JP2005340408A - 半導体レーザ装置およびその製造方法 - Google Patents

半導体レーザ装置およびその製造方法 Download PDF

Info

Publication number
JP2005340408A
JP2005340408A JP2004155581A JP2004155581A JP2005340408A JP 2005340408 A JP2005340408 A JP 2005340408A JP 2004155581 A JP2004155581 A JP 2004155581A JP 2004155581 A JP2004155581 A JP 2004155581A JP 2005340408 A JP2005340408 A JP 2005340408A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor laser
mirror
laser device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004155581A
Other languages
English (en)
Inventor
Kazuhiko Yamanaka
一彦 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004155581A priority Critical patent/JP2005340408A/ja
Publication of JP2005340408A publication Critical patent/JP2005340408A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】部品点数と部品調整回数が少なく、低コストで実現できる半導体レーザ装置及びその製造方法を提案する。
【解決手段】半導体レーザ装置100が、半導体レーザ108と受光素子基板102とミラー104とで構成され、受光素子基板102の主面103上にエッチングにより凹部109が形成され、ミラー104が凹部109の底面に、半導体レーザが主面103に配置されている。ミラー104の反射面105の最上部は主面103より上部にある。製造方法においては、複数のミラー104が、各受光素子基板102に一括して実装される。
【選択図】図2

Description

本発明は、レーザ光を用いて、光ディスクや光磁気ディスク等の光記憶媒体に記録されている情報の記録や読み出し等を行うための光情報処理用の光ヘッド装置に用いられる半導体レーザ装置に関する。
近年、CD(コンパクトディスク),DVD(Digital Versatile Disk)等の記録媒体を取り扱うシステムにおいては、記録媒体に対し、情報の記録や読み出しを行うための重要な構成部品として光ピックアップがある。光ピックアップには、レーザ光を出射する半導体レーザや受光素子などの半導体部品のほかに、ビームスプリッタ、反射ミラーや対物レンズなどの光学部品を備える必要がある。これらの半導体部品や光学部品を集積化し、光ピックアップの構成をコンパクト化するため、従来より、例えば特許文献1に開示されているような半導体レーザ装置が開発されている。
以下、図10を参照しながら、従来の半導体レーザ装置の構成について説明する。半導体レーザ装置1001は、受光素子1007および図示しない信号増幅素子等が半導体プロセスにより形成されているシリコン基板やGaAs基板などの受光素子基板1002と、受光素子基板1002上にサブマウントチップ1009を挟んで搭載された半導体レーザ1008と、受光素子基板1002の主面1003上に搭載され、半導体レーザ1008からのレーザ光を反射する反射面1005を有するミラー1004とを備えている。
ここで、サブマウントチップ1009の厚みは、半導体レーザ1008から放射されるレーザ光1010のうちの所定の範囲のレーザ光を半導体レーザ装置1001の上方に出射させるように調整されている。半導体レーザ1008から横方向(図10に示すy軸方向)に出射されたレーザ光は、ミラー1004の反射面1005により反射されて縦方向(図10に示すz軸方向)に反射される。これをレーザ光1010の主線1011とする。一方、半導体レーザ1008から横方向に出射されたレーザ光の光束のうち、ミラー1004の反射面1005の最上部で反射したレーザ光の軌跡を光線1012とする。また、ミラー1004の反射面1005の最下部で反射したレーザ光の軌跡を光線1013とする。したがって、半導体レーザ1008から出射されるレーザ光のうち、Y軸方向に関しては、光線1012から光線1013の範囲のレーザ光束が半導体レーザ装置1001からほぼZ軸方向に出射される。
このような半導体レーザ装置の製造方法としては、例えば以下のような方法がある。まず半導体レーザ1008を、サブマウントチップ1009上の所定の位置に位置合わせしながら載置した後、例えば半田等を利用して、半導体レーザ1008とサブマウントチップ1009とを接合する。続いて、このサブマウントチップ1009を、受光素子基板1002の主面1003の所定の位置に位置合わせしならが載置した後、例えば半田等を利用してサブマウントチップ1009と受光素子基板1002とを接合する。そして、ミラー1004の反射面1005の位置を、半導体レーザ1008から放射されたレーザ光1010のうちの所定の範囲のレーザ光を半導体レーザ装置1001の上方に出射させるように調整しながら、例えば接着剤等を利用して、ミラー1004と受光素子基板1002とを接着する。
特開平9―218304号公報(図4)
しかしながら、上述のような従来の半導体レーザ装置1001の構成においては以下のような課題があげられる。まず、第1に上述の半導体レーザ装置1001の部品点数が多いという問題である。通常、半導体レーザ装置に配置される半導体レーザ1008は、レーザ光1010が出射される出射位置が下部になるように、いわゆるジャンクションダウン方向による配置がなされる。さらに、ミラー1004は、半導体レーザ装置1001から出射されるレーザ光1010の主線1011が、主面1003に対してほぼ90°で交差する方向に出射されるように、つまり、反射面1005の主面1003に対する傾き角がほぼ45°になるように配置される。一方、レーザ光1010は、主線1011に対する光線1012および光線1013の広がり角が例えば10°〜30°までの範囲になるように調整される。したがって、半導体レーザ1008は、主面1003から所定の距離の高さに配置することが必要となり、その結果、半導体レーザ1008とは別部品であるサブマウントチップ1009を用意し、このサブマウントチップ1009上に半導体レーザ1008を配置する必要がある。このため、半導体レーザ装置を構成する部品数が増加することになり、特に熱伝導率の高い材料を用いなければならないサブマウントチップのためのコスト増大や、組立工数の増加による製造コストの増大を招くことになる。
一方で、半導体レーザ装置の部品数を低減させるため、受光素子基板の一部を異方性エッチングし、その斜面を反射面として利用することが提案されている。しかしながら、異方性エッチングにより反射面の角度をほぼ45°にするための条件は限られており、例えば受光素子基板として、結晶軸が(100)面に対して[110]方向にほぼ9.7°に傾斜するようにして作製されたシリコン基板に、KOH(水酸化カリウム)やTHMA(水酸化テトラメチルアンモニウム)を用いてエッチングする方法が用いられる。このような方法においては、受光素子基板1002の材料が限られるため、受光素子等を形成する場合のプロセス条件が限られるという不具合がある。
さらに、上述した半導体レーザ装置の製造方法が非常に難しく高コストであるという問題が挙げられる。上述した半導体レーザの製造方法においては、各部品の位置調整工程として、半導体レーザ1008とサブマウントチップ1009との相対的位置、サブマウントチップ1009と受光素子基板1002との相対的位置、ミラー1004と受光素子基板1002の相対的位置を調整する,合計3回の位置調整工程が必要となる。特に、半導体レーザ装置1001においては、受光素子基板1002とミラー1004との位置精度を高精度に保持しつつ両者を接合する必要があり、このためにはミラー1004を個別に受光素子基板1002に高精度で接着しなければならない。このような製造方法を用いて半導体レーザ装置を作製する場合、半導体レーザ装置のコストアップの原因となる。
本発明の目的は、半導体レーザと反射用ミラーとを受光素子基板上に配置した半導体レーザ装置において、受光素子基板上に異なる材料のミラーを高精度に配置することが可能な半導体レーザ装置およびその製造方法を提供することを目的とする。
本発明の半導体レーザ装置は、受光素子基板の主面側に凹部が形成されていて、凹部の底面に反射面を有するミラーが設置され、凹部の周辺に半導体レーザが設置されていて、受光素子基板の主面の高さ位置が、ミラーの反射面の最上部の位置と上記凹部の底面との間にある。
これにより、半導体レーザ装置から出射されるレーザ光の出射範囲を光軸に対し任意の角度にすることができ、かつ、部品点数が少なくすることが可能となる。
ミラーと受光素子基板とを異なる材料から構成することにより、受光素子を作製するプロセスの条件制限を排除することが可能となる。
ミラーが単結晶半導体基板から形成され、反射面が単結晶半導体基板の最稠密結晶面であることにより、鏡面の反射面を簡単に形成することができるため、低コストで半導体レーザ装置を製造することができる。
本発明の半導体レーザ装置の製造方法は、受光素子基板となるウエハの主面側に凹部を形成しておく一方、板状基板の第1面から第2面に向かって拡大するテーパー状の傾斜面を有するミラーを形成しておいて、ミラーをウエハの凹部の底面に搭載する方法である。
これにより、上述の効果を発揮する半導体レーザ装置を製造することができる。
ウエハの凹部の底面上にミラーを搭載するまでの手順としては、板状基板をウエハ上に搭載してから板状基板をエッチングしてミラーを形成する方法と、ダミー基板に板状基板を貼り合わせて板状基板からミラーを形成して、ダミー基板に並んだ複数のミラーをウエハの各凹部に設置する方法と、第1のダミー基板に板状基板を貼り合わせて板状基板からミラーを形成し、ミラーを第2のダミー基板に転写してから、ウエハの各凹部に設置する方法とがある。
これらの方法により、複数のミラーを一括してウエハの受光素子基板となる領域に配置することができるため、ミラー位置の調整回数を少なくすることができ、引いては低コストで半導体レーザ装置を実現することができる。
ダミー基板を用いる場合は、ダミー基板として透明基板を用いることにより、凹部とミラーとの位置合わせを光学的に行うことが可能になり、複数のミラーを同時に高精度に配置することが可能になり低コストで半導体レーザ装置を実現することができる。また、透明基板を用いるとともに、紫外線を照射すると接着力が低下する樹脂からなる接着層を用いることができるので、ダミー基板の除去が容易になる。
本発明の半導体レーザ装置及びその製造方法によると、受光素子基板上に異なる材料のミラーを高精度に配置することが可能であり、半導体レーザ装置から出射されるレーザ光の出射範囲を、Y軸方向に主軸に対し例えば10〜30°などの任意の角度にすることができる半導体レーザ装置を、部品点数が少なく、さらに部品の調整回数が少なく低コストで実現することが可能となる。
以下、図面を参照しながら本発明の好ましい実施形態を説明する。簡単のため、各実施形態間で共通する構成要素は、同一の参照符号で示す。
(第1の実施形態)
図1は、第1の実施形態の半導体レーザ装置の構造を示す斜視図である。図2は、第1の実施形態の半導体レーザ装置の図1に示すII−II線断面における断面図である。
半導体レーザ装置100は、シリコン(Si)やGaAsによって構成され、光電変換用のダイオードなどからなる受光素子107が設けられた受光素子基板102と、発光素子である半導体レーザ108と、半導体レーザ108から出射されたレーザ光を反射するためのミラー104とを備えている。受光素子基板102の主面103には、基板の一部を掘り込んでなる凹部109が形成されており、凹部109の底面上にミラー104が設置されている。半導体レーザ108は、レーザ光が出射される出射領域がその下部に位置するように形成されており、半導体レーザ108は、受光素子基板102の主面103における凹部109を囲む領域の縁に配置されている。
半導体レーザ108から横方向(図2に示すy方向)に出射されたレーザ光110は、ミラー104の反射面105によって縦方向(図2に示すz方向)に反射される。このとき半導体レーザ108から出射されたレーザ光の光束のうち、反射面105の最下部に向かって出射された後反射されたレーザ光線112と、反射面105の最上部に向かって出射された後反射されたレーザ光線113との間に存在するレーザ光束110のみ半導体レーザ装置101から記録媒体に到達するように出射される。したがって、レーザ光束110の光軸111とレーザ光線112とのなす角θ1、および光軸111とレーザ光線113のなす角θ2は、凹部109の深さd2および反射面高さd1を調整することによって任意に設定することが可能となる。また、このとき、ミラー104として、主面が(100)面に対して[110]方向に約9.7°傾斜しているシリコン基板をKOHもしくはTMAHにより異方性エッチングしたものが用いられる。これにより、シリコン基板の(111)面の一部が底面に対して45°傾斜するため、反射面105が(111)面であるミラー104が得られる。
上述の構成により、受光素子基板と別材料でミラーを構成する半導体レーザ装置において、半導体レーザ装置から横方向に出射されるレーザ光の光束のうち,光軸に対するy軸方向の傾きが±(10°〜30°)の範囲にあるレーザ光線を包含するレーザ光束を記録媒体等の利用系に送ることが可能である。また、半導体レーザ装置の主要な構成部品は、受光素子基板102とミラー104と半導体レーザ108のみであり、簡素な構成である。
本実施形態によると、受光素子基板102の主面103に凹部109を形成し、凹部の底面上にミラー104を設置したので、半導体レーザ108の側面から放射されるレーザ光の光束のうち,所定の光量を維持しうる光束110を半導体レーザ装置102の上方に光軸に沿って出射することが可能になる。すなわち、従来の半導体レーザ装置の構造で、半導体レーザと受光素子基板との間に必要であったサブマウントチップが、本実施形態の半導体レーザ装置100においては設ける必要ないので、部品数の低減,光軸調整の容易化,製造工程数の低減などによる製造コストの低減を図ることができる。
なお、上記本実施形態の半導体レーザ装置の構成において、ミラー104は例えばガラス基板の一辺を底面に対してほぼ45°傾斜させたものを用いてもよい。
(第2の実施形態)
図3は、第2の実施形態の半導体レーザ装置の構造を示す斜視図である。図4(a)〜図5(f)は、第2の実施形態の半導体レーザ装置の製造工程を示す断面図である。
図3に示すように、本実施形態の半導体レーザ装置200は、シリコン(Si)やGaAsによって構成され、光電変換用のダイオードなどからなる受光素子が設けられた受光素子基板202と、発光素子である半導体レーザ108と、半導体レーザ108から出射されたレーザ光を反射するためのミラー204とを備えている。受光素子基板202の主面203には、基板の一部を掘り込んでなる凹部209が形成されており、凹部209の底面上にミラー204が接着層243を介して搭載されている。半導体レーザ108は、レーザ光が出射される出射領域がその下部に位置するように形成されており、半導体レーザ108は、受光素子基板202の主面203における凹部209を囲む領域の縁に搭載されている。
ミラー204は、基板面が(100)面に対して[110]方向に約9.7°傾斜しているシリコン基板を用いて形成されている。これにより、シリコン基板の(111)面の一部が底面に対して45°傾斜するため、(111)面である鏡面(反射下地面)の上に反射膜222を設け、反射膜222の表面を反射面205とするミラー204が得られる。そして、ミラー204などの各要素を形成するために、例えばシリコン酸化膜であるマスク221及び223がシリコン基板の上面及び下面の上に形成されている。また、ミラー204の反射面205上には、所定の波長範囲のレーザ光を反射するための反射膜222が形成されている。また、受光素子基板202の凹部209を除く主面には、凹部209を形成するための,例えばシリコン酸化膜であるマスク230が形成されていて、半導体レーザ108は、マスク230の上に接合層231を介して搭載されている。
次に、複数の受光素子基板に分割される前の第1の基板290の作製プロセスについて、図4(a)〜(d)を参照しながら説明する。
まず、図4(a)に示す工程で、シリコン等のウエハ201に、汎用の半導体プロセスを用いて、例えば、ダイオード等の受光素子や、CCDなどの回路を形成する。その後、ウエハ201上に例えばシリコン酸化膜を形成し、フォトリソグラフィーを用いて、シリコン酸化膜をパターニングして、凹部形成用のマスク230を形成する。
次に、図4(b)に示す工程で、例えば、ウエットエッチングやドライエッチングにより、ウエハ201に深さd3(例えば10μm〜30μm)の凹部209を形成する。凹部209を形成する際には、等方性エッチングもしくは異方性エッチングのいずれを用いてもよい。
次に、図4(c)に示す工程で、ウエハ201上のマスク230の所定の領域上に、例えばAu/Sn(Au:Sn=80:20)等の半田からなる接合層231を形成する。
次に、図4(d)に示す工程で、凹部209の底面上に例えば硬化温度が200℃以下である熱硬化樹脂からなる接着層241を形成する。図4(a)〜(d)に示す処理により、第1の基板290が形成される。
一方、図4(e)〜(g)に示す工程で、複数のミラーに分割される前の第2の基板291を形成する。
まず、図4(e)に示す工程で、第1面250a及び第2面250bが(100)面に対して[110]方向に約9.7°傾斜した板状基板250(シリコン基板)の第2面250b上に、例えばシリコン酸化膜を堆積した後、フォトリソグラフィー及びドライエッチングにより、シリコン酸化膜をパターニングしてマスク221を形成する。
次に、図4(f)に示す工程で、ウエットエッチングを行い、板状基板250の第2面250bに深さd4(例えば50μm〜200μm)の凹部225を形成する。このとき、凹部225の深さd4は、ウエハ201の凹部209の深さd3より大きくする。その後、図4(g)に示す工程で、フォトリソグラフィーを用いて、マスク221の上に、例えば硬化温度が200℃以下である熱硬化樹脂である接着層240を形成する。
次に、図4(h)に示す工程で、第1の基板290の接着層241および第2の基板291の接着層240を互いに対向させて、接着層241と接着層240とのパターン同士が所定範囲内の位置ずれに収まるように、両者を密着させる。
次に、図5(a)に示す工程で、第1,第2の基板290,291を例えば200℃に加熱して、接着層241と接着層240とを接合させる。このとき、接着層241と接着層240とが一体的に接合されて、接着層243となる。接合層231を構成するAu/Sn合金は融点が280℃であるため、この加熱によっては接合層231の形状劣化等は発生しない。
次に、図5(b)に示す工程で、板状基板250の第1面250aの上に、例えばシリコン酸化膜を堆積し、フォトリソグラフィー及びドライエッチングにより、シリコン酸化膜をパターニングして、マスク223を形成する。
次に、図5(c)に示す工程で、KOH等のエッチング液を用いてシリコンによって構成されている板状基板250の異方性エッチングを行なう。これにより、板状基板250のうちミラー204以外の領域が除去される。そして、ウエハ201の各凹部209の上には、元の板状基板250の第1面250aから第2面250bに向かって拡大するテーパ状の傾斜面である反射した地面204aを有するミラー204が残存する。
次に、図5(d)に示す工程で、蒸着法により、所定波長範囲のレーザ光を反射するための積層膜を基板全面に蒸着する。このとき、例えば、波長650〜800nmのレーザ光に対してはTiとAuの積層膜を形成し、例えば、波長380〜450nmのレーザ光に対してはAlもしくはAgとMgF2との積層膜を形成する。さらに、積層膜をパターニングして、ミラー204の上面及び側面のみに反射膜222を残す。
次に、図5(e)に示す工程で、例えばダイシングにより、基板(ウエハ)を受光素子基板202となる領域ごとに分割する。
次に、図5(f)に示す工程で、各受光素子基板202の接合層231の所定の位置上に半導体レーザ108を搭載し、接合層231を300℃に加熱することにより、受光素子基板202と半導体レーザ108とを接合させる。これにより、半導体レーザ装置200が形成される。
本実施形態の半導体レーザ装置及びその製造方法によると、上述のような構成および製造方法により、受光素子基板に、受光素子基板とは別材料のミラーと、半導体レーザとを搭載して構成される半導体レーザ装置を製造するに際し、複数のミラーを受光素子基板に同時に配置,接合することが可能となるので、部品数の低減に加えて、部品の取り付け回数の低減などによる製造工程の簡略化を実現することが可能である。よって、半導体レーザ装置を低コストでかつ容易に製造することが可能となる。
なお、本実施形態においては、接着層240,241を硬化温度が200℃以下である熱硬化樹脂により構成し、接合層231をAu/Sn(Au:Sn=80:20)により構成したが、接着層や接合層は、これらの材料に限定されるものではない。ただし、接着層240,241の硬化温度が接合層231の融点よりも低い物質の組み合わせであって、ウエハ201と板状基板250とが、接合層231の融点よりも低い温度で接着可能であることが好ましい。
(第3の実施形態)
図6(a)〜図7(f)は、本発明の第3の実施形態の半導体レーザ装置の製造方法を示す断面図である。また、図8(a),(b)は、第3,第4の実施形態の半導体レーザ装置の製造工程中における反射面及びミラーのピッチを説明するための断面図である。本実施形態の半導体レーザ装置の構造は、第2の実施形態の半導体レーザ装置の構造と基本的に同じであり、製造工程のみが異なる。また、本実施形態の半導体レーザ装置の製造工程のうち、複数の受光素子基板に分割される前の第1の基板290の製造工程は、第2の実施形態における図4(a)〜(d)に示す工程と同じである。
図6(a)には、第2の実施形態における図4(a)〜(d)に示す工程と同じ工程によって形成された第1の基板290が示されている。
次に、複数のミラーに分割される前の第2の基板391の形成プロセスについて、図6(b)〜(g)を参照しながら説明する。
まず、図6(b)に示す工程で、第1面350a及び第2面350bが(100)面に対して[110]方向に約9.7°傾斜した板状基板350(シリコン基板)の第2面350bに、例えばシリコン酸化膜を堆積した後、フォトリソグラフィー及びドライエッチングにより、シリコン酸化膜をパターニングしてマスク323を形成する。
次に、図6(c)に示す工程で、KOHもしくはTMAHを用いて異方性エッチングを行なって凹部325を形成する。凹部325の側面には、底面に対する傾き角が45°である反射下地面304aが形成される。このとき、図8(a)に示すように、例えばエッチング時間のばらつきによりエッチング深さ(凹部325の深さ)が実線と破線とで示すように変化しても、反射下地面304a同士のピッチP1,P2は、ほぼ一定である。
次に、図6(d)に示す工程で、蒸着法により、所定の波長範囲のレーザ光を反射するための反射膜となる積層膜322xを基板の全面上に形成する。このとき、積層膜322xは、例えば、波長650〜800nmのレーザ光に対してはTiとAuとの積層膜であり、例えば、波長380〜450nmのレーザ光に対してはAlもしくはAgとMgF2である。そして、積層膜322xのうち反射下地面304a上に位置する部分の表面が反射面305となる。
次に、図6(e)に示す工程で、例えば、紫外線を照射すると接着力が低下する接着層370を用いて、積層膜322xにおける板状基板350の最上面上に位置する部分と、ダミー基板である透明基板360とを貼り合せる。ここで接着層370に用いられる接着剤には、紫外線により硬化する成分が配合されており、接着層370に紫外線が照射されると、この硬化成分の収縮により応力が発生し接着力が低下する構成である。
次に、図6(f)に示す工程で、貼り合わせ基板のうち板状基板350の研磨を行ない、平面基板350のボディ部を凹部325に達するまで除去することにより、透明基板360の上に、ほぼ等ピッチで並ぶ,逆メサ状の傾斜面をもつ複数のミラー304を形成する。ミラー304の側面上には、表面が反射面305となる反射膜322が形成される。このとき、図8(b)に示すように、例えば、研磨時間のばらつきにより、ミラー304の高さ寸法が実線と破線とで示すように変化しても、ミラー304同士のピッチP3,P4はほぼ一定である。したがって、第1の基板391においてミラーのピッチはエッチング時間、研磨時間のばらつきによっては、ほとんど変化しない。
次に、図6(g)に示す工程で、ミラー304の平坦面の上に、例えば硬化温度が200℃以下である熱硬化樹脂からなる接着層340を形成する。これにより、多数のミラー304と多数の受光素子基板とを含む第2の基板391が形成される。
次に、第1の基板290と第2の基板391とを用いて半導体レーザ装置を形成するプロセスについて、図7(a)〜(f)を参照しながら説明する。
図7(a)に示す工程で、第1の基板290の各凹部209と、第2の基板391の各ミラー304とがそれぞれ対向するように、第1,第2の基板290,391をセットする。その後、CCD395等の光学装置を用い、透明基板360を通過する光を利用して、ミラー304の一部と受光素子基板のパターンの一部の位置を詳細に調整することにより、受光素子基板202にミラー304の位置を正確に合わせる。このとき、上述のように、第1の基板290においてミラー304同士のピッチは、エッチング時間や研磨時間のばらつきによっては変化しないため、基板全面に亘って正確にミラー304の位置を合わせることができる。
次に、図7(b)に示す工程で、第1の基板290と第2の基板391とを200℃で加熱する。これにより、接着層340と接着層240とが接合して接着層343となる。このとき、接合層231は、融点が280℃のAu/Snによって構成されているため、この工程時に接合層231の形状は変化しない。
次に、図7(c)に示す工程で、透明基板360側から例えば紫外線である光396を照射する。これにより、接着層370の接着力が低下するため、図7(d)に示すように、簡単に透明基板を取り外せる。
次に、図7(e)に示す工程で、例えばダイシングにより、第1の基板(ウエハ)を受光素子基板202となる領域ごとに分割する。
次に、図7(f)に示す工程で、各受光素子基板202の接合層231の所定の位置上に半導体レーザ108を搭載し、接合層231を300℃に加熱することにより、受光素子基板202と半導体レーザ108とを接合させる。これにより、半導体レーザ装置300が形成される。
本実施形態の半導体レーザ装置の製造方法によると、上述のような製造方法により、受光素子基板に、受光素子基板とは別材料のミラーと、半導体レーザとを搭載して構成される半導体レーザ装置を製造するに際し、複数のミラーを受光素子基板に同時に配置,接合することが可能となるので、部品数の低減に加えて、部品の取り付け回数の低減などによる製造工程の簡略化を実現することが可能である。よって、半導体レーザ装置を低コストでかつ容易に製造することが可能となる。
特に、本実施形態では、第2の実施形態の製造方法に比べ、貼り合わせ用基板として透明基板360を用いているので、図7(a)に示す工程における位置合わせを容易かつ正確に行なうことができる。また、ミラー304と透明基板360とを紫外線の照射によって接着力が低下する特性を有する樹脂からなる接着剤層370によって接着し、貼り合わせ用基板を受光素子基板202から除去するために、透明基板360を研磨しなくても紫外線を照射するだけで貼り合わせ用基板である透明基板360を受光素子基板202から取り外すことができるので、透明基板360の研磨が不要になり、工程時間を短縮することができる。
なお、透明基板360をミラー370から取り外す際、透明基板360を研磨もしくはエッチングもしくはその組み合わせにより除去してもよい。その場合、接着剤層370は、紫外線の照射によって接着力が低下する樹脂によって構成されている必要はない。その場合にも、透明基板360を用いることにより、ミラー304と受光素子基板202の凹部209との位置合わせが容易かつ正確に行なうという効果は発揮することができる。
また、光396としてレーザ光を用いて接着層370に照射し、加熱によって接着層370の接着力を低下させることにより、透明基板250を取り外してもよい。
さらには、接着層370として、接合層231の融点よりも軟化点が低く、接着層340および接着層240の硬化温度よりも軟化点が高い接着剤、たとえばワックス等で構成された接着層を用いてもよい。
(第4の実施形態)
図9(a)〜(g)は、第4の実施形態の半導体レーザ装置の製造方法を示す断面図である。本実施形態の半導体レーザ装置の構造は、第2の実施形態の半導体レーザ装置の構造と基本的に同じであり、製造工程のみが異なる。また、本実施形態の半導体レーザ装置の製造工程のうち、複数の受光素子基板に分割される前の第1の基板290の製造工程は、第2の実施形態における図4(a)〜(d)に示す工程と同じである。
まず、図9(a)に示す工程で、第1面450a及び第2面450bが(100)面に対して[110]方向に約9.7°傾斜した板状基板450(シリコン基板)の第2面450bと、例えばガラスからなる透明基板460の上面とを、例えば紫外線を照射すると接着力が低下する樹脂からなる接着層455を用いて貼り合せる。
次に、貼り合わせられた2つの基板のうち板状基板450の第1面450aの上に、例えばシリコン酸化膜を堆積した後、フォトリソグラフィー及びドライエッチングにより、シリコン酸化膜をパターニングしてマスク423を形成する。
次に、図9(b)に示す工程で、例えばKOHもしくはTMAHを用いて板状基板450の異方性エッチングを行なって、第1面450aから第2面450bに向かって拡大するテーパー状の傾斜面を有するミラー404を形成する。ミラー404の側面には、底面に対する傾き角が45°である反射下地面404aが形成される。このとき、図8(a)に示すように、例えばエッチング時間のばらつきによりエッチング深さ(凹部425の深さ)が実線と破線とで示すように変化しても、反射下地面404a同士のピッチP1,P2は、ほぼ一定である。
次に、図9(c)に示す工程で、蒸着法により、反射膜となる積層膜422xを基板の全面上に形成する。このとき、積層膜422xは、例えば、波長650〜800nmのレーザ光に対してはTiとAuとの積層膜であり、例えば、波長380〜450nmのレーザ光に対してはAlもしくはAgとMgF2である。そして、積層膜422xのうち反射下地面404a上に位置する部分の表面が反射面405となる。
次に、図9(d)に示す工程で、例えば紫外線の照射によって接着力が低下する樹脂からなる接着層470を用いて、積層膜422xにおけるミラー404の最上面上に位置する部分と、透明基板480とを貼り合せる。
次に、図9(e)に示す工程で、貼り合わせた基板の透明基板460側から例えば紫外線である光496を接着層455に照射する。これにより、接着層455の接着力が劣化するために、図9(f)に示すように、透明基板460を簡単に取り外すことが可能になる。一方、紫外線はミラー404によって遮られるので、接着層423には紫外線は照射されず、接着層の接着力は低下しない。これにより、透明基板480の上に、ほぼ等ピッチで並ぶ,逆メサ状の傾斜面をもつ複数のミラー404を並べる。ミラー404の側面上には、表面が反射面405となる反射膜422が形成される。
次に、図9(g)に示す工程で、上述の基板のミラー側表面に例えば200℃で硬化する熱硬化樹脂である接着層440を形成する。
その後の工程の図示は省略するが、第3の実施形態における図7(a)〜(f)に示す工程を行なうことにより、半導体レーザ装置を形成する。
本実施形態の半導体レーザ装置の製造方法によると、上述のような製造方法により、受光素子基板に、受光素子基板とは別材料のミラーと、半導体レーザとを搭載して構成される半導体レーザ装置を製造するに際し、複数のミラーを受光素子基板に同時に配置,接合することが可能となるので、部品数の低減に加えて、部品の取り付け回数の低減などによる製造工程の簡略化を実現することが可能である。よって、半導体レーザ装置を低コストでかつ容易に製造することが可能となる。
特に、本実施形態では、第3の実施形態の製造方法の効果に加えて、紫外線を照射すると接着力が低下する樹脂からなる接着層455と透明基板460とを用いているので、図9(f)における第2の基板491の形成の際に、研磨工程が不要になり、工程時間を短縮することができる。その結果、半導体レーザ装置をより低コストで実現することが可能となる。
なお、透明基板460をミラー404から取り外す際、透明基板460を研磨もしくはエッチングもしくはその組み合わせにより除去してもよい。
なお、光496としてレーザ光を用いて接着層455に照射し、接着層455を加熱することにより接着層455の接着力を低下させ、透明基板460を取り外してもよい。
また、接着層470として、接合層231の融点よりも軟化点が低く、接着層440および接着層240の硬化温度よりも軟化点が高い接着剤、たとえばワックス等で構成された接着層を用いてもよい。その場合、接着層455として、接着層470の軟化点よりも低い温度で軟化する接着剤、たとえばワックス等で構成された接着層を用いてもよい。
本発明にかかる半導体レーザ装置は、レーザ素子と受光素子を組み合わせたデバイスに有用であり、例えばCD、DVD、HD−DVD、Blu−ray対応の光ディスク装置用のデバイスや光通信用のデバイスとして有用である。
第1の実施形態の半導体レーザ装置の構造を示す斜視図である。 第1の実施形態の半導体レーザ装置の図1に示すII−II線断面における断面図である。 第2の実施形態の半導体レーザ装置の構造を示す斜視図である。 (a)〜(h)は、第2の実施形態の半導体レーザ装置の製造工程のうち前半部分を示す断面図である。 (a)〜(f)は、第2の実施形態の半導体レーザ装置の製造工程のうち後半部分を示す断面図である。 (a)〜(g)は、第3の実施形態の半導体レーザ装置の製造工程のうち前半部分を示す断面図である。 (a)〜(f)は、第3の実施形態の半導体レーザ装置の製造工程のうち後半部分を示す断面図である。 (a),(b)は、第3,第4の実施形態の半導体レーザ装置の製造工程中における反射面及びミラーのピッチを説明するための断面図である。 (a)〜(g)は、第4の実施形態の半導体レーザ装置の製造方法を示す断面図である。 従来の半導体レーザ装置の構成を概略的に示す斜視図である。
符号の説明
100,200,300 半導体レーザ装置
201,301 ウエハ
102,202,302 受光素子基板
103 主面
104,204,304 ミラー
105,205,305 反射面
107 受光素子
108 半導体レーザ
109 凹部
110 レーザ光束
111 光軸
112,113 レーザ光線

Claims (13)

  1. 主面側に受光素子と凹部とを有する受光素子基板と、
    上記受光素子基板の主面における凹部の周辺領域上に設置された半導体レーザと、
    上記凹部の底面上に配置され、上記半導体レーザからのレーザ光を反射する反射面を有するミラーとを備え、
    上記受光素子基板の主面の高さ位置が、上記ミラーの反射面の最上部の位置と上記凹部の底面との間にある,半導体レーザ装置。
  2. 請求項1記載の半導体レーザ装置において、
    上記ミラーと上記受光素子基板とが相異なる材料によって構成されている,半導体レーザ装置。
  3. 請求項1又は2記載の半導体レーザ装置において、
    上記ミラーは単結晶半導体基板から形成されており、上記ミラーの反射面は上記単結晶半導体基板の最稠密結晶面で形成されている,半導体レーザ装置。
  4. 受光素子基板の受光素子が形成された主面の上に、半導体レーザと、ミラーとを搭載してなる半導体レーザ装置の製造方法であって、
    エッチングにより、ウエハの主面側において各受光素子基板となる領域ごとに凹部を形成する工程(a)と、
    相対向する第1面及び第2面を有する板状基板を用いて、上記各凹部の上に、第1面から第2面に向かって拡大するテーパー状の傾斜面を有するミラーを搭載する工程(b)と、
    上記ウエハをダイシングして個別の受光素子基板に分離する工程(c)と
    を含む半導体レーザ装置の製造方法。
  5. 請求項4記載の半導体レーザ装置の製造方法において、
    上記工程(b)は、
    上記板状基板の第2面側に、上記ウエハの凹凸パターンと干渉しないための凹凸パターンを形成する副工程(b1)と、
    上記板状基板の第2面の最先端部と上記ウエハの各凹部の底面とを接合する副工程(b2)と、
    上記板状基板の第1面の上にエッチング用マスクを形成し、上記エッチング用マスクを用いて、上記板状基板をエッチングすることにより、上記各凹部の上に上記ミラーを形成する工程(b4)と
    を含む,半導体レーザ装置の製造方法。
  6. 請求項4記載の半導体レーザ装置の製造方法において、
    上記工程(b)は、
    上記板状基板の第1面の上にエッチング用マスクを形成し、上記エッチング用マスクを用いて、上記板状基板をエッチングすることにより、上記板状基板の上部に上記ミラーを形成する副工程(b11)と、
    ダミー基板を準備し、上記板状基板のミラーの最先端部と上記ダミー基板の下面とを接着層により接続する副工程(b12)と、
    上記板状基板のうちミラーを除く部分を第1面側から研磨により除去して、ダミー基板の下面に複数のミラーを残す副工程(b13)と、
    上記ウエハの各凹部に上記各ミラーを個別に接合する副工程(b14)と、
    ダミー基板を除去して、上記ウエハの各凹部に各々ミラーを残す副工程(b15)と
    を含む,半導体レーザ装置の製造方法。
  7. 請求項6記載の半導体レーザ装置の製造方法において、
    上記副工程(b12)では、ダミー基板として透明基板を用い、
    上記副工程(b14)では、上記ダミー基板を透して光学的に上記凹部と上記ミラーとの位置合わせを行なう,半導体レーザ装置の製造方法。
  8. 請求項7記載の半導体レーザ装置の製造方法において、
    上記副工程(b12)では、紫外線の照射により接着力が低下する樹脂からなる接着層を形成しておいて、
    上記工程(b15)では、上記接着層に紫外線を照射することにより、ダミー基板を除去する,半導体レーザ装置の製造方法。
  9. 請求項4記載の半導体レーザ装置の製造方法において、
    上記工程(b)は、
    上記板状基板の第2面と第1のダミー基板の上面とを接着層により接続する副工程(b21)と、
    上記板状基板の第1面の上にエッチング用マスクを形成し、上記エッチング用マスクを用いて、上記板状基板をエッチングすることにより、上記板状基板のミラーを除く部分を除去して、第1のダミー基板上に複数のミラーを残す工程(b22)と、
    第2のダミー基板を準備し、上記ミラーの第1面と上記第2のダミー基板の下面とを接着層により接続する副工程(b23)と、
    上記第1のダミー基板を除去して、第2のダミー基板の下面に複数のミラーを残す工程(b24)と、
    上記ウエハの各凹部に上記各ミラーを個別に接合する副工程(b25)と、
    上記第2のダミー基板を除去して、上記ウエハの各凹部に各々ミラーを残す副工程(b26)と
    を含む,半導体レーザ装置の製造方法。
  10. 請求項11記載の半導体レーザ装置の製造方法において、
    上記副工程(b21)では、第1のダミー基板として透明基板を用い、
    上記副工程(b23)では、紫外線の照射により接着力が低下する樹脂からなる接着層を形成しておいて、
    上記工程(b26)では、上記接着層に紫外線を照射することにより、ダミー基板を除去する,半導体レーザ装置の製造方法。
  11. 請求項10記載の半導体レーザ装置の製造方法において、
    上記副工程(b23)では、第2のダミー基板として透明基板を用い、
    上記副工程(b24)では、上記第2のダミー基板を透して光学的に上記凹部と上記ミラーとの位置合わせを行なう,半導体レーザ装置の製造方法。
  12. 請求項11記載の半導体レーザ装置の製造方法において、
    上記副工程(b23)では、紫外線の照射により接着力が低下する樹脂からなる接着層を形成しておいて、
    上記工程(b26)では、上記接着層に紫外線を照射することにより、第2のダミー基板を除去する,半導体レーザ装置の製造方法。
  13. 請求項4〜12のうちいずれか1つに記載の半導体レーザ装置の製造方法において、
    上記板状基板が単結晶半導体基板であり、上記ミラーのテーパー状の傾斜面は単結晶半導体基板の最稠密面である,半導体レーザ装置の製造方法。
JP2004155581A 2004-05-26 2004-05-26 半導体レーザ装置およびその製造方法 Withdrawn JP2005340408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155581A JP2005340408A (ja) 2004-05-26 2004-05-26 半導体レーザ装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155581A JP2005340408A (ja) 2004-05-26 2004-05-26 半導体レーザ装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005340408A true JP2005340408A (ja) 2005-12-08

Family

ID=35493639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155581A Withdrawn JP2005340408A (ja) 2004-05-26 2004-05-26 半導体レーザ装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2005340408A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090044A (ja) * 2019-12-02 2021-06-10 シャープ福山レーザー株式会社 レーザ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090044A (ja) * 2019-12-02 2021-06-10 シャープ福山レーザー株式会社 レーザ装置
CN112993740A (zh) * 2019-12-02 2021-06-18 夏普福山激光株式会社 激光装置
JP7016933B2 (ja) 2019-12-02 2022-02-07 シャープ福山レーザー株式会社 レーザ装置

Similar Documents

Publication Publication Date Title
JP5053336B2 (ja) 集積化された光学的ヘッド装置および関連する方法
KR100852567B1 (ko) 광학 장치 장착 방법 및 광학 헤드 장치
US6417107B1 (en) Method for manufacturing a functional device by forming 45-degree-surface on (100) silicon
JP5646130B2 (ja) マルチレーザー用途のレーザー・アセンブリ
WO2003028117A1 (en) Composite optical element and light receiving element device
JP4272212B2 (ja) マイクロミラーアレイの製造方法及び光学素子の製造方法
JPH1166590A (ja) 光集積ユニット、光ピックアップ装置およびdvdシステム
JP2005340408A (ja) 半導体レーザ装置およびその製造方法
US7400568B2 (en) Optical device, optical pickup and optical disk apparatus
US6937405B2 (en) Optical pickup projecting two laser beams from apparently approximated light-emitting points
JP3784255B2 (ja) 集積型光ピックアップ用モジュール及び光ピックアップ
US20060098262A1 (en) Micromirror array and method of manufacturing the same
US20020159379A1 (en) Substrate unit for optical head and method for manufacturing the same
KR20050079859A (ko) 광학벤치, 이를 사용한 박형광픽업 및 그 제조방법
KR100590534B1 (ko) 마이크로 광학벤치 구조물 및 그 제조방법
JP3712180B2 (ja) 集積型光ピックアップ用モジュール及び光ピックアップ
JP2005317646A (ja) レーザモジュールおよびその製造方法
JP3966264B2 (ja) 半導体レーザ装置およびその製造方法、光ピックアップ装置
JP2006237061A (ja) 光半導体装置の製造方法
JP4240822B2 (ja) 光ピックアップ装置
JP2006005254A (ja) 光半導体装置の製造方法
JP2001195771A (ja) 集積光学装置及びその製造方法
JP2002140830A (ja) 光ピックアップ装置及び光ピックアップ装置の製造方法
JPH11289128A (ja) 半導体レ−ザ装置
KR100298402B1 (ko) 이파장광원모듈

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080707