JP2006226698A - 強度変調したレーザ光による蛍光検出装置 - Google Patents

強度変調したレーザ光による蛍光検出装置 Download PDF

Info

Publication number
JP2006226698A
JP2006226698A JP2005037399A JP2005037399A JP2006226698A JP 2006226698 A JP2006226698 A JP 2006226698A JP 2005037399 A JP2005037399 A JP 2005037399A JP 2005037399 A JP2005037399 A JP 2005037399A JP 2006226698 A JP2006226698 A JP 2006226698A
Authority
JP
Japan
Prior art keywords
fluorescence
signal
laser light
intensity
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037399A
Other languages
English (en)
Other versions
JP4384064B2 (ja
Inventor
Noriaki Kimura
憲明 木村
Kyoji Doi
恭二 土井
Takayoshi Yumii
孝佳 弓井
Takuji Yoshida
卓史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005037399A priority Critical patent/JP4384064B2/ja
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to EP06713774A priority patent/EP1855102B8/en
Priority to US11/816,244 priority patent/US7822558B2/en
Priority to DK06713774.5T priority patent/DK1855102T3/da
Priority to PCT/JP2006/302633 priority patent/WO2006088047A1/ja
Priority to EP11169174.7A priority patent/EP2369326B1/en
Priority to AT06713774T priority patent/ATE523774T1/de
Publication of JP2006226698A publication Critical patent/JP2006226698A/ja
Application granted granted Critical
Publication of JP4384064B2 publication Critical patent/JP4384064B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】試料にレーザ光を照射することにより試料からの蛍光を受信して信号処理を行う際、信号処理により、多数の蛍光の種類を識別することができ、特に短時間で効率よく蛍光信号を識別する蛍光検出装置を提供する。
【解決手段】信号処理装置20は、測定対象の試料12に照射するレーザ光を出射するレーザ光源部22と、レーザ光の照射された試料12から発する蛍光を受光し、その蛍光信号を出力する受光部26と、レーザ光源部22から出射するレーザ光の強度を時間変調させるために所定の周波数の変調信号を生成する制御・処理部28と、受光部26で出力された蛍光信号から、変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する分析装置80と、を有する。
【選択図】図1

