JP2006274857A - ディーゼル式内燃機関の制御装置 - Google Patents

ディーゼル式内燃機関の制御装置 Download PDF

Info

Publication number
JP2006274857A
JP2006274857A JP2005092563A JP2005092563A JP2006274857A JP 2006274857 A JP2006274857 A JP 2006274857A JP 2005092563 A JP2005092563 A JP 2005092563A JP 2005092563 A JP2005092563 A JP 2005092563A JP 2006274857 A JP2006274857 A JP 2006274857A
Authority
JP
Japan
Prior art keywords
injection
fuel
pilot injection
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005092563A
Other languages
English (en)
Other versions
JP4161974B2 (ja
Inventor
Shinobu Ishiyama
忍 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005092563A priority Critical patent/JP4161974B2/ja
Priority to DE602006012390T priority patent/DE602006012390D1/de
Priority to EP06111203A priority patent/EP1707785B1/en
Priority to ES06111203T priority patent/ES2343970T3/es
Publication of JP2006274857A publication Critical patent/JP2006274857A/ja
Application granted granted Critical
Publication of JP4161974B2 publication Critical patent/JP4161974B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 燃焼騒音を小さく維持しつつスモークの発生を抑制することができるディーゼル式内燃機関の制御装置を提供する。
【解決手段】 燃料噴射弁3と、燃料噴射弁に目標燃料供給圧力で燃料を供給しようとする燃料供給手段18とを具備し、燃料噴射弁は圧縮上死点付近で行われるメイン噴射に加えて一回パイロット噴射を行うシングルパイロット噴射モードと、メイン噴射に加えて複数回パイロット噴射を行うマルチパイロット噴射モードとで燃料噴射を実行することが可能であり、シングルパイロット噴射モードで燃料噴射を実行する場合には少なくとも燃料噴射量に応じて設定される基準目標燃料供給圧力が上記目標燃料供給圧力とされるディーゼル式内燃機関の制御装置において、マルチパイロット噴射モードで燃料噴射を実行する場合には目標燃料供給圧力が上記基準目標燃料供給圧力よりも高い燃料供給圧力とされる。
【選択図】 図1

Description

本発明は、ディーゼル式内燃機関の制御装置に関する。
ディーゼル式内燃機関では、燃焼室における燃焼状態によっては燃焼室から排出される排気ガス中に粒子状物質(particulate)等から成るスモークが混入される。従って、多くのディーゼル式内燃機関では、機関排気通路上にパティキュレートフィルタを設けて大気中に放出されるスモークの低減を図ると共に、燃焼室での燃焼状態を改善して燃焼室でのスモークの発生を抑制するようにしている。
例えば、特許文献1に記載の発明では、機関運転状態が低負荷運転状態にあるときには、燃料噴射弁からの燃料噴射時期を遅角させると共に、燃料噴射弁からの燃料の噴射圧を相対的に高くすることで噴射期間を短くするようにしている。これにより、着火遅れ期間が長くなると共に着火遅れ期間中に全ての燃料が噴射される。このため、燃焼のほとんどが予混合燃焼となり、スモークの発生を抑制することができる。
特開平8−254152号公報 特開平7−158517号公報 特許第2953324号明細書 特開平6−42430号公報 特開平7−279800号公報 特開2004−11501号公報 特開2004−169633号公報
ところで、ディーゼル式内燃機関についてはスモーク発生の問題の他にも、燃焼騒音の問題がある。燃焼騒音は、主に多量の燃料が一気に燃焼することにより大きくなる傾向にあり、例えば特許文献1の装置では、燃料噴射弁からの燃料の噴射終了後に混合気への自着火が行われるため燃焼騒音の増大を避けられない。
燃焼騒音の低減には、メイン噴射の前に複数回燃料噴射を行うマルチパイロット噴射モードで燃料噴射を実行することが効果的である。すなわち、マルチパイロット噴射モードで燃料噴射を実行すると、メイン噴射の開始前又は開始直後に混合気への自着火が行われることになる。従って、メイン噴射による燃料がほとんど噴射されていない状態で自着火が行われることになるため、自着火時には燃焼室内に噴射されている燃料は少なく、よって多量の燃料が一気に燃焼することがないため、燃焼騒音を低減させることができる。
しかしながら、マルチパイロット噴射モードでは、燃料噴射弁のシートチョーク範囲を多く用いて燃料噴射を行うことになるため、燃料の微粒化が十分に行われなかったり、燃料噴射弁から噴射された燃料(以下、「噴射燃料」と称す)の貫徹力が不足して噴射燃料が燃焼室内に分散せずに燃焼室の中央付近に漂ったりし易い。従って、混合気の燃焼状態が悪化して、スモークの増加を招く結果になる。
そこで、本発明の目的は、燃焼騒音を小さく維持しつつスモークの発生を抑制することができるディーゼル式内燃機関の制御装置を提供することにある。
上記課題を解決するために、第1の発明では、燃料噴射弁と、該燃料噴射弁に目標燃料供給圧力で燃料を供給しようとする燃料供給手段とを具備し、上記燃料噴射弁は圧縮上死点付近で行われるメイン噴射に加えて該メイン噴射の前に一回パイロット噴射を行うシングルパイロット噴射モードと、上記メイン噴射に加えて該メイン噴射の前に複数回パイロット噴射を行うマルチパイロット噴射モードとで燃料噴射を実行することが可能であり、シングルパイロット噴射モードで燃料噴射を実行する場合の基準目標燃料供給圧力が上記目標燃料供給圧力とされるディーゼル式内燃機関の制御装置において、マルチパイロット噴射モードで燃料噴射を実行する場合には上記目標燃料供給圧力が上記基準目標燃料供給圧力よりも高い燃料供給圧力とされる。
第1の発明によれば、マルチパイロット噴射モードで燃料噴射が実行されている場合に目標燃料供給圧力が高いものとされる。燃料供給圧力が高くなると、噴射燃料の燃焼室内での微粒化が促進されると共に、噴射燃料の圧力が高くなるため噴射燃料の貫徹力が高くなり、噴射燃料が燃焼室内全体に分散するようになる。このため、混合気の燃焼状態が改善され、スモークの発生が抑制せしめられる。
第2の発明では、第1の発明において、上記マルチパイロット噴射モードは、機関負荷が中基準負荷以下である低・中負荷運転領域に機関運転状態がある場合に実行される。
一般に、燃焼騒音が問題となるのは、燃料噴射量の少ない場合、すなわち機関負荷が比較的低い場合である。第2の発明によれば、機関運転状態が低・中負荷運転領域にあるときにマルチパイロット噴射モードが実行されるため、効果的に燃焼騒音の問題が解消される。
第3の発明では、第2の発明において、機関負荷が上記中基準負荷よりも低い低基準負荷以下である低負荷運転領域に機関運転状態がある場合には、機関負荷が中基準負荷以下であって低基準負荷よりも高い中負荷運転領域に機関運転状態がある場合に比べて基準目標燃料供給圧力からの目標燃料供給圧力の増分が大きくなるようにした。
第4の発明では、第3の発明において、上記燃料噴射弁は、ノズルボディと、該ノズルボディの先端部に形成された噴孔と、前記ノズルボディ内でリフトするニードル弁とを具備し、該ニードル弁がリフトされると該ニードル弁と上記ノズルボディ内面との間に環状隙間が形成され、上記低負荷運転領域は、上記ニードル弁がリフトすることによって形成される上記環状隙間の断面積が上記噴孔の総断面積よりも小さい程度にニードル弁がリフトされることによってパイロット噴射及びメイン噴射が行われるような運転領域に相当する。
通常、上記環状の燃料流路の断面積が噴孔の総断面積よりも小さい程度にニードル弁がリフトされることによって燃料噴射(以下、「低リフト燃料噴射」と称す)が行われるのはパイロット噴射に限られるが、機関運転状態が低負荷運転領域にある場合には、メイン噴射も低リフト燃料噴射によって行われる。低リフト燃料噴射においては、環状の燃料流路が絞りとなるため、環状の燃料流路と噴孔との間の圧力が低いものとなり、結果として噴孔からの噴射圧が低くなり、燃料の微粒化や噴射燃料の分散が不足する。第4の発明によれば、機関運転状態が低負荷運転領域にあるときには燃料供給圧力がより高くされるため、噴孔からの噴射圧も高くなり、よって燃料の微粒化や噴射燃料の分散が促進される。
第5の発明では、第3又は第4の発明において、ディーゼル式内燃機関の燃焼室に流入する吸気ガスのスワール比を変更可能なスワール比制御手段をさらに具備し、上記スワール比制御手段は機関運転状態が上記低負荷運転領域にある場合には上記低負荷運転領域以外の運転領域にある場合に比べてスワール比が大きくなるように制御する。
上述したように機関運転状態が低負荷運転領域にある場合には噴射燃料の分散が不足するが、第5の発明によれば斯かる場合にスワール比が大きくされるため噴射燃料の分散が促進される。
第6の発明では、第3〜第5のいずれか一つの発明において、上記マルチパイロット噴射モードでは、メイン噴射の前に二回のパイロット噴射が行われると共に、該マルチパイロット噴射モードとしては、一回目のパイロット噴射が二回目のパイロット噴射に近接した遅い時期に行われる近接マルチパイロット噴射モードと一回目のパイロット噴射が二回目のパイロット噴射から離間した早い時期に行われる離間マルチパイロット噴射とを実行可能であり、上記低負荷運転領域にある場合には近接マルチパイロット噴射モードを実行するようにした。
一般に、マルチパイロット噴射モードでは、一回目のパイロット噴射は二回目の燃料噴射に近接した遅い時期に行われるのが好ましい。これは、一回目のパイロット噴射が早い時期に行われると燃焼室内の温度及び圧力が十分でないため、気化せずにボアに付着してしまい、燃費の悪化を招くためである。しかしながら、一回目のパイロット噴射が遅い時期に行われると、このパイロット噴射により二回目のパイロット噴射及びメイン噴射時に燃料供給圧力が低くなり、噴射燃料の微粒化が不十分となる傾向にある。斯かる燃料供給圧力の低下の対策として目標燃料供給圧力を高めることが考えられるが、目標燃料供給圧力を高めると噴射率が上昇し、これに伴って着火遅れ期間中に燃焼室内に噴射される燃料量が増大して燃焼騒音の増大を招いてしまう。
第6の発明によれば、機関運転状態が低負荷運転領域にあるときに近接マルチパイロット噴射モードでの燃料噴射が実行される。機関運転状態が低負荷運転領域、特に低リフト燃料噴射によってパイロット噴射及びメイン噴射が行われる運転領域では、上述したように目標燃料供給圧力が高められるため、噴射燃料は十分に微粒化される。さらに、目標燃料供給圧力を上昇させても噴射率は上昇しにくく、よって着火遅れ期間中に燃焼室内に噴射される燃料量は増大しにくい。従って、燃焼騒音の増大を招くことなく効果的に近接マルチパイロット噴射モードでの燃料噴射を行うことができる。
第7の発明では、第2〜第6のいずれか一つの発明において、内燃機関の冷間時には上記中基準負荷よりも高い負荷以下である運転領域に機関運転状態があるときにマルチパイロット噴射モードを実行する。
内燃機関の冷間時には温間時に比べて着火遅れ時間が長くなり、燃焼騒音が問題となる。第6の発明によれば、冷間時にマルチパイロット噴射モードを実行する領域が拡大され、これにより燃焼騒音の低減が図られる。
第8の発明では、第1〜7のいずれか一つの発明において、各気筒あたり二つの吸気ポートと連通し、上記スワール比制御手段は一方の吸気ポート内に配置された開閉可能なスワールコントロールバルブを具備し、機関始動時には上記スワールコントロールバルブを開弁させる。
EGRを導入しているような場合、機関運転状態が内燃機関の冷間始動時等以外の運転状態にあるときには、高温のEGRガスを導入することにより燃焼室内温度は高温であるため混合気への自着火が行われ易い。一方、内燃機関の冷間始動時等にはEGRガスが導入されていないため混合気への自着火が行われにくい。第7の発明によれば、機関始動時にスワールコントロールバルブが開弁されるため燃焼室内に充填される空気量が増大し、よってピストンによる圧縮で燃焼室内が高温・高圧となり混合気への自着火が行われ易くなる。
本発明によれば、マルチパイロット噴射モードで燃料噴射を実行することにより燃焼騒音が低減されると共に燃料供給圧力が高圧にされるためスモークの発生が抑制され、よって燃焼騒音を小さく維持しつつスモークの発生を抑制することができるディーゼル式内燃機関の制御装置が提供される。
以下、図面を参照して本発明の実施形態について詳細に説明する。図1は本発明の第一実施形態の制御装置を圧縮自着火式内燃機関に適用した場合を示している。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気管6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアクリーナ8に連結される。吸気管6内にはステップモータにより駆動されるスロットル弁9が配置され、さらに吸気管6周りには吸気管6内を流れる吸入空気を冷却するための冷却装置10が配置される。図1に示した実施形態では機関冷却水が冷却装置10内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気浄化触媒11を内蔵したケーシング12に連結される。
排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路14を介して互いに連結され、EGR通路14内には電子制御式EGR制御弁15が配置される。また、EGR通路14周りにはEGR通路14内を流れるEGRガスを冷却するためのEGR冷却装置16が配置される。図1に示した実施形態では機関冷却水が冷却装置16内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管17を介して燃料リザーバ、いわゆるコモンレール18に連結される。このコモンレール18内へは電子制御式の吐出量可変な燃料ポンプ19から燃料が供給され、コモンレール18内に供給された燃料は各燃料供給管17を介して燃料噴射弁3に供給される。なお、以下では、EGRガスを含む空気も単に空気として説明する。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒11には排気浄化触媒11の温度を検出するための温度センサ20が取付けられ、この温度センサ20の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。さらに入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続され、このクランク角センサ42により機関回転数が検出される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁9駆動用ステップモータ、EGR制御弁15及び燃料ポンプ19に接続される。
図2は、燃料噴射弁3の先端部の断面図である。図2に示したように、燃料噴射弁3は、内部に中空空間を有するほぼ円筒状のノズルボディ51と、このノズルボディ51の中空空間内で摺動(移動)するほぼ円柱形のニードル弁52とを具備する。ノズルボディ51とニードル弁52とはこれらの軸線が同軸になるように配置される。ノズルボディ51の内壁面とニードル弁52との間には燃料が流れる環状流路53が画成され、この環状流路53はコモンレール18に接続され、コモンレール18から環状流路53に燃料が供給される。ノズルボディ51の先端部54はほぼ円錐状であり、この先端部54にはサック部55が形成されると共にノズルボディ51を貫通する複数の噴孔56が設けられる。これら噴孔56は環状流路53と連通している。
ニードル弁52はノズルボディ51の中空空間内で摺動可能であり、これにより燃料噴射弁3からの燃料噴射が制御せしめられる。すなわち、ニードル弁52の先端部57がノズルボディ51の内壁面と接触すると環状流路53が遮断されて噴孔56まで燃料が流れなくなり、よって噴孔56から燃料が噴射されない。一方、ニードル弁52がリフトしてニードル弁52の先端部57がノズルボディ51の内壁面から離れていると、ニードル弁52とノズルボディ51の内壁面との間に環状隙間58が形成され、この環状隙間58を通って燃料が流れるようになり、よって噴孔56から燃料が噴射される。したがって、ニードル弁52のリフト量が零のときには燃料が噴射されず、ニードル弁52がリフトされると燃料が噴射される。
図3は、ニードル弁52のリフト量と環状隙間58の断面積との関係を示した図である。図中の三つの直線は、シート径φ(図2参照)が異なる場合におけるリフト量と断面積との関係をそれぞれ示しており、実線はシート径φが2.0mm、一点鎖線はシート径φが2.25mm、破線はシート径2.5mmである場合である。図から分かるように、環状隙間58の断面積はリフト量が大きくなるのに比例して増大せしめられる。
複数の噴孔56の総断面積は、例えばノズルボディ51の先端部に直径が0.145mmの噴孔が9つ設けられている場合、約0.149mm2となる。従って、図3からわかるように、例えばシート径φが2.0mmである場合、ニードル弁52のリフト量が0.05mmに達するまでは環状隙間58の断面積は噴孔総断面積よりも小さい。このように、環状隙間58の断面積が噴孔総断面積よりも小さくなるようなリフト量の範囲(以下、「シートチョーク範囲」と称す)では、環状流路53に流入して噴孔56から噴射される燃料の流れに対して噴孔56ではなく環状隙間58が絞りとなる。なお、以下の説明では、リフト量がシートチョーク範囲内で行われる燃料噴射を「小リフト燃料噴射」と称する。
また、本実施形態では、複数の噴射モードによって燃料噴射弁3から燃料が噴射される。これら噴射モードにおいては圧縮上死点付近で行われるメイン噴射に加えてこのメイン噴射の前にパイロット噴射が行われる。以下では、図4を用いて、本実施形態において用いられる噴射モードについて説明する。図4は、本実施形態において行われる三つの噴射モードを示している。
図4(a)は、シングルパイロット噴射モードにおける燃料噴射パターンを示している。図4(a)からわかるように、シングルパイロット噴射モードではメイン噴射の前に一回のパイロット噴射が行われる。特に、本実施形態では、パイロット噴射は、メイン噴射よりもかなり早い時期(例えばメイン噴射開始よりクランク角で20度(20°CA)以上早い時期)に行われるパイロット噴射(以下、「早期パイロット噴射」と称す)である。
図4(b)及び(c)は、マルチパイロット噴射モードにおける燃料噴射パターンを示している。図4(b)及び(c)からわかるように、マルチパイロット噴射モードではメイン噴射の前に複数回(図示した実施形態では二回)のパイロット噴射が行われる。特に、本実施形態では、複数のパイロット噴射のうちの少なくとも一回以上のパイロット噴射が早期パイロット噴射であると共に残りのパイロット噴射がメイン噴射の直前(例えば、メイン噴射開始より20°CA以内)に行われるパイロット噴射(以下、「近接パイロット噴射」と称す)である離間マルチパイロット噴射モード(図4(b)参照)と、複数のパイロット噴射の全てが近接パイロット噴射である近接マルチパイロット噴射モード(図4(c)参照)とを実行可能である。
図5は、各種噴射モードと混合気への自着火時期との関係を示している。図5(a)は、パイロット噴射が行われずにメイン噴射のみが行われる噴射モード(以下、「シングル噴射モード」と称す)で燃料噴射が行われる場合を示している。この場合、メイン噴射の開始時には燃焼室2内の空気の温度及び圧力はあまり高くないため着火遅れが生じ、メイン噴射開始から混合気への自着火までに時間がかかる。この着火遅れ期間中にも燃料が噴射されているため、混合気への自着火が行われる頃には燃焼室2内には既に多量の燃料が噴射されている(図5(a)の斜線部に相当)。このため、混合気への自着火が行われる時には燃焼室2内に既に噴射されている多量の燃料が一気に燃焼することになり、よって燃焼騒音が大きなものとなる。
図5(b)は、シングルパイロット噴射モードで燃料噴射が行われる場合を示している。シングルパイロット噴射モードでは、早期パイロット噴射が行われることにより燃焼室2内の温度と圧力が上昇せしめられるため、上述したシングル噴射モードの場合に比べてメイン噴射開始時における燃焼室2内の温度及び圧力が高いものとなっており、着火遅れ期間が短縮される。このため、着火遅れ期間中に噴射される燃料の量が少なく、よって混合気への自着火が行われる時に既に燃焼室2内に噴射されている燃料の量が少ないため、シングル噴射モードの場合に比べて燃焼騒音が低減される。
図5(c)は、マルチパイロット噴射モードで燃料噴射が行われる場合を示している。マルチパイロット噴射モードでは、近接パイロット噴射が行われるため、メイン噴射開始時には近接パイロット噴射による噴射燃料が反応しているか又は自着火している。すなわち、マルチパイロット噴射モードでは、メイン噴射開始直前又は直後に混合気への自着火が行われる。このため、メイン噴射による噴射燃料が一気に燃焼することがなくなり、燃焼騒音は非常に小さいものとなる。
ところで、近年、ディーゼル式内燃機関に対して高出力化の要請が高く、斯かる要請に応えるべく多くのディーゼル式内燃機関では圧縮比を低いものとしている。すなわち、機関本体1の強度上の問題から燃焼室2内圧力の最大値は自ずと決まっており、燃焼室2内の燃焼による混合気の圧力上昇幅を大きくするためには、燃焼前の燃焼室2内圧力、すなわちモータリングによる燃焼室2内圧力を低くする必要があり、よって圧縮比を低く設定している。
ところが、このように圧縮比を低く設定し、モータリングによる燃焼室2内圧力を低いものとすると、メイン噴射開始時における燃焼室2内の温度及び圧力が低いものとなる。このため、着火遅れ期間が長くなり、燃焼騒音が大きくなってしまう。
そして、斯かる燃焼騒音の増大は、特に機関回転数及び機関負荷が低い場合に問題となる。すなわち、機関回転数又は機関負荷が高い場合には、内燃機関全体から発生する騒音については燃焼騒音よりも機械騒音の方が大きく、よって燃焼騒音が大きくなっても内燃機関全体から発生する騒音はほとんど変わらない。一方、機関回転数及び機関負荷が低い場合には、機械騒音よりも燃焼騒音の方が大きいため、燃焼騒音が大きくなると内燃機関全体から発生する騒音が大きくなってしまう。
このため、本実施形態では、燃焼騒音の増大が問題となる機関回転数及び機関負荷が低い場合にはマルチパイロット噴射モードによって燃料噴射を行うと共に、機関回転数または機関負荷が高い場合には燃焼騒音の増大が問題とならないためシングルパイロット噴射モードによって燃料噴射を行う。より具体的には、内燃機関の通常運転時(冷間時及び始動時等を除いた運転時)においてシングルパイロット噴射モードで燃料噴射を行うと燃焼騒音の増大が問題となる図6の運転領域A及びBに機関運転状態がある場合にはマルチパイロット噴射モードによって燃料噴射を行い、図6の運転領域A及びBに機関運転状態がない場合にはシングルパイロット噴射モードで燃料噴射を行う。運転領域A及びBは、中基準負荷Lbよりも機関負荷が小さく且つ中基準回転数Nb(本実施形態では、機関負荷に応じて変わる値)よりも機関回転数が低い領域である。上述したようにマルチパイロット噴射モードで燃料噴射を行うことで燃焼騒音を低減することができるため、燃焼騒音が問題となるような機関運転状態にある場合に燃焼騒音を低減することができる。
ところが、マルチパイロット噴射モードで燃料噴射を行うと、一般に、スモーク増加を招く結果となる。すなわち、マルチパイロット噴射モードにおける各パイロット噴射による噴射量は少量であり、各パイロット噴射は低リフト燃料噴射となっている。低リフト燃料噴射では、上述したように環状流路53に流入して噴孔56から噴射される燃料の流れに対して噴孔56ではなく環状隙間58が絞りとなるため、サック部56内の燃料の圧力が低下し、よって噴孔56から噴射される燃料の微粒化が不十分となる。このように、燃料の微粒化が不足すると燃焼室2内での燃焼状態が悪化し、スモークが発生することとなる。
そこで、本発明に係る実施形態では、マルチパイロット噴射モードで燃料噴射が実行される場合には、シングルパイロット噴射モードで燃料噴射が実行されると想定した場合に設定されるコモンレール18内の燃料の圧力の目標値(以下、「基準レール圧」と称す)よりも高いレール圧を目標レール圧としている。
より具体的に説明すると、一般に、コモンレール18から燃料噴射弁3へ供給される燃料の圧力の目標値、すなわち目標レール圧は、図7に示したように、機関負荷が高くなるほど及び機関回転数が高くなるほど高いものとされる。すなわち、機関負荷が高い場合には燃焼室2内に吸入される空気量が多いため、燃料噴射時における燃焼室2内の圧力が高いと共に多量の燃料を噴射しなければならず、よって燃料噴射弁3からの噴射圧力を高いものとする必要がある。また、機関回転数が高い場合には噴射時間が短いため、単位時間当たりに噴射される燃料量(以下、「噴射流量」と称す)を多くしなければならず、よって燃料噴射弁3からの噴射圧力を高いものとする必要がある。このように、目標レール圧は一般に機関負荷及び機関回転数に基づいて設定される。従って、シングルパイロット噴射モードのみで燃料噴射が行われる場合には図7に示したようなマップに基づいて目標レール圧が設定される。
しかしながら、本実施形態のようにシングルパイロット噴射モード及びマルチパイロット噴射モードで燃料噴射が可能な場合、図7に示したマップのみに基づいて目標レール圧を設定すると、上述したようにスモークの増大を招くこととなる。従って、本実施形態では、マルチパイロット噴射モードで燃料噴射が行われる場合、目標レール圧は、図7に示したマップに基づいて算出される圧力に所定値を加えた圧力となるように制御される。
このように、マルチパイロット噴射モードで燃料噴射が行われる場合に目標レール圧を高いものとすることにより、上述したように各パイロット噴射時に環状隙間58が絞りとなったとしてもサック部56内の燃料圧力が高いものとなると共に、サック部56内の燃料に大きな乱れが生じるため、噴孔56から噴射される燃料が微粒化され易くなる。従って、燃焼室2内での燃焼状態の悪化が抑制されてスモークの発生が抑制される。
さらに、本実施形態では、低リフト燃料噴射のみでパイロット噴射及びメイン噴射を含む全ての燃料噴射を行うような場合には、レール圧をさらに高い値にするようにしている。
すなわち、機関負荷が小さくなり、各サイクルにおける各気筒の燃焼室2へ噴射すべき総燃料噴射量(以下、単に「総燃料噴射量」と称す)が少なくなった場合、マルチパイロット噴射モードで燃料噴射が行われていると、パイロット噴射だけでなくメイン噴射も低リフト燃料噴射によって燃料噴射が行われることになる。従って、この場合、低リフト燃料噴射時の噴射燃料の微粒化性能をより高いものとすることが必要である。また、本実施形態ではマルチパイロット噴射モードにおいては、近接パイロット噴射とメイン噴射が極めて短い時間間隔で行われることになる。従って、メイン噴射時には、近接パイロット噴射の影響によりレール圧が若干低下することになるため、メイン噴射時における微粒化が不十分となりやすい。
このような問題を解決すべく、本実施形態では、上記マルチパイロット噴射モードで燃料噴射が行われる運転領域A及びBのうち、機関負荷が小さい領域、すなわち総燃料噴射量が少ない領域(運転領域A)では、基準レール圧からの目標レール圧の上昇幅を運転領域Bにおける上昇幅に比べて高いものとしている。これにより、各サイクルにおける各気筒の燃焼室2への全ての燃料噴射が低リフト燃料噴射によって行われる場合であっても、噴射燃料を微粒化させることができる。なお、運転領域Aは、低基準負荷Laよりも機関負荷が小さく且つ中基準回転数Na’よりも機関回転数が低い領域である。
図8の下図は、機関回転数が図6のXである場合における機関負荷と目標レール圧との関係を示している。図示したように、機関運転状態が運転領域A及びBにない場合、目標レール圧は機関負荷の増大に伴って増大せしめられる。また、機関運転状態が運転領域Bにある場合、すなわちマルチパイロット噴射モードで燃料噴射が実行される場合、基準レール圧(図中の破線)から所定圧力Pbだけ高いものとされる。さらに、機関運転状態が運転領域Aにある場合、すなわち全ての燃料噴射が低リフト燃料噴射によって行われる場合、基準レール圧から上記所定圧力Pbよりも大きい所定圧力Paだけ高いものとされる。なお、図8では、運転領域Aと運転領域Bとの間及び運転領域Bと運転領域Cとの間で目標レール圧を急激に変更しているが、多少の機関負荷の幅に亘って目標レール圧を徐々に変更するようにしてもよい。
図9は、一つの気筒についての燃焼室2と吸気マニホルド4とを模式的に示した拡大上面図である。図示したように、燃焼室2には二つの吸気開口61、62及び二つの排気開口63、64が設けられている。また、各気筒の燃焼室2に連通する吸気マニホルド4は二つの分岐管4a、4bに分けられており、各分岐管4a、4bはそれぞれ吸気開口61、62に連通せしめられる。
このうち一方の分岐管4bには、この分岐管4b内を流れる空気の流量を連続的に制御可能なスワールコントロールバルブ(以下、「SCV」と称す)65が設けられる。SCV65を閉弁すると空気は分岐管4aのみを通って燃焼室2内に吸入され、よって燃焼室2内には大きな渦巻き流(スワール)が生成される。一方、SCV65を開弁すると空気は両分岐管4a、4bを通って燃焼室2内に吸入され、よって燃焼室2内には小さなスワールが生成されるか、またはほとんどスワールが生成されない。SCV65は連続的に調整可能であるため、燃焼室2内に生成されるスワールも連続的に変更することができる。
一般に、機関負荷が低い場合には燃焼室2内に吸入される空気量が少ないため燃焼室2内に吸入される空気の流速が遅く、燃焼室2内に空気の乱れが生じにくい。また、機関回転数が低い場合にも同様に空気の流速が遅く、よって燃焼室2内に空気の乱れが生じにくい。このため、機関負荷が低い場合及び機関回転数が低い場合にはSCV65の開度を小さくして燃焼室2内に大きなスワールを生成するようにしている。本実施形態では、図6の運転領域A〜CにおいてSCV65の開度を小さくしており、その他の運転領域では全開としている。
上述したように、各気筒の燃焼室2への全ての噴射が低リフト燃料噴射によって行われる場合には、燃料噴射弁3から噴射される燃料が微粒化されにくい。そこで、本実施形態では、各気筒の燃焼室2への全ての噴射が低リフト燃料噴射によって行われる場合には、目標レール圧を高めることに加えてSCV65を全閉にしてスワール比を高めるようにしている。これにより、燃料の微粒化が促進される。
図7の上図は、機関負荷とSCV65の開度との関係を示している。図から分かるように、機関運転状態が運転領域A〜CにないときにはSCV65は全開とされており、運転領域AにあるときにはSCV65は全閉とされている。
さらに、本実施形態では、各気筒の燃焼室2への全ての噴射が低リフト燃料噴射によって行われる場合に近接マルチパイロット噴射モードで燃料噴射を行い、それ以外のマルチパイロット噴射モードで燃料噴射を行う領域では離間マルチパイロット噴射モードで燃料噴射を行うこととしている。以下、各気筒の燃焼室2への全ての噴射が低リフト燃料噴射によって行われる場合にのみ近接マルチパイロット噴射モードで燃料噴射を行う理由について説明する。
一般に、早期パイロット噴射を行うと、パイロット噴射時に燃焼室2内の温度及び圧力が十分に上昇していないため燃料が気化しにくく、よって噴射燃料の一部が燃焼室2を画成するシリンダボアに付着してしまう(ボアフラッシング)。斯かる観点から、パイロット噴射を行う場合には早期パイロット噴射よりも近接パイロット噴射を行う方が好ましい。しかしながら、機関運転状態が運転領域A以外の運転領域にある場合、近接マルチパイロットモードで燃料噴射を行うのは困難である。
すなわち、近接マルチパイロットモードで行われる二回の近接パイロット噴射の噴射時期はメイン噴射の噴射時期に近接しているためメイン噴射時にはレール圧が低下しており、噴射燃料の微粒化が不十分となる。このため、近接マルチパイロット噴射モードで燃料噴射を行う場合、目標レール圧を高いものとする必要がある。
ところが、機関運転状態が運転領域A以外の運転領域にある場合、目標レール圧を高めると燃料噴射弁3からの噴射率が高くなる。このため、着火遅れ期間中に燃焼室2内に噴射される燃料量が多くなり、騒音上昇を招く。
一方、機関運転状態が運転領域Aにある場合、目標レール圧を上昇させると、噴射燃料の微粒化が促進されつつ、燃料噴射弁3からの噴射率があまり上昇しない。すなわち、目標レール圧を上昇させると、それに伴って燃料噴射弁3の環状流路53内の燃料の圧力は上昇するが、環状隙間58が絞りとなるためサック部55内の燃料の圧力はレール圧の上昇分ほどは上昇しない。しかしながら、レール圧の上昇に伴ってサック部55内での燃料の流れの乱れが大きくなり、よって燃料噴射弁3からの噴射燃料は十分に微粒化される。このため、本実施形態では、機関運転状態が運転領域Aにある場合にのみ近接マルチパイロット噴射モードで燃料噴射を行い、それ以外の運転領域(すなわち運転領域B)にある場合には離間マルチパイロット噴射モードで燃料噴射を行うこととしている。
図10は、本発明の内燃機関の制御装置による目標レール圧及びSCV開度の制御方法の制御ルーチンを示すフローチャートである。図示した制御ルーチンは、一定時間間隔の割り込みによって行われる。
まず、ステップ101において、クランク角センサ42の出力に基づいて機関回転数Reが検出されると共に、負荷センサ41の出力に基づいて機関負荷Accpが検出される。次いで、ステップ102では、ステップ101で検出された機関回転数Re及び機関負荷Accpから図7に示したようなマップに基づいて基準レール圧Prbaseが算出される。斯かるマップは予め実験または計算により求められ、ECU30のROM32に保存されている。
次いで、ステップ103〜105では、ステップ101で検出された機関回転数Re及び機関負荷Accpから現在の機関運転状態が図6の運転領域のうちのどの運転領域にあるかが判別される。ステップ103〜105において、現在の機関運転状態が運転領域Aに該当すると判別された場合には、ステップ106へと進む。ステップ106では、目標レール圧Prtrgが基準レール圧Prbaseに所定値aを加算した値とされる。次いで、ステップ107ではSCV65の開度が全閉とされ、制御ルーチンが終了せしめられる。これにより、コモンレール18内の燃料圧力が目標レール圧Prtrgとなるように燃料ポンプ19が駆動せしめられる。
また、ステップ103〜105において、現在の機関運転状態が運転領域Bに該当すると判別された場合には、ステップ108へと進む。ステップ108では、目標レール圧Prtrgが基準レール圧Prbaseに所定値bを加算した値とされる。次いで、ステップ109ではSCV65の開度が機関回転数Re及び機関負荷Accpからマップに基づいて決定せしめられる。斯かるマップは予め実験または計算により求められ、ECU30のROM32に保存されており、機関回転数Re及び機関負荷Accpが小さくなるにつれて目標SCV開度が小さくなるようなマップとなっている。
また、ステップ103〜105において、現在の機関運転状態が運転領域Cに該当すると判別された場合には、ステップ110へと進む。ステップ110では、目標レール圧Prtrgが基準レール圧Prbaseとされ、ステップ109へと進む。さらに、ステップ103〜105において、現在の機関運転状態が運転領域A〜Cのいずれにも該当しないと判別された場合には、ステップ111へと進む。ステップ111では、目標レール圧Prtrgが基準レール圧Prbaseとされ、次いでステップ112ではSCV65が全開とされる。
ところで、内燃機関の冷間時には温間時に比べて燃焼室2内の温度が低いため、内燃機関の全運転領域に亘って着火遅れが長くなる。これに伴って、内燃機関の全運転領域において燃焼騒音が大きなものとなる。このため、上述したような温間時においては燃焼騒音が問題にならないとしてシングルパイロット噴射モードで燃料噴射を行っていた運転領域においても、冷間時においては燃焼騒音が問題となる領域が存在する。
そこで、本実施形態では、内燃機関の冷間時においては、温間時に比べてマルチパイロット噴射モードで燃料噴射を行う領域を拡大することとしている。具体的には、図6に破線で示したように、温間時においてマルチパイロット噴射モードで燃料噴射を行う運転領域A及びBを冷間時には運転領域A’及びB’(破線で囲まれた領域)に拡大する。図6からわかるように、運転領域A’及びB’には、運転領域A及びBに比べて高い機関回転数及び機関負荷の運転領域が含まれている。
これに伴って、本実施形態では、温間時において近接マルチパイロット噴射モードで燃料噴射を行う運転領域Aを冷間時には運転領域A’に拡大している。図6からわかるように、運転領域A’には、運転領域Aに比べて高い機関回転数及び機関負荷の領域が含まれている。同様に、温間時においてSCV65を開弁する運転領域Cも冷間時には運転領域C’に拡大される。
このように、本実施形態では、冷間時にマルチパイロット噴射モードで燃料噴射を行う領域等を温間時に比べて拡大することにより、着火遅れ期間が長くなることによって生じる燃焼騒音の増大を抑制することができる。
ところで、本実施形態のようにEGR機構を有する内燃機関では、冷間始動時以外の機関運転時にはEGR通路14を介して高温のEGRガスが燃焼室2に導入される。このため、燃焼室2内に導入された吸気ガス(空気及びEGRガス)は燃焼室2内に吸入された時点で既に温度が高くなっている。このため、燃焼室2内への噴射燃料は気化し易く、よって自着火し易い。
ところが、冷間始動時においてはEGR通路14を介して燃焼室2内に導入されるEGRガスは温度が高くなっておらず、よって燃焼室2内に導入される吸気ガスは燃焼室2内に吸入されたときには温度が低い。このため、燃焼室2内への噴射燃料は気化しにくく、自着火しにくいため、燃焼騒音が大きいものとなってしまう。
そこで、本実施形態では、機関運転状態が如何なる運転領域にあっても、冷間始動時にはSCV65を全開にすることとしている。これにより、SCV65による吸気抵抗が低減され、燃焼室2内には多量の吸気ガスが吸入される。このように、燃焼室2内に多量の空気が吸入されると、ピストンが圧縮上死点に達する頃には燃焼室2内の吸気ガスの圧力及び温度は高いものとなっており、よって燃料噴射弁3から噴射される燃料も気化され易くなり、燃焼騒音の増大を抑制することができる。
本発明が適用される内燃機関全体を示す図である。 燃料噴射弁の先端部の断面図である。 ニードル弁とノズルボディの内壁面との間に形成される環状隙間の断面積と、ニードル弁のリフト量との関係を示す図である 各種噴射モードにおける燃料噴射パターンを示す図である。 各種噴射モードと混合気への自着火時期との関係を示す図である。 各種運転領域を示す図である。 一般的なレール圧の設定方法を説明するための図である。 機関負荷とレール圧及びスワール比との関係を示す図である。 一つの気筒についての燃焼室と吸気マニホルドとを模式的に示した拡大上面図である。 レール圧及びSCV開度の制御方法の制御ルーチンを示すフローチャートである。
符号の説明
1 機関本体
2 燃焼室
3 燃料噴射弁
4 吸気マニホルド
5 排気マニホルド
18 コモンレール
19 燃料ポンプ
30 ECU
40 アクセルペダル

Claims (8)

  1. 燃料噴射弁と、該燃料噴射弁に目標燃料供給圧力で燃料を供給しようとする燃料供給手段とを具備し、上記燃料噴射弁は圧縮上死点付近で行われるメイン噴射に加えて該メイン噴射の前に一回パイロット噴射を行うシングルパイロット噴射モードと、上記メイン噴射に加えて該メイン噴射の前に複数回パイロット噴射を行うマルチパイロット噴射モードとで燃料噴射を実行することが可能であり、シングルパイロット噴射モードで燃料噴射を実行する場合の基準目標燃料供給圧力が上記目標燃料供給圧力とされるディーゼル式内燃機関の制御装置において、
    マルチパイロット噴射モードで燃料噴射を実行する場合には上記目標燃料供給圧力が上記基準目標燃料供給圧力よりも高い燃料供給圧力とされる、ディーゼル式内燃機関の制御装置。
  2. 上記マルチパイロット噴射モードは、機関負荷が中基準負荷以下である低・中負荷運転領域に機関運転状態がある場合に実行される、請求項1に記載のディーゼル式内燃機関の制御装置。
  3. 機関負荷が上記中基準負荷よりも低い低基準負荷以下である低負荷運転領域に機関運転状態がある場合には、機関負荷が中基準負荷以下であって低基準負荷よりも高い中負荷運転領域に機関運転状態がある場合に比べて基準目標燃料供給圧力からの目標燃料供給圧力の増分が大きくなるようにした、請求項2に記載のディーゼル式内燃機関の制御装置。
  4. 上記燃料噴射弁は、ノズルボディと、該ノズルボディの先端部に形成された噴孔と、前記ノズルボディ内でリフトするニードル弁とを具備し、該ニードル弁がリフトされると該ニードル弁と上記ノズルボディ内面との間に環状隙間が形成され、
    上記低負荷運転領域は、上記ニードル弁がリフトすることによって形成される上記環状隙間の断面積が上記噴孔の総断面積よりも小さい程度にニードル弁がリフトされることによってパイロット噴射及びメイン噴射が行われるような運転領域に相当する、請求項3に記載のディーゼル式内燃機関の制御装置。
  5. ディーゼル式内燃機関の燃焼室に流入する吸気ガスのスワール比を変更可能なスワール比制御手段をさらに具備し、
    上記スワール比制御手段は機関運転状態が上記低負荷運転領域にある場合には上記低負荷運転領域以外の運転領域にある場合に比べてスワール比が大きくなるように制御する、請求項3又は4に記載のディーゼル式内燃機関の制御装置。
  6. 上記マルチパイロット噴射モードでは、メイン噴射の前に二回のパイロット噴射が行われると共に、該マルチパイロット噴射モードとしては、一回目のパイロット噴射が二回目のパイロット噴射に近接した遅い時期に行われる近接マルチパイロット噴射モードと一回目のパイロット噴射が二回目のパイロット噴射から離間した早い時期に行われる離間マルチパイロット噴射とを実行可能であり、
    上記低負荷運転領域にある場合には近接マルチパイロット噴射モードを実行するようにした、請求項3〜5のいずれか1項に記載のディーゼル式内燃機関の制御装置。
  7. 内燃機関の冷間時には上記中基準負荷よりも高い負荷以下である運転領域に機関運転状態があるときにマルチパイロット噴射モードを実行する、請求項2〜6のいずれか1項に記載のディーゼル式内燃機関の制御装置。
  8. 各気筒あたり二つの吸気ポートと連通し、上記スワール比制御手段は一方の吸気ポート内に配置された開閉可能なスワールコントロールバルブを具備し、
    機関始動時には上記スワールコントロールバルブを開弁させる、請求項1〜7のいずれか1項に記載のディーゼル式内燃機関の制御装置。
JP2005092563A 2005-03-28 2005-03-28 ディーゼル式内燃機関の制御装置 Expired - Fee Related JP4161974B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005092563A JP4161974B2 (ja) 2005-03-28 2005-03-28 ディーゼル式内燃機関の制御装置
DE602006012390T DE602006012390D1 (de) 2005-03-28 2006-03-15 Steuergerät für Dieselmotor
EP06111203A EP1707785B1 (en) 2005-03-28 2006-03-15 Control apparatus for diesel-type internal combustion engine
ES06111203T ES2343970T3 (es) 2005-03-28 2006-03-15 Aparato de control para un motor de combustion interna tipo diesel.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092563A JP4161974B2 (ja) 2005-03-28 2005-03-28 ディーゼル式内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2006274857A true JP2006274857A (ja) 2006-10-12
JP4161974B2 JP4161974B2 (ja) 2008-10-08

Family

ID=36500510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092563A Expired - Fee Related JP4161974B2 (ja) 2005-03-28 2005-03-28 ディーゼル式内燃機関の制御装置

Country Status (4)

Country Link
EP (1) EP1707785B1 (ja)
JP (1) JP4161974B2 (ja)
DE (1) DE602006012390D1 (ja)
ES (1) ES2343970T3 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518285A (ja) * 2008-04-22 2011-06-23 ダイムラー・アクチェンゲゼルシャフト 低温時に自己着火式内燃機関を始動するための方法
JP2012041896A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp 圧縮自着火エンジンの制御装置
WO2016208138A1 (ja) * 2015-06-24 2016-12-29 株式会社デンソー 燃料噴射ノズル
JP2022065787A (ja) * 2020-10-16 2022-04-28 株式会社豊田自動織機 圧縮自己着火式の内燃機関の制御装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296555B2 (en) * 2005-08-25 2007-11-20 General Electric Company System and method for operating a turbo-charged engine
JP4315218B2 (ja) 2007-06-12 2009-08-19 トヨタ自動車株式会社 燃料噴射制御装置
US7861684B2 (en) * 2009-05-14 2011-01-04 Advanced Diesel Concepts Llc Compression ignition engine and method for controlling same
DE102010038859A1 (de) * 2010-08-04 2012-02-09 Robert Bosch Gmbh Kraftstoffinjektor
EP2661547A1 (en) * 2011-01-07 2013-11-13 Nissan Motor Co., Ltd Combustion control device and method for diesel engine
CN103291482B (zh) * 2013-05-24 2016-07-13 潍柴动力股份有限公司 一种发动机的喷油控制方法、装置及发动机
JP5873059B2 (ja) 2013-09-30 2016-03-01 株式会社豊田中央研究所 圧縮着火式内燃機関
KR101637700B1 (ko) * 2014-10-20 2016-07-07 현대자동차주식회사 엔진 연소음 피드백제어 방법
US10352266B2 (en) * 2017-05-11 2019-07-16 Ford Global Technologies, Llc Method of fuel injection control in diesel engines
JP6838654B2 (ja) * 2017-05-17 2021-03-03 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK171975B1 (da) * 1994-02-07 1997-09-01 Man B & W Diesel Gmbh Brændselsinjektor til en stor totakts forbrændingsmotor
JPH08254152A (ja) 1995-03-16 1996-10-01 Nissan Motor Co Ltd ディーゼルエンジン
DE19953932C2 (de) * 1999-11-10 2002-04-18 Daimler Chrysler Ag Verfahren zum Betrieb einer Hubkolbenbrennkraftmaschine
EP1264098B1 (de) * 2000-03-09 2006-05-10 Robert Bosch Gmbh Verfahren und vorrichtung zur steuerung der kraftstoffeinspritzung in eine brennkraftmaschine
JP2002349335A (ja) * 2001-03-21 2002-12-04 Mazda Motor Corp 筒内噴射式エンジンの制御装置
JP4161690B2 (ja) * 2002-11-20 2008-10-08 株式会社デンソー 蓄圧式燃料噴射装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518285A (ja) * 2008-04-22 2011-06-23 ダイムラー・アクチェンゲゼルシャフト 低温時に自己着火式内燃機関を始動するための方法
JP2012041896A (ja) * 2010-08-20 2012-03-01 Mazda Motor Corp 圧縮自着火エンジンの制御装置
WO2016208138A1 (ja) * 2015-06-24 2016-12-29 株式会社デンソー 燃料噴射ノズル
JP2017008866A (ja) * 2015-06-24 2017-01-12 株式会社デンソー 燃料噴射ノズル
JP2022065787A (ja) * 2020-10-16 2022-04-28 株式会社豊田自動織機 圧縮自己着火式の内燃機関の制御装置
JP7415868B2 (ja) 2020-10-16 2024-01-17 株式会社豊田自動織機 圧縮自己着火式の内燃機関の制御装置

Also Published As

Publication number Publication date
DE602006012390D1 (de) 2010-04-08
ES2343970T3 (es) 2010-08-13
EP1707785A2 (en) 2006-10-04
EP1707785B1 (en) 2010-02-24
EP1707785A3 (en) 2008-07-16
JP4161974B2 (ja) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4161974B2 (ja) ディーゼル式内燃機関の制御装置
JP4251123B2 (ja) 内燃機関
JP5494205B2 (ja) 自動車搭載用ディーゼルエンジン
WO2012124573A1 (ja) 燃料噴射装置
KR20060051868A (ko) 엔진
JP2008025534A (ja) 予混合圧縮自着火内燃機関
JP6172375B2 (ja) 直噴ガソリンエンジンの制御装置
JP6056989B2 (ja) 直噴ガソリンエンジンの制御装置
JP2005248748A (ja) ディーゼルエンジン
JP2015140775A (ja) 直噴ガソリンエンジンの制御装置
JP6252647B1 (ja) 予混合圧縮着火式エンジンの制御装置
JP4039382B2 (ja) ディーゼルエンジン
JP6056895B2 (ja) 直噴エンジンの燃料噴射制御装置
JP4552660B2 (ja) 圧縮着火内燃機関
EP1031711B1 (en) Compression-ignition type engine
JP4747553B2 (ja) 圧縮着火内燃機関
JP5093407B2 (ja) 内燃機関の燃焼制御装置
JPH11315739A (ja) ディ―ゼルエンジンの燃焼制御装置
JP4803056B2 (ja) 予混合圧縮着火内燃機関
JP2012026412A (ja) 内燃機関の燃料噴射制御装置
JP2004346796A (ja) 予混合圧縮着火燃焼内燃機関の再循環排気制御システム
JP4967691B2 (ja) ガソリンエンジンの制御装置
JP2008064073A (ja) 燃料噴射装置
JP2004324461A (ja) 内燃機関の燃料噴射システム
JP2008038601A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees