JP2006278999A - 半導体基板、半導体結晶成長用基板、半導体装置、光半導体装置およびそれらの製造方法 - Google Patents

半導体基板、半導体結晶成長用基板、半導体装置、光半導体装置およびそれらの製造方法 Download PDF

Info

Publication number
JP2006278999A
JP2006278999A JP2005100248A JP2005100248A JP2006278999A JP 2006278999 A JP2006278999 A JP 2006278999A JP 2005100248 A JP2005100248 A JP 2005100248A JP 2005100248 A JP2005100248 A JP 2005100248A JP 2006278999 A JP2006278999 A JP 2006278999A
Authority
JP
Japan
Prior art keywords
substrate
layer
semiconductor
semiconductor crystal
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005100248A
Other languages
English (en)
Other versions
JP2006278999A5 (ja
JP4522301B2 (ja
Inventor
Shunsuke Kurachi
俊介 倉知
Tsutomu Komatani
務 駒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2005100248A priority Critical patent/JP4522301B2/ja
Priority to US11/391,200 priority patent/US7442999B2/en
Publication of JP2006278999A publication Critical patent/JP2006278999A/ja
Publication of JP2006278999A5 publication Critical patent/JP2006278999A5/ja
Application granted granted Critical
Publication of JP4522301B2 publication Critical patent/JP4522301B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 基板の反り、クラックの発生を効果的に抑制することができるとともに、半導体層各面における剥がれを防止することができる半導体基板、半導体結晶成長用基板、半導体装置、光半導体装置およびそれらの製造方法を提供する。
【解決手段】 半導体基板(100)は、基板(1)の一面上に成長した半導体結晶層(2)と、基板(1)の他面および側面に形成され、半導体結晶層(2)が基板(1)に付与する応力と同じ方向に基板(1)に応力を付与する応力緩和層(3)とを備えることを特徴とする。この場合、半導体結晶層(2)の基板(1)に対する応力が相殺される。それにより、半導体基板(100)の反りおよびクラックの発生が抑制される。
【選択図】 図1

Description

本発明は、半導体基板、半導体結晶成長用基板、半導体装置、光半導体装置およびそれらの製造方法に関する。
窒化物半導体を用いた半導体装置は、高周波かつ高出力で動作するパワー素子として用いられている。この半導体装置においては、半導体結晶層の成長基板としてサファイア基板等が用いられている。しかしながら、成長基板の格子定数および熱膨張係数と半導体結晶層の格子定数および熱膨張係数との間には、大きな格差が存在する。それにより、半導体装置全体が反ったり、クラックが発生する等して歩留まりが低下するおそれがあった。
そこで、成長基板の裏面側に応力相殺層を設ける技術が開示されている(例えば、特許文献1参照)。この技術によれば、応力相殺層によって成長基板の反り、クラックの発生を抑制することができる。
特開2003−113000号公報
しかしながら、本発明者は、特許文献1の技術では、成長基板と半導体結晶層との界面における剥がれまたは成長基板および半導体結晶層の前後の半導体層各面における界面における剥がれを効果的に抑制することができないことを発見した。
本発明は、基板の反り、クラックの発生を効果的に抑制することができるとともに、半導体層各面における剥がれを防止することができる半導体基板、半導体結晶成長用基板、半導体装置、光半導体装置およびそれらの製造方法を提供することを目的とする。
本発明に係る半導体基板は、基板の一面上に成長した半導体結晶層と、基板の他面およびこれに連続して基板の側面に形成され、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層とを備えることを特徴とするものである。
本発明に係る半導体基板においては、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力が付与される。この場合、半導体結晶層の基板に対する応力が相殺される。それにより、本発明に係る半導体基板の反りおよびクラックの発生が抑制される。したがって、リソグラフィ等により半導体基板上に素子パターンを形成する際に半導体基板全体の露光の寸法のバラツキが生じることが防止される。その結果、本発明に係る半導体基板上に高詳細な素子パターンを形成することができる。また、半導体結晶層の剥がれの発生が抑制される。
また、応力緩和層が基板の側面および半導体結晶層の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。さらに、基板と半導体結晶層との界面における剥がれを効果的に防止することができる。したがって、半導体基板を用いて半導体装置を製造する際の歩留まりが大幅に向上する。
半導体結晶層は、GaN系半導体層であってもよい。また、基板は、GaN,SiCまたはサファイアであってもよい。さらに、応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る半導体基板の製造方法は、基板の一面上に半導体結晶層を成長させる工程と、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層を基板の他面およびこれに連続して基板の側面に形成するステップとを含むことを特徴とするものである。
本発明に係る半導体基板の製造方法においては、基板の一面上に半導体結晶層が成長され、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層が基板の他面および側面に形成される。この場合、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力がかかる。それにより、本発明に係る半導体基板の反りおよびクラックの発生が抑制される。したがって、リソグラフィ等により半導体基板上に素子パターンを形成する際に基板全体の露光の寸法のバラツキが生じることを防止することができる。その結果、本発明に係る半導体基板上に高詳細な素子パターンを形成することができる。また、半導体結晶層の剥がれの発生が抑制される。
また、応力緩和層が基板の側面および半導体結晶層の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。さらに、基板と半導体結晶層との界面における剥がれを効果的に防止することができる。したがって、本発明に係る半導体基板を用いて半導体装置を製造する際の歩留まりが大幅に向上する。
半導体結晶層は、GaN系半導体層であってもよい。基板は、GaN,SiCまたはサファイアであってもよい。応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る半導体結晶成長用基板は、一面上に半導体結晶層が成長されるべき、半導体結晶成長用基板の他面およびこれに連続して半導体結晶成長用基板の側面に形成され、半導体結晶層が半導体結晶成長用基板に付与する応力と同じ方向に半導体結晶成長用基板に応力を付与する応力緩和層を備えることを特徴とするものである。
本発明に係る半導体結晶成長用基板においては、半導体結晶層が半導体結晶成長用基板に付与する応力と同じ方向に、応力緩和層から半導体結晶成長用基板に対して応力が付与される。この場合、半導体結晶層の半導体結晶成長用基板に対する応力が相殺される。それにより、本発明に係る半導体結晶成長用基板を用いた半導体基板の反りが抑制される。したがって、リソグラフィ等により半導体結晶層上に素子パターンを形成する際に半導体基板全体の露光の寸法のバラツキが生じることが防止される。また、応力緩和層が基板の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。さらに、半導体結晶層の剥がれの発生が抑制される。
半導体結晶層は、GaN系半導体層であってもよい。基板は、GaN,SiCまたはサファイアであってもよい。応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る半導体結晶成長用基板の製造方法は、一面上に半導体結晶層が成長されるべき、半導体結晶成長用基板の他面およびこれに連続して半導体結晶成長用基板の側面に形成され、半導体結晶層が半導体結晶成長用基板に付与する応力と同じ方向に半導体結晶成長用基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とするものである。
本発明に係る半導体結晶成長用基板の製造方法においては、一面上に半導体結晶層が成長されるべき、半導体結晶成長用基板の他面および側面に、半導体結晶層が半導体結晶成長用基板に付与する応力と同じ方向に半導体結晶成長用基板に応力を付与する応力緩和層が形成される。この場合、半導体結晶層が半導体結晶成長用基板に付与する応力と同じ方向に、応力緩和層から半導体結晶成長用基板に対して応力が付与される。それにより、本発明に係る半導体結晶成長用基板を用いた半導体基板の反りが抑制される。したがって、リソグラフィ等により半導体結晶層上に素子パターンを形成する際に半導体基板全体の露光の寸法のバラツキが生じることが防止される。また、応力緩和層が基板の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。また、半導体結晶層の剥がれの発生が抑制される。
半導体結晶層は、GaN系半導体層であってもよい。基板は、GaN,SiCまたはサファイアであってもよい。応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る半導体装置は、基板の一面上に設けられた電界効果型トランジスタの動作層となる半導体結晶層と、チップに分割された基板の他面およびこれに連続して基板の側面に設けられ、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層とを備えることを特徴とするものである。
本発明に係る半導体装置においては、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力が付与される。この場合、半導体結晶層の基板に対する応力が相殺される。それにより、本発明に係る半導体装置の反りおよびクラックの発生が抑制される。また、応力緩和層が基板の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。また、半導体装置の反りが抑制できると、半導体結晶層の電子状態の変化を抑制することができる。それにより、本発明に係る半導体装置の特性が向上し、所望の特性が実現される。また、半導体結晶層の剥がれの発生が抑制される。
半導体結晶層は、GaN系半導体層であってもよい。基板は、GaN,SiCまたはサファイアであってもよい。応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る半導体装置の製造方法は、一面上に電界効果型トランジスタの動作層となる半導体結晶層が設けられる基板の他面と基板がチップに分割された際に側面をなす領域とに、半導体結晶層が基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とするものである。
本発明に係る半導体装置の製造方法においては、一面上に電界効果型トランジスタの動作層となる半導体結晶層が設けられる基板の他面と基板がチップに分割された際に側面をなす領域とに、半導体結晶層が基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層が形成される。この場合、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力がかかる。それにより、本発明に係る半導体装置の反りおよびクラックの発生が抑制される。また、応力緩和層が基板の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。また、半導体装置の反りが抑制できると、半導体結晶層の電子状態の変化を抑制することができる。それにより、本発明に係る半導体装置の特性が向上し、所望の特性が実現される。また、半導体結晶層の剥がれの発生が抑制される。
基板の他面に溝が形成されおり、応力緩和層は、基板の他面および溝の内壁に設けられていてもよい。この場合、チップに分割された際に半導体装置の側面をなす領域への応力緩和層の形成が容易になる。また、半導体装置は、基板の他面から溝に到達する切断を実施することで、チップに分割されてもよい。さらに、基板は、GaN,SiCまたはサファイアであってもよい。
本発明に係る光半導体装置は、基板の一面上に設けられ、かつ、活性層およびこれを上下で挟むクラッド層を含む半導体結晶層と、チップに分割された基板の他面およびこれに連続して基板の側面に設けられ、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層とを備えることを特徴とするものである。
本発明に係る光半導体装置においては、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力が付与される。この場合、半導体結晶層の基板に対する応力が相殺される。それにより、本発明に係る光半導体装置の反りおよびクラックの発生が抑制される。また、応力緩和層が基板の側面にまで形成されていることから、光半導体結晶層の基板に対する応力をより効果的に抑制することができる。また、本発明に係る光半導体装置は、反りが抑制されると、共振器として高い精度を有する。また、半導体結晶層の剥がれの発生が抑制される。
半導体結晶層は、GaN系半導体層であってもよい。基板は、GaN,SiCまたはサファイアであってもよい。応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであってもよい。
本発明に係る光半導体装置の製造方法は、一面上に活性層およびこれを上下で挟むクラッド層を含む半導体結晶層が設けられる基板の他面と基板がチップに分割された際に側面をなす領域とに、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とするものである。
本発明に係る光半導体装置の製造方法においては、一面上に活性層およびこれを上下で挟むクラッド層を含む半導体結晶層が設けられる基板の他面と基板がチップに分割された際に側面をなす領域とに、半導体結晶層が基板に付与する応力と同じ方向に基板に応力を付与する応力緩和層が形成される。この場合、半導体結晶層が基板に付与する応力と同じ方向に、応力緩和層から基板に対して応力がかかる。それにより、本発明に係る光半導体装置の反りおよびクラックの発生が抑制される。また、応力緩和層が基板の側面にまで形成されていることから、半導体結晶層の基板に対する応力をより効果的に抑制することができる。さらに、本発明に係る光半導体装置は、反りが抑制されると、共振器として高い精度を有する。また、半導体結晶層の剥がれの発生が抑制される。
基板の他面に溝が形成されおり、応力緩和層は、基板の他面および溝の内壁に設けられてもよい。この場合、チップに分割された際に光半導体装置の側面をなす領域への応力緩和層の形成が容易になる。光半導体装置は、基板の他面から前記溝に到達する切断を実施することで、チップに分割されてもよい。基板は、GaN,SiCまたはサファイアであってもよい。
本発明によれば、半導体結晶層によって基板の面方向に付与される応力と同じ応力が基板の反対面に付与されるため、半導体結晶層の基板に対する応力が相殺される。それにより、本発明に係る半導体基板の反りおよびクラックの発生が抑制される。
また、この応力を付与する応力緩和層は、自らその応力によって基板から剥がれないように本発明では基板の側面にまで延在して設けられている。これにより、本発明は有効に基板の反りを解決する。したがって、リソグラフィ等により半導体ウェハ上に素子パターンを形成する際にウェハ全体の露光の寸法のバラツキが生じることが防止される。これにより、本発明に係る半導体ウェハ上に高詳細な素子パターンを形成することができる。また、本発明に係る半導体ウェハを用いて半導体装置を製造する際の歩留まりが向上する。
さらに、FETに本発明を適用すると、基板の反りに基づくFETの内部の電気特性の変化、またそれに基づくFETの特性の変化を防止することができる。また、VCSEL(Vertical Cavity Surface Emitting Laser)に本発明を適用すると、反りに基づく共振器の歪みを防止することができる。
以下、本発明を実施するための最良の形態を説明する。
(第1の実施の形態)
図1は、第1の実施の形態に係る半導体基板100の模式的断面図である。図1に示すように、半導体基板100は、成長基板1、半導体結晶層2、応力緩和層3を備える。成長基板1は、基板として半導体ウェハの基板として機能するものであり、GaN,SiC,サファイア等の基板からなる。
成長基板1上には半導体結晶層2が形成されている。半導体結晶層2は、GaN系半導体等からなる。半導体基板100をGaN系HEMTに用いる場合には、半導体結晶層2は、成長基板1側からGaN系半導体層、GaN層、AlGaN層およびGaN系半導体層が順に積層された構造を有する。
成長基板1の下面、成長基板1の側面および半導体結晶層2の側面には、応力緩和層3が形成されている。応力緩和層3は、成長基板1の下面から成長基板1の側面および半導体結晶層2の側面にかけて連続して形成されていることが好ましい。応力緩和層3は、SiN等の絶縁膜、WSi,TiW,TiN等のメタル膜、GaN等の半導体膜等から形成される。
成長基板1および半導体結晶層2のそれぞれは、異なる材料から形成されている。それにより、成長基板1の格子定数および熱膨張係数と半導体結晶層2の格子定数および熱膨張係数との間には格差が存在する。また、成長基板1と半導体結晶層2とが同じ材料から形成されている場合においても、成長基板1上に半導体結晶層2を形成する際に格子定数、熱膨張係数等に格差が生じる。以上のことから、成長基板1に対して半導体結晶層2が引張方向または圧縮方向に応力を有するようになる。特に、GaN系HEMTに用いる半導体基板100においては、半導体結晶層2は成長基板1に対して引張方向に応力を有する。
本実施の形態に係る応力緩和層3は、半導体結晶層2が成長基板1に対して有する応力と同じ方向に成長基板1に対して応力を有する。それにより、半導体結晶層2の成長基板1に対する引張応力または圧縮応力が相殺される。したがって、半導体基板100の反り、クラックの発生が抑制される。その結果、リソグラフィ等により半導体基板100上に素子パターンを形成する際にウェハ全体の露光の寸法のバラツキをなくすことができる。以上のことから、半導体基板100上に高詳細な素子パターンを形成することができる。
また、本実施の形態に係る半導体基板100においては、応力緩和層3が成長基板1の側面および半導体結晶層2の側面にまで形成されていることから、半導体結晶層2の成長基板1に対する応力をより効果的に相殺することができる。さらに、応力緩和層3によって成長基板1と半導体結晶層2とが固定されることから、成長基板1と半導体結晶層2との界面における剥がれを効果的に防止することができる。したがって、半導体基板100を用いて半導体装置を製造する際の歩留まりが大幅に向上する。
なお、応力緩和層3の応力は、応力緩和層3の膜厚に比例することから、応力緩和層3の膜厚を適宜制御することにより任意の応力を成長基板1に付与することができる。
また、半導体結晶層2の成長基板1に対する応力方向に応じて、応力緩和層3を構成する材料を適宜選択することができる。それにより、半導体基板100の反り、クラックの発生を効果的に抑制することができる。
以下に、応力緩和層3として用いることができる材料とその膜厚を表1に示す。表1に示すように、応力緩和層3として、SiO,Au,WSi,SiON,SiN,TiW,NiCr,Ni,Ti等を用いることができる。これらの各材料は成長基板1に対して引張方向に応力が働く。
Figure 2006278999
また、半導体基板100の反り量が5μm以下になるような応力緩和層3の膜厚の範囲を表1に示す。この場合、成長基板1はSiC、サファイア、GaN等からなる。また、半導体結晶層2は、Al,Ga,In,N等から構成される。ここで、反り量とは、図2に示すように、凸面が上方になる状態の半導体ウェハの高さから半導体ウェハの中心部分の膜厚を差し引いた値のことをいう。
図3は、半導体基板100の反り量を5μm以下に制限する場合における応力緩和層3の応力と膜厚との関係を示す図である。図3の縦軸は応力緩和層3の膜厚を示し、図3の横軸は応力緩和層3の応力を示す。図3に示すように、応力緩和層3の応力が大きくなるにつれて応力緩和層3の膜厚は小さくなる。以上のように、成長基板1および半導体結晶層2の材料、径、膜厚等に応じて応力緩和層3を構成する材料、膜厚等を適宜選択することができる。
本実施の形態によれば、成長基板1および半導体結晶層2の側面まで形成された応力緩和層3により、半導体基板100の反り量を有効に制限できる。それにより、例えば、電極形成のために実施されるリソグラフィ工程におけるパターンの歪みを抑制することができる。したがって、高精度のパターニングが可能になる。
なお、本実施の形態においては、成長基板1の側面および半導体結晶層2の側面全体に応力緩和層3が形成されているが、成長基板1の側面のみまたは成長基板1および半導体結晶層2の側面の一部に応力緩和層2が形成されていても半導体基板100の反り量は有効に低減される。それにより、半導体結晶層2の剥がれが防止できる。
次に、図1の半導体基板100の製造方法について説明する。図4は、半導体基板100の製造方法について説明するためのフロー図である。まず、図4(a)に示すように、成長基板1を準備する。
次に、図4(b)に示すように、MOCVD法により成長基板1上に半導体結晶層2をエピタキシャル成長させる。半導体結晶層2は、半導体基板100をGaN系HEMTに用いる場合には、成長基板1側からGaN系半導体層、GaN層、AlGaN層およびGaN系半導体層を順に積層させることによって形成される。
次いで、図4(c)に示すように、成長基板1の下面、成長基板1の側面および半導体結晶層2の側面とを覆う応力緩和層3を形成する。応力緩和層3は、SiN、メタル、GaN等から形成される。応力緩和層3としてSiNを用いる場合には、スパッタリングまたはCVD法により応力緩和層3を形成することができる。
応力緩和層3としてメタルを用いる場合には、スパッタリングまたは真空蒸着法により応力緩和層3を形成することができる。応力緩和層3としてGaNを用いる場合には、MOVPE(有機金属気相成長法)により応力緩和層3を形成することができる。なお、応力緩和層3としてその他の材料を用いる場合には、その材料に応じた方法により応力緩和層3を形成することができる。以上の工程により、半導体基板100が完成する。
(第2の実施の形態)
第1の実施の形態においては成長基板1上に半導体結晶層2を形成した後に応力緩和層3を設けているが、あらかじめ応力を成長基板1に付与することにより、後に半導体結晶層2を成長させた場合にトータルで反り量を低減することも可能である。すなわち、本発明は、半導体結晶層2を成長させる前にあらかじめ反対の応力を付与した半導体結晶成長用基板においても、その効果を発揮できるものである。
図5は、第2の実施の形態に係る半導体結晶成長用基板200の模式的断面図である。図5に示すように、半導体結晶成長用基板200は、成長基板201および応力緩和層202を備える。成長基板201は、図1の成長基板1と同様のものを用いることができる。成長基板201の下面および側面には、応力緩和層202が形成されている。応力緩和層202は、図1の応力緩和層3と同様のものを用いることができる。応力緩和層202は、成長基板201の下面から成長基板201の側面にかけて連続して形成されていることが好ましい。
本実施の形態に係る応力緩和層202は、成長基板201上に形成されるべき半導体結晶層が成長基板201に対して有する応力と同じ方向に成長基板2011に対して応力を有する。それにより、半導体結晶層の成長基板201に対する引張応力または圧縮応力が相殺される。したがって、半導体結晶層を形成後の半導体結晶成長用基板200の反り、クラックの発生が抑制される。その結果、半導体結晶層の剥がれも防止される。
次に、半導体結晶成長用基板200の製造方法について説明する。図6は、半導体結晶成長用基板200の製造方法について説明するためのフロー図である。まず、図6(a)に示すように、成長基板1を準備する。
次に、図6(b)に示すように、成長基板1の下面および側面とを覆う応力緩和層202を形成する。応力緩和層202は、SiN、メタル、GaN等から形成される。応力緩和層202としてSiNを用いる場合には、スパッタリングまたはCVD法により応力緩和層202を形成することができる。
応力緩和層202としてメタルを用いる場合には、スパッタリングまたは真空蒸着法により応力緩和層202を形成することができる。応力緩和層202としてGaNを用いる場合には、MOVPE(有機金属気相成長法)により応力緩和層202を形成することができる。なお、応力緩和層202としてその他の材料を用いる場合には、その材料に応じた方法により応力緩和層202を形成することができる。以上の工程により、半導体結晶成長用基板200が完成する。
(第3の実施の形態)
第1および第2の実施の形態において説明したような応力緩和層は、半導体装置の製造工程におけるリソグラフィ工程だけに効果を発揮するものではない。例えば、ダイシングなどによってチップ状の半導体装置に分割された後も、生じる反りが緩和される。その結果、半導体装置の特性劣化を防止することができる。以下、応力緩和層が設けられた半導体装置について説明する。半導体装置の一例としてGaN系HEMTについて説明する。
図7は、第3の実施の形態に係る半導体装置300の模式的断面図である(GaN系HEMT)。図7に示すように、半導体装置300は、基板301上にバッファ層302、チャネル層303、電子供給層304およびキャップ層305が順に形成されている。例えば、基板301はSiCからなり、バッファ層302はAlNからなり、チャネル層303はGaNからなり、電子供給層304はAlGaNからなり、キャップ層305はGaNからなる。以下、バッファ層302、チャネル層303、電子供給層304キャップ層305のことを半導体結晶層310と呼ぶ。
キャップ層305上にはゲート電極306が形成され、キャップ層305上においてゲート電極306を挟むようにソース電極307とドレイン電極308とが形成されている。また、キャップ層305上において、ゲート電極306とソース電極307との間およびゲート電極306とドレイン電極308との間に表面保護膜309が形成されている。表面保護膜309は、例えば、SiN等からなる。
基板301の下面と、基板301、バッファ層302、チャネル層303、電子供給層304およびキャップ層305の側面とに、応力緩和層320が形成されている。、応力緩和層320は、基板301の下面から基板301、バッファ層302、チャネル層303、電子供給層304およびキャップ層305の側面にかけて連続して形成されていることが好ましい。応力緩和層320は、SiN等の絶縁膜、WSi,TiW,TiN等のメタル膜、GaN等の半導体膜等から形成される。
本実施の形態に係る応力緩和層320は、半導体結晶層310が基板301に対して有する応力と同じ方向に基板301に対して応力を有する。それにより、半導体結晶層310の基板301に対する引張応力または圧縮応力が相殺される。したがって、半導体装置300の反り、クラックの発生が抑制される。また、半導体装置300の反りが抑制できると、半導体結晶層310の電子状態の変化を抑制することができる。それにより、半導体装置300の特性が向上する。その結果、半導体装置300は所望の特性を実現する。
さらに、本実施の形態に係る半導体装置300においては、応力緩和層320が基板301の側面および半導体結晶層310の側面にまで形成されていることから、半導体結晶層310の基板301に対する応力をより効果的に相殺することができる。さらに、応力緩和層320によって基板301と半導体結晶層310とが固定されることから、基板301と半導体結晶層310との界面における剥がれを効果的に防止することができる。
なお、本実施の形態においては、基板301の側面および半導体結晶層310の側面全体に応力緩和層320が形成されているが、基板301の側面の一部のみに応力緩和層320が形成されていても半導体基板300の反り量は有効に低減される。それにより、半導体結晶層310の剥がれが防止される。
図8は、本実施の形態に係る半導体装置(GaN系HEMT)の他の例である半導体装置300aの模式的断面図である。半導体装置300aが図7の半導体装置300と異なる点は、応力緩和層320が基板301の下面および基板301の側面の一部に連続して形成されている点である。
この場合においても、応力緩和層320は、半導体結晶層310が基板301に対して有する応力と同じ方向に基板301に対して応力を有する。それにより、半導体結晶層310の基板301に対する引張応力または圧縮応力が相殺される。したがって、半導体装置300aの反り、クラックの発生が抑制される。なお、本実施の形態に係る半導体装置の一例としてGaN系HEMTについて説明したが、半導体結晶層上にゲート電極、ソース電極およびドレイン電極が設けられた半導体装置に適用することができる。例えば、FETに本発明を適用することもできる。
続いて、半導体装置300aの製造方法について説明する。図9および図10は、半導体装置300aの製造方法について説明するためのフロー図である。まず、図9(a)に示すように、基板301上に、バッファ層302、チャネル層303、電子供給層304およびキャップ層305をCVD法等により順に形成する。
次に、図9(b)に示すように、基板301の下面に複数の溝311を形成する。複数の溝311の深さは特に限定されず、切り欠き部がバッファ層302に到達していなければよい。溝311は、ダイシングブレードによって形成することもでき、マスクを利用したエッチングによっても形成することができる。次いで、図9(c)に示すように、基板301の下面の全体にわたって応力緩和層320をスパッタリング、CVD法等により形成する。それにより、複数の溝311にも応力緩和層320が形成される。
次に、図10(a)に示すように、キャップ層305上に表面保護膜309を形成し、表面保護膜309に開口を形成し、その開口にゲート電極306、ソース電極307およびドレイン電極308をCVD法等により形成する。この場合、表面保護膜309の開口は、隣接する溝311と溝311との間のキャップ層305上にゲート電極306、ソース電極307およびドレイン電極308が一つずつ形成されるように形成される。
次いで、図10(b)に示すように、表面保護膜309の各溝311上方の部分にダイシングラインとなる開口312を形成する。続いて、ダイシングブレードによって各開口312から各溝311にかけてダイシングを行う。以上の工程により、半導体装置300aが形成される。
以上の製造方法によれば、半導体装置300aとしてチップに分割される前に、半導体装置300aの側面に応力緩和層320を形成することができる。したがって、チップ化した後に応力緩和層を設ける製造方法に比較して、半導体装置の製造工程数が削減される。また、半導体装置300aにおいても本発明の効果が得られる。
(第4の実施の形態)
次に、光半導体装置の一例としてGaN系VCSELについて説明する。図11は、第4の実施の形態に係る光半導体装置400の模式的断面図である(GaN系VCSEL)。図11に示すように、光半導体装置400は、基板401上にバッファ層402およびn型コンタクト層403が順に形成されている。また、n型コンタクト層403の中央部上にn型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407が順に形成されている。
例えば、基板401はSiCからなり、バッファ層402はAlNからなり、n型コンタクト層403はn型GaNからなり、n型クラッド層404はn型AlGaNからなり、量子井戸活性層405はInGaN/GaNからなり、p型クラッド層406はp型AlGaNからなり、p型コンタクト層407はp型GaNからなる。以下、バッファ層402、n型コンタクト層403、n型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407を半導体結晶層410と呼ぶ。
n型コンタクト層403上のn型クラッド層404の外側には、n側電極411が形成されている。p型コンタクト層407上にはリング状のp側電極412が形成されている。また、n型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407を覆うように表面保護膜413が形成されている。表面保護膜413は、例えば、SiN等からなる。
基板401の下面と、基板401、バッファ層402およびn型コンタクト層403の側面とに、応力緩和層420が形成されている。応力緩和層420は、基板401の下面から基板401、バッファ層402およびn型コンタクト層403の側面にかけて連続して形成されていることが好ましい。応力緩和層420は、SiN等の絶縁膜、WSi,TiW,TiN等のメタル膜、GaN等の半導体膜等から形成される。
本実施の形態に係る応力緩和層420は、半導体結晶層410が基板401に対して有する応力と同じ方向に基板401に対して応力を有する。それにより、半導体結晶層410の基板401に対する引張応力または圧縮応力が相殺される。したがって、光半導体装置400の反り、クラックの発生が抑制される。
このような光半導体装置は、半導体結晶層の厚み方向に共振器端を持つ。当然ながら半導体結晶層は大きな厚みを持つことが困難であるため、短共振器となる傾向にある。このような共振器においては、共振器に許容される形状誤差は非常に小さくなる。したがって、半導体結晶層の反りが大きいと、所望の特性を実現することが困難となる。本実施の形態に係る光半導体装置400においては、反りが抑制される。したがって、光半導体装置400は、共振器として高い精度を有する。その結果、光半導体装置400は、良好な特性を有する。
また、本実施の形態に係る光半導体装置400においては、応力緩和層420が基板401の下面と基板401、バッファ層402およびn型コンタクト層403の側面とに形成されていることから、半導体結晶層410側から基板401に付与される応力をより効果的に相殺することができる。さらに、応力緩和層420によって基板401とバッファ層402およびn型コンタクト層403とが固定されることから、基板401とバッファ層402との界面およびバッファ層402とn型コンタクト層402との界面における剥がれを効果的に防止することができる。
なお、本実施の形態においては、基板401、バッファ層402およびn型コンタクト層403の側面に応力緩和層320が形成されているが、基板401の側面の一部のみに応力緩和層420が形成されていても半導体装置400の反り量は有効に低減される。それにより、半導体結晶層410の剥がれが防止される。
図12は、本実施の形態に係る光半導体装置の他の例である光半導体装置400aの模式的断面図(GaN系VCSEL)である。光半導体装置400aが図11の光半導体装置400と異なる点は、応力緩和層420が基板401の下面および基板401の側面の一部に連続して形成されている点である。
この場合においても、応力緩和層420は、半導体結晶層410が基板401に対して有する応力と同じ方向に基板401に対して応力を有する。それにより、半導体結晶層410の基板401に対する引張応力または圧縮応力が相殺される。したがって、光半導体装置400aの反り、クラックの発生が抑制される。
続いて、光半導体装置400aの製造方法について説明する。図13、図14および図15は、光半導体装置400aの製造方法について説明するためのフロー図である。まず、図13(a)に示すように、基板401上に、バッファ層402、n型コンタクト層403、n型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407をCVD法等により順に形成する。
次に、図13(b)に示すように、n型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407を選択的に除去し、n型コンタクト層403を露出させる。次いで、図13(c)に示すように、n型コンタクト層403、n型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407を覆うように表面保護膜413を形成する。
次いで、図14(a)に示すように、基板401の下面に複数の溝421を形成する。溝421は、上方のn型クラッド層404、量子井戸活性層405、p型クラッド層406およびp型コンタクト層407を挟むように形成される。溝421の深さは特に限定されず、切り欠き部がバッファ層402に到達していなければよい。溝421は、ダイシングブレードによって形成することもでき、マスクを利用したエッチングによっても形成することができる。
次に、図14(b)に示すように、基板401の下面の全体にわたって応力緩和層420をスパッタリング、CVD法等により形成する。それにより、複数の溝421にも応力緩和層420が形成される。次いで、図14(c)に示すように、表面保護膜413に開口を形成し、その開口にn側電極411およびp側電極412をCVD法等により形成する。p側電極412は、光出力窓の周囲を囲むリング電極となっている。
次いで、図15に示すように、表面保護膜413の各溝421上方の部分にダイシングラインとなる開口414を形成する。続いて、ダイシングブレードによって各開口414から各溝421にかけてダイシングを行う。以上の工程により、光半導体装置400aが形成される。
以上の製造方法によれば、光半導体装置400aとしてチップに分割される前に、光半導体装置400aの側面に応力緩和層420を形成することができる。したがって、チップ化した後に応力緩和層を設ける製造方法に比較して、光半導体装置の製造工程数が削減される。また、光半導体装置400aにおいても本発明の効果が得られる。
(比較例1)
比較例1として従来の半導体基板500を作製した。図16は、従来の半導体基板500の模式的断面図である。図16に示すように、SiCから構成される成長基板501上にMOCVD法により、Al,Ga,InおよびNからなる半導体結晶層502をエピタキシャル成長させた。
(実施例1)
実施例1として上記実施の形態に従って図1の半導体基板100を作製した。成長基板1としてSiCを用い、半導体結晶層2としてAl,Ga,InおよびNからなる結晶層を用い、応力緩和層3としてSiOを用いた。半導体結晶層2はMOCVD法により成長基板1上にエピタキシャル成長させ、応力緩和層3は成長基板1の下面、成長基板1の側面および半導体結晶層2の側面にスパッタリングにより形成した。
(分析)
比較例1に係る半導体基板200および実施例1に係る半導体基板100の反り量を表2に示す。表2に示すように、比較例1に係る半導体基板500の反り量は、半導体結晶層501をエピタキシャル成長させる前においては12μmとなり、半導体結晶層501をエピタキシャル成長させた後においては17μmとなった。一方、実施例1に係る半導体基板100においては、応力緩和層3を形成した後の反り量は5μmとなった。以上のことから、実施例1に係る半導体基板100においては半導体結晶層2から成長基板1に対してかかる応力が相殺されていることがわかる。
Figure 2006278999
(比較例2)
続いて、比較例2として従来の半導体基板500aを作製した。図17は、従来の半導体基板500aの模式的断面図である。図17に示すように、SiCから構成される成長基板501上にAl,Ga,InおよびNからなる半導体結晶層502をMOCVD法によりエピタキシャル成長させ、成長基板501の下面にスパッタリングにより応力緩和層503を形成した。
(分析)
実施例1に係る半導体基板100および比較例2に係る半導体基板200aを用いてトランジスタを作製する工程中に、成長基板と応力緩和層との間に剥がれが生じるか否かを調べた。実施例1に係る半導体基板100および比較例2に係る半導体基板200aのサンプルをそれぞれ50個ずつ作製した。これらを用いてトランジスタを作製した。表3にその結果を示す。
Figure 2006278999
表3に示すように、比較例2に係る半導体基板500aを用いたトランジスタの作製工程中に、5個のサンプルに成長基板501と応力緩和層503との間に剥がれが生じた。さらに、残りの45個のサンプルに対して配線を施す工程中に、17個のサンプルに成長基板501と応力緩和層503との間に剥がれが生じた。
一方、実施例1に係る半導体基板100を用いたトランジスタの作製工程中には、成長基板1と応力緩和層3との間に剥がれが生じなかった。さらに、配線を施す工程中にも成長基板1と応力緩和層3との間に剥がれが生じなかった。
以上のことから、成長基板1の側面および半導体結晶層2の側面にまで応力緩和層3を形成することにより、トランジスタ作製工程中における成長基板1と応力緩和層3との間の剥がれが防止されることがわかる。したがって、実施例1に係る半導体基板100を用いてトランジスタを作製する際においても、半導体基板100の反り、クラックの発生を効果的に抑制することができる。以上のことから、歩留まりが大幅に向上することがわかる。
本発明に係る半導体ウェハの模式的断面図である。 半導体ウェハの反り量を説明するための図である。 応力緩和層の応力と膜厚との関係を示す図である。 半導体基板の製造方法について説明するためのフロー図である。 第2の実施の形態に係る半導体結晶成長用基板の模式的断面図である。 半導体結晶成長用基板の製造方法について説明するためのフロー図である。 第3の実施の形態に係る半導体装置の模式的断面図である(GaN系HEMT)。 本実施の形態に係る半導体装置(GaN系HEMT)の他の例の模式的断面図である。 半導体装置の製造方法について説明するためのフロー図である。 半導体装置の製造方法について説明するためのフロー図である。 第4の実施の形態に係る光半導体装置の模式的断面図である(GaN系VCSEL)。 本実施の形態に係る光半導体装置の他の例の模式的断面図(GaN系VCSEL)である。 光半導体装置の製造方法について説明するためのフロー図である。 光半導体装置の製造方法について説明するためのフロー図である。 光半導体装置の製造方法について説明するためのフロー図である。 従来の半導体基板の模式的断面図である。 従来の半導体基板の模式的断面図である。
符号の説明
1,201 成長基板
2 半導体結晶層
3,202,320,420 応力緩和層
100 半導体基板
200 半導体結晶成長用基板
300,300a,400,400a 半導体装置
311,421 溝

