漏洩磁束探傷試験方法により磁気インピーダンス効果型センサを用いて良好に、しかも磁気検出器を充分に小型にして検出できるようにする。
【解決手段】金属体に磁界を加えるコイルと金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサを有する磁気検出器を金属体表面の検査領域に前記コイルにより脱磁または着磁用磁界を作用させつつ移動させて金属体の磁化状態を一様にし、而るのち、その金属体表面を磁気検出器で前記コイルにより欠陥検出用磁界を加えつつスキャニングして磁気インピーダンス効果型センサで欠陥を検出する。脱磁または着磁処理したうえで、漏洩磁束探傷試験方法により磁気インピーダンス効果型センサを用いて欠陥を検出しているから、残留磁気による漏洩磁束ノイズの影響を排除して磁気インピーダンス効果に基づく本来の高感度で金属体の欠陥箇所を検出できる。
【選択図】なし

Description

本発明は金属体の欠陥検出方法及びその方法に使用するスキャニング式磁気検出器に関するものである。
磁性金属体に傷等の欠陥が存在すると、その欠陥箇所のリラクタンスが増し、金属体に磁束を通過させるとその欠陥箇所において磁束が漏洩する。
そこで、磁性金属体の欠陥を検出するのに、金属体を磁化し、金属体の表面を磁気センサでスキャニングし磁束漏洩箇所を検出して欠陥位置を検知することが、所謂、漏洩磁束探傷試験方法として知られている。
この試験方法では、試験品の形状、寸法等に応じ磁化方法を異ならしめており、試験品に応じて軸通電法、直角通電法、プロッド法、電流貫通法、コイル法、極間法、磁束貫通法の何れかを選択している。
従来の漏洩磁束探傷試験方法では、磁気センサに、ホールセンサ、磁気抵抗素子、フラックスゲートセンサ等を使用しており、前記の磁化方法を選択しても、感度や空間分解能の面から、軽度の欠陥や表面から深い位置に存在する欠陥を検出することは困難であった。
近来、ホールセンサ、磁気抵抗素子、フラックスゲートセンサ等に較べて高感度、高空間分解能、高速応答の磁気センサとして磁気インピーダンス効果を利用したセンサが開発され、そのセンサを使用した磁気検出方法も提案されている。(特許文献1)。
特開平7−181239号公報
周知の通り、磁化は磁気双極子(微小磁石)が一方向に揃う現象である。而るに、金属体を磁化するまえでも、局部的に磁気的に変歪され残留磁気を帯有して局部的に漏洩磁束が発生していることが往々にしてある。
本発明者等の鋭意検討結果によれば、前記した磁気インピーダンス効果型センサを漏洩磁束探傷試験方法の磁気センサとして使用すると、磁気インピーダンス効果型センサが磁化前に既に発生している微小漏洩磁束にも反応し、これが検出エラーとなることが判明した。
従来、板状金属体の欠陥を漏洩磁束探傷試験方法により探傷する場合、磁化をプロッド法(手で自由に移動できる電極を用い、探傷しようとする試験品の個々の領域に電流を流して局部的に磁化する方法)や極間法(馬蹄型電磁石における2つの電極と試験品とで磁気回路を形成し、一方の電極から他方の電極に向け磁界を流し、その磁場の表面を磁気センサでスキャニングする方法)により行っているが、磁界強度が場所により異なり、同一寸法の欠陥でも場所により漏洩磁束の大きさが異なって欠陥の傷の軽重を判別し難い不具合もある。
本発明の目的は、磁性金属体の欠陥を漏洩磁束探傷試験方法により磁気インピーダンス効果型センサを用いて良好に、しかも磁気検出器を充分に小型にして検出できるようにすることにある。
請求項1に係る金属体の欠陥検出方法は、金属体に磁界を加えるコイルと金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサを有する磁気検出器を金属体表面の検査領域に前記コイルにより脱磁または着磁用磁界を作用させつつ移動させて金属体の磁化状態を一様にし、而るのち、その金属体表面を磁気検出器で前記コイルにより欠陥検出用磁界を加えつつスキャニングして磁気インピーダンス効果型センサで欠陥を検出することを特徴とする。ここで、欠陥とは傷のほか、減肉、錆、亀裂、劣化などを含んでいる(以下、同じ)。
請求項2に係る金属体の欠陥検出方法は、金属体に磁界を加えるコイルと金属体の欠陥箇所での漏洩磁束の法線成分を検出する磁気インピーダンス効果型センサを有する磁気検出器を金属体表面の検査領域に前記コイルにより脱磁または着磁用磁界を作用させつつ移動させて金属体の磁化状態を一様にし、而るのち、その金属体表面を磁気検出器で前記コイルにより欠陥検出用磁界を加えつつスキャニングして磁気インピーダンス効果型センサで欠陥を検出することを特徴とする。
請求項3に係る金属体の欠陥検出方法は、請求項1〜2何れかの金属体の欠陥検出方法金属体の欠陥の方向に対し、欠陥検出用磁界を交差方向、好ましくは直行方向に加えることを特徴とする。
請求項4に係る金属体の欠陥検出方法は、請求項1〜2何れかの金属体の欠陥検出方法において、磁界を二以上の異なる方向の磁界とすることを特徴とする。
請求項5に係る金属体の欠陥検出方法は、請求項1〜2何れかの金属体の欠陥検出方法において、互いに交差する二方向、好ましくは互いに直交する二方向にスキャニングすることを特徴とする。
請求項6に係る金属体の欠陥検出方法は、請求項1〜2何れかの金属体の欠陥検出方法において、互いに交差する二方向好ましくは互いに直交する二方向及びこれら両方向の中間方向にスキャニングすることを特徴とする。
請求項7に係るスキャニング式磁気検出器は、請求項1〜6何れかの金属体の欠陥検出方法に使用する磁気検出器であり、金属体に磁界を加えるコイルと欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサを有し、前記センサの磁気インピーダンス効果素子をスキャニング方向に対し所定の距離を隔てた2個とし、検出部をこれら両素子の差動出力を検出する差動式としたことを特徴とする。
請求項8に係るスキャニング式磁気検出器は、請求項1〜3または5〜6何れかの金属体の欠陥検出方法に使用する磁気検出器であり、金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサをフレーム内に収容し、金属体に磁界を加えるコイルをU字型鉄芯に巻装したU字型コイルを前記フレームの外側にU字開放側を金属体表面に近接させ得るように装着したことを特徴とする。
請求項9に係るスキャニング式磁気検出器は、請求項4の金属体の欠陥検出方法に使用する磁気検出器であり、金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサをフレーム内に収容し、金属体に磁界を加えるコイルをU字型鉄芯に巻装したU字型コイルを複数個、かつ異なる向きで前記フレームの外側にU字開放側を金属体表面に近接させ得るように装着したことを特徴とする。
(1)金属体が局部的に磁気的に変歪され局部的に残留磁気を帯びて漏洩磁束ノイズが発生していても、これに磁気インピーダンス効果型センサが反応しないように脱磁または着磁処理したうえで、漏洩磁束探傷試験方法により磁気インピーダンス効果型センサを用いて欠陥を検出しているから、前記残留磁気による漏洩磁束ノイズの影響を排除して磁気インピーダンス効果に基づく本来の高感度で金属体の欠陥箇所を検出できる。
(2)磁気インピーダンス効果型センサと脱・着磁用兼磁化用コイルとの相対的位置関係を固定としているから、磁気インピーダンス効果型センサの移動中の位置に関係なしに磁気インピーダンス効果素子直下の磁化磁界の強度・方向を一定にでき、従って、磁気インピーダンス効果素子が通過する欠陥箇所での磁束漏洩が一定の磁界のもとで発生され、同じ基準で欠陥の重軽傷度を適切に評価できる。
(3)コイルを脱・着磁用と磁化用とに兼用しているから、磁気検出器を充分に小型にできる。
(4)磁界方向と欠陥の方向との相対的関係により欠陥箇所の漏洩磁束の大きさが影響されることも考慮して検出しているから、かかる面からも欠陥の重軽傷度を正確に評価できる。
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は磁気インピーダンス効果素子を使用した磁気センサの一例の回路構成を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源回路、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する検波回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。
磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。
磁気インピーダンス効果素子1においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図2の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイルで負帰還をかけて図2の(ロ)に示すように出力特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲を単斜め線領域の範囲内−Hmax〜+Hmaxに納めている。更に、図2の(ニ)に示すように0点調整により原点を通る直線特性(勾配係数kは変わらない)としている。従って、図2の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。
図3は磁気インピーダンス効果素子を使用した上記とは別の磁気センサの回路構成を示している。
図3において、1a,1bは実質的に同一特性の磁気インピーダンス効果素子、2は両磁気インピーダンス効果素子に励磁電流を流す高周波電源回路、3a,3bは各磁気インピーダンス効果素子1a,1bの軸方向に作用する被検出磁界(信号波)で高周波励磁電流(搬送波)を変調させた被変調波を復調する検波回路、40は両検波回路3a,3bの復調波出力を差動増幅する差動増幅回路、5は出力端、6a,6bは差動増幅回路の出力を各磁気インピーダンス効果素子1a,1bに負帰還させる負帰還用コイル、7a,7bは各磁気インピーダンス効果素子1a,1bのバイアス磁界用コイルである。
図3において、各磁気インピーダンス効果素子1a,1bの軸方向に作用する磁界をHexa及びHexbとすると、差動出力Eoutは、Eout=k(Hexa−Hexb)で与えられる。
上記磁気インピーダンス効果素子としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。
図2の(ニ)の磁界検出限界−Hmax〜+Hmaxは、通常+2.5Gauss〜−2.5Gaussとされる。
上記において、高周波励磁電流には、例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、COMS−ICを発振部として使用した三角波発生器等を使用できる。
上記の検波回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。
また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する被検出磁界(信号波)で変調された高周波励磁電流波(搬送波)から被検出磁界を検波し得るものであれば、適宜の検波手段を使用できる。
前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図4に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。 図4の(イ)は鉄芯コイル付き磁気インピーダンス効果ユニットの一例を示す側面図、図4の(ロ)は同じく底面図、図4の(ハ)は図4の(ロ)におけるハ−ハ断面図である。
図4において、100は基板チップであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103は鉄やフェライト等からなるC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
図5は本発明において使用する磁気検出器の一例を示し、図5の(イ)は正面図を、図5の(ロ)は側面図を、図5の(ハ)は図5の(イ)におけるハ−ハ断面図をそれぞれ示している。
図5において、81はフレームであり、2枚のプレート811,811をスペーサ812で締結してある。Aは磁気インピーダンス効果型センサであり、図3に示した差動式に属し、基板片100に2箇の磁気インピーダンス効果素子1a,1bを配設し、各磁気インピーダンス効果素子1a,1bに図4で示したように鉄芯を設け、各鉄芯に各磁気インピーダンス効果素子に対する負帰還用磁界コイル及びバイアス用磁界コイルを巻付けた鉄芯コイル付き磁気インピーダンス効果ユニットBを備え、各磁気インピーダンス効果素子1a,1bに対する検波回路及び差動増幅回路並びに高周波励磁電流発生回路からなる駆動回路bや差動増幅回路並びに高周波励磁電流発生回路の電源としてのバッテリーcを搭載した主回路板Cに前記鉄芯コイル付き磁気インピーダンス効果ユニットBを導体バーeにより接続してあり、主回路板Cをフレーム81内に収容してホルダー813でフレーム81に固定してある。
82は脱・着磁用兼磁化用のU字型コイルであり、U字型鉄芯にコイルを巻き付けてあり、図6に示すように両磁気インピーダンス効果素子1a,1bに対し同一方向・同一強度の磁界を作用させるようにフレームの外側に装着してある。U字型鉄芯には、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を使用できる。
図5において、Eは被検出体としての金属体の表面を示し、磁気検出器8はこの表面Eに磁気インピーダンス効果素子1a,1bを法線方向に向け、かつ各素子1a,1bの先端を表面Eに近接させると共にU字型コイル82の鉄芯端820,820を表面Eに近接させるようにして移動される。
欠陥を検出しようとする磁性金属体においては、局部的に磁気的に変歪され残留磁気を帯有して局部的に漏洩磁束を発生していることが往々にしてある。この局部的漏洩磁束の磁界強度は磁気インピーダンス効果型センサの検出磁界レンジ±2.5Gaussの範囲内にある。
この残留磁気帯有箇所は傷ではなくこの残留磁気に基づく局部的漏洩磁束を検出してしまうと、エラーとなる。
本発明により磁性金属体の欠陥を検出するには、まずコイル82で金属体を脱磁または着磁して金属体の磁化状態を0または有値の一様状態にする。金属体の磁化状態を一様にすれば、通常、表面からの漏洩磁束は存在し得ないし、万一存在しても一様であるために、前記差動式では検出され得ない。
脱磁処理するには、例えば図7の(イ)に示すように、残留磁束密度が0aであるとすれば、コイルで正の磁界を作用させて破線に沿いbを経て飽和磁界の点cに達しさせ、而るのち、飽和磁化の状態からの磁界の正負反転及び徐々に磁界を減少させる操作を繰返し、次第にヒステリシス環線を小さくして残留磁化をなくしていくことを、磁気検出器を全検査領域に移動させつつ行っていく。
着磁処理するには、例えば図7の(ロ)に示すように、残留磁束密度が01〜0nに存在しているとすれば、コイルで正の磁界を作用させて破線に沿い点1〜nを飽和磁界の点cに達しさせ、而るのち、飽和磁化の状態から徐々に磁界を減少させ、残留磁束密度を点1〜nよりも高い点cに定着させることを、磁気検出器を全検査領域に移動させつつ行っていく。
前記の脱磁または着磁中、金属体の表面Eに磁気検出器8の磁気インピーダンス効果素子1a,1bが法線方向で近接している。
このようにして、脱磁または着磁の前処理を行ったのち、コイル82に磁化用の直流電流または交流電流を通電して金属体を磁化しつつ金属体表面Eを磁界検出器8で図8の(イ)または(ロ)に示すように所定の方向XまたはY方向で走査していく。走査はロボットで行うことができる。
傷が存在する金属体に磁界を通すと、傷箇所のリラクタンスが高いために、図9の(イ)〔断面図〕及び(ロ)〔平面図〕に示すように傷箇所で磁束が漏洩し、その漏洩磁束の法線成分は図9の(ハ)に示すようになる。
磁気双極子による欠陥モデルによれば、磁気双極子の磁気強度をσ、傷の巾を2a、傷の深さをdとすると、漏洩磁束の法線成分ΔBzは
Figure 2006337041
で与えられる。
而して、図9の(ハ)のように漏洩磁束の法線成分のピークが傷の巾両端で生じる。図10の(イ)は、図9の(ハ)の漏洩磁束の法線成分を磁界方向に速度vで走行する磁界センサで検出したときの出力波形を示し、ピーク間の間隔ΔTは、傷の巾をwとすれば、
ΔT=w/v
で与えられる。
磁気インピーダンス効果素子間の間隔をDとすれば、前方の磁気インピーダンス効果素子の検出出力と後方の磁気インピーダンス効果素子の検出出力とが時間D/vの間隔で離隔され、傷の巾wに較べて磁気インピーダンス効果素子間の間隔Dが充分に広いと、両出力は重ならない。磁気インピーダンス効果素子間の間隔Dに対し傷の巾wが広くなって両出力が重なっても、差動のために図10の(ロ)に示すように重畳部分では検出波高値が加算により大きくされる。傷の巾w(2a)が広くなると、前記の数式からも明らかなように、漏洩磁束密度が小さくなり検出値がそれだけ減少されるが、前記の重なりによる検出波高値の増加のために、巾の広い傷でも充分に検出可能である。
また、差動検出のために地磁気等の外部ノイズや回路素子の温度変化等で生じる検波回路等での内部ノイズも差動検出のために検出されない。
従って、漏洩磁束密度が小となる巾の広い傷や金属体表面から深い位置に存在する欠陥でも、充分に検出できる。
前記漏洩磁束の強度は、磁化磁界に対する傷の方向により異なり、直交の場合が最大となり、その相対角度が狭まっていくに伴い減少していき、両者の方向が一致する場合に最小となる。
図11において、Sは傷方向と磁化方向とが直交する場合の漏洩磁束の法線成分の分布を、Wは傷方向と磁化方向とが一致する場合の漏洩磁束の法線成分の分布をそれぞれ示し、傷方向と磁化方向との間の角度が90°→0°に近づくにつれて点線Mで示すようにピーク箇所間の間隔がピーク値が減少して漏洩磁束分布が平坦化し、検出感度が低下していく。
従って、輸送管のように傷等の欠陥の方向が既知の場合は、磁化磁界の方向と傷の方向とを直交させるように、前記U字型コイルの向きを設定することが望ましい。
傷等の欠陥の方向が未知の場合は、前記のU字型コイル82を複数個(例えば二個)、異なる向き(例えば直交する向き)でフレームに装着して異なる向きの二方向以上の磁界を加えることが好ましい。また、互いに直交する二方向、更にはこの二方向に加えて中間方向のそれぞれを走査方向として検出し、これらの検出結果を総合的に評価したり、走査方向は同じでU字型コイルの向きを変えて複数回検出を行い、これらの検出結果を総合的に評価することが好ましい。
前記の実施形態では、漏洩磁束の法線成分(垂直成分)を検出しているが、接線成分(平行成分)を検出してもよい。
図12はこの場合に使用する磁気検出器における磁気センサを示し、磁気インピーダンス効果素子1a,1bが共通の軸線上に長手方向に間隔を隔てて配設されている点及びU字型コイル82の配設位置をその鉄芯両端820,820を結ぶ線を両磁気インピーダンス効果素子間の中央線に一致させるように設定した点を除けば、図5に示したものに実質的に同じである。
図12において、Eは被検出体の金属体の表面を示し、磁気検出器はこの表面に磁気インピーダンス効果素子を平行に向け、かつ各素子の側面を表面に近接させると共にU字型コイルの鉄芯端を表面に近接させるようにして移動される。
なお、図6に示す磁場において、一対の磁気インピーダンス効果素子1a,1bが配置される2ヵ所は、その2箇所の磁界強度の差が±10%以内であることが好ましい。
本発明で使用する磁気インピーダンス効果型センサの一例の回路を示す図面である。 本発明で使用する磁気インピーダンス効果型センサの出力特性を示す図面である。 本発明で使用する磁気インピーダンス効果型センサの別例の回路を示す図面である。 本発明で使用する磁気インピーダンス効果型センサにおける鉄芯コイル付き磁気インピーダンス効果素子を示す図面である。 本発明で使用する磁気検出器を示す図面である。 図5の磁気検出器における印加磁界と磁気インピーダンス効果素子との位置関係を示す図面である。 本発明における脱磁または着磁処理を示す図面である。 本発明における磁気検出器のスキャニング軌跡を示す図面である。 傷箇所の漏洩磁束を示す図面である。 本発明による傷に対する検出波形を示す図面である。 傷箇所の漏洩磁束分布の磁界による変化状態を示す図面である。 本発明で使用する磁気検出器の別例を示す図面である。
符号の説明
1 磁気インピーダンス効果素子
1a 磁気インピーダンス効果素子
1b 磁気インピーダンス効果素子
8 磁気検出器
81 フレーム
82 脱着磁用兼磁化用U字型コイル

Claims (9)

  1. 金属体に磁界を加えるコイルと金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサを有する磁気検出器を金属体表面の検査領域に前記コイルにより脱磁または着磁用磁界を作用させつつ移動させて金属体の磁化状態を一様にし、而るのち、その金属体表面を磁気検出器で前記コイルにより欠陥検出用磁界を加えつつスキャニングして磁気インピーダンス効果型センサで欠陥を検出することを特徴とする金属体の欠陥検出方法。
  2. 金属体に磁界を加えるコイルと金属体の欠陥箇所での漏洩磁束の法線成分を検出する磁気インピーダンス効果型センサを有する磁気検出器を金属体表面の検査領域に前記コイルにより脱磁または着磁用磁界を作用させつつ移動させて金属体の磁化状態を一様にし、而るのち、その金属体表面を磁気検出器で前記コイルにより欠陥検出用磁界を加えつつスキャニングして磁気インピーダンス効果型センサで欠陥を検出することを特徴とする金属体の欠陥検出方法。
  3. 金属体の欠陥の方向に対し、欠陥検出用磁界を交差方向に加えることを特徴とする請求項1〜2何れか記載の金属体の欠陥検出方法。
  4. 磁界を二以上の異なる方向の磁界とすることを特徴とする請求項1〜2何れか記載の金属体の欠陥検出方法。
  5. 互いに交差する二方向にスキャニングすることを特徴とする請求項1〜2何れか記載の金属体の欠陥検出方法。
  6. 互いに交差する二方向及びこれら両方向の中間方向にスキャニングすることを特徴とする請求項1〜2何れか記載の金属体の欠陥検出方法。
  7. 請求項1〜6何れかの金属体の欠陥検出方法に使用する磁気検出器であり、金属体に磁界を加えるコイルと欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサを有し、前記センサの磁気インピーダンス効果素子をスキャニング方向に対し所定の距離を隔てた2個とし、検出部をこれら両素子の差動出力を検出する差動式としたことを特徴とするスキャニング式磁気検出器。
  8. 請求項1〜3または5〜6何れかの金属体の欠陥検出方法に使用する磁気検出器であり、金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサをフレーム内に収容し、金属体に磁界を加えるコイルをU字型鉄芯に巻装したU字型コイルを前記フレームの外側にU字開放側を金属体表面に近接させ得るように装着したことを特徴とするスキャニング式磁気検出器。
  9. 請求項4の金属体の欠陥検出方法に使用する磁気検出器であり、金属体の欠陥箇所での漏洩磁束を検出する磁気インピーダンス効果型センサをフレーム内に収容し、金属体に磁界を加えるコイルをU字型鉄芯に巻装したU字型コイルを複数個、かつ異なる向きで前記フレームの外側にU字開放側を金属体表面に近接させ得るように装着したことを特徴とするスキャニング式磁気検出器。
JP2005158753A 2005-05-31 2005-05-31 金属体の欠陥検出方法及びスキャニング式磁気検出器 Expired - Fee Related JP4619864B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158753A JP4619864B2 (ja) 2005-05-31 2005-05-31 金属体の欠陥検出方法及びスキャニング式磁気検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158753A JP4619864B2 (ja) 2005-05-31 2005-05-31 金属体の欠陥検出方法及びスキャニング式磁気検出器

Publications (2)

Publication Number Publication Date
JP2006337041A true JP2006337041A (ja) 2006-12-14
JP4619864B2 JP4619864B2 (ja) 2011-01-26

Family

ID=37557736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158753A Expired - Fee Related JP4619864B2 (ja) 2005-05-31 2005-05-31 金属体の欠陥検出方法及びスキャニング式磁気検出器

Country Status (1)

Country Link
JP (1) JP4619864B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164310A (ja) * 2006-12-27 2008-07-17 Uchihashi Estec Co Ltd 磁気インピーダンス効果センサヘッド及びセンサ並びに磁気的検査方法。

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272973U (ja) * 1988-11-21 1990-06-04
JPH0868778A (ja) * 1994-06-23 1996-03-12 Sumitomo Metal Ind Ltd 漏洩磁束探傷装置
JP2002277442A (ja) * 2001-03-15 2002-09-25 Foundation For Advancement Of Science & Technology 非破壊検査方法及び非破壊検査装置
WO2003091655A1 (fr) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Procede de verification de metaux et dispositif de verification de metaux
JP2003322640A (ja) * 2002-05-07 2003-11-14 Nippon Steel Corp 鋼材の表面疵検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0272973U (ja) * 1988-11-21 1990-06-04
JPH0868778A (ja) * 1994-06-23 1996-03-12 Sumitomo Metal Ind Ltd 漏洩磁束探傷装置
JP2002277442A (ja) * 2001-03-15 2002-09-25 Foundation For Advancement Of Science & Technology 非破壊検査方法及び非破壊検査装置
WO2003091655A1 (fr) * 2002-04-26 2003-11-06 Azuma Systems Co., Ltd Procede de verification de metaux et dispositif de verification de metaux
JP2003322640A (ja) * 2002-05-07 2003-11-14 Nippon Steel Corp 鋼材の表面疵検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164310A (ja) * 2006-12-27 2008-07-17 Uchihashi Estec Co Ltd 磁気インピーダンス効果センサヘッド及びセンサ並びに磁気的検査方法。

Also Published As

Publication number Publication date
JP4619864B2 (ja) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4024964B2 (ja) 磁気インク検知用磁気センサー、その信号処理方法、及び磁気インク検知装置
JP2001330655A (ja) 磁気センサ及びその製造方法
JP4495635B2 (ja) 磁気インピーダンス効果センサ並びに磁気インピーダンス効果センサの使用方法
JP2009204342A (ja) 渦電流式試料測定方法と渦電流センサ
JP2841153B2 (ja) 微弱磁気測定方法及びその装置並びにそれを用いた非破壊検査方法
JP4917812B2 (ja) 鉄系構造物の劣化診断方法
JP4619864B2 (ja) 金属体の欠陥検出方法及びスキャニング式磁気検出器
JP4619884B2 (ja) 鉄系材埋設コンクリート構造物の鉄系材の診断方法
JP4600989B2 (ja) 金属体の欠陥検出方法及びスキャニング式磁気検出器
JP4598601B2 (ja) 金属体の欠陥検出方法及びスキャニング式欠陥検出器
JP4541136B2 (ja) 磁性体検出センサ及び磁性体検出ラインセンサ
JP2006337040A (ja) 金属体の欠陥検出方法及びスキャニング式磁気検出器
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JP2006322706A (ja) 導体電流の測定方法
JP4476746B2 (ja) 鉄系壁裏面の腐食・減肉検査方法
JPH0815229A (ja) 高分解能渦電流探傷装置
JP2011053160A (ja) 磁気検出センサ
JP3092837B2 (ja) バルクハウゼンノイズ検出用磁気ヘッドおよびそれを用いた検出システム
JP4286686B2 (ja) 電線の導体欠陥検知用センサ
JP4520188B2 (ja) 電線の導体欠陥箇所検知方法
US20240142404A1 (en) Detection device
JP2009204364A (ja) 磁性物の欠陥位置検出方法
JP4865343B2 (ja) 鉄系構造物の検査方法
JP2006250922A (ja) 電流センサ
JP2005315734A (ja) 強磁性体の変位測定方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080411

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A711 Notification of change in applicant

Effective date: 20100723

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20100805

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100917

A521 Written amendment

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101027

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees