JP2006250948A - 車両用加速度センサの出力補正装置 - Google Patents

車両用加速度センサの出力補正装置 Download PDF

Info

Publication number
JP2006250948A
JP2006250948A JP2006127093A JP2006127093A JP2006250948A JP 2006250948 A JP2006250948 A JP 2006250948A JP 2006127093 A JP2006127093 A JP 2006127093A JP 2006127093 A JP2006127093 A JP 2006127093A JP 2006250948 A JP2006250948 A JP 2006250948A
Authority
JP
Japan
Prior art keywords
vehicle
acceleration
output
acceleration sensor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006127093A
Other languages
English (en)
Inventor
Takashi Yamamoto
貴史 山本
Katsuji Yamashita
勝司 山下
Mitsuru Oba
充 大葉
Koichi Suzuki
浩一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006127093A priority Critical patent/JP2006250948A/ja
Publication of JP2006250948A publication Critical patent/JP2006250948A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

【課題】加速度センサのドリフト誤差を一層正確に補正することができる車両用加速度センサの出力補正装置を提供する。
【解決手段】加速度補正手段168において、路面勾配推定手段(166)により推定された前後方向の路面勾配θに基づいて加速度センサ90、92の出力が補正される。このため、車両の左右回転速度差が所定値内を直進走行としてそのときの加速度センサ90、92の出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
【選択図】図5

Description

本発明は、車両の加速度を検出する車両用加速度センサの出力補正装置に関するものである。
4輪操舵制御装置、アクティブサスペンション、前後輪トルク配分制御装置などにおいて車両の加速度情報を得るために、車両に発生する前後方向の加速度を検出するための前後加速度センサ、或いは車両に発生する横方向の加速度を検出するための横加速度センサを、車両に設ける場合がある。このような加速度センサは、たとえば質量をもった物体に作用する加速度を圧電素子を用いて検出する圧電型センサや、質量をもった物体の変位を元位置に保つような平衡力を電磁力により発生させることにより加速度を検出するサーボ型センサなどが知られている。このような加速度センサは、製品のばらつき、経時変化、取付誤差などに起因するドリフト誤差が発生し、制御性能が低下するという不都合があった。
これに対し、車両の左右輪の回転速度差が所定値以下であるときに直進走行であると判定し、その直進走行判定中は車両の横加速度が発生しない期間であるからその期間内に横加速度センサから出力される加速度信号の平均値をドリフト量(誤差)であるとして算出し、そのドリフト量を以後に横加速度センサから出力される加速度信号から差し引くことにより加速度信号を補正する装置が提案されている。たとえば、特許文献1に記載された横加速度センサの出力補正装置はその一例である。
特公平7−40043号公報
しかしながら、上記従来の補正装置では、横方向の勾配を考慮して左右輪回転速度差が小さいときの加速度センサの出力値をドリフト量として補正に用いるものであることから、車両の前後方向の道路勾配による影響を考慮していないため、加速度の補正の精度がかならずしも充分に得られず制御性能が低下するという不都合があった。
本発明は以上の事情を背景として為されたものであり、その目的とするところは、加速度センサのドリフト誤差を一層正確に補正することができる車両用加速度センサの出力補正装置を提供することにある。
かかる目的を達成するための本発明の要旨とするところは、車両に設けられてその車両の加速度を検出する車両用加速度センサの出力補正装置であって、(a) 車両前後方向の路面勾配を推定する路面勾配推定手段と、(b) その路面勾配推定手段により推定された路面勾配に基づいて前記加速度センサの出力を補正する加速度補正手段とを、含むことにある。
このようにすれば、加速度補正手段において、路面勾配推定手段により推定された路面勾配に基づいて前記加速度センサの出力が補正されるので、車両の左右輪回転速度差が所定値内を直進走行としてそのときの加速度センサの出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
ここで、好適には、前記車両用加速度センサの出力補正装置は、原動機の出力が所定の範囲内であるか否かを判定する原動機出力判定手段を含み、前記加速度補正手段は、その原動機出力判定手段により原動機の出力が所定の範囲内であると判定されたときの前記加速度センサの出力に基づいてその加速度センサの出力を補正するものである。このようにすれば、加速度補正手段において、原動機出力判定手段により原動機の出力が所定の範囲内であると判定されたときの前記加速度センサの出力に基づいて、その加速度センサの出力が補正されるので、車両の左右輪回転速度差が所定値内を直進走行としてそのときの加速度センサの出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
また、好適には、前記車両用加速度センサの出力補正装置は、前記車両の平坦路直進定速走行を判定する平坦路直進定速走行判定手段を含み、前記加速度補正手段は、その平坦路直進定速走行判定手段により前記車両の平坦路直進定速走行が判定されたときの前記加速度センサの出力に基づいてその加速度センサの出力を補正するものである。このようにすれば、加速度補正手段において、平坦路直進定速走行判定手段により前記車両の平坦路直進定速走行が判定されたときの前記加速度センサの出力に基づいてその加速度センサの出力が補正されるので、車両の左右輪回転速度差が所定値内を直進走行としてそのときの加速度センサの出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
また、好適には、前記車両は4輪駆動車両であり、その車両には前後輪のトルク配分を行うトルク配分クラッチと、そのトルク配分クラッチを制御するトルク配分クラッチ制御手段とが設けられており、加速度センサにより検出された車両の加速度を表す信号がそのトルク配分クラッチ制御手段に供給されるものである。
また、好適には、前記車両の左右輪回転速度差が所定値以下であることを判定する左右輪回転速度差判定手段と、その車両の定速走行であることを判定する定速走行判定手段と、その車両の平坦路走行をエンジンの出力トルクに基づいて判定する平坦路走行判定手段とを含む定常走行判定手段が設けられ、前記加速度補正手段は、その定常走行判定手段により、車両の直進走行、車両の定速走行、および前後方向の傾斜のない平坦路走行であると判定されたときの加速度センサの出力値をドリフト量として決定するドリフト量決定手段を備え、そのドリフト量が解消されるように補正値を緩やかに変化させてその加速度センサの出力値を補正する。
前記加速度補正手段は、前記ドリフト量決定手段により決定されたドリフト量を前記加速度センサの出力値から緩やかに除去するなまし処理手段を含むものである。このようにすれば、加速度センサの出力値からドリフト量が急激に除去されて補正後の加速度の値が一挙に変化することに起因する不都合、すなわちその補正後の加速度を用いた車両制御の安定性が損なわれることが好適に解消される。
以下、本発明の一実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の制御装置を備えた車両の動力伝達装置を示している。図において、原動機として機能するエンジン10には、トルクコンバータ付自動変速機12、前部差動歯車装置14、およびトランスファ16を収容するトランスアクスルハウジング18が締結されている。これにより、エンジン10の出力トルクは、トルクコンバータ付自動変速機12、前部差動歯車装置14、左右1対の車軸20、22を介して左右1対の前輪24、26へ伝達される一方、上記トルクコンバータ付自動変速機12、トランスファ16、プロペラシャフト28、トルク配分クラッチとして機能する電磁クラッチ30、後部差動歯車装置32、左右1対の車軸34、36を介して左右1対の後輪38、40へ伝達されるようになっている。
上記電磁クラッチ30は、エンジン10から前輪24、26と後輪38、40とへそれぞれ伝達されるトルクの割合を調節するためのトルク配分クラッチとして機能するものであって、プロペラシャフト28に接続されてそれと共に回転する入力側摩擦板42と、後部差動歯車装置32のドライブピニオン44に接続されてそれと共に回転する出力側摩擦板46と、それら入力側摩擦板42と出力側摩擦板46とを電磁力に従って押圧することにより相互に摩擦係合させる電磁ソレノイド48とを基本的に備え、後述の電子制御装置110からの指令値tref に対応した大きさの伝達トルクを発生するように構成されている。上記電磁クラッチ30が解放された場合には、エンジン10から出力されるトルクの100%が前輪24、26へ伝達されるが、電磁クラッチ30が完全係合された場合には、エンジン10から出力されるトルクの50%が前輪24、26へ伝達され、残りの50%が後輪38、40へ伝達されるので、本実施例では、上記電磁クラッチ30によるトルク配分調節範囲は、前輪と後輪との重量配分比が0.5:0.5である場合には、1:0から0.5:0.5の間までのトルク配分比範囲となっている。なお、一般には、電磁クラッチ30が完全係合された場合には、前後輪の重量配分比相当に前後輪のトルクが分配される。本実施例では、電磁クラッチ30により前輪駆動状態から直結4WDまで前後輪のトルクを調節できる。
図2に詳しく示すように、電磁クラッチ30は、プロペラシャフト28に連結されるユニバーサルジョイント50およびクラッチドラム52を両軸端に有し、クラッチハウジング54によりベアリング56を介して回転可能に支持された入力軸58と、その入力軸58に対して同心となる状態でクラッチハウジング54によりベアリング60を介して回転可能に支持された出力軸62と、入力軸58の軸端面に相対回転可能に嵌合された状態でその入力軸58と連結されたクラッチロータ64と、回転不能となるように非回転部材であるクラッチハウジング54の突起65に係合させられた状態でベアリング66を介して入力軸58に支持された電磁ソレノイド48と、電磁ソレノイド48の磁力により吸引される環状磁性部材68を有してクラッチドラム52の内周面とクラッチロータ64の外周面との間に設けられ、その電磁ソレノイド48の磁力によって比較的小さな摩擦トルクが発生させられるコントロール(パイロット)クラッチ70と、そのコントロールクラッチ70からの摩擦トルクが伝達されるカムリング72とそのカムリング72に接触するボールカム74とを有し、上記コントロールクラッチ70を介して伝達された比較的小さな回転力をスラスト方向(軸心方向)の力に変換し且つ倍力して環状押圧部材76に伝達する押圧装置78と、軸方向において互いに重ねられた状態でクラッチドラム52の内周面およびクラッチロータ64の外周面に対して軸方向の移動可能且つ軸まわりの相対回転不能に設けられて、上記環状押圧部材76からのスラスト方向の力により押圧される前記入力側摩擦板42および出力側摩擦板46とを備え、たとえば図3に示す特性に従って、電磁ソレノイド48に供給される駆動電流に対応した大きさの伝達トルクを発生させる。
図1に戻って、車両には、4輪駆動モードを選択するときに操作される4輪駆動選択スイッチ80、左前輪24の回転速度を検出する車輪速度センサ82、右前輪26の回転速度を検出する車輪速度センサ84、左後輪38の回転速度を検出する車輪速度センサ86、右後輪40の回転速度を検出する車輪速度センサ88、車両の前後加速度すなわち走行方向の加速度GX を検出する前後Gセンサ90、車両の左右加速度すなわち横方向の加速度GY を検出する左右Gセンサ92、ステアリングホイール93により操作される車両の舵角を検出する舵角センサ94、アクセルペダルにより操作されるスロットル開度を検出するスロットルセンサ96、エンジン10の回転速度を検出するエンジン回転速度センサ98、自動変速機12の実際のギヤ段すなわちシフト位置を検出するシフト位置センサ100、ブレーキペダル102が操作されたことを検出するブレーキセンサ104、パーキングブレーキレバー106が操作されたことを検出するPBブレーキセンサ108がそれぞれ設けられており、それらのスイッチ或いはセンサからは、4輪駆動モードを選択されたことを示す信号S4WD、左前輪24の回転速度NFLを示す信号SNFL、右前輪26の回転速度NFRを示す信号SNFR、左後輪38の回転速度NRLを示す信号SNRL、右後輪40の回転速度NRRを示す信号SNRR、前後加速度GX を示す信号SGX 、左右(横)加速度GY を示す信号SGY 、車両の舵角δを示す信号Sδ、スロットル開度θthを示す信号Sθ、エンジン10の回転速度NE を示す信号SNE 、シフト位置SPを示す信号SSP、ブレーキペダル102の操作を示す信号SBK、パーキングブレーキレバー106の操作を示す信号SPBが、トルク配分制御用の電子制御装置110へ供給される。
上記前後Gセンサ90および左右Gセンサ92は、比較的大きな質量をもった部材とその部材に作用する力すなわち加速度を検出する圧電素子とを備えた圧電型や、比較的大きな質量をもった部材とその部材に加えられる加速度による変位を元位置に保つような平衡力を電磁力にて発生させる電磁コイルとを備えてその電磁コイルの駆動電流に基づいて加速度を検出するサーボ型などにより構成されている。
上記電子制御装置110は、CPU、RAM、ROM、入出力インターフェースなどを含む所謂マイクロコンピュータであって、CPUはRAMの記憶機能を利用しつつ予めROMに記憶されたプログラムを実行することにより上記の入力信号を処理し、電磁クラッチ30へ制御信号を出力するとともに、電磁クラッチ30の作動中を示す作動表示灯112および電磁クラッチ30の異常を示す異常表示灯114を表示させる。図4は、上記電子制御装置110の構成例を詳細に示すものである。エンジン制御および変速制御用電子制御装置115からは、スロットル開度θth、自動変速機12のギヤ段、エンジン系のフェイルを表す信号とエンジン10の回転速度に対応した周波数のエンジンパルス信号が電子制御装置110に供給される。電子制御装置110は、ABS用制御装置116および4WD用制御装置117と、指令値tref を表す指令信号に応じて電磁クラッチ30に制御電流を出力する駆動回路118とを備えている。
図5は、上記電子制御装置108の制御機能の要部を説明する機能ブロック線図である。図5において、トルク配分クラッチ制御手段120は、たとえば発進時制御、旋回走行時制御、通常走行時制御、制動時制御など、車両の前輪および後輪のトルク配分を制御する複数種類の制御モードの中のいずれか1つを、車両状態に基づいて択一的に選択し、選択した制御モードにおいて予め設定された制御式に従って、電磁クラッチ30の伝達トルク或いはその電磁クラッチ30に供給すべき駆動電流に対応する大きさの指令値tref を表す制御信号SCを出力すると共に、作動表示灯112を点灯させる。たとえば、4輪駆動選択スイッチ80によって4輪駆動モードが選択されているとき、ブレーキセンサ104により主ブレーキの操作が検出されると制動時制御が選択される。また、たとえば図6に示す関係から車速Vと車両舵角δとで示される走行状態に基づいて発進時制御(図6の(1))、旋回走行時制御(図6の(2))、通常走行時制御(図6の(3))のいずれかが選択されるのである。
上記発進時制御では、車両状態に応じた最大のトラクションを得るために、前輪24、26と後輪38、40とに対する車両の重量配分に相当するトルク配分となるように電磁クラッチ30が制御されたり、舵角δに応じて後輪38、40への伝達トルクを制限するように電磁クラッチ30が制御される。また、上記旋回走行時制御では、特に路面摩擦係数が小さい圧雪路或いは凍結路における旋回走行中の操縦安定性を高めるために、たとえばアンダーステアとオーバーステアとの中間の中立ステアとなる目標ヨーレート(重心を通る鉛直線まわりの旋回角速度)に実際のヨーレートが追従するように、電磁クラッチ30が制御される。また、上記通常走行時制御では、基本的には重量配分に対応したトルク配分となるように電磁クラッチ30の入力側および出力側の回転速度差が発生すると伝達トルクが大きくなるようにされるが、直進走行などのような4輪駆動が不要なときには燃費を高めるために可及的に締結力を小さくするように、電磁クラッチ30が制御される。また、上記制動時制御では、ABS制御やVSC制御との制御干渉を回避するために、ブレーキペダル102が操作されると、直接的に電磁クラッチ30の締結力が小さくされるように、或いはABS制御が開始されるまでは電磁クラッチ30が締結されてエンジンブレーキ力を4輪に分配させるが、ABS制御が開始されると締結力が小さくされ、またVSC制御が開始されると解放されるように、電磁クラッチ30が制御される。
入力トルク算出手段122は、エンジン10のプロペラシャフト28まわりの出力トルク(車両の駆動トルク)すなわち電磁クラッチ30の入力トルクtin(N・m)を、たとえば図7に示す予め記憶された関係から実際のエンジン回転速度NE (rpm)およびスロットル開度θth(%)或いは吸入空気量Qに基づいて逐次算出する。この入力トルク算出手段122では、好ましくは、予め設定された時間幅を有して時間経過とともに移動させられる移動区間内に得られた複数個の入力トルクtinの平均値すなわち移動平均値として入力トルクtinavが算出される。ここで、上記入力トルクtinは、前輪24、26側へ配分されるトルクtf と電磁クラッチ30から後輪38、40側へ配分されるトルクtr との和(tin=tf +tr )として定義される。上記後輪38、40側へ配分されるトルクtr は電磁クラッチ30の伝達トルクであり、定常状態では電磁クラッチ30に対する指令値tref に対応している。
定常走行判定手段160は、左右輪の回転速度差〔(NFL+NRL)/2〕−〔(NFR+NRR)/2〕が所定の判断基準値以下であることに基づいて車両の直進走行を判定する左右輪回転速度差判定手段162と、各車輪の回転速度の変化率ΔNFL、ΔNRL、ΔNFR、ΔNRRが所定の判断基準値以下であることに基づいて車両の定速走行を判定する定速走行判定手段164と、エンジン10の出力トルクすなわち入力トルクtinが予め設定された判断基準範囲(tinmin <tin≦tinmax )内であることに基づいて車両の平坦路走行を判定する平坦路走行判定手段166とを備え、車両の直進走行、定速走行、且つ平坦路走行であるときに定常走行であると判定する。上記定常走行判定手段160は、車両の直進走行、定速走行、且つ平坦路走行を判定するものであるから、平坦路直進定速走行判定手段として認識されることもできる。
上記平坦路走行判定手段166において用いられる判断基準値tinmin およびtinmax は、車輪回転速度NFL、NRL、NFR、NRRから推定される車速Vが一定で勾配が小さな路面を走行するために必要なトルク範囲の下限値および上限値またはそれに余裕値を加味した値である。たとえば、加速度センサ90および92の出力信号の分解能を示すLSBの値を変化させる前後方向の路面傾斜角度θを求め、その路面傾斜角度θの路面を登り走行するために必要なトルクが上記判断基準値の上限側の値tinmax として設定され、その路面傾斜角度θの路面を下り走行するために必要なトルクが上記判断基準値の下限側の値tinmin として設定される。上記平坦路走行判定手段166は、エンジン10の出力トルクtinが所定の範囲内であるか否かを判定するものであるため、原動機出力判定手段として認識されることができるし、実質的に車両前後方向の路面勾配を推定するものであるため、路面勾配推定手段として認識されることができる。
加速度補正手段168は、上記定常走行判定手段160により車両の定常走行状態であると判定された当初の状態(補正値変更区間開始時点)において前後Gセンサ90および左右Gセンサ92からの出力信号GX およびGY をドリフト量GDXおよびGDYとして読み込むドリフト量決定手段170と、上記定常走行状態において、前後Gセンサ90および左右Gセンサ92によりそれぞれ検出された加速度GX およびGY から上記ドリフト量GDXおよびGDYを緩やかに或いは徐々に取り除いて補正するためのなまし処理手段172とを有し、上記加速度GX およびGY からドリフト量GDXおよびGDYをそれぞれ取り除く補正を行い、補正後の加速度GX およびGY を前記トルク配分クラッチ制御手段120へ供給する。
図8、図9、および図10は、電子制御装置110の制御作動の要部を説明するフローチャートであって、図8はトルク配分制御を選択するための選択ルーチン、図9は旋回走行時のトルク配分制御を行うための旋回走行時制御ルーチン、図10は、上記旋回走行時のトルク配分制御に用いるために前後Gセンサ90および左右Gセンサ92により検出された前後加速度GX および横加速度GY を補正するために、割込などにより図9よりも充分に短い周期で繰り返し実行される加速度補正ルーチンをそれぞれ示している。
図8のステップ(以下、ステップを省略する)S1では、車速V、舵角δ、ブレーキセンサ104の出力信号などが読み込まれた後、S2において、ブレーキペダル102が操作されたか否かがブレーキセンサ104からの信号に基づいて判断される。このS2の判断が肯定された場合は、S3において制動時制御が選択され、本ルーチンが終了させられる。しかし、S2の判断が否定された場合は、S4において、図6に示す予め記憶された関係から車速V、舵角δに基づいて発進時制御、旋回走行時制御、通常走行時制御のいずれかが判定される。S4において発進時制御が判定された場合にはS5において発進時制御が選択され、S4において旋回走行時制御が判定された場合にはS6において旋回走行時制御が選択され、S4において通常走行時制御が判定された場合にはS7において通常走行時制御が選択される。
図9は、上記S6において選択された旋回走行時制御の作動を説明するためのステップである。SH1では、エンジントルク(入力トルク)tin、電磁クラッチ30の入出力回転速度差すなわち差動回転速度ΔN(プロペラシャフト28の回転速度−ドライブピニオン44の回転速度)、舵角δ、補正後の前後加速度GX および横加速度GY 、ヨーレートr、前輪横すべり角βf 、後輪横すべり角βr 、路面摩擦係数μが読み込まれ、或いは算出される。
次いで、目標スタビリティファクタ決定手段に対応するSH2では、たとえば図11および図12に示す予め記憶された関係から前後加速度GX および横加速度GY に基づいて目標スタビリティファクタKh が決定される。この目標スタビリティファクタKh は、前後加速度GX および合成加速度GXY〔=√(GX 2 +GY 2 〕の函数〔Kh =f(GX ,GXY)〕であって、それが正(Kh >0)であるときにアンダーステア特性を示し、それが零(Kh =0)であるときにニュートラルステア特性を示し、それが負(Kh <0)であるときにオーバステア特性を示すものである。また、上記図11および図12に示す関係は、加速度に応じた理想的なステアリング特性を示すものであって、たとえば低μ路において加速或いは減速に応じた安定した旋回が行えるように予め実験的に求められたものである。
上記図11の上記前後加速度GX と目標スタビリティファクタKh との関係では、前後加速度GX の増加に伴って目標スタビリティファクタKh も加速的に増加(目標ヨーレートr°が減少)するものであり、自然な車両挙動が実現されるように定められている。この目標スタビリティファクタKh は、電磁クラッチ30の直結状態(全輪駆動状態)の実スタビリティファクタと電磁クラッチ30の解放状態(前輪駆動状態)の実スタビリティファクタとの間の領域内に存在している。また、上記合成加速度GXYは路面摩擦力(摩擦係数μ×荷重W)を越えることができない(μ≧GXY)ので、合成加速度GXYは路面摩擦係数μの下限値を示している。図12の合成加速度GXYと目標スタビリティファクタKh との関係では、合成加速度GXYの増加に対して目標スタビリティファクタKh が単調減少(目標ヨーレートr°を増加)することで低μ路での目標ヨーレートr°を低下させ、安定した旋回走行ができるようになっている。
目標スタビリティファクタなまし処理手段に対応するSH3では、上記SH2において逐次求められた目標スタビリティファクタKh を緩やかに変化させるためのなまし処理としてローパスフィルタ処理が実行される。このローパスフィルタ処理では、その時定数が前記電磁クラッチ30の応答の時定数すなわち指令値tref の立上がりから実際の伝達トルクtr の立上がりまでの時間よりも充分に大きい値となるように設定されている。これにより、目標スタビリティファクタKh の変動がトルク応答性よりも激しい場合にも制御が追いつかず不安定な挙動となることが好適に防止されている。なお、上記ローパスフィルタ処理の時定数は、0.2乃至0.3秒程度の値であって、入力信号からノイズ除去するためのローパスフィルタ処理の時定数に比較して桁違いに大きい値とされている。
目標ヨーレート決定手段に対応するSH4では、予め記憶された数式1から実際の目標スタビリティファクタKh 、車速V、舵角δ、ステアリングホイール93と前輪24、26との間のギヤ比Rst、ホイールベースLに基づいて目標ヨーレートr°を算出する。この数式1は、図13の車両2輪モデルにおける、加減速のない一定速度で車両が旋回する場合の定常円旋回の式である。続いてSH5では、目標ヨーレートr°と実際のヨーレート(車体の重心を通る鉛直線まわりの回転角速度)rとの偏差e〔=(r°−r)sign(r)〕が算出される。このsign(r)は、rが正(>0)であるときに1となり、rが零であるときに0となり、rが負(<0)であるときに1となる。図14は、上記偏差eと車両の旋回挙動との関係を示している。
[数1]
r°=V・δ/(Kh ・V2 +1)Rst・L ・・・(1)
次いで、SH6では、数式2に示す予め記憶された旋回走行時トルク配分制御の制御式の各制御ゲインGO 、Gtin 、GP 、GI 、GD 、GS が決定される。これら制御ゲインGO 、Gtin 、GP 、GI 、GD 、GS は、一定値でもよいので、このような場合には予め記憶された値が読み出されるが、より好ましくは、数式3乃至8から算出されるようにしてもよい。SH7では、目標ヨーレートr°に実際のヨーレートrを追従させるための数式2の制御式から、上記偏差eおよびゲインGO 、Gtin 、GP 、GI 、GD 、GS に基づいて、電磁クラッチ30に対する制御値すなわち電磁クラッチ30に対して伝達トルクを指令する指令値tref が逐次算出される。
[数2]
ref =tr sign(tin)=GO +Gtin |tin|+GP
+GI ∫edt+GD de/dt +GS σ/(|σ|+ε)・・・(2)
[数3]
O ≡−K1 /K3 ・・・(3)
[数4]
tin ≡K2 /K3 ・・・(4)
[数5]
P ≡〔1+λ3 (λ1 +λ2 )〕/λ23 sign(r) ・・・(5)
[数6]
I ≡λ3 /λ23 sign(r) ・・・(6)
[数7]
D ≡λ1 /λ23 sign(r) ・・・(7)
[数8]
S ≡λ4 /λ23 sign(r) ・・・(8)
次いでSH8では、指令値tref の範囲を制限して過剰なトルク伝達や過剰なスリップを回避するための最大トルクtmax および最小トルクtmin が、予め記憶された関係から入力トルクtinおよび電磁クラッチ30の差動回転速度ΔNに基づいて算出される。上記の関係においては、たとえば図15および図16の変化傾向を示す図のように、入力トルクtinの絶対値或いは差動回転速度ΔNの絶対値が増加する程、最大トルクtmax および最小トルクtmin が増加するように決定されている。SH9では、SH7で求められた指令値tref が上記SH8で求められた最大トルクtmax および最小トルクtmin に制限される。そして、SH10において、たとえば図3に示す予め記憶された関係から指令値tref が電磁クラッチ30の駆動電流を示す信号に変換された後、SH11においてその信号が駆動回路118へ出力される。
図10は前記加速度補正手段168に対応する加速度補正ルーチンであり、そのSI1では、前後Gセンサ90および左右Gセンサ92により検出された前後加速度GX および横加速度GY 、各車輪の回転速度NFL、NFR、NRL、NRR、エンジン10の出力トルクtinが読み込まれて記憶される。次いで、前記定常走行判定手段160に対応するSI2において車両の定常走行状態すなわち補正値変更区間であるか否かが車両の直進走行、定速走行、且つ平坦路走行であることに基づいて判定される。すなわち、左右輪の回転速度差〔(NFL+NRL)/2〕−〔(NFR+NRR)/2〕が各車輪回転速度NFL、NRL、NFR、NRRから算出されるとともにその左右輪の回転速度差〔(NFL+NRL)/2〕−〔(NFR+NRR)/2〕が所定の判断基準値以下であるか否かが判断され(左右輪回転速度差判定手段162に対応)、各車輪の回転速度の変化率ΔNFL、ΔNRL、ΔNFR、ΔNRRが各車輪回転速度NFL、NRL、NFR、NRRから算出されるとともにその各車輪の回転速度の変化率ΔNFL、ΔNRL、ΔNFR、ΔNRRが所定の判断基準値以下であるか否かが判断され(定速走行判定手段164に対応)、エンジン10の出力トルクtinが予め設定された判断基準範囲(tinmin <tin≦tinmax )内であるか否かが判断され(平坦路走行判定手段166に対応)、それらの判断がすべて肯定されるときに車両の定常走行であると判定されるのである。このSI2の判断が肯定される補正値変更区間では、直進走行、定速走行、且つ平坦地走行であることから、前後Gセンサ90および左右Gセンサ92からの出力は本来零であるはずであるので、加速度出力があればそれが真の加速度値からのずれであるオフセット値であり、このオフセット値は、ドリフト量或いはドリフト誤差とも称される。これにより、上記SI1およびSI2は、ドリフト量決定手段170に対応している。
上記SI2の判断が肯定された場合は補正値変更区間が開始された状態であるから、そのときに記憶されている前後Gセンサ90および左右Gセンサ92からの出力値GX およびGY (以下、単にGoとする)がドリフト量GDXおよびGDY(以下、単にGD とする)として確定される。次いで、SI3において、SI2の判断が肯定されたときの前後Gセンサ90および左右Gセンサ92からの出力であるドリフト量GD から、上記補正値変更区間で増加させられるがその区間でないときには一定値に保持される補正値ostgを差し引くことにより、上記補正値変更区間内において緩やかに零に向かって変化させられる過渡値gf の初期値gost (=GD −ostg)が算出される。図17のt1 時点はこの状態を示している。当初は、補正値ostgが未だ算出されていないことから零値であるので、その初期値gost はドリフト量GD と等しい。続くSI4では、過渡値gf を初期値gost から零に向かって緩やかに変化させるための処理、たとえばハイパスフィルタ処理が数式9に従って実行される。数式9において、KHP1は、ハイパスフィルタのカットオフ周波数f(Hz)とロジック演算周期のタイムステップΔとの函数〔KHP1=(2πfΔ+1)/2πf〕であり、KHP2も、ハイパスフィルタのカットオフ周波数fとタイムステップΔとの函数{KHP2=(1/2πf)〔1−1/(2πfΔ+1)〕(1/Δ)}である。上記ハイパスフィルタのカットオフ周波数fを小さくするほど、フィルタ処理値である過渡値gf の時間的変化率は小さくなり、急激なドリフト除去が行われなくなる。
[数9]
f =KHP1・gf +KHP2・gost ・・・(9)
そして、SI5では、上記SI4のハイパスフィルタ処理により減少させられた過渡値gf が補正後の加速度値Gc (=GX ,GY )とされる。また、続くSI6では、補正値変更区間でないときに補正に用いられる仮補正値ostgO 〔=(Go−Gc )〕が、SI1にて前後Gセンサ90および左右Gセンサ92からそれぞれ読み込んだ加速度値GX およびGY から上記過渡値gf すなわち補正値変更区間内で逐次算出される補正後の加速度値Gc を差し引くことにより算出される。上記補正値変更区間内では、上記ステップが繰り返し実行されると、上記補正後の加速度値Gc が緩やかに減少させられる一方で、上記仮補正値ostgO が緩やかに増加させられる。図17のA1 は上記補正値変更区間を示している。本実施例では、上記SI4乃至SI6が前記なまし処理手段172に対応している。
車両の操舵操作、加速或いは減速操作、路面傾斜などに関連して前記SI2の判断が否定されて非補正値変更区間となると、SI7において、上記仮補正値ostgO が一定の補正値ostgとして決定される。続く、SI8においては、補正後の加速度値Gc (=Go−ostg)が、前後Gセンサ90および左右Gセンサ92からそれぞれ読み込んだ加速度値Goから上記補正値ostgを差し引くことにより補正される。図17のt2 時点はこの状態を示している。
前記SI2の判断が再び肯定されて再びSI3以下が前述の説明と同様に実行されることにより、図17のA2 に示す補正値変更区間が開始され、そこで過渡値gf すなわち補正値変更区間内で逐次算出される補正後の加速度値Gc が再び零に向かって緩やかに変化させられる。図17のt3 時点はその開始状態を示している。本実施例では、この補正値変更区間A2 内で上記の過渡値gf すなわち補正後の加速度値Gc が零に到達するので、図17のt4 時点以後の非補正値変更区間では、補正値変更区間A1 開始当初(図17のt1 時点)の前後Gセンサ90および左右Gセンサ92からの出力値であるドリフト量と同じ大きさの補正値ostgを、前後Gセンサ90および左右Gセンサ92から逐次読み込まれる補正前の加速度値Go(=GX ,GY )から差し引くことにより逐次補正され、補正後の加速度GX およびGY が前後加速度および横加速度として前述のSH1において読み込まれる。
上述のように、本実施例によれば、加速度補正手段168(SI1乃至SI8)において、原動機出力判定手段(SI2)によりエンジン10の出力が所定の範囲内であると判定されたときの前記加速度センサ90、92の出力に基づいて、その加速度センサ90、92の出力が補正される。或いは、路面勾配推定手段(SI2)により推定された前後方向の路面勾配θに基づいて加速度センサ90、92の出力が補正される。また、平坦路直進定速走行判定手段(SI2)により前記車両の平坦路直進定速走行が判定されたときの加速度センサ90、92の出力に基づいてその加速度センサ90、92の出力が補正される。このため、車両の左右輪回転速度差が所定値内を直進走行としてそのときの加速度センサ90、92の出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
また、本実施例によれば、加速度補正手段168は、車両の直進走行、車両の定速走行、および前後方向の傾斜のない平坦路走行であると判定されたときの加速度センサ90、92の出力値をドリフト量として決定するドリフト量決定手段170(SI1、SI2)と、それ以後においてその加速度センサ90、92の出力値からドリフト量GD を緩やかに除去するなまし処理手段172(SI3乃至SI5)を含むものである。このため、加速度センサ90、92の出力値からドリフト量が急激に除去されて補正後の加速度の値が一挙に変化することに起因する不都合、すなわちその補正後の加速度を用いた車両制御たとえば旋回中の目標ヨーレートを横加速度を用いて算出し実際のヨーレートをそれに追従させるような旋回走行時のトルク配分制御の安定性が損なわれることが好適に解消される。因みに、その旋回走行時のトルク配分制御において加速度が速やかに補正されると、目標ヨーレートの急変に関連して車両の操縦安定性が低下するおそれがあったのである。
次に、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
図18は、本発明の他の実施例における電子制御装置110の制御作動の要部を示すフローチャートであって前記加速度補正手段168に対応している。図18のSJ1では、前述のSI1と同様に、前後Gセンサ90および左右Gセンサ92により検出された前後加速度GX および横加速度GY 、各車輪の回転速度NFL、NFR、NRL、NRR、エンジン10の出力トルクtinが読み込まれ且つ記憶される。次いで、前記定常走行判定手段160に対応するSJ2において、前述のSI2と同様に、車両の定常走行状態すなわち補正値変更区間であるか否かが車両の直進走行、定速走行、且つ平坦路走行であることに基づいて判定される。このSJ2の判断が肯定される補正値変更区間では、直進走行、定速走行、且つ平坦地走行であることから、前後Gセンサ90および左右Gセンサ92からの出力は本来零であるはずであるので、加速度出力があればそれが真の加速度値からのずれであるオフセット値であり、このオフセット値は、ドリフト量或いはドリフト誤差とも称される。これにより、上記SJ1およびSJ2は、ドリフト量決定手段170に対応している。
上記SJ2の判断が肯定されるとSJ1において記憶された前後Gセンサ90および左右Gセンサ92により検出された前後加速度GX および横加速度GY がドリフト量GD としてそれぞれ確定され、SJ3において、補正値ostgを零からドリフト量GD に向かって緩やかに変化させるための処理、たとえばローパスフィルタ処理が数式10に従って実行される。数式10において、KLP1は、ローパスフィルタのカットオフ周波数f(Hz)とロジック演算周期のタイムステップΔとの函数〔KLP1=1/(2πfΔ+1)〕であり、KLP2も、ローパスフィルタのカットオフ周波数fとタイムステップΔとの函数{KLP2=〔1−1/(2πfΔ+1)〕}である。上記ローパスフィルタのカットオフ周波数fを小さくするほど、フィルタ処理値である補正量ostgの時間的変化率は小さくなり、急激なドリフト除去が行われなくなる。
[数10]
ostg=KLP1・ostg+KLP2・GD ・・・(10)
次いで、SJ4では、補正後の加速度値GC が、前記ドリフト量GD から上記補正量ostgを差し引くことにより算出される。このため、補正量変更区間内において補正量ostgが逐次増加させられることにより、補正後の加速度値GC が逐次緩やかに減少させられる。この変化中の補正後の加速度値GC は、前記旋回走行時のトルク配分制御に用いられる。本実施例では、上記SJ3乃至SJ4が前記なまし処理手段172に対応している。
車両の直進走行、定速走行、平坦地走行のいずれか1つの条件が該当しなくなって前記SJ2の判断が否定されると、SJ5において、SJ1で記憶された加速度値Goから上記補正値ostgが差し引かれることにより、補正後の加速度GC が得られ、この補正後の加速度GC も前記旋回走行時のトルク配分制御に用いられる。
上述のように、本実施例によれば、加速度補正手段168(SJ1乃至SJ5)において、原動機出力判定手段(SJ2)によりエンジン10の出力が所定の範囲内であると判定されたときの前記加速度センサ90、92の出力に基づいて、その加速度センサ90、92の出力が補正される。或いは、路面勾配推定手段(SJ2)により推定された前後方向の路面勾配θに基づいて加速度センサ90、92の出力が補正される。また、平坦路直進定速走行判定手段(SJ2)により前記車両の平坦路直進定速走行が判定されたときの加速度センサ90、92の出力に基づいてその加速度センサ90、92の出力が補正される。このため、車両の左右輪回転速度差が所定値内を直進走行としてそのときの加速度センサ90、92の出力値をドリフト誤差とする従来の補正装置に比較して、加速度センサからの加速度値に対して正確に補正が行われる利点がある。
また、本実施例によれば、加速度補正手段168は、車両の直進走行、車両の定速走行、および前後方向の傾斜のない平坦路走行であると判定されたときの加速度センサ90、92の出力値をドリフト量として決定するドリフト量決定手段170(SJ1、SJ2)と、それ以後においてその加速度センサ90、92の出力値からドリフト量GD を緩やかに除去するなまし処理手段172(SJ3、SJ4)を含むものである。このため、加速度センサ90、92の出力値からドリフト量が急激に除去されて補正後の加速度の値が一挙に変化することに起因する不都合、すなわちその補正後の加速度を用いた車両制御たとえば旋回中の目標ヨーレートを横加速度を用いて算出し実際のヨーレートをそれに追従させるような旋回走行時のトルク配分制御の安定性が損なわれることが好適に解消される。
以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様においても適用される。
たとえば、前述の図10および図18の実施例では、前後Gセンサ90および左右Gセンサ92により検出される前後加速度GX および横加速度GY に含まれるドリフト量GD を緩やかに除去するためのなまし処理手段172には、ハイパスフィルタ処理およびローパスフィルタ処理が採用されていたが、一次或いは二次函数や対数函数を用いた他の公知の信号処理が用いられても差し支えない。
また、前述の図10および図18の実施例において、なまし処理手段172は、車両の直進走行、定速走行、且つ平坦地走行中(補正値変更区間内)においてのみ補正値ostgすなわち除去すべきドリフト量を変化させていたが、一旦ドリフト量が決定された後は、補正値変更区間外であっても変化させられても差し支えない。
また、前述の定常走行判定手段160は、車両の直進走行、定速走行、且つ平坦地走行に基づいて車両の定常走行を判定するものであったが、その判定条件には、舵角δが所定値内であること、補正開始条件すなわち上記定常走行条件を満足することが、予め設定された所定回数満足されること、上記定常走行条件が満足されたときの前後Gセンサ90および左右Gセンサ92により検出される前後加速度GX および横加速度GY が予め設定された値以下であることなどの条件が加えられてもよい。このようにすれば、加速度値の補正に関して一層の信頼性が得られる。
また、前述の実施例では、前後Gセンサ90および左右Gセンサ92により検出される前後加速度GX および横加速度GY が補正されていたが、必要に応じていずれか一方のみが補正されてもよい。また、補正の対象となる加速度センサは、必ずしも車両の前後方向或いは左右方向の加速度を検出するものでなくてもよく、要するにXY平面内において加速度を検出するものであれば一応の効果が得られるのである。
また、前述の実施例において、前後Gセンサ90および左右Gセンサ92により検出される前後加速度GX および横加速度GY は、好適には、所定の移動区間内の平均値が検出値として用いられる。このようにすれば、検出値の変動が比較的激しい場合でも、その変動の影響を低くできる利点がある。
また、前述の実施例の電磁クラッチ30は、プロペラシャフト28と後部差動歯車装置32との間に設けられるものであったが、所謂センターデフの差動を制限するためにそれに並列に設けられた差動制限クラッチ、トランスファと前部差動歯車装置との間に設けられたクラッチ、プロペラシャフト28とそれに連結された差動歯車装置の出力側の1対の車軸との3軸のうちの何れかの2軸間に設けられたクラッチなどであってもよい。要するに、原動機から複数の車輪へそれぞれ伝達されるトルクの割合を調節する電磁式、油圧式などのトルク配分クラッチであればよいのである。
その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
本発明の一実施例の加速度センサの出力補正装置を備えた車両の動力伝達経路を説明する図である。 前輪および後輪のトルク配分を行うために、図1の動力伝達経路に設けられた電磁クラッチの構成を説明する断面図である。 図2の電磁クラッチのクラッチ特性を説明する特性図である。 図1の電子制御装置の構成例を詳細に説明する図である。 図1の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 図5のトルク配分クラッチ制御手段において複数種類の制御モードを切り換えるために予め記憶された関係を示す図である。 図5の入力トルク算出手段において入力トルクを算出するために予め記憶された関係を示す図である。 図4の電子制御装置の制御作動の要部を説明するためのフローチャートであって、制御モード選択ルーチンを示す図である。 図4の電子制御装置の制御作動の要部を説明するためのフローチャートであって、旋回走行時のトルク配分クラッチ伝達トルク補正ルーチンを示す図である。 図4の電子制御装置の制御作動の要部を説明するためのフローチャートであって、加速度センサの出力補正ルーチンを説明する図である。 図9において目標スタビリティファクタKh を前後加速度GX に基づいて決定するために予め記憶された関係を説明する図である。 図9において目標スタビリティファクタKh を合成加速度GXYに基づいて決定するために予め記憶された関係を説明する図である。 図9の制御において用いられる数式1の定常円旋回を説明する車両2輪モデルを示す図である。 図9の制御において、目標ヨーレートr°と実際のヨーレートrとの偏差eと車両の旋回挙動との関係を説明する図である。 図9の制御において、指令値tref の範囲を制限する最大トルクtmax および最小トルクtmin を決定するために用いられる関係であって入力トルクtinと最大トルクtmax および最小トルクtmin との関係を示す図である。 図9の制御において、指令値tref の範囲を制限する最大トルクtmax および最小トルクtmin を決定するために用いられる関係であって電磁クラッチ30の差動回転速度ΔNと最大トルクtmax および最小トルクtmin との関係を示す図である。 図10の制御において、加速度センサからの出力値に含まれるドリフト量を緩やかに減少させる補正作動を説明するタイムチャートである。 本発明の他の実施例における電子制御装置の制御作動の要部を説明するフローチャートであって、図10に相当する図である。
符号の説明
90:前後Gセンサ(加速度センサ)
92:左右Gセンサ(加速度センサ)
120:トルク配分クラッチ制御手段
160:定常走行判定手段(平坦路直進定速走行判定手段)
166:平坦路判定手段(原動機出力判定手段、路面勾配推定手段)
168:加速度補正手段
170:ドリフト量決定手段
172:なまし処理手段

Claims (6)

  1. 車両に設けられて該車両の加速度を検出する車両用加速度センサの出力補正装置であって、
    車両前後方向の路面勾配を推定する路面勾配推定手段と、
    該路面勾配推定手段により推定された路面勾配に基づいて前記加速度センサの出力を補正する加速度補正手段と
    を、含むことを特徴とする車両用加速度センサの出力補正装置。
  2. 原動機の出力が所定の範囲内であるか否かを判定する原動機出力判定手段を含み、
    前記加速度補正手段は、該原動機出力判定手段により原動機の出力が所定の範囲内であると判定されたときの前記加速度センサの出力に基づいて該加速度センサの出力を補正するものであることを特徴とする請求項1の車両用加速度センサの出力補正装置。
  3. 前記車両の平坦路直進定速走行を判定する平坦路直進定速走行判定手段を含み、
    前記加速度補正手段は、その平坦路直進定速走行判定手段により前記車両の平坦路直進定速走行が判定されたときの前記加速度センサの出力に基づいてその加速度センサの出力を補正するものであることを特徴とする請求項1または2の車両用加速度センサの出力補正装置。
  4. 前記車両は、前後輪のトルク配分を行うトルク配分クラッチと、そのトルク配分クラッチを制御するトルク配分クラッチ制御手段とを備えた4輪駆動車両であり、
    前記加速度センサにより検出された車両の加速度を表す信号がそのトルク配分クラッチ制御手段に供給されるものであることを特徴とする請求項1乃至3のいずれかの車両用加速度センサの出力補正装置。
  5. 前記車両の左右輪回転速度差が所定値以下であることを判定する左右輪回転速度差判定手段と、その車両の定速走行であることを判定する定速走行判定手段と、その車両の平坦路走行をエンジンの出力トルクに基づいて判定する平坦路走行判定手段とを有する定常走行判定手段を含み、
    前記加速度補正手段は、その定常走行判定手段により、車両の直進走行、車両の定速走行、および前後方向の傾斜のない平坦路走行であると判定されたときの加速度センサの出力値をドリフト量として決定するドリフト量決定手段を備え、そのドリフト量が解消されるように補正値を緩やかに変化させてその加速度センサの出力値を補正することを特徴とする請求項1乃至4のいずれかの車両用加速度センサの出力補正装置。
  6. 前記加速度補正手段は、前記ドリフト量決定手段により決定されたドリフト量を前記加速度センサの出力値から緩やかに除去するなまし処理手段を含むものであることを特徴とする請求項5の車両用加速度センサの出力補正装置。
JP2006127093A 2006-04-28 2006-04-28 車両用加速度センサの出力補正装置 Pending JP2006250948A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127093A JP2006250948A (ja) 2006-04-28 2006-04-28 車両用加速度センサの出力補正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127093A JP2006250948A (ja) 2006-04-28 2006-04-28 車両用加速度センサの出力補正装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10087302A Division JPH11281672A (ja) 1998-03-31 1998-03-31 車両用加速度センサの出力補正装置

Publications (1)

Publication Number Publication Date
JP2006250948A true JP2006250948A (ja) 2006-09-21

Family

ID=37091593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127093A Pending JP2006250948A (ja) 2006-04-28 2006-04-28 車両用加速度センサの出力補正装置

Country Status (1)

Country Link
JP (1) JP2006250948A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137512A (ja) * 2007-12-10 2009-06-25 Honda Motor Co Ltd 車両の後輪舵角制御装置および後輪舵角制御方法
JP2011025880A (ja) * 2009-07-29 2011-02-10 Honda Motor Co Ltd 車両の後輪操舵制御装置
JP2011236946A (ja) * 2010-05-07 2011-11-24 Toyota Motor Corp 車両のクラッチ伝達トルク学習装置
JP2012116434A (ja) * 2010-12-03 2012-06-21 Fuji Heavy Ind Ltd 全輪駆動車の駆動力配分制御装置
JP2013019837A (ja) * 2011-07-13 2013-01-31 Advics Co Ltd 車両用の加速度センサの出力補正装置
JP2016043821A (ja) * 2014-08-22 2016-04-04 本田技研工業株式会社 車両制御装置、及び、センサ校正方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427660U (ja) * 1987-08-11 1989-02-17
JPH02163663A (ja) * 1988-12-19 1990-06-22 Nissan Motor Co Ltd 車両の加速度検出値の補正装置
JPH02270666A (ja) * 1989-04-12 1990-11-05 Fujitsu Ten Ltd アンチスキッド制御装置
JPH02281149A (ja) * 1989-04-21 1990-11-16 Nissan Motor Co Ltd 横加速度センサ出力値補正装置及び四輪駆動車の駆動力配分制御装置
JPH02284069A (ja) * 1989-04-25 1990-11-21 Nissan Motor Co Ltd 横加速度センサ出力値補正装置
JPH04213067A (ja) * 1990-09-20 1992-08-04 Honda Motor Co Ltd 加速度センサ中点補正装置
JPH063368A (ja) * 1992-06-24 1994-01-11 Honda Motor Co Ltd 車体加減速度検出手段の零点補正装置
JPH08136572A (ja) * 1994-11-07 1996-05-31 Toyota Motor Corp 車両における加速度センサ装置
JPH0943264A (ja) * 1995-07-31 1997-02-14 Murata Mfg Co Ltd 加速度検出装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427660U (ja) * 1987-08-11 1989-02-17
JPH02163663A (ja) * 1988-12-19 1990-06-22 Nissan Motor Co Ltd 車両の加速度検出値の補正装置
JPH02270666A (ja) * 1989-04-12 1990-11-05 Fujitsu Ten Ltd アンチスキッド制御装置
JPH02281149A (ja) * 1989-04-21 1990-11-16 Nissan Motor Co Ltd 横加速度センサ出力値補正装置及び四輪駆動車の駆動力配分制御装置
JPH02284069A (ja) * 1989-04-25 1990-11-21 Nissan Motor Co Ltd 横加速度センサ出力値補正装置
JPH04213067A (ja) * 1990-09-20 1992-08-04 Honda Motor Co Ltd 加速度センサ中点補正装置
JPH063368A (ja) * 1992-06-24 1994-01-11 Honda Motor Co Ltd 車体加減速度検出手段の零点補正装置
JPH08136572A (ja) * 1994-11-07 1996-05-31 Toyota Motor Corp 車両における加速度センサ装置
JPH0943264A (ja) * 1995-07-31 1997-02-14 Murata Mfg Co Ltd 加速度検出装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137512A (ja) * 2007-12-10 2009-06-25 Honda Motor Co Ltd 車両の後輪舵角制御装置および後輪舵角制御方法
JP2011025880A (ja) * 2009-07-29 2011-02-10 Honda Motor Co Ltd 車両の後輪操舵制御装置
JP2011236946A (ja) * 2010-05-07 2011-11-24 Toyota Motor Corp 車両のクラッチ伝達トルク学習装置
JP2012116434A (ja) * 2010-12-03 2012-06-21 Fuji Heavy Ind Ltd 全輪駆動車の駆動力配分制御装置
JP2013019837A (ja) * 2011-07-13 2013-01-31 Advics Co Ltd 車両用の加速度センサの出力補正装置
JP2016043821A (ja) * 2014-08-22 2016-04-04 本田技研工業株式会社 車両制御装置、及び、センサ校正方法

Similar Documents

Publication Publication Date Title
KR102440674B1 (ko) 4륜 구동 차량의 전, 후륜 토크 분배 제어 장치 및 방법
JP4394304B2 (ja) 車両運動制御装置
US6575261B2 (en) Drive-force distribution controller
JP2009505886A (ja) 車両安定性制御システム
GB2259063A (en) Steering control method for vehicle with power steering and a controllable differential
JPH08207607A (ja) 4輪駆動車のトラクション制御装置
JP2001047996A (ja) 車両車輪滑り制御方法および装置
GB2319823A (en) Braking force control system for automotive vehicle
JP2006250948A (ja) 車両用加速度センサの出力補正装置
EP0415450A2 (en) Rear wheel steering control system for vehicle
JP5848150B2 (ja) 車両に働く駆動力を制御する制御装置
JPH11281672A (ja) 車両用加速度センサの出力補正装置
JP3753144B2 (ja) 車両用トルク配分クラッチの制御装置
JP3570214B2 (ja) 車両用摩擦係合装置の温度推定装置
JP2006187047A (ja) 4輪独立駆動車の駆動力制御装置
JP2006250947A (ja) 車両用加速度センサの出力補正装置
JP5154397B2 (ja) 車両運動制御装置
JP5918564B2 (ja) 車両に働く駆動力を制御する制御装置
JP2017087786A (ja) 四輪駆動車両の制御装置
JPH11278083A (ja) 車輪径差検出装置
JP3838302B2 (ja) 車両用トルク配分クラッチの制御装置
JPH11278082A (ja) 車両用トルク配分クラッチの制御装置
JPH11278088A (ja) 車両用トルク配分クラッチの制御装置および車両用パーキングブレーキターン判定装置
JP3894197B2 (ja) 車両用トルク配分クラッチの制御装置
JP2021075137A (ja) 車両の駆動力制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526