JP2006237061A - 光半導体装置の製造方法 - Google Patents

光半導体装置の製造方法 Download PDF

Info

Publication number
JP2006237061A
JP2006237061A JP2005045403A JP2005045403A JP2006237061A JP 2006237061 A JP2006237061 A JP 2006237061A JP 2005045403 A JP2005045403 A JP 2005045403A JP 2005045403 A JP2005045403 A JP 2005045403A JP 2006237061 A JP2006237061 A JP 2006237061A
Authority
JP
Japan
Prior art keywords
substrate
mirror
portions
semiconductor device
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005045403A
Other languages
English (en)
Inventor
Tomoaki Tojo
友昭 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005045403A priority Critical patent/JP2006237061A/ja
Publication of JP2006237061A publication Critical patent/JP2006237061A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 性能に優れた多数の光半導体装置をウェハ単位で安価に一括製造しうる光半導体装置の製造方法を提供する。
【解決手段】 複数のミラー部117と、支持部118を形成した第2の基板110と、これらと表面に溝部123を形成した第3の基板120の表面とを接合する。第3の基板120の溝部123裏面から、第3の基板120を分断して梁124を形成し、複数のミラー部117を支持部118と梁124で保持する複合基板を形成する。複合基板と複数の受光素子142が形成された第1の基板140との相対的な位置を調整しつつ、複合基板と第1の基板140との各一部同士を接合する。さらに、第1の基板140を光半導体装置形成領域ごとに分断する。
【選択図】 図2

Description

本発明は、光ディスクや光磁気ディスク等の光記録媒体に対し、情報の記録や読み出しを行う光ピックアップの個別部品が集積された光半導体装置の製造方法に関するものである。
CD(コンパクトディスク)、DVD(Digital Versatile Disc)等の光記録媒体に対し、情報の記録や読み出しを行うための重要な構成部品として光学ヘッドがある。光学ヘッドには、レーザ光を出射する半導体レーザや、受光素子、ビームスプリッタや対物レンズなどの光学部品を備える必要がある。
従来、光学ヘッドの構成をコンパクト化するため、例えば、特許文献1や特許文献2のような光半導体装置が開発されている。
図12は、特許文献1の光半導体装置の構造を立体的に表した斜視図である。図13は、特許文献2の光半導体装置の構造を示す斜視図である。
図12に示す光半導体装置501は、シリコン基板である半導体基板502と、半導体基板502の主面503側に設けられた受光素子507及び信号増幅素子(図示せず)と、半導体基板502の主面503側に設けられた凹部504と、凹部504の底面506上に配置された半導体レーザ508とを備えている。凹部504の側面である斜面505は鏡面であり、斜面505により、半導体レーザ508の下部から出射されたレーザ光509を反射して、出射光として上方に送るようになっている。また、図示しない光ディスクからの反射光は受光素子507で受光される。この光半導体装置501の製造工程においては、半導体基板502上に半導体プロセスを用いて受光素子507および信号増幅素子を集積する。続いて、この半導体基板502の主面503に、異方性エッチングを用いて所定の深さの、側面が斜面である凹部504を形成する。次に、凹部504の底面506上に半導体レーザ508を、例えば、半田等を利用して所定の位置に接着・配置する。
図13に示す光半導体装置520は、シリコン基板である半導体基板522と、半導体基板522の主面523側に設けられた受光素子527及び信号増幅素子(図示せず)と、半導体基板522の主面523上に、サブマウント530を挟んで搭載された半導体レーザ528と、半導体基板522の主面523上に、半導体レーザ528に対向して配置されたマイクロミラー524とを備えている。マイクロミラー524の斜面525は鏡面であり、斜面525により、半導体レーザ528の下部から出射されたレーザ光529を反射して、出射光として上方に送るようになっている。また、図示しない光ディスクからの反射光は受光素子527で受光される。
特開2002―176039号公報 特開平09―218304号公報
しかしながら、図12,図13に示す従来の光半導体装置においては、以下のような不具合があった。
例えば図12に示す光半導体装置501においては、半導体基板502の一部に異方性エッチングにより凹部504を形成し、半導体レーザ508からのレーザ光509を斜面505で反射させるようにしている。このような構造の場合、レーザ光509の反射位置と受光素子507との位置関係を高精度に制御するためには、半導体レーザ508が配置される凹部504の底面506の位置・平坦性や、レーザ光509が反射される斜面505の位置を高精度に作製しなければならない。しかしながら、凹部504の底面506や斜面505の位置を確定する異方性エッチングの深さ方向の制御および底面の平坦性の制御は難しく、光半導体装置501の製造歩留まりを悪化させる要因となっていた。
さらに、半導体基板502の主面503から垂直方向に半導体レーザのレーザ光509を取り出すためには、凹部504の斜面505を底面506に対して概ね45°傾いた角度で形成する必要がある。このような傾き概ね45°の斜面を、一般的なアルカリ系のKOH(水酸化カリウム)溶液やTMAH(水酸化テトラメチルアンモニウム)溶液を用いたシリコン基板の異方性エッチングにより形成するためには、基板として(100)面から[111]方向に概ね9.7°傾斜した面を主面としたシリコン基板を第3の基板520として使用する必要があった。従って、受光素子507、および信号増幅素子をこの基板上に作製するためには、特殊なシリコン基板に対応したプロセスが必要であり、この特殊なシリコン基板により、受光素子507は信号増幅素子の性能が制限されていた。
一方、図13に示す光半導体装置520の構造では、レーザ光529の反射面を受光素子および信号増幅素子を集積した半導体基板522に直接形成しないため、前述の(100)面から[111]方向に概ね9.7°傾斜した主面を有するシリコン基板を、受光素子および信号増幅素子を集積する基板として使用する必要がなくなり、これらの素子の性能が向上する。しかしながら、図13に示す構成においては、同一の半導体ウェハに形成した多数の半導体基板522に対して、個々にマイクロミラー524を、接着剤等を利用して実装する必要がある。その場合、マイクロミラー524の実装コストが高くなり、その結果、光半導体装置520の製造コストが高くなる。
したがって、本発明の目的は、性能に優れた多数の光半導体装置をウェハ単位で安価に一括製造しうる光半導体装置の製造方法を提供することである。
上記課題を解決するために本発明の請求項1記載の光半導体装置の製造方法は、表面に受光部と回路を形成した受光素子と、レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光を反射する反射面を有するミラー部とを搭載して構成される光半導体装置の製造方法であって、前記受光素子を複数備えた第1の基板を準備する工程(a)と、前記受光素子に対応して配置されるミラー部と、一列に並んだ隣り合う前記ミラー部をつなぐ梁部を複数備えた複合基板を準備する工程(b)と、前記第1の基板と前記複合基板を互いに対向させて、前記第1の基板の表面と前記ミラー部の底面を接合する工程(c)と、前記第1の基板と前記複合基板を、受光素子ごとに分割する工程とを含む。
請求項2記載の光半導体装置の製造方法は、請求項1記載の光半導体装置の製造方法において、前記工程(b)が、複数の前記ミラー部と、前記ミラー部を一括で保持するためにミラー部が配置される面上に支持部を設けた第2の基板を準備する工程と、前記反射面の上辺が一列に並んだ複数の前記ミラー部と前記支持部を保持する複数の前記梁部と、前記梁部間を連設して前記梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、前記第2の基板と前記第3の基板を対向させ、前記一列に並んだ複数の前記ミラー部と前記支持部とを、前記梁部に接合する工程と、前記第3の基板裏面から、前記溝部を除去し、前記第3の基板の前記梁部と前記第2の基板の支持部で、複数の前記ミラー部を前記複合基板として保持する工程とを含む。
請求項3記載の光半導体装置の製造方法は、請求項1記載の光半導体装置の製造方法において、前記工程(b)が、複数の前記ミラー部と、前記ミラー部を一括で保持するためにミラー部が配置される面上に設ける支持部の基材となる第2の基板を準備し、前記ミラー部と前記支持部の予定領域にエッチングマスクと接着層を形成する工程と、前記反射面の上辺が一列に並んだ複数の前記ミラー部と前記支持部の予定領域を保持する複数の前記梁部と、前記梁部間を連設して前記梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、前記第2の基板と前記第3の基板を対向させ、前記反射面の上辺が前記溝部上に位置し、前記接着層が梁部上に位置するように接合する工程と、前記第3の基板裏面から、前記溝部を除去し、前記エッチングマスクを形成した第2の基板を、異方性エッチング液によりエッチングし、前記ミラー部と前記支持部を形成する工程とを含む。
請求項4記載の光半導体装置の製造方法は、請求項1記載の光半導体装置の製造方法において、前記工程(b)が、複数の前記ミラー部を設けた第2の基板を準備する工程と、複数の前記ミラー部の反射面の上辺と平行な方向に一定間隔で並んだ複数の梁部と、前記複数の梁部を格子状に接続することで梁部間に貫通孔を形成した第3の基板を準備する工程と、前記第2の基板と前記第3の基板を対向させ、前記一列に並んだ複数の前記ミラー部を、前記梁部に接合する工程とを含む。
請求項5記載の光半導体装置の製造方法は、請求項1,2,3または4記載の光半導体装置の製造方法において、前記第2の基板として、主面が(100)面から[111]方向に概ね9.7°傾斜しているシリコン基板を用い、前記第2の基板の主面の[01−1]方向にその一辺を持つエッチングマスクを形成した後、少なくとも水酸化カリウム溶液、あるいはTMAH溶液を利用した異方性エッチングによりミラー部を作製する。
請求項6記載の光半導体装置の製造方法は、請求項1,2,3または4記載の光半導体装置の製造方法において、一定間隔で並んだ前記ミラー部を保持する梁部間に、前記第1の基板上に前記半導体レーザを搭載するための空隙を設ける。
請求項7記載の光半導体装置の製造方法は、請求項1,2,3または4記載の光半導体装置の製造方法において、前記梁部の前記ミラー部反射面側の端面を、前記反射面の上辺から離して接合する。
本発明の請求項1記載の光半導体装置の製造方法によれば、受光素子を複数備えた第1の基板を準備する工程と、受光素子に対応して配置されるミラー部と、一列に並んだ隣り合うミラー部をつなぐ梁部を複数備えた複合基板を準備する工程と、第1の基板と複合基板を互いに対向させて、第1の基板の表面とミラー部の底面を接合する工程と、第1の基板と複合基板を、受光素子ごとに分割する工程とを含むので、第1の基板に半導体レーザを設置するための凹部を形成する必要がないことから、従来技術のような凹部形成の異方性エッチング条件の制御が不要になり、反射面または反射面の下地面の製造歩留まりが向上する。また、反射面または反射面の下地面の形成および受光素子の形成を別々に行うことができるため、全体として光半導体装置の製造歩留まりの向上を図ることが可能となる。
また、複合基板に形成した複数のミラー部を第1の基板の各受光素子に一括して接合することが可能となるので、製造コストを低減することができる。さらに、反射面の形成条件として(100)面から[111]方向に概ね9.7°傾斜した主面を有する基板を、受光素子および信号増幅素子を集積する基板として使用する必要がない。そのため、受光素子が形成される第1の基板の材料は、上記反射面の形成条件に制約されることなく自由に選択することができるため、高性能な光半導体装置の作製が可能になる。その結果、性能に優れた多数の光半導体装置をウェハ単位で一括して安価に製造することが可能になる。
請求項2では、受光素子に対応して配置されるミラー部と、一列に並んだ隣り合うミラー部をつなぐ梁部を複数備えた複合基板を準備する工程として、複数のミラー部と、ミラー部を一括で保持するためにミラー部が配置される面上に支持部を設けた第2の基板を準備する工程と、反射面の上辺が一列に並んだ複数のミラー部と支持部を保持する複数の梁部と、梁部間を連設して梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、第2の基板と第3の基板を対向させ、一列に並んだ複数のミラー部と支持部とを、梁部に接合する工程と、第3の基板裏面から、溝部を除去し、第3の基板の梁部と第2の基板の支持部で、複数のミラー部を複合基板として保持する工程とを含むので、複合基板を容易に作製することができる。
請求項3では、受光素子に対応して配置されるミラー部と、一列に並んだ隣り合うミラー部をつなぐ梁部を複数備えた複合基板を準備する工程として、複数のミラー部と、ミラー部を一括で保持するためにミラー部が配置される面上に設ける支持部の基材となる第2の基板を準備し、ミラー部と支持部の予定領域にエッチングマスクと接着層を形成する工程と、反射面の上辺が一列に並んだ複数のミラー部と支持部の予定領域を保持する複数の梁部と、梁部間を連設して梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、第2の基板と第3の基板を対向させ、反射面の上辺が溝部上に位置し、接着層が梁部上に位置するように接合する工程と、第3の基板裏面から、溝部を除去し、エッチングマスクを形成した第2の基板を、異方性エッチング液によりエッチングし、ミラー部と支持部を形成する工程とを含むので、複合基板を容易に作製することができる。
請求項4では、受光素子に対応して配置されるミラー部と、一列に並んだ隣り合うミラー部をつなぐ梁部を複数備えた複合基板を準備する工程として、複数のミラー部を設けた第2の基板を準備する工程と、複数の前記ミラー部の反射面の上辺と平行な方向に一定間隔で並んだ複数の梁部と、前記複数の梁部を格子状に接続することで梁部間に貫通孔を形成した第3の基板を準備する工程と、第2の基板と第3の基板を対向させ、一列に並んだ複数のミラー部を、梁部に接合する工程とを含むので、複合基板を容易に作製することができる。
請求項5では、第2の基板として、主面が(100)面から[111]方向に概ね9.7°傾斜しているシリコン基板を用い、第2の基板の主面の[01−1]方向にその一辺を持つエッチングマスクを形成した後、少なくとも水酸化カリウム溶液、あるいはTMAH溶液を利用した異方性エッチングによりミラー部を作製するので、容易に概ね45°の側面を有するミラー部を効果的に作製することができる。
請求項6では、一定間隔で並んだミラー部を保持する梁部間に、第1の基板上に半導体レーザを搭載するための空隙を設けるので、一括接合後の半導体レーザの搭載が可能になる。
請求項7では、梁部のミラー部反射面側の端面を、反射面の上辺から離して接合するので、梁部によるレーザ光の蹴られが発生する角度が減少し、ミラー部反射面を有効に使うことができる。
本発明の第1の実施形態を図1〜図5に基づいて説明する。図1(a)〜図3(b)は、本発明の第1の実施形態における光半導体装置の製造工程を示す斜視図である。
図3(b)に示すように、この光半導体装置101は、表面に受光部と回路を形成した受光素子142と、レーザ光を出射する半導体レーザ150と、半導体レーザ150からのレーザ光を反射する反射面を有するミラー部117とを搭載して構成される。
以下、第1の実施形態における光半導体装置の製造方法について説明する。図1〜図3に示すように、受光素子142を複数備えた第1の基板140を準備する工程(a)と、受光素子に対応して配置されるミラー部117と、一列に並んだ隣り合うミラー部117をつなぐ梁部124を複数備えた複合基板を準備する工程(b)と、第1の基板140と複合基板を互いに対向させて、第1の基板140の表面とミラー部117の底面を接合する工程(c)と、第1の基板140と複合基板を、受光素子142ごとに分割する工程とを含む。また、工程(b)は、複数のミラー部117と、ミラー部117を一括で保持するためにミラー部117が配置される面上に支持部118を設けた第2の基板110を準備する工程と、反射面の下地となる斜面119の上辺が一列に並んだ複数のミラー部117と支持部118を保持する複数の梁部124と、梁部124間を連設して梁部124と平行に一定の間隔で溝部123を設けた第3の基板120を準備する工程と、第2の基板110と第3の基板120を対向させ、一列に並んだ複数のミラー部117と支持部118とを、梁部124に接合する工程と、第3の基板裏面から、溝部123を除去し、第3の基板120の梁部124と第2の基板110の支持部118で、複数のミラー部117を複合基板として保持する工程とを含む。
この場合、まず、第2の基板110を例えば1200℃程度の温度で酸化することにより、第2の基板110の表面上に厚み0.5〜2μmの酸化膜111(SiO膜)を形成する。このとき、第2の基板110の裏面側にも同厚の酸化膜(SiO膜、図示しない)が形成される。第2の基板110は、例えば、厚みが300μmのφ6インチの基板のシリコンウェハであり、その表面は(100)面から[111]方向に概ね9.7°傾斜した面で構成されている。本実施形態及び後述する各実施形態においては、見やすくするために、限られた数の光半導体装置形成領域しか図示されていないが、ウェハには多数の光半導体装置形成領域が設けられている。
次に、図1(a)に示す工程で、第2の基板110の裏面に形成した酸化膜上に第1の犠牲層(例えば、厚み1μmのゲルマニウム薄膜、図示しない)を形成し、続いて、第1の接着層(例えば、厚み2μmのBCB(ベンゾシクロブテン)樹脂膜、図示しない)を形成し、第2の基板110と第4の基板130を、加熱・加圧することにより、第1の犠牲層と第1の接着層を介して、貼り合わせる。ここで、第4の基板130には、例えば厚みが300φ6インチのガラス基板を用いる。
次に、図1(b)に示す工程で、酸化膜111の一部を、フォトリソグラフィ等を用いてパターニングしたレジストで覆い、例えば弗酸系のエッチング液によりエッチングすることにより、酸化膜111のうちミラー部117の上面となる部分と、支持部118の上面となる部分以外の領域を除去する。このとき、ミラー部117の上面となる部分には、第2の基板110の傾き方向に垂直な方向である[01−1]方向にその一辺を有するレジストパターンを形成し、支持部118の上面となる部分には、第2の基板110の傾き方向と平行な方向である[111]方向にその一辺を有するレジストパターンを形成し、これらのレジストパターンを用いて酸化膜111をパターニングする。これにより、複数のミラー部酸化膜115と、支持部酸化膜116が形成される。
次に、図1(c)に示す工程で、ミラー部酸化膜115、支持部酸化膜116をエッチングマスクとして用い、第2の基板110の表面から、例えばKOH(水酸化カリウム)溶液あるいはTMAH(水酸化テトラメチルアンモニウム)溶液により、基板110の裏面まで異方性エッチングし、ミラー部117と支持部118が形成される。続いて、ミラー部酸化膜115と支持部酸化膜116を、例えば弗酸系のエッチング液によりエッチングすることにより除去する。
次に、図1(d)に示す工程で、第3の基板120の表面121の一部に第2の接着層129を形成した後、例えばダイシングソー(図示せず)のハーフカットを用いて、複数の溝部123を形成する。このとき、第3の基板120には、例えば厚みが0.4μmでφ6インチの透明なガラス基板を利用し、第2の接着層129は、例えば感光性のBCB膜を厚み2μmで成膜した後、フォトリソ工程を用いてパターニングして形成する。また、溝部123の深さは、200μmで、溝部123の幅は、図4に示すように、搭載する半導体レーザ150とサブマウント151の共振器方向の長さよりも長くする。
次に、図1(e)に示す工程で、第3の基板120の表面121と、第2の基板110の表面を、後に形成される第2の基板110でミラー部117の斜面119の上辺174が溝部123に位置して(梁124の端面162を斜面119の上辺174から離して)、第3の接合層を介して、加熱加圧処理することにより接合する。これにより、図5に示すように、半導体レーザ150から出射されるレーザ光152の広がり角に対して梁部124での遮蔽を抑え、形成される反射面を有効に利用することができる。
次に、図2(a)に示す工程で、第3の基板120の裏面から、溝部123を形成した領域を、例えばダイシングソー(図示せず)のハーフカットダイシングをすることで、溝部123を除去し、第2の基板110のミラー部117と支持部118を保持する複数の梁124を形成する。
次に、図2(b)に示す工程で、例えば過酸化水素水により、第1の犠牲層をエッチングして、第4の基板130を剥離する。
次に、図2(c)に示す工程で、蒸着法(例えばスパッタ蒸着法)により、ミラー部117の斜面119に反射膜181を形成する。このとき反射膜181には、波長780nmや660nmのレーザ光に対しては、例えば、厚さ50nmのTi膜と、厚さ300nmのAu膜とを積層した膜を用い、波長405nmのレーザ光に対しては、例えば厚さ300nmのAl膜と、厚さ100nmのMgF膜とを積層した膜を用いる。
次に、図2(d)に示す工程で、表面141に受光素子142を形成した第1の基板140の表面141上の、ミラー部117の底面に対応した領域に、第3の接着層143(例えば、厚み2μmのBCB樹脂膜)を形成する。
次に、図2(e)に示す工程で、ミラー部117の一部と、第1の基板110の一部を、2つの梁124との間から観察し位置合わせし、ミラー部117の底面と第3の接着層143を、加熱加圧処理により貼り合せる。
次に、図3(a)に示す工程で、例えばダイシングソー(図示せず)により、第1の基板140を個々の光半導体装置101に分離させる。
次に、図3(b)に示す工程で、半導体レーザ150を、サブマウント151を介して光半導体装置101の表面141上に実装する。
ここで,図3(a)に示す工程と、図3(b)に示す工程とは、いずれを先に行なっても構わない。
本実施形態の光半導体装置の製造方法によれば、レーザ光の反射面または反射面の下地面となる斜面119を有するミラー部117を作製する際に、第2の基板110を裏面までエッチングするため、図12に示す従来の光半導体装置のような,凹部形成時の異方性エッチング条件の制御は不要であり、斜面119およびミラー部117の製造歩留まりが向上する.
また、斜面119は第2の基板110に、受光素子は第1の基板140に、個別に形成することができるので、全体として光半導体装置の製造歩留まりの向上を図ることが可能となる。
また、第2の基板110に形成された複数のミラー部117を、同時に形成された支持部118と共に、第3の基板120から形成された複数の梁124で保持した後、第1の基板140に一括に接合することが可能となるので、実装コストを低減することができる。
さらに、受光素子や回路の製造に利用される第1の基板140の材料は自由に選択することができるため、高性能な光半導体装置の製造が可能になる。
なお、第1の実施形態では、第2の基板110として、シリコン基板を利用したが、他の半導体材料からなる基板を用いても、同じ効果を得ることは可能である。
なお、酸化膜111の形成方法として、熱酸化法に代えて、水蒸気酸化法やスパッタ法やCVD法等の薄膜形成方法を用いた場合にも同じ効果が得られる。
なお、第1の実施形態では、第3の基板の加工にダイシングソーを利用したが、同様の形状が得られるドライエッチング技術や、レーザ加工技術を利用した場合にも同じ効果を得ることが可能である。
本発明の第2の実施形態を図6〜図8に基づいて説明する。図6(a)〜図8(b)は、本発明の第2の実施形態における光半導体装置の製造工程を示す断面図である。
以下、図6(a)〜図8(b)を参照しながら、第2の実施形態における光半導体装置の製造方法について説明する。
第1の実施形態において、一列に並んだ隣り合うミラー部217をつなぐ梁部224を複数備えた複合基板を準備する工程(b)が、複数のミラー部217と、ミラー部217を一括で保持するためにミラー部217が配置される面上に設ける支持部218の基材となる第2の基板210を準備し、ミラー部217と支持部218の予定領域にエッチングマスク215,216と接着層275,276を形成する工程と、反射面の下地となる斜面219の上辺274が一列に並んだ複数のミラー部217と支持部218の予定領域を保持する複数の梁部224と、梁部224間を連設して梁部224と平行に一定の間隔で溝部223を設けた第3の基板220を準備する工程と、第2の基板210と第3の基板220を対向させ、斜面219の上辺274が溝部223上に位置し、接着層275,276が梁部224上に位置するように接合する工程と、第3の基板裏面から、溝部223を除去し、エッチングマスク215,216を形成した第2の基板210を、異方性エッチング液によりエッチングし、ミラー部217と支持部218を形成する工程とを含む。
この場合、まず、第2の基板210を例えば1200℃程度の温度で酸化することにより、第2の基板210の表面上に厚み0.5〜2μmの酸化膜(SiO膜、図示しない)を形成する。このとき、第2の基板210の裏面側にも同厚の酸化膜(SiO膜、図示しない)が形成される。第2の基板210は、例えば、厚みが300μmのφ6インチの基板のシリコンウェハであり、その表面213は(100)面から[111]方向に概ね9.7°傾斜した面で構成されている。
次に、図6(a)に示す工程で、酸化膜の一部をフォトリソグラフィ等を用いてパターニングしたレジストで覆い、例えば弗酸系のエッチング液によりエッチングすることにより、酸化膜のうちミラー部217形成用のミラー部酸化膜215と支持部218形成用の支持部酸化膜216を形成する。このとき、ミラー部酸化膜215となる部分には、第2の基板210の傾き方向に垂直な方向である[01−1]方向にその一辺を有するレジストパターンを形成し、支持部酸化膜216の上面となる部分には、第2の基板210の傾き方向と平行な方向である[111]方向にその一辺を有するレジストパターンを形成し、これらのレジストパターンを用いて酸化膜をパターニングする。これにより、複数のミラー部酸化膜215と、支持部酸化膜216が形成される。
次に、図6(b)に示す工程で、複数のミラー部酸化膜215と支持部酸化膜216の表面に、第1の接着層としてミラー部接着層275と支持部接着層276を形成する。このとき、例えば第1の接着層としては、感光性のBCB樹脂を用い、スピンコート法で基板全面に厚み2μmで形成した後、フォトリソ工程により所望の形状にパターニングする。このとき、ミラー部接着層275と支持部接着層276はそれぞれミラー部酸化膜215と支持部酸化膜216よりも一回り小さな形状とする。
次に、図6(c)に示す工程で、第3の基板220の表面221から、例えばダイシングソーのハーフカットダイシングにより、溝部223を形成する。このとき、第3の基板としては、例えば厚み約400μmのガラス基板を用い、深さ約200μmの溝部を形成する。
次に、図6(d)に示す工程で、第2の基板210の裏面と、第3の基板220の表面を互いに対向させ、位置合わせして、第1の接着層を介して加熱加圧処理により接合する。このとき、第2の基板210に形成されるミラー部217の斜面219の上辺274となるミラー部酸化膜215の一辺を第3の基板220の溝部223と平行に配置し、さらに、反射面の下地となる斜面219の上辺274が、第3の基板220とは接合せず、溝部223上に位置する形で、接合する。
次に、図6(e)に示す工程で、第3の基板220の裏面から、溝部223を形成した領域を、例えばダイシングソー(図示せず)のハーフカットダイシングをすることで、溝部223を除去し、第2の基板のミラー部217と支持部218を保持する複数の梁224を形成する。
次に、図7(a)に示す工程で、複数のミラー部酸化膜215と支持部酸化膜216をエッチングマスクとして用い、第2の基板210の表面213から、例えばKOH(水酸化カリウム)溶液あるいはTMAH(水酸化テトラメチルアンモニウム)溶液により、第2の基板210の裏面まで異方性エッチングし、斜面219を有するミラー部217と支持部218を形成する。続いて、第2の基板210の表面の酸化膜の一部と、裏面に形成された酸化膜を、例えば弗酸系のエッチング液によりエッチングすることにより除去する。このエッチングの際に、ミラー部217がミラー部酸化膜215の除去により、第3の基板220から剥離しないように、エッチング時間を調節する。
次に、図7(b)に示す工程で、蒸着法(例えばスパッタ蒸着法)により、ミラー部217の斜面219に反射膜281を形成する。このとき反射膜281には、波長780nmや660nmのレーザ光に対しては、例えば、厚さ50nmのTi膜と、厚さ300nmのAu膜とを積層した膜を用い、波長405nmのレーザ光に対しては、例えば厚さ300nmのAl膜と、厚さ100nmのMgF膜とを積層した膜を用いる。
次に、図7(c)に示す工程で、表面241に受光素子と回路を形成した第1の基板240の表面241上で、ミラー部217の底面に対応した領域に、第2の接着層243(例えば、厚み2μmのBCB樹脂膜)を形成する。第1の基板240には、厚み300μmでφ6インチの例えば、シリコンウェハを利用する。
次に、図7(d)に示す工程で、ミラー部218の一部と、基板240の一部を、梁224の表面221から通して観察し位置合わせして、ミラー部218の底面と接着層243を、加熱加圧処理により貼り合せる。
次に、図8(a)に示す工程で、例えばダイシングソー等を用いて第2の基板210をダイシングラインに沿って切断することにより、第2の基板210を個々の光半導体装置201に分離させる。
次に、図8(b)に示す工程で、半導体レーザ250を、サブマウント251を介して第2の基板210の表面211上に実装する。
ここで,図8(a)に示す工程と、図8(b)に示す工程とは、いずれを先に行なっても構わない。
本実施形態の光半導体装置の製造方法によれば、レーザ光の反射面または反射面の下地面となる斜面219を有するミラー部217を作製する際に、第2の基板210を裏面までエッチングするため、図12に示す従来の光半導体装置のような,凹部形成時の異方性エッチング条件の制御は不要であり、斜面219およびミラー部217の製造歩留まりが向上する。
また、斜面219は第2の基板210に、受光素子や信号増幅素子の形成は第1の基板240に、個別に形成することができるので、全体として光半導体装置の製造歩留まりの向上を図ることが可能となる。
また、第2の基板210に形成された多数のミラー部217を、同時に形成された支持部218と共に、第3の基板220から形成された複数の梁224で保持した後、第1の基板240に一括に接合することが可能となるので、実装コストを低減することができる。
さらに、受光素子や回路の製造に利用される第1の基板240の材料は自由に選択することができるため、高性能な光半導体装置の製造が可能になる。
なお、第2の実施形態では、第2の基板210として、シリコン基板を利用したが、他の半導体材料からなる基板を用いても、同じ効果を得ることは可能である。
なお、第2の基板210の酸化膜の形成方法として、熱酸化法に代えて、水蒸気酸化法やスパッタ法やCVD法等の薄膜形成方法を用いた場合にも同じ効果が得られる。
なお、第2の実施形態では、第3の基板の加工にダイシングソーを利用したが、同様の形状が得られるドライエッチング技術や、レーザ加工技術を利用した場合にも同じ効果を得ることが可能である。
本発明の第3の実施形態を図9〜図11に基づいて説明する。図9(a)〜図11(b)は、本発明の第3の実施形態における光半導体装置の製造工程を示す断面図である。
以下、図9(a)〜図11(b)を参照しながら、第3の実施形態における光半導体装置の製造方法について説明する。
第1の実施形態において、一列に並んだ隣り合うミラー部317をつなぐ梁部324を複数備えた複合基板を準備する工程(b)が、複数のミラー部317を設けた第2の基板310を準備する工程と、複数のミラー部317の反射面の下地となる斜面319の上辺と平行な方向に一定間隔で一列に並んだ複数の梁部324と、複数の梁部324を格子状に接続することで梁部324間に貫通孔325を形成した第3の基板320を準備する工程と、第2の基板310と第3の基板320を対向させ、一列に並んだ複数のミラー部317を、梁部324に接合する工程とを含む。
この場合、まず、第2の基板310を例えば1200℃程度の温度で酸化することにより、第2の基板310の表面上に厚み0.5〜2μmの酸化膜311(SiO膜)を形成する。このとき、第2の基板310の裏面側にも同厚の酸化膜(SiO膜、図示しない)が形成される。第2の基板310は、例えば、厚みが300μmのφ6インチの基板のシリコンウェハであり、その表面は(100)面から[111]方向に概ね9.7°傾斜した面で構成されている。本実施形態及び後述する各実施形態においては、見やすくするために、限られた数の光半導体装置形成領域しか図示されていないが、ウェハには多数の光半導体装置形成領域が設けられている。
次に、図9(a)に示す工程で、第2の基板310の裏面に形成した酸化膜上に第1の犠牲層(例えば、厚み1μmのゲルマニウム薄膜、図示しない)を形成し、続いて、第1の接着層(例えば、厚み2μmのBCB(ベンゾシクロブテン)樹脂膜、図示しない)を形成し、第2の基板と第4の基板330を、加熱加圧することにより、第1の犠牲層と第1の接着層を介して、貼り合わせる。ここで、第4の基板330には、例えば厚みが300φ6インチのガラス基板を用いる。
次に、図9(b)に示す工程で、酸化膜311の一部を、フォトリソグラフィ等を用いてパターニングしたレジストで覆い、例えば弗酸系のエッチング液によりエッチングすることにより、酸化膜311のうちミラー部317の上面となる部分以外の領域を除去する。このとき、ミラー部317の上面となる部分には、第2の基板310の傾き方向に垂直な方向である[01−1]方向にその一辺を有するレジストパターンを形成し、このレジストパターンを用いて酸化膜311をパターニングする。これにより、複数のミラー部酸化膜315が形成される。
次に、図9(c)に示す工程で、ミラー部酸化膜315をエッチングマスクとして用い、第2の基板310の表面から、例えばKOH(水酸化カリウム)溶液あるいはTMAH(水酸化テトラメチルアンモニウム)溶液により、第2の基板310の裏面まで異方性エッチングし、ミラー部317が形成される。続いて、ミラー部酸化膜315を、例えば弗酸系のエッチング液によりエッチングすることにより除去する。
次に、図9(d)に示す工程で、第3の基板320に対して、例えばサンドブラスト加工を用いて貫通孔325を形成する。ここで、例えば第3の基板320としては、厚み300μmでφ6インチのガラス基板を用い、複数のミラー部317の斜面319の上辺と平行な方向に、一定間隔で一列に並んだ梁部324と、複数の梁部324を支持部により格子状に接続することで梁部324間に貫通孔325を形成する。
次に、図9(e)に示す工程で、第3の基板320の表面と、第2の基板310の表面を、第2の基板のミラー部317の斜面319の上辺が貫通孔325上に配置されるように、第2の基板310と第3の基板320を位置あわせして、第3の基板320の表面上に、ディスペンサ等を用いて塗布した接合層(例えば、ポリイミド系樹脂)を介して、加熱加圧処理することにより接合する。
次に、図10(a)に示す工程で、第2の基板310と第4の基板330の間に形成された第2の犠牲層(図示せず)を、例えば過酸化水素水によりエッチングし、第4の基板330を剥離する。
次に、図10(b)に示す工程で、蒸着法(例えばスパッタ蒸着法)により、ミラー部317の斜面319に反射膜381を形成する。このとき反射膜381には、波長780nmや660nmのレーザ光に対しては、例えば、厚さ50nmのTi膜と、厚さ300nmのAu膜とを積層した膜を用い、波長405nmのレーザ光に対しては、例えば厚さ300nmのAl膜と、厚さ100nmのMgF膜とを積層した膜を用いる。
次に、図10(c)に示す工程で、表面341に受光素子342を形成した基板340の表面341上の、ミラー部317の底面に対応した領域に、第3の接合層343(例えば、厚み2μmのBCB樹脂膜)を形成する。
次に、図10(d)に示す工程で、ミラー部317の一部と、基板340の一部を、貫通孔225から観察し位置合わせし、ミラー部317の底面と第3の接合層343を、加熱加圧処理により貼り合せる。
次に、図11(a)に示す工程で、例えばダイシングソー(図示せず)により、第3の基板を個々の光半導体装置301に分離させる。
次に、図11(b)に示す工程で、半導体レーザ350を、サブマウント351を介して光半導体装置301の表面341上に実装する。
ここで,図11(a)に示す工程と、図11(b)に示す工程とは、いずれを先に行なっても構わない。
本実施形態の光半導体装置の製造方法によれば、レーザ光の反射面または反射面の下地面となる斜面319を有するミラー部317を作製する際に、第2の基板310を裏面までエッチングするため、図12に示す従来の光半導体装置のような,凹部形成時の異方性エッチング条件の制御は不要であり、斜面319およびミラー部317の製造歩留まりが向上する.
また、斜面319は第2の基板310に、受光素子や信号増幅素子の形成は第1の基板340に、個別に形成することができるので、全体として光半導体装置の製造歩留まりの向上を図ることが可能となる。
また、第2の基板310に形成された多数のミラー部317を、第3の基板320で保持した後、第1の基板340に一括に接合することが可能となるので、実装コストを低減することができる。
さらに、受光素子や回路の製造に利用される第1の基板340の材料は自由に選択することができるため、高性能な光半導体装置の製造が可能になる。
なお、第3の実施形態では、第2の基板310として、シリコン基板を利用したが、他の半導体材料からなる基板を用いても、同じ効果を得ることは可能である。
なお、第3の基板320として、ガラス基板を用いたが、半導体基板を利用しても同じ効果を得ることは可能である。
なお、第3の基板320への貫通孔325の形成方法として、サンドブラスト法にかえて、エッチング法や、レーザ加工法を利用した場合にも同じ効果が得られる。
なお、酸化膜311の形成方法として、熱酸化法にかえて、水蒸気酸化法やスパッタ法やCVD法等の薄膜形成方法を用いた場合にも同じ効果が得られる。
なお、第3の基板320の表面上に接着層を形成する方法として、ディスペンサによる塗布法にかえて、スプレー塗布した樹脂をパターニングして形成する方法を用いた場合にも同じ効果が得られる。
本発明の光半導体装置の製造方法は、光ピックアップの個別部品が集積された光半導体装置の製造方法としてだけでなく、発光素子と光学素子を組み合わせた光半導体装置をウェハ単位で一括に製造方法としても有用である。例えば,バーコードリーダ用の光集積装置の製造方法としても利用できる。
(a)〜(e)は、それぞれ順に、本発明の第1の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(d)は、それぞれ順に、本発明の第1の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(b)は、それぞれ順に、本発明の第1の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 半導体レーザ搭載用の梁部間に設ける空隙を説明する断面図である。 梁部とミラー部の反射面の位置関係を説明する断面図である。 (a)〜(e)は、それぞれ順に、本発明の第2の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(d)は、それぞれ順に、本発明の第2の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(b)は、それぞれ順に、本発明の第2の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(e)は、それぞれ順に、本発明の第3の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(d)は、それぞれ順に、本発明の第3の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 (a)〜(b)は、それぞれ順に、本発明の第3の実施形態における光半導体装置の製造工程の一部を示す斜視図である。 従来例の光半導体装置構造を示す斜視図である。 別の従来例の光半導体装置構造を示す斜視図である。
符号の説明
110,210,310 第2の基板
111,311 酸化膜
115,215,315 ミラー部酸化膜
116,216 支持部酸化膜
117,217,317 ミラー部
118,218 支持部
119,219,319 斜面
120,220,320 第3の基板
121,221,321 基板表面
123,223 溝部
124,224,324 梁
129,243 第2の接着層
130 ,330 第4の基板
140,240,340 第1の基板
141,241,341 基板表面
142,242,342 受光素子
143,343 第3の接着層
181,281,381 反射膜
101,201,301 光半導体装置
150,250,350 半導体レーザ
151,251,351 サブマウント
152 レーザ光
161 空隙
162 端面
213 基板表面
174,274 上辺
275 ミラー部接着層
276 支持部接着層
325 貫通孔

Claims (7)

  1. 表面に受光部と回路を形成した受光素子と、レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光を反射する反射面を有するミラー部とを搭載して構成される光半導体装置の製造方法であって、
    前記受光素子を複数備えた第1の基板を準備する工程(a)と、
    前記受光素子に対応して配置されるミラー部と、一列に並んだ隣り合う前記ミラー部をつなぐ梁部を複数備えた複合基板を準備する工程(b)と、
    前記第1の基板と前記複合基板を互いに対向させて、前記第1の基板の表面と前記ミラー部の底面を接合する工程(c)と、
    前記第1の基板と前記複合基板を、受光素子ごとに分割する工程とを含む光半導体装置の製造方法。
  2. 前記工程(b)が、複数の前記ミラー部と、前記ミラー部を一括で保持するためにミラー部が配置される面上に支持部を設けた第2の基板を準備する工程と、
    前記反射面の上辺が一列に並んだ複数の前記ミラー部と前記支持部を保持する複数の前記梁部と、前記梁部間を連設して前記梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、
    前記第2の基板と前記第3の基板を対向させ、前記一列に並んだ複数の前記ミラー部と前記支持部とを、前記梁部に接合する工程と、
    前記第3の基板裏面から、前記溝部を除去し、前記第3の基板の前記梁部と前記第2の基板の支持部で、複数の前記ミラー部を前記複合基板として保持する工程とを含む請求項1記載の光半導体装置の製造方法。
  3. 前記工程(b)が、複数の前記ミラー部と、前記ミラー部を一括で保持するためにミラー部が配置される面上に設ける支持部の基材となる第2の基板を準備し、前記ミラー部と前記支持部の予定領域にエッチングマスクと接着層を形成する工程と、
    前記反射面の上辺が一列に並んだ複数の前記ミラー部と前記支持部の予定領域を保持する複数の前記梁部と、前記梁部間を連設して前記梁部と平行に一定の間隔で溝部を設けた第3の基板を準備する工程と、
    前記第2の基板と前記第3の基板を対向させ、前記反射面の上辺が前記溝部上に位置し、前記接着層が梁部上に位置するように接合する工程と、
    前記第3の基板裏面から、前記溝部を除去し、前記エッチングマスクを形成した第2の基板を、異方性エッチング液によりエッチングし、前記ミラー部と前記支持部を形成する工程とを含む請求項1記載の光半導体装置の製造方法。
  4. 前記工程(b)が、複数の前記ミラー部を設けた第2の基板を準備する工程と、
    複数の前記ミラー部の反射面の上辺と平行な方向に一定間隔で並んだ複数の梁部と、前記複数の梁部を格子状に接続することで梁部間に貫通孔を形成した第3の基板を準備する工程と、
    前記第2の基板と前記第3の基板を対向させ、前記一列に並んだ複数の前記ミラー部を、前記梁部に接合する工程とを含む請求項1記載の光半導体装置の製造方法。
  5. 前記第2の基板として、主面が(100)面から[111]方向に概ね9.7°傾斜しているシリコン基板を用い、前記第2の基板の主面の[01−1]方向にその一辺を持つエッチングマスクを形成した後、少なくとも水酸化カリウム溶液、あるいはTMAH溶液を利用した異方性エッチングによりミラー部を作製する請求項1,2,3または4記載の光半導体装置の製造方法。
  6. 一定間隔で並んだ前記ミラー部を保持する梁部間に、前記第1の基板上に前記半導体レーザを搭載するための空隙を設ける請求項1,2,3または4記載の光半導体装置の製造方法。
  7. 前記梁部の前記ミラー部反射面側の端面を、前記反射面の上辺から離して接合する請求項1,2,3または4記載の光半導体装置の製造方法。
JP2005045403A 2005-02-22 2005-02-22 光半導体装置の製造方法 Pending JP2006237061A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045403A JP2006237061A (ja) 2005-02-22 2005-02-22 光半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045403A JP2006237061A (ja) 2005-02-22 2005-02-22 光半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006237061A true JP2006237061A (ja) 2006-09-07

Family

ID=37044421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045403A Pending JP2006237061A (ja) 2005-02-22 2005-02-22 光半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006237061A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050901A1 (en) * 2006-10-27 2008-05-02 Canon Kabushiki Kaisha Semiconductor member, semiconductor article manufacturing method, and led array using the manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050901A1 (en) * 2006-10-27 2008-05-02 Canon Kabushiki Kaisha Semiconductor member, semiconductor article manufacturing method, and led array using the manufacturing method
US8237761B2 (en) 2006-10-27 2012-08-07 Canon Kabushiki Kaisha Semiconductor member, semiconductor article manufacturing method, and LED array using the manufacturing method
US8670015B2 (en) 2006-10-27 2014-03-11 Canon Kabushiki Kaisha Semiconductor member, semiconductor article manufacturing method, and LED array using the manufacturing method

Similar Documents

Publication Publication Date Title
US8559127B2 (en) Integrated heat assisted magnetic recording head with extended cavity vertical cavity surface emitting laser diode
KR101350125B1 (ko) 레이저 어셈블리와 이를 포함하는 장치 및 레이저어셈블리의 형성 방법
US6417107B1 (en) Method for manufacturing a functional device by forming 45-degree-surface on (100) silicon
JP2004326083A (ja) ミラーの製造方法とミラーデバイス
KR100601991B1 (ko) 마이크로 미러 어레이 제조 방법 및 광학 소자의 제조 방법
WO2006112387A1 (ja) 微小機械構造体システムおよびその製造方法
JP3483799B2 (ja) 機能素子の製造方法
JP2006216832A (ja) 半導体装置の製造方法
JP2006237061A (ja) 光半導体装置の製造方法
JP2006139287A (ja) マイクロミラーアレイ及びその製造方法
JP2006005254A (ja) 光半導体装置の製造方法
JP2005136385A (ja) 半導体光学装置およびその製造方法
KR20050079859A (ko) 광학벤치, 이를 사용한 박형광픽업 및 그 제조방법
JP2001319360A (ja) 集積型光ピックアップ用モジュール及び光ピックアップ
JP2001195771A (ja) 集積光学装置及びその製造方法
JP2007034029A (ja) 可動ミラーの製造方法、多波長レーザ素子およびその製造方法
JP2005340408A (ja) 半導体レーザ装置およびその製造方法
JP2002140830A (ja) 光ピックアップ装置及び光ピックアップ装置の製造方法
JP2005057188A (ja) 半導体レーザ装置、集積化光ピックアップ及び光ディスク装置
JP2006147616A (ja) 受発光デバイスの製造方法およびそれを用いて製造された受発光デバイス
JP2003084218A (ja) 形状可変鏡及び光ディスク情報入出力装置
JP3767836B2 (ja) 変形可能ミラー及びその製造方法
JP2005317646A (ja) レーザモジュールおよびその製造方法
JP2002279672A (ja) 集積型光ピックアップ用モジュールおよび該モジュールを用いた集積型光ピックアップ
JP4240822B2 (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060927