Claims (32)

  1. 基板の一面上に成長した半導体結晶層と、
    前記基板の他面およびこれに連続して前記基板の側面に形成され、前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層とを備えることを特徴とする半導体基板。
  2. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項1記載の半導体基板。
  3. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項1または2記載の半導体基板。
  4. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項1〜3のいずれかに記載の半導体基板。
  5. 基板の一面上に半導体結晶層を成長させる工程と、
    前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層を前記基板の他面およびこれに連続して前記基板の側面に形成するステップとを含むことを特徴とする半導体基板の製造方法。
  6. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項5記載の半導体基板の製造方法。
  7. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項5または6記載の半導体基板の製造方法。
  8. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項5〜7のいずれかに記載の半導体基板の製造方法。
  9. 一面上に半導体結晶層が成長されるべき、半導体結晶成長用基板の他面およびこれに連続して前記半導体結晶成長用基板の側面に形成され、前記半導体結晶層が前記半導体結晶成長用基板に付与する応力と同じ方向に前記半導体結晶成長用基板に応力を付与する応力緩和層を備えることを特徴とする半導体結晶成長用基板。
  10. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項9記載の半導体結晶成長用基板。
  11. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項9または10記載の半導体結晶成長用基板。
  12. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項9〜11のいずれかに記載の半導体結晶成長用基板。
  13. 一面上に半導体結晶層が成長されるべき、半導体結晶成長用基板の他面およびこれに連続して前記半導体結晶成長用基板の側面に形成され、前記半導体結晶層が前記半導体結晶成長用基板に付与する応力と同じ方向に前記半導体結晶成長用基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とする半導体結晶成長用基板の製造方法。
  14. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項13記載の半導体結晶成長用基板の製造方法。
  15. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項13または14記載の半導体結晶成長用基板の製造方法。
  16. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項13〜15のいずれかに記載の半導体結晶成長用基板の製造方法。
  17. 基板の一面上に設けられた電界効果型トランジスタの動作層となる半導体結晶層と、
    チップに分割された前記基板の他面およびこれに連続して前記基板の側面に設けられ、前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層とを備えることを特徴とする半導体装置。
  18. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項17記載の半導体装置。
  19. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項17または18記載の半導体装置。
  20. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項17〜19のいずれかに記載の半導体装置。
  21. 一面上に電界効果型トランジスタの動作層となる半導体結晶層が設けられる基板の他面と前記基板がチップに分割された際に側面をなす領域とに、前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とする半導体装置の製造方法。
  22. 前記基板の他面に溝が形成されおり、
    前記応力緩和層は、前記基板の他面および前記溝の内壁に設けられることを特徴とする請求項21記載の半導体装置の製造方法。
  23. 前記半導体装置は、前記基板の他面から前記溝に到達する切断を実施することで、チップに分割されることを特徴とする請求項22記載の半導体装置の製造方法。
  24. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項21〜23のいずれかに記載の半導体装置の製造方法。
  25. 基板の一面上に設けられ、かつ、活性層およびこれを上下で挟むクラッド層を含む半導体結晶層と、
    チップに分割された前記基板の他面およびこれに連続して前記基板の側面に設けられ、前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層とを備えることを特徴とする光半導体装置。
  26. 前記半導体結晶層は、GaN系半導体層であることを特徴とする請求項25記載の光半導体装置。
  27. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項25または26記載の光半導体装置。
  28. 前記応力緩和層は、SiN,WSi,TiW,TiNまたはGaNであることを特徴とする請求項25〜27のいずれかに記載の光半導体装置。
  29. 一面上に活性層およびこれを上下で挟むクラッド層を含む半導体結晶層が設けられる基板の他面と前記基板がチップに分割された際に側面をなす領域とに、前記半導体結晶層が前記基板に付与する応力と同じ方向に前記基板に応力を付与する応力緩和層を形成する工程を含むことを特徴とする光半導体装置の製造方法。
  30. 前記基板の他面に溝が形成されおり、
    前記応力緩和層は、前記基板の他面および前記溝の内壁に設けられることを特徴とする請求項29記載の光半導体装置の製造方法。
  31. 前記光半導体装置は、前記基板の他面から前記溝に到達する切断を実施することで、チップに分割されることを特徴とする請求項30記載の光半導体装置の製造方法。
  32. 前記基板は、GaN,SiCまたはサファイアであることを特徴とする請求項29〜31のいずれかに記載の半導体装置の製造方法。
JP2005100248A 2005-03-30 2005-03-30 半導体基板および半導体装置 Active JP4522301B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005100248A JP4522301B2 (ja) 2005-03-30 2005-03-30 半導体基板および半導体装置
US11/391,200 US7442999B2 (en) 2005-03-30 2006-03-29 Semiconductor substrate, substrate for semiconductor crystal growth, semiconductor device, optical semiconductor device, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100248A JP4522301B2 (ja) 2005-03-30 2005-03-30 半導体基板および半導体装置

Publications (3)

Publication Number Publication Date
JP2006278999A true JP2006278999A (ja) 2006-10-12
JP2006278999A5 JP2006278999A5 (ja) 2007-08-09
JP4522301B2 JP4522301B2 (ja) 2010-08-11

Family

ID=37069335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100248A Active JP4522301B2 (ja) 2005-03-30 2005-03-30 半導体基板および半導体装置

Country Status (2)

Country Link
US (1) US7442999B2 (ja)
JP (1) JP4522301B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117841A (ja) * 2006-11-01 2008-05-22 Furukawa Electric Co Ltd:The 半導体パワーモジュール及びその製造方法
JP2008227287A (ja) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd 半導体光素子の製造方法
JP2009076866A (ja) * 2007-08-31 2009-04-09 Sumitomo Electric Ind Ltd ショットキーバリアダイオード
KR20140099491A (ko) * 2012-07-23 2014-08-12 시노 니트라이드 세미컨덕터 컴퍼니 엘티디 금속 확산 방지 보호층을 구비한 복합기판
WO2015040802A1 (ja) * 2013-09-18 2015-03-26 株式会社デンソー 半導体装置およびその製造方法
JP2019004127A (ja) * 2017-06-14 2019-01-10 ウィン セミコンダクターズ コーポレーション 化合物半導体ウェーハーのゆがみを低減するための構造上の改良
US10472715B2 (en) 2015-02-27 2019-11-12 Sumitomo Chemical Company, Limited Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232605B2 (ja) * 2003-10-30 2009-03-04 住友電気工業株式会社 窒化物半導体基板の製造方法と窒化物半導体基板
US7952155B2 (en) * 2007-02-20 2011-05-31 Micron Technology, Inc. Reduced edge effect from recesses in imagers
IT1406644B1 (it) 2010-04-29 2014-03-07 Abbondanza Substrato (fetta) di materiale semiconduttore con sovrastanti strati eteroepitassiali assumenti una struttura sandwich, idoneo per la fabbricazione di componenti elettronici ibridi.
CN103579471B (zh) * 2012-07-23 2016-06-15 东莞市中镓半导体科技有限公司 一种带有防止金属扩散保护层的复合衬底
JP6171250B2 (ja) 2013-06-28 2017-08-02 住友電工デバイス・イノベーション株式会社 半導体装置
US8969109B1 (en) * 2013-09-05 2015-03-03 International Business Machines Corporation Tunable light-emitting diode
US10903070B2 (en) 2018-09-28 2021-01-26 Lam Research Corporation Asymmetric wafer bow compensation by chemical vapor deposition
US10896821B2 (en) * 2018-09-28 2021-01-19 Lam Research Corporation Asymmetric wafer bow compensation by physical vapor deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128690A (ja) * 1986-11-18 1988-06-01 Fuji Electric Co Ltd 半導体レ−ザ素子
JPH02288287A (ja) * 1989-04-27 1990-11-28 Sharp Corp 半導体レーザ素子
JPH09306848A (ja) * 1996-05-16 1997-11-28 Nec Corp 半導体結晶性膜の成長方法
JPH1126887A (ja) * 1997-07-07 1999-01-29 Sumitomo Electric Ind Ltd ダイヤモンド放熱部品を備えた半導体レーザ
JP2000286449A (ja) * 1999-03-31 2000-10-13 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びその製造方法
JP2003113000A (ja) * 2001-10-05 2003-04-18 Hitachi Cable Ltd 半導体エピタキシャルウェハ及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983017A (ja) * 1995-09-08 1997-03-28 Sumitomo Electric Ind Ltd エピタキシャルウェハおよびその製造方法
JP3813740B2 (ja) * 1997-07-11 2006-08-23 Tdk株式会社 電子デバイス用基板
US6294440B1 (en) * 1998-04-10 2001-09-25 Sharp Kabushiki Kaisha Semiconductor substrate, light-emitting device, and method for producing the same
US6770504B2 (en) * 2003-01-06 2004-08-03 Honeywell International Inc. Methods and structure for improving wafer bow control
JP4676168B2 (ja) * 2004-06-11 2011-04-27 大日本印刷株式会社 フィルタ基板、及びこれを用いたカラーディスプレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128690A (ja) * 1986-11-18 1988-06-01 Fuji Electric Co Ltd 半導体レ−ザ素子
JPH02288287A (ja) * 1989-04-27 1990-11-28 Sharp Corp 半導体レーザ素子
JPH09306848A (ja) * 1996-05-16 1997-11-28 Nec Corp 半導体結晶性膜の成長方法
JPH1126887A (ja) * 1997-07-07 1999-01-29 Sumitomo Electric Ind Ltd ダイヤモンド放熱部品を備えた半導体レーザ
JP2000286449A (ja) * 1999-03-31 2000-10-13 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子及びその製造方法
JP2003113000A (ja) * 2001-10-05 2003-04-18 Hitachi Cable Ltd 半導体エピタキシャルウェハ及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117841A (ja) * 2006-11-01 2008-05-22 Furukawa Electric Co Ltd:The 半導体パワーモジュール及びその製造方法
JP2008227287A (ja) * 2007-03-14 2008-09-25 Sumitomo Electric Ind Ltd 半導体光素子の製造方法
JP2009076866A (ja) * 2007-08-31 2009-04-09 Sumitomo Electric Ind Ltd ショットキーバリアダイオード
KR20140099491A (ko) * 2012-07-23 2014-08-12 시노 니트라이드 세미컨덕터 컴퍼니 엘티디 금속 확산 방지 보호층을 구비한 복합기판
KR101652919B1 (ko) * 2012-07-23 2016-08-31 시노 니트라이드 세미컨덕터 컴퍼니 엘티디 금속 확산 방지 보호층을 구비한 복합기판
WO2015040802A1 (ja) * 2013-09-18 2015-03-26 株式会社デンソー 半導体装置およびその製造方法
US10472715B2 (en) 2015-02-27 2019-11-12 Sumitomo Chemical Company, Limited Nitride semiconductor template, manufacturing method thereof, and epitaxial wafer
JP2019004127A (ja) * 2017-06-14 2019-01-10 ウィン セミコンダクターズ コーポレーション 化合物半導体ウェーハーのゆがみを低減するための構造上の改良

Also Published As

Publication number Publication date
US20060220192A1 (en) 2006-10-05
US7442999B2 (en) 2008-10-28
JP4522301B2 (ja) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4522301B2 (ja) 半導体基板および半導体装置
US8154009B1 (en) Light emitting structure including high-al content MQWH
JP5323527B2 (ja) GaN系電界効果トランジスタの製造方法
US8803189B2 (en) III-V compound semiconductor epitaxy using lateral overgrowth
JP5531434B2 (ja) 化合物半導体装置及びその製造方法
KR102108196B1 (ko) 성장 기판이 분리된 자외선 발광소자 및 그 제조 방법
JP5163045B2 (ja) エピタキシャル成長基板の製造方法及び窒化物系化合物半導体素子の製造方法
JP2000091636A (ja) 半導体発光素子の製法
JP2003063897A (ja) 窒化物系iii−v族化合物半導体基板およびその製造方法ならびに半導体発光素子の製造方法ならびに半導体装置の製造方法
US8643059B2 (en) Substrate structure and method of manufacturing the same
JP2009091175A (ja) GaNエピタキシャル基板、半導体デバイス、GaNエピタキシャル基板及び半導体デバイスの製造方法
EP2026428A2 (en) Method of fabricating semiconductor laser
JP2009283807A (ja) 窒化物半導体層を含む構造体、窒化物半導体層を含む複合基板、及びこれらの製造方法
JP2007227884A (ja) 電界効果トランジスタ
JP2020519026A (ja) 基板を除去する方法
JP2009130010A (ja) 窒化物半導体装置の製造方法
JP2006261252A (ja) 半導体装置及びその製造方法
TW201545315A (zh) 半導體裝置與其之製造方法
US20130285074A1 (en) Luminescent device and manufacturing method for luminescent device and semiconductor device
JP2001044121A (ja) エピタキシャル層構造及びその製造方法
JP2011171639A (ja) 半導体装置、半導体ウェハ、半導体装置の製造方法及び半導体ウェハの製造方法
KR100788173B1 (ko) 질화물 반도체 기판을 제조하는 방법 및 이를 이용한 3족질화물 반도체 발광소자를 제조하는 방법
US20120168768A1 (en) Semiconductor structures and method for fabricating the same
KR101209487B1 (ko) 반도체 발광소자 및 그 제조방법
JP2010165783A (ja) 電界効果型トランジスタおよびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250