Description

本発明は、強度変調したレーザ光を測定対象物に照射するとともに、この照射による測定対象物から蛍光信号を受け、この信号について信号処理を行なう、強度変調したレーザ光による蛍光検出装置に関する。特に、医療、生物分野で用いられるフローサイトメータ等のような細胞やDNAやRNA等の測定対象物の識別を蛍光色素の発する蛍光を用いて行なって測定対象物の分析等を短時間に行なう分析装置に適用される蛍光検出装置に関する。
医療、生物分野で用いられるフローサイトメータには、レーザ光を照射することにより測定対象物の蛍光色素からの蛍光を受光して、測定対象物の種類を識別する蛍光検出装置が組み込まれている。
具体的には、フローサイトメータは、細胞、DNA、RNA、酵素、蛋白等の生体物質を含む混濁液を蛍光試薬でラベル化し、圧力を与えて毎秒10m以内程度の速度で管路内を流れるシース液に測定対象物を流してフローセルを形成する。このフローセル中の測定対象物にレーザ光を照射することにより、測定対象物に付着した蛍光色素が発する蛍光を受光し、この蛍光をラベルとして識別することで測定対象物を特定するものである。
このフローサイトメータでは、例えば、細胞内のDNA、RNA、酵素、蛋白質等の細胞内相対量を計測し、またこれらの働きを短時間で解析することができる。また、特定のタイプの細胞や染色体を蛍光によって特定し、特定した細胞や染色体のみを生きた状態で短時間で選別収集するセル・ソータ等が用いられる。
これの使用においてはより多くの測定対象物を短時間に蛍光の情報から特定することが要求されている。
下記非特許文献1では、例えば488nm、595nm、633nm等の波長帯域の異なる複数のレーザ光を照射して、各レーザ光によって蛍光色素から発する波長帯域の異なる複数の蛍光をバンドパスフィルタを用いて分離して光電子倍増管(PMT)で検出するフローサイトメータが開示されている。
これにより、複数の蛍光試薬(蛍光色素)からの蛍光を識別して複数の測定対象物の種類を同時に特定することが可能となるとされている。
http://www.bdbiosciences.com/pharmingen/protocols/Fluorochrome_Absorption.shtml(2005年1月23日検索)
しかし、蛍光試薬から発する蛍光の波長帯域は略400〜800nm等と比較的帯域幅が広いものの、可視光波長帯域で3〜4程度の波長帯域の蛍光しか識別可能なラベルとして有効に用いることができない。複数の蛍光試薬を組み合わせて識別できる蛍光の数を増やそうとしても限界がある。
また、識別可能な蛍光の数を増やすために、蛍光の波長とともに、検出される蛍光の強度を用いて、識別可能な蛍光の数を増加させることもできる。しかし、この場合においても、蛍光の強度を用いたときの識別可能数は2〜5程度であり、上述した3〜4程度の波長帯域における識別可能数とともに組み合わせても、蛍光の識別可能数は、せいぜい20程度である。
このため、このようなフローサイトメータを用いても、極めて多数の測定対象物について短時間に特定して分析を行なうことが難しい、といった問題があった。
例えば、DNA等の生体物質をフローサイトメータで分析する場合、この生体物質に予め蛍光試薬により蛍光色素が付着される。そして、この生体物質は、後述するマイクロビーズに付着された蛍光色素と異なる蛍光色素でラベル化され、表面にカルボキシル基等の特異な構造体の設けられた、直径5〜20μmのマイクロビーズを含む液体に混ぜられる。上記カルボキシル基等の構造体は、ある既知の構造の生体物質に作用して結合(カップリング)する。したがって、マイクロビーズからの蛍光と生体物質の蛍光とを同時に検出した場合、生体物質は、マイクロビーズの構造体と結合していることがわかる。これにより、生体物質の特性を分析することができる。しかし、多種多様なカップリング用の構造体を備える多種のマイクロビーズを用意して生体物質の特性を短時間に分析するには、極めて多種類の蛍光色素が必要となる。しかし、同時に識別可能な蛍光試薬の種類が少ないことから一度に多種類のマイクロビーズを用いて短時間に効率よく生体物質を測定することができない。
また、測定対象物に照射して蛍光を測定する測定点を管路の長手方向に複数設け、各測定点にて照射されるレーザ光が互いに干渉しないようにする方法も考えられる。しかし、この場合、レーザ光や受光部を測定点の数に応じて多数設ける必要がある。また、フローセルを形成する管路も長くなるので管路を流れるシース液の流路抵抗は大きくなり、シース液に与えるべき圧力も大きくなる。このため、装置が大型化するといった問題があった。
そこで、本発明は、上記問題点を解決するために、測定対象物にレーザ光を照射することにより測定対象物からの蛍光信号を受信して信号処理を行う際、この信号処理により多数のマイクロビーズ等から発する蛍光の種類を識別することができ、特に短時間で効率よく蛍光信号を識別する蛍光検出装置、例えば、フローサイトメータに好適に用いられる蛍光検出装置を提供することを目的とする。
上記目的を達成するために、本発明は、測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、このとき得られる蛍光信号の信号処理を行う検出装置を提供する。
この蛍光検出装置は、測定対象物に照射するレーザ光を出射するレーザ光源部と、レーザ光の照射された測定対象物から発する蛍光の蛍光信号を出力する受光部と、前記レーザ光源部から出射するレーザ光の強度を時間変調させるために、所定の周波数の変調信号を生成する光源制御部と、時間変調したレーザ光を測定対照物に照射することにより前記受光部で出力された蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する処理部と、を有することを特徴とする。
前記蛍光検出装置において、前記処理部は、前記蛍光信号の前記変調信号に対する位相遅れ求めることにより、前記蛍光緩和時間を算出することが好ましい。
また、前記光源制御部は、1ビットの信号値が所定長さで符号化され、かつ互いに直交する複数の符号化系列信号の中から選択された符号化系列信号をパルス制御信号として用い、かつ前記レーザ光源部からのレーザ光の出射のオンの時間が、前記レーザ光の前記時間変調の1周期よりも十分長くなるように、前記レーザ光の出射のオン/オフを設定して制御し、前記処理部は、前記蛍光緩和時間を算出するとともに、前記受光部で出力された受光信号から、前記符号化系列信号を用いて測定対象物からの蛍光を識別することが好ましい。その際、前記複数の符号化系列信号は、1つの符号化系列信号をビット方向にシフトして構成されたものであり、このシフトによって符号化系列信号が互いに直交するように構成されていることが好ましい。
また、前記レーザ光源部は、複数のレーザ光を出射する複数のレーザ光源を有し、前記光源制御部は、複数のレーザ光源からのレーザ光の出射のオン/オフを、互いに直交する前記複数の符号化系列信号を用いて制御し、前記処理部は、前記受光部において複数のレーザ光からの光信号が重なって出力された蛍光信号から、レーザ光の出射に用いた符号化系列信号を用いて、各レーザ光の照射により測定対象物が発する蛍光の蛍光信号をそれぞれ分離することが好ましい。
また、前記測定対象物は、レーザ光の照射により蛍光を発する蛍光色素を備え、前記光源制御部は、前記符号化系列信号の前記ビット方向のシフト量と前記符号化系列信号の時間分解幅との積が、レーザ光で前記測定対象物が照射される時間より十分短くなるように設定して前記符号化系列信号を生成することが好ましい。
本発明は、マイクロビーズ等を測定対象物とし、この測定対象物に所定の周波数で強度変調したレーザ光を照射し、そのとき発する蛍光の蛍光緩和時間を求める。この蛍光緩和時間は、蛍光色素の種類によって異なっているため、この蛍光緩和時間を用いて、蛍光の種類、さらには測定対象物の種類を識別することができる。すなわち、従来、蛍光の識別に用いられる蛍光の波長及び蛍光の強度のほかに、蛍光緩和時間を蛍光の識別のために用いることができるので、識別可能な蛍光の数は増大する。特に多数の蛍光色素を用いて短時間に測定対象物を効率良く特定するフローサイトメータにとっては有効である。
また、複数のレーザ光を用いる場合、レーザ光毎に互いに直交する符号化系列信号をレーザ光のパルス制御信号として用いることで、受光した蛍光信号がどのレーザ光の照射に拠るものかを特定することができる。これにより、短時間に測定対象物を効率良く特定することができる。
以下、本発明の強度変調したレーザ光による蛍光検出装置を好適に用いたフローサイトメータを基に詳細に説明する。
図1は、本発明の強度変調したレーザ光による蛍光検出装置を用いたフローサイトメータ10の概略構成図である。
フローサイトメータ10は、レーザ光を測定対象とするマイクロビーズ等の試料12に照射し、試料12中に設けられた蛍光色素の発する蛍光の蛍光信号を検出して信号処理する信号処理装置20と、信号処理装置20で得られた処理結果をから試料12中の測定対象物の分析を行なう分析装置(コンピュータ)80とを有する。
信号処理装置20は、レーザ光源部22と、受光部24、26と、レーザ光源部22からのレーザ光を所定の周波数で強度変調させるとともに、レーザ光の出射のオン/オフを制御する制御部、及び試料12からの蛍光信号を識別する信号処理部を含んだ制御・処理部28と、高速流を形成するシース液に含ませて試料12を流してフローセルを形成する管路30と、を有する。
管路30の出口には、回収容器32が設けられている。フローサイトメータ10には、レーザ光の照射により短時間内に試料12中の特定の細胞等の生体物質を分離するためのセル・ソータを配置して別々の回収容器に分離するように構成することもできる。
レーザ光源部22は、波長の異なる3つのレーザ光、例えばλ1=405nm、λ2=533nmおよびλ3=650nm等のレーザ光を出射する部分である。レーザ光は、管路30中の所定の位置に集束するようにレンズ系が設けられ、この集束位置で試料12の測定点を形成する。
図2は、レーザ光源部22の構成の一例を示す図である。
レーザ光源部22は、350nm〜800nmの可視光帯域の波長を有し、強度変調し、かつ符号化変調したレーザ光を出射する部分である。
レーザ光源部22は、主に赤色のレーザ光Rを強度が一定のCW(連続波)レーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら、断続的に出射するR光源22r、緑色のレーザ光Gを強度が一定のCWレーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら、断続的に出射するG光源22gおよび青色のレーザ光Bを、強度が一定のCWレーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら、断続的に出射するB光源22bと、特定の波長帯域のレーザ光を透過し、他の波長帯域のレーザ光を反射するダイクロイックミラー23a1、23a2と、レーザ光R,GおよびBからなるレーザ光を管路30中の測定点に集束させるレンズ系23cと、R光源22r、G光源22gおよびB光源22bのぞれぞれを駆動するレーザドライバ34r,34gおよび34bと、供給された信号をレーザドライバ34r,34gおよび34bに分配するパワースプリッタ35と、を有して構成される。
これらのレーザ光を出射する光源として例えば半導体レーザが用いられる。
レーザ光は、例えば5〜100mW程度の出力である。一方、レーザ光の強度を変調する周波数(変調周波数)は、その周期が蛍光緩和時間に比べてやや長い、例えば10〜50MHzである。
ダイクロイックミラー23a1は、レーザ光Rを透過し、レーザ光Gを反射するミラーであり、ダイクロイックミラー23a2は、レーザ光RおよびGを透過し、レーザ光Bを反射するミラーである。
この構成によりレーザ光R,GおよびBが合成されて、測定点の試料12を照射する照射光となる。
レーザドライバ34r,34gおよび34bは、制御・処理部28に接続されて、レーザ光R,G,Bの出射の強度及び出射のオン/オフが制御されるように構成される。ここで、レーザ光R,G,Bの各々は、後述するように変調信号、パルス変調信号によって、所定の周波数で強度が変調され、かつ出射のオン/オフが制御される。
R光源22r、G光源22gおよびB光源22bは、レーザ光R、GおよびBが蛍光色素を励起して特定の波長帯域の蛍光を発するように、予め定められた波長帯域で発振する。レーザ光R、GおよびBによって励起される蛍光色素は測定しようとする生体物質やマイクロビーズ等の試料12に付着されており、試料12が測定対象物として管路30を通過する際、測定点でレーザ光R、GおよびBの照射を受けて特定の波長で蛍光を発する。
図3は、レーザ光の発振波長と、このレーザ光によって蛍光色素の発する蛍光のスペクトル強度分布を模式的に示す図である。例えば、B光源から出射する波長λ11のレーザ光の照射により、異なる3つの蛍光色素によって中心波長をλ12とする蛍光、中心波長をλ13とする蛍光、および中心波長をλ14とする蛍光の3種類の光を発する。同様に、G光源から出射する波長λ21のレーザ光の照射により2種類の蛍光(λ22,λ23)を発する。また、B光源から出射する波長λ31のレーザ光の照射により1種類の蛍光(λ32)を発する。
受光部24は、管路30を挟んでレーザ光源部22と対向するように配置されており、測定点を通過する試料12によってレーザ光が前方散乱することにより、試料12が測定点を通過する旨の検出信号を出力する光電変換器を備える。この受光部24から出力される信号は、制御・処理部28に供給され、制御・処理部28において試料12が管路30中の測定点を通過するタイミングを知らせるトリガ信号として用いられる。
一方、受光部26は、レーザ光源部22から出射されるレーザ光の出射方向に対して垂直方向であって、かつ管路30中の試料12の移動方向に対して垂直方向に配置されており、測定点にて照射された試料12が発する蛍光を受光する光電変換器を備える。
図4は、受光部26の一例の概略の構成を示す概略構成図である。
図4に示す受光部26は、試料12からの蛍光信号を集束させるレンズ系26aと、ダイクロイックミラー26b,26bと、バンドパスフィルタ26c〜26cと、光電子倍増管等の光電変換器27a〜27cと、を有する。
レンズ系26aは、受光部26に入射した蛍光を光電変換器27a〜27cの受光面に集束させるように構成されている。
ダイクロイックミラー26b,26bは、所定の範囲の波長帯域の蛍光を反射させて、それ以外は透過させるミラーである。バンドパスフィルタ26c〜26cでフィルタリングして光電変換器27a〜27cで所定の波長帯域の蛍光を取り込むように、ダイクロイックミラー26b,26bの反射波長帯域および透過波長帯域が設定されている。
バンドパスフィルタ26c〜26cは、各光電変換器27a〜27cの受光面の前面に設けられ、所定の波長帯域の蛍光のみが透過するフィルタである。透過する蛍光の波長帯域は、図2に示す蛍光色素の発する蛍光の波長帯域に対応して設定されており、例えばB光源から出射した波長λ11のレーザ光の照射によって発する波長λ13を中心とする一定の波長幅の帯域である。この場合、図3に示すようにG光源から出射した波長λ21のレーザ光の照射によって発する波長λ22を中心とする蛍光は波長λ13の近傍に中心波長を持つため、波長λ13を中心とする蛍光とともにバンドパスフィルタを透過する。しかし、波長λ21を中心波長とする蛍光と波長λ13を中心波長とする蛍光とは、後述する符号化系列信号(図7中のコード1〜3)で変調された信号情報を持った蛍光として光電変換器27a〜27cで受信されるので、この受光されて生成される蛍光信号から後述する信号処理を行うことにより、どのレーザ光により発する蛍光信号であるかを識別することができる。
光電変換器27a〜27cは、例えば光電子倍増管を備えたセンサを備え、光電面で受光した光を電気信号に変換するセンサである。ここで、受光する蛍光は信号情報を持った光信号として受光されるので、出力される電気信号は信号情報を持った蛍光信号となる。この蛍光信号は、増幅器で増幅されて、制御・処理部28に供給される。
制御・処理部28は、図5に示すように、信号生成部40と、信号処理部42と、コントローラ44と、を有して構成される。信号生成部40及びコントローラ44は、所定の周波数の変調信号を生成する光源制御部を形成する。
信号生成部40は、レーザ光の強度を所定の周波数で変調(振幅変調)するための変調信号を生成する部分である。
具体的には、信号生成部40は、発振器46、パワースプリッタ48及びアンプ50,52を有し、生成される変調信号を、レーザ光源部22のパワースプリッタ35に供給するとともに、信号処理部42に供給する部分である。信号処理部42に変調信号を供給するのは、後述するように、光電変換機27a〜27cから出力される蛍光信号を検波するための参照信号として用いるためである。なお、変調信号は、所定の周波数の正弦波信号であり、10〜50MHzの範囲の周波数に設定される。
信号処理部42は、光電変換器27a〜27cから出力される蛍光信号を用いて、レーザ光の照射によりマイクロビーズが発する蛍光の位相遅れに関する情報を抽出する部分である。信号処理部42は、光電変換器27a〜27cから出力される蛍光信号を増幅するアンプ54a〜54cと、増幅された蛍光信号のそれぞれを信号生成部40から供給された正弦波信号である変調信号を分配するパワースプリッタ56と、この変調信号を参照信号として増幅された蛍光信号と合成するIQミキサ58a〜58cと、を有して構成される。
IQミキサ58a〜58cは、光電変換器27a〜27cから供給される蛍光信号を、信号生成部40から供給される変調信号を参照信号として合成する装置である。具体的には、IQミキサ58a〜58cのそれぞれは、図6に示すように、参照信号を蛍光信号(RF信号)と乗算して、蛍光信号のcos成分と高周波成分を含む処理信号を算出するとともに、参照信号の位相を90度シフトさせた信号を蛍光信号と乗算して、蛍光信号のsin成分と高周波成分を含む処理信号を算出する。このcos成分を含む処理信号及びsin成分を含む処理信号は、コントローラ44に供給される。
コントローラ44は、信号生成部40に所定の周波数の正弦波信号を生成させるように制御するとともに、レーザ光源部22のレーザドライバ34r,34g,34bを符号化系列信号を用いてレーザ光の出射のオン/オフを制御し、さらに、信号処理部42にて求められた蛍光信号のcos成分及びsin成分を含む処理信号から、高周波成分を取り除いて蛍光信号のcos成分及びsin成分を求める部分である。
具体的には、コントローラ44は、各部分の動作制御のための指示を与えるとともに、フローサイトメータ10の全動作を管理するシステム制御器60と、信号処理部42で演算されたcos成分、sin成分に高周波成分が加算された処理信号から高周波成分を取り除くローパスフィルタ62と、高周波成分の取り除かれたcos成分、sin成分の処理信号を増幅するアンプ64と、増幅された処理信号をサンプリングするA/D変換器66と、を有する。
より具体的には、システム制御器60は、レーザ光の強度変調のために、発振器46の発振周波数を定める。さらに、システム制御器60は、レーザドライバ34r,34g,34bにレーザ光の出射のオン/オフを制御するパルス制御信号を生成する。このパルス制御信号は、互いに直交する複数の符号化系列信号の中から選択された1つの符号化系列信号によって作られたものである。この符号化系列信号は、1ビットの信号値で構成され、所定の符号長さのビット数で符号化されている。
以下、符号化系列信号について説明する。
コントローラ44は、系列符号C={a,a,a,………,aN−1}(Nは自然数で符号長さを表す)を用いて基準となる符号化系列信号を生成するとともに、さらにこの系列符号Cをq1ビット、ビット方向にビットシフトさせた系列符号Tq1・c(Tq1は、ビット方向にq1ビット、ビットシフトする作用素である)を用いて符号化系列信号を生成する。ここで、系列符号Tq1・Cは、{aq1,aq1+1,aq1+2,………,aq1+N−1}である。さらに、系列符号Cをq2ビット(例えば、q2=2×q1)、ビット方向にビットシフトさせた系列符号Tq2・Cを用いて符号化系列信号を生成する。
この符号化系列信号を生成するために用いられる系列符号C,Tq1・C,Tq2・Cは、互いに直交する特性を有するので、生成される符号化系列信号も互いに直交する。
系列符号Cの一例として、下記に示すように、例えば係数hと(j=1〜8の整数)および初期値a(kは0〜7の整数)とを用いて符号化されるPN系列(Pseudrandom Noise系列)が挙げられる。このPN系列は、例えば下記式(1)により定義することができる。式(1)では次数を8次としている。ここで、Nは上記系列符号の符号長さであり、例えばN=255(=28−1)ビットとされる。
Figure 2006226698
系列符号CがPN系列符号である場合、符号長さがNの巡回符号となるので、aN=a0,aN+1=a1,………となる。また、系列符号Cと同じ符号長さNの別の系列符号をC’={b0,b1,b2,………,bN-1}}とし、上記作用素Tを系列符号C’作用させた系列符号T・C’={bq,bq+1,bq+2,………,bq+N-1}}として、系列符号CとC’との間の相互相関関数Rcc'(q)を下記式(2)のように定義する。ここで、NAは系列符号における項aiと項bq+iの(iは0以上N−1以下の整数)一致する数であり、NDは系列符号における項aiと項bq+iの不一致の数である。また、NAとNDの和は符号長さNとなる(NA+ND=N)。ここで、iとq+iはmod(N)で考える。
Figure 2006226698
上記PN系列において2つの系列符号を項毎にmod(2)で加算した結果はもとのPN系列を巡回シフトしたPN系列になる性質があり、PN系列の値が0となる個数は値が1となる個数より1つだけ少ないので、NA−ND=−1となる。これより、PN系列において下記式(3)および(4)に示す値を示す。
Figure 2006226698
Figure 2006226698
上記式(3)よりビットシフト量が0、すなわちq=0の場合、式(3)に示すようにRcc’(q)の値は1となり、自己相関性を有する。一方、ビットシフト量が0でない、すなわちq>0の場合、式(4)に示すようにRcc’(q)は−(1/N)となる。ここで符号長さNを大きくすることにより、Rcc’(q)(q>0)の値は0に近づく。
すなわち、系列符号CとC’は自己相関性を持ち、かつ直交性を有するといえる。
このような自己相関性および直交性を有する系列符号を用いて、値が0と値1の2値からなる符号化系列信号を生成する。
図7(a)は、生成される符号化系列信号の一例を示している。コード1の符号化系列信号は、符号長さN=255ビットの信号であり、符号長さNと時間分解幅Δtとの積は、図7(a)中の時刻0〜tの時間となる。この信号において値が1のときレーザ光を出射し、値が0のときレーザ光を出射しないようにして断続的にレーザ光源の出射のオン/オフが制御される。
ここで、コード2の符号化系列信号の時刻0における信号は、コード1の時刻tにおける信号に対応しており、コード2の時刻0以降の信号が、コード1の時刻t以降の信号に対応して生成されている。同様に、コード3の符号化系列信号の時刻0における信号は、コード1の時刻t(例えば、t=2×t)における信号に対応しており、コード3の時刻0以降の信号が、コード1の時刻t以降の信号に対応して生成されている。
光源制御部28aは、これらの信号を巡回的に繰り返し生成し、コード1はレーザドライバ34rに、コード2はレーザドライバ34gに、コード3はレーザドライバ34bにパルス制御信号として供給されるように構成されている。
なお、本発明における符号化系列信号は上記PN系列の系列符号を用いて生成されるが、本発明における自己相関性および直交性を有する符号化系列信号の生成は、上記方法に限定されず、自己相関性および直交性を有する符号化系列信号を生成する限りにおいてどのような方法を用いてもよい。
図7(b)は、符号化系列信号によるパルス変調と、レーザ光の周波数による強度変調との関係を示している。パルス変調によりレーザ光がオン状態の場合、レーザ光は少なくともオン状態の時間に比べて短い周期で強度が振動するように変調されている。
コントローラ44のシステム制御器60は、図7(a)に示すような系列符号を用いて符号化系列信号を生成し、各レーザドライバ34r,34g,34bにレーザ光の出射のオン/オフを制御するパルス制御信号として供給する。
なお、コントローラ44のA/D変換器66におけるサンプリングは、後述するように符号化系列信号と蛍光信号との相関関数を効率良く演算するために、サンプリングの時間分解幅(サンプリング間隔)を、符号化系列信号の時間分解幅に揃えられるのが好ましい。例えば符号化系列信号の時間分解幅が0.5マイクロ秒であれば蛍光信号のサンプリングの時間分解幅も0.5マイクロ秒あるいはその整数分の1とするのが好ましい。
分析装置80は、蛍光のレーザ光に対する位相遅れ角度を求め、さらに、この位相遅れ角度から蛍光緩和時定数(蛍光緩和時間)を求めるとともに、受光部26から出力された蛍光信号は、どのレーザ光の照射によるものかを、特定する部分である。分析装置80は、本発明における蛍光緩和時間(蛍光緩和時定数)を算出する処理部を形成し、コンピュータにより構成される。
蛍光信号のcos成分及びsin成分を含む処理信号には、符号化系列信号の情報が含まれているので、分析装置80では、この処理信号に対して、まず、符号化系列信号の自己相関性及び直交性を用いて、符号化識別変換を行い、各レーザ光毎の蛍光信号のcos成分及びsin成分の値を抽出する。このcos成分及びsin成分の値を用いて蛍光のレーザ光に対する位相遅れ角度を求める。この位相遅れ角度から蛍光緩和時定数(蛍光緩和時間)を求め、蛍光色素を識別することにより、試料12の種類を特定する。
さらに、上記符号化識別変換において用いられた符号化系列信号を知ることにより、蛍光信号がどのレーザ光の照射によるものかを、特定する。
なお、求められた位相ずれ角度は、蛍光色素の発する蛍光の蛍光緩和時定数に依存しており、例えば1次緩和過程で表した場合、cos成分及びsin成分は、下記式(5),(6)で表される。
Figure 2006226698
Figure 2006226698
ここで、θは位相ずれ角度であり、ωはレーザ光の変調周波数であり、τは蛍光緩和時定数である。蛍光緩和時定数τは、図8に示すように初期蛍光強度をI0とすると、この時点から蛍光強度がI0/e(eは自然対数の底、e≒2.71828)となる時点までの時間をいう。
蛍光信号のcos成分及びsin成分の比tan(θ)から位相ずれ角度θを求め、この位相ずれ角度θを用いて、上記式(5)、(6)から、蛍光緩和時定数τを求めることができる。
この蛍光緩和時定数τは、上述したように、蛍光色素の種類によって変わるものであり、また、2種類の蛍光色素の比率を変えて混合すると、比率に応じてみかけの蛍光緩和時定数τも変わる。このため、蛍光緩和時定数τを求めることで、2つの蛍光色素の比率を特定することができる。
このように、蛍光検出用マイクロビーズに、強度変調したレーザ光を照射し、そのとき発する蛍光を検出することにより、発する蛍光の種類を識別することができ、これによりマイクロビーズ等の試料12の種類を特定することができる。
試料12中の蛍光色素から発する蛍光の信号は、システム制御器60で生成された既知の符号化系列信号に従って変調された(出射を制御した)レーザ光による蛍光信号である。このため、この蛍光信号もシステム制御器60で生成された符号化系列信号に従って光強度が変調した信号となっている。したがって、システム制御器60で生成された入力信号であるコード(符号化系列信号)と応答信号である蛍光信号とを同期させて相関関数を調べることにより、蛍光信号がどのコードによって変調されたレーザ光による蛍光信号を含んでいるかを知ることができる。すなわち、システム制御器60で生成されたコードと蛍光信号との相関関数を演算し、蛍光信号と高い相関値を持つコードがある場合、蛍光信号は、このコード(符号化系列信号)によって変調されたレーザ光による蛍光信号として含んでいるといえる。一方、相関が極めて低いか、無相関を示すコードは、このコードによって変調されたレーザ光による蛍光信号として含んでいないといえる。したがって、レーザ光源毎に異なるコードで変調したレーザ光を出射させることで、受光した蛍光がどのレーザ光により発したものであるかを知ることができる。
分析装置80は、入力信号であるコードと応答信号である蛍光信号との相関関数を、巡回するコードの周期にしたがって繰り返し平均化処理することにより、安定した値として求める。求めた値によって、受光した蛍光がどのレーザ光により蛍光したものであるかを特定する。また、各光電変換器27a〜27cが受光する光の波長帯域もわかっているので、蛍光の種類も特定することができる。
こうして、蛍光信号から、試料12中の蛍光色素がどのレーザ光の照射によりどの波長帯域で放射した蛍光の信号を含んでいるかを識別し、特定することができる。
分析装置80は、上述したように、蛍光色素の発する蛍光緩和時定数と、蛍光信号がどのレーザ光によるものかの情報とを用いて、マイクロビーズ等の試料12に設けられた蛍光色素を特定して、管路30を通過する試料12の種類等を特定することができる。
マイクロビースの場合、マイクロビーズの蛍光色素に対応させて、例えば、所定のDNA断片を設けているので、蛍光色素を特定することで、マイクロビーズのDNA断片の種類を知ることができる。これにより、マイクロビースの蛍光とともに被検体のDNA断片に設けられた蛍光を同時に計測した場合、マイクロビーズの特定のDNA断片に被検体のDNA断片が作用して結合したものと判断する。このようにして、被検体のDNA断片がどのマイクロビーズに結合するかを分析することができる。
こうして、分析装置80は試料12中の生体物質の種類のヒストグラムや各種特性を短時間に求める。
フローサイトメータ10は以上のように構成される。
このようなフローサイトメータ10の信号処理装置20は、まず、コントローラ44からの指示により、所定の周波数の信号を発信器46に発生させ、この信号がアンプ50により増幅されて、レーザ光源部22及び信号処理部42に供給される。
この状態で、試料12が管路30を流れ、フローが形成される。フローは、例えば100μmの流路径に1〜10m/秒の流速を有する。また、試料12としてマイクロビーズを用いる場合、マイクロビーズの球径は数μm〜30μmである。
測定点でレーザ光による照射が成されると、受光部24で試料12の通過を検出する検出信号がコントローラ44にトリガ信号として出力される。
コントローラ44では、この検出信号をトリガ信号とし、このトリガ信号に同期して、自己相関性を有し、かつ他の符号化系列信号と直交性を有する符号化系列信号を生成し、これを巡回的に繰り返し生成する。この符号化系列信号は、レーザ光源部22からのレーザ光の出射のオン/オフを制御するパルス制御信号として用いるために、レーザドライバ34r,34g,34bに供給される。
レーザ光源部22では、このパルス制御信号に従って各レーザ光の出射のオン/オフが制御され、符号化系列信号によってパルス変調した信号情報を備えるレーザ光が生成される。このレーザ光は測定点を通過する試料12中の蛍光色素を励起させるために用いられ、このレーザ光の照射により蛍光色素が発する。ここで発する蛍光は、受光部26にて受光される。出射がオン状態のレーザ光は、所定の周波数で強度が変調している。
このようなレーザ光で照射されて発する蛍光色素からの蛍光は、位相遅れ角度を持って所定の周波数で強度変調するとともに、レーザ光のオン/オフに応じて、レーザ光に励起して発する蛍光もオン/オフの信号となっている。
このようにして、受光部24による試料12の通過の検出から変調されたレーザ光を照射するまでの時間は極めて短く、試料12が測定点を通過する数μ〜数10μ秒の間に、所定の周波数で振幅変調しつつ、巡回的に繰り返す符号化系列信号によってオン/オフが制御されたレーザ光が試料12に照射される。
ここで、レーザ光の変調周波数は、例えば10〜50MHzである。
また、符号化系列信号は、約1μ秒の時間分解幅、例えば1μ秒の時間分解幅で生成される場合、符号長さNが7ビットの符号化変調信号とすると、7μ秒(=1.0×7)を1周期として符号化系列信号が繰り返し巡回して生成される。この繰り返し生成される符号化系列信号に基づいてレーザ光が変調される。したがって、試料12が測定点を通過する数μ〜数10μ秒の間に、レーザ光は、7μ秒を1周期とする符号化系列信号が数回〜数10回巡回される。
受光部26の光電変換器27a〜27cで受光されて出力される蛍光信号は、アンプ54a〜54cで増幅され、IQミキサ58a〜58cにより、信号生成部40から供給された正弦波信号である変調信号と合成される。
IQミキサ58a〜58cでは、正弦波信号である変調信号(参照信号)と蛍光信号を乗算した合成信号が生成されるとともに、正弦波信号である変調信号(参照信号)に対して位相を90度シフトさせた信号と蛍光信号を乗算して合成した信号が生成される。
次に、生成された2つの合成信号は、コントローラ44のローパスフィルタ62に送られ、高周波成分が除去されて、蛍光信号のcos成分及びsin成分の信号が取り出される。
この蛍光信号のcos成分及びsin成分の信号は増幅され、A/D変換され、分析装置80に送られる。A/D変換は、受光部24からのトリガ信号のタイミングで同期が取られ、符号化系列信号の時間分解幅Δtと同じ時間分解幅で、蛍光信号のサンプリングが行われる。サンプリングは例えば16ビットのサンプリング(0〜±32767の階調のサンプリング)である。なお、蛍光信号は、符号化系列信号によってパルス変調されたレーザ光によって発するものであるため、この蛍光信号から得られるサンプリングされたデータは、符号化系列信号の情報が含まれている。
例えば、i番目(i=1〜3の自然数)のレーザ光源部22から出射される時間変調したレーザ光の強度振幅Ai(t)を下記式(7)のように定め(pi(t)はPN符号化変調信号による時間変調成分、ωは変調周波数)、IQミキサ58a〜58cに供給される参照信号(変調信号)A(t)を下記式(8)で定める。このとき、IQミキサ58a〜58cで用いられる、正弦波信号である変調信号(参照信号)に対して位相を90度シフトさせた信号A90(t)は下記式(9)のように定まる。一方、蛍光信号の振幅を下記式(10)で定めると、IQミキサ58a〜58cで合成されて得られる合成信号は下記式(11)のように表される。この2つの合成信号のうち高次成分はローパスフィルタ62を用いて除去され、この後、A/D変換されデジタル信号が生成される。
Figure 2006226698
Figure 2006226698
Figure 2006226698
Figure 2006226698
Figure 2006226698
レーザ光の時間変調に用いた符号化系列信号は自己相関性を有し、他の符号化系列信号に対して直交性を有するので、符号化系列信号とA/D変換されたデジタル信号との間の相関関数を算出することで、レーザ光毎に上記デジタル信号を分解する符号化識別変換が行われる。すなわち、符号化識別変換により、式(11)における1/2・ri・cos(θi)及び1/2・ri・sin(θi)が得られる。ここでθiは、i番目のレーザ光源部22から出射されるレーザ光により発する蛍光の、レーザ光に対する位相遅れ角度を表す。したがって、1/2・ri・cos(θi)及び1/2・ri・sin(θi)の値を用いてtan(θi)を求めることができる。このtan(θi)の値と上述した式(1)及び(2)とを用いて、蛍光緩和時定数τが求められる。
この蛍光緩和時定数τは、蛍光色素によって異なるので、マイクロビーズ等の試料12の種類が異なる(試料12に付着している生体物質の種類が異なる)ものには異なる種類の蛍光色素を用いることで、蛍光色素の種類を特定することができる。これにより、試料12の種類を特定することができる。したがって、試料12の発する蛍光から、試料12の種類を特定する。これとともに、所定の蛍光色素を設けた生体物質の発する蛍光を検出する場合、生体物質がどの種類の試料12に設けられた構造体に結合するか否かを特定することができ、さらに分析することができる。
特に、異なる2種類の蛍光色素を異なる比率で混合すると、この比率に応じてみかけの蛍光緩和時定数τも変化する。このため、混合する比率を変えることで極めて多数の蛍光緩和時定数を設定することができる。したがって、マイクロビーズの種類毎に異なる蛍光緩和時定数を有する蛍光色素を用いることで、発する蛍光が識別可能なマイクロビーズの種類を多数設定することができる。
さらに、上述した符号化識別変換を行う際に、自己相関性を有する符号化系列信号を知ることができるので、蛍光信号がどのレーザ光によるものかを特定することができる。従来においては、レーザ光を変調して信号情報を含ませることは行わないので、どのレーザ光の励起による蛍光であるかを特定することができない。
このように本発明では、同一の波長で放射する蛍光であっても、励起に用いるレーザ光の符号化系列信号を変えることで、異なる蛍光信号として受光することができるので、直交性を有する符号化系列信号を多数用いることで、蛍光色素の励起に用いられる多数のレーザ光を短時間のうちに特定することができる。したがって、蛍光の波長帯域が近接する多数の蛍光色素であっても、たとえ多数のレーザ光を合成して一度に照射しても、照射するレーザ光の信号情報が蛍光に含まれ、この信号情報が受光信号の中で識別できる限りにおいて、試料中に付着する蛍光色素を特定することができる。
このように本発明では、蛍光色素の発する蛍光の蛍光緩和時定数を算出することで、識別可能な蛍光色素の種類を増大させることができる。特に、蛍光緩和時定数が異なる2種類の蛍光色素を予め定めて混合する比率を定めて用いることにより、2種類の蛍光緩和時定数のいずれとも異なる蛍光緩和時定数を有するようにすることができ、識別可能な蛍光色素が極めて多数に増大する。2種類の蛍光色素の例として、1つの種類は、Cascade Blue,Cascade Yellow, Alexa Fluor405, DAPI, Dapoxyl, Dialkylaminocoumarin, Hydroxycoumarin, Marine Blue, Pacific Blue, PyMPOの中から選択される蛍光色素であり、他の種類は、Q-Dot(Quantum Dot社製商品名)、Evic-Tag(Evident Technology社製商品名)の中から選ばれる半導体量子蛍光色素であることが好ましい。前者の蛍光色素は、後者の蛍光色素に比べて蛍光緩和時定数が短い。この2種類の蛍光色素の混合する比率を変えることで、蛍光緩和時定数を大きく変化させることができる。例えば、Q-Dotは、20〜40ナノ秒の蛍光緩和時定数を有する。
以上、本発明の強度変調したレーザ光による蛍光検出装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
本発明の強度変調したレーザ光による蛍光検出装置を用いたフローサイトメータの概略構成図である。 本発明の強度変調したレーザ光による蛍光検出装置に用いられるレーザ光源部の一例を示す概略構成図である。 図2に示すレーザ光源部から出射されるレーザ光と蛍光色素の発する光のスペクトル強度分布を模式的に示す図である。 本発明の強度変調したレーザ光による蛍光検出装置に用いられる受光部の一例を示す概略構成図である。 本発明の強度変調したレーザ光による蛍光検出装置に用いられる制御・処理部の一例を示す概略構成図である。 図5に示す制御・処理部のIQミキサを説明する図である。 (a)及び(b)は、本発明の強度変調したレーザ光による蛍光検出装置で生成される各信号の例を示す図である。 蛍光色素が発する光の蛍光強度の特性を説明する図である。
符号の説明
10 フローサイトメータ
12 試料
20 信号処理装置
22 レーザ光源部
22r R光源
22g G光源
22b B光源
23a1,23a2,26b1,26b2 ダイクロイックミラー
23c.26a レンズ系
24,26 受光部
26c1,26c2,26c バンドパスフィルタ
27a〜27c 光電センサ
28 制御・処理部
30 管路
32 回収容器
34r,34g,34b レーザドライバ
35,48,56 パワースプリッタ
40 信号生成部40
42 信号処理部
44 コントローラ
46 発信器
50,52,54a,54b,54c,64 アンプ
58a,58b,58c IQミキサ
62 ローパスフィルタ
66 A/D変換器
80 分析装置

Claims (5)

  1. 測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、このとき得られる蛍光信号の信号処理を行う蛍光検出装置であって、
    測定対象物に照射するレーザ光を出射するレーザ光源部と、
    レーザ光の照射された測定対象物から発する蛍光の蛍光信号を出力する受光部と、
    前記レーザ光源部から出射するレーザ光の強度を時間変調させるために、所定の周波数の変調信号を生成する光源制御部と、
    時間変調したレーザ光を測定対照物に照射することにより前記受光部で出力された蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する処理部と、を有することを特徴とする強度変調したレーザ光による蛍光検出装置。
  2. 前記処理部は、前記蛍光信号の前記変調信号に対する位相遅れ求めることにより、前記蛍光緩和時間を算出する請求項1に記載の強度変調したレーザ光による蛍光検出装置。
  3. 前記光源制御部は、1ビットの信号値が所定長さで符号化され、かつ互いに直交する複数の符号化系列信号の中から選択された符号化系列信号をパルス制御信号として用い、かつ前記レーザ光源部からのレーザ光の出射のオンの時間が、前記レーザ光の前記時間変調の1周期よりも長くなるように、前記レーザ光の出射のオン/オフを設定して制御し、
    前記処理部は、前記蛍光緩和時間を算出するとともに、前記受光部で出力された受光信号から、前記符号化系列信号を用いて測定対象物からの蛍光を識別する、請求項1又は2に記載の強度変調したレーザ光による蛍光検出装置。
  4. 前記複数の符号化系列信号は、1つの符号化系列信号をビット方向にシフトして構成されたものであり、このシフトによって符号化系列信号が互いに直交するように構成されている請求項3に記載の強度変調したレーザ光による蛍光検出装置。
  5. 前記レーザ光源部は、複数のレーザ光を出射する複数のレーザ光源を有し、
    前記光源制御部は、複数のレーザ光源からのレーザ光の出射のオン/オフを、互いに直交する前記複数の符号化系列信号を用いて制御し、
    前記処理部は、前記受光部において複数のレーザ光からの光信号が重なって出力された蛍光信号から、レーザ光の出射に用いた符号化系列信号を用いて、各レーザ光の照射により測定対象物が発する蛍光の蛍光信号をそれぞれ分離する請求項3または4に記載の強度変調したレーザ光による蛍光検出装置。
JP2005037399A 2005-02-15 2005-02-15 強度変調したレーザ光による蛍光検出装置 Expired - Fee Related JP4384064B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005037399A JP4384064B2 (ja) 2005-02-15 2005-02-15 強度変調したレーザ光による蛍光検出装置
US11/816,244 US7822558B2 (en) 2005-02-15 2006-02-15 Fluorescence detecting device and fluorescence detecting method
DK06713774.5T DK1855102T3 (da) 2005-02-15 2006-02-15 Fluorescens påvisningsapparat og en fluorescens påvisningsmetode
PCT/JP2006/302633 WO2006088047A1 (ja) 2005-02-15 2006-02-15 蛍光検出装置及び蛍光検出方法
EP06713774A EP1855102B8 (en) 2005-02-15 2006-02-15 Fluorescence detecting device and fluorescence detecting method
EP11169174.7A EP2369326B1 (en) 2005-02-15 2006-02-15 Fluorescence detecting device and fluorescence detecting method
AT06713774T ATE523774T1 (de) 2005-02-15 2006-02-15 Fluoreszenznachweisvorrichtung und -verfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037399A JP4384064B2 (ja) 2005-02-15 2005-02-15 強度変調したレーザ光による蛍光検出装置

Publications (2)

Publication Number Publication Date
JP2006226698A true JP2006226698A (ja) 2006-08-31
JP4384064B2 JP4384064B2 (ja) 2009-12-16

Family

ID=36988218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037399A Expired - Fee Related JP4384064B2 (ja) 2005-02-15 2005-02-15 強度変調したレーザ光による蛍光検出装置

Country Status (1)

Country Link
JP (1) JP4384064B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275905A (ja) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology 蛍光分析方法
JP2009180723A (ja) * 2008-01-30 2009-08-13 Palo Alto Research Center Inc 物体検出に応答した検知結果および/またはデータの取得
JP2010505126A (ja) * 2006-09-29 2010-02-18 グラクソ グループ リミテッド 高速相発光分光分析のための方法およびシステム
JP2010078559A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Ind Ltd 蛍光分析装置および方法
WO2010079731A1 (ja) 2009-01-09 2010-07-15 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010084719A1 (ja) 2009-01-22 2010-07-29 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010092785A1 (ja) 2009-02-13 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010092752A1 (ja) 2009-02-10 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010092784A1 (ja) 2009-02-13 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010095386A1 (ja) 2009-02-17 2010-08-26 三井造船株式会社 蛍光検出方法、蛍光検出装置及びプログラム
WO2010143367A1 (ja) * 2009-06-12 2010-12-16 三井造船株式会社 蛍光検出装置および蛍光検出方法
JP2011149804A (ja) * 2010-01-21 2011-08-04 Mitsui Eng & Shipbuild Co Ltd 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置
US8049185B2 (en) * 2008-02-07 2011-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
KR101137681B1 (ko) 2008-03-04 2012-04-20 미쯔이 죠센 가부시키가이샤 형광 검출 방법 및 형광 검출 장치
JP2013127393A (ja) * 2011-12-19 2013-06-27 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
JP2013200128A (ja) * 2012-03-23 2013-10-03 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
JP2016156696A (ja) * 2015-02-24 2016-09-01 アズビル株式会社 粒子検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101348917B1 (ko) 2012-11-30 2014-01-08 한국원자력연구원 씨앗주입레이저를 사용하는 방사능물질 원격 탐지를 위한 라이다 장치

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275905A (ja) * 2005-03-30 2006-10-12 National Institute Of Advanced Industrial & Technology 蛍光分析方法
JP4652868B2 (ja) * 2005-03-30 2011-03-16 独立行政法人産業技術総合研究所 蛍光分析方法
JP2010505126A (ja) * 2006-09-29 2010-02-18 グラクソ グループ リミテッド 高速相発光分光分析のための方法およびシステム
JP2009180723A (ja) * 2008-01-30 2009-08-13 Palo Alto Research Center Inc 物体検出に応答した検知結果および/またはデータの取得
US8049185B2 (en) * 2008-02-07 2011-11-01 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
KR101163197B1 (ko) 2008-02-07 2012-07-06 미쯔이 죠센 가부시키가이샤 형광 검출 장치 및 형광 검출 방법
US8450702B2 (en) 2008-03-04 2013-05-28 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detecting method and fluorescence detecting device
KR101137681B1 (ko) 2008-03-04 2012-04-20 미쯔이 죠센 가부시키가이샤 형광 검출 방법 및 형광 검출 장치
JP2010078559A (ja) * 2008-09-29 2010-04-08 Sumitomo Electric Ind Ltd 蛍光分析装置および方法
WO2010079731A1 (ja) 2009-01-09 2010-07-15 三井造船株式会社 蛍光検出装置及び蛍光検出方法
US8885165B2 (en) 2009-01-22 2014-11-11 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detecting device and fluorescence detecting method
WO2010084719A1 (ja) 2009-01-22 2010-07-29 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010092752A1 (ja) 2009-02-10 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
JP2010190576A (ja) * 2009-02-13 2010-09-02 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
JP4564566B2 (ja) * 2009-02-13 2010-10-20 三井造船株式会社 蛍光検出装置及び蛍光検出方法
US8642976B2 (en) 2009-02-13 2014-02-04 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detecting device and fluorescence detecting method
JP4564567B2 (ja) * 2009-02-13 2010-10-20 三井造船株式会社 蛍光検出装置及び蛍光検出方法
US8772739B2 (en) 2009-02-13 2014-07-08 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection device and fluorescence detection method
JP2010190575A (ja) * 2009-02-13 2010-09-02 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
WO2010092784A1 (ja) 2009-02-13 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
WO2010092785A1 (ja) 2009-02-13 2010-08-19 三井造船株式会社 蛍光検出装置及び蛍光検出方法
JP4620786B2 (ja) * 2009-02-17 2011-01-26 三井造船株式会社 蛍光検出方法、蛍光検出装置及びプログラム
US8405049B2 (en) 2009-02-17 2013-03-26 Mitsui Engineering & Shipbuilding Co., Ltd. Fluorescence detection method, fluorescence detecting device and program
JP2010190652A (ja) * 2009-02-17 2010-09-02 Mitsui Eng & Shipbuild Co Ltd 蛍光検出方法、蛍光検出装置及びプログラム
WO2010095386A1 (ja) 2009-02-17 2010-08-26 三井造船株式会社 蛍光検出方法、蛍光検出装置及びプログラム
JPWO2010143367A1 (ja) * 2009-06-12 2012-11-22 三井造船株式会社 蛍光検出装置および蛍光検出方法
CN102822665A (zh) * 2009-06-12 2012-12-12 三井造船株式会社 荧光检测装置和荧光检测方法
WO2010143367A1 (ja) * 2009-06-12 2010-12-16 三井造船株式会社 蛍光検出装置および蛍光検出方法
JP2011149804A (ja) * 2010-01-21 2011-08-04 Mitsui Eng & Shipbuild Co Ltd 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置
JP2013127393A (ja) * 2011-12-19 2013-06-27 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
JP2013200128A (ja) * 2012-03-23 2013-10-03 Mitsui Eng & Shipbuild Co Ltd 蛍光検出装置及び蛍光検出方法
JP2016156696A (ja) * 2015-02-24 2016-09-01 アズビル株式会社 粒子検出装置

Also Published As

Publication number Publication date
JP4384064B2 (ja) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4384064B2 (ja) 強度変調したレーザ光による蛍光検出装置
EP1855102B1 (en) Fluorescence detecting device and fluorescence detecting method
JP4523674B1 (ja) 蛍光検出装置及び蛍光検出方法
JP4365439B2 (ja) 蛍光検出方法及び蛍光検出装置
JP4523673B1 (ja) 蛍光検出装置及び蛍光検出方法
CN101688836B (zh) Fret检测方法及装置
JP4540751B1 (ja) 蛍光検出装置及び蛍光検出方法
JP2006266905A (ja) クロロフィル分析装置及びクロロフィルの分析方法
JP4620786B2 (ja) 蛍光検出方法、蛍光検出装置及びプログラム
JP4652868B2 (ja) 蛍光分析方法
JP4606518B2 (ja) 蛍光検出装置及び蛍光検出方法
JP4918178B2 (ja) 蛍光検出方法
JP4167991B2 (ja) 符号化変調レーザによる蛍光検出装置
JP4300366B2 (ja) 蛍光検出方法、蛍光検出用ビーズの作製方法及び蛍光検出用ビーズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees