JP2013200128A - 蛍光検出装置及び蛍光検出方法 - Google Patents
蛍光検出装置及び蛍光検出方法 Download PDFInfo
- Publication number
- JP2013200128A JP2013200128A JP2012066902A JP2012066902A JP2013200128A JP 2013200128 A JP2013200128 A JP 2013200128A JP 2012066902 A JP2012066902 A JP 2012066902A JP 2012066902 A JP2012066902 A JP 2012066902A JP 2013200128 A JP2013200128 A JP 2013200128A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- light
- angular frequency
- signal
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001917 fluorescence detection Methods 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000003287 optical effect Effects 0.000 claims abstract description 32
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 74
- 239000000284 extract Substances 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000003111 delayed effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 108010082025 cyan fluorescent protein Proteins 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 108091005957 yellow fluorescent proteins Proteins 0.000 description 2
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
【課題】効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる蛍光検出装置および蛍光検出方法を提供する。
【解決手段】測定対象物にレーザ光を照射するとき、強度が周波数fで時間変調したレーザ光を出射する。レーザ光が照射されて測定対象物が発する蛍光を受光するとともに、蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が周波数fで時間変調した参照光を、蛍光と同時に受光する。受光により得られた受光信号から、角周波数ωνの成分を取り出し、取り出した角周波数ωνの成分の信号から、角周波数ωνの情報を用いて、蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、蛍光の蛍光寿命を求める。
【選択図】 図1
【解決手段】測定対象物にレーザ光を照射するとき、強度が周波数fで時間変調したレーザ光を出射する。レーザ光が照射されて測定対象物が発する蛍光を受光するとともに、蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が周波数fで時間変調した参照光を、蛍光と同時に受光する。受光により得られた受光信号から、角周波数ωνの成分を取り出し、取り出した角周波数ωνの成分の信号から、角周波数ωνの情報を用いて、蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、蛍光の蛍光寿命を求める。
【選択図】 図1
Description
本発明は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置及び蛍光検出方法に関する。
従来より、測定対象物にレーザ光を照射し、測定対象物が発する蛍光を受光して、測定対象物の情報を取得する蛍光検出装置及び蛍光検出方法が知られている。
蛍光検出装置及び蛍光検出方法を用いたフローサイトメータは、蛍光試薬でラベル化された細胞、DNA、RNA、酵素、蛋白等の測定対象物をシース液に流す。この測定対象物にレーザ光を照射することにより、測定対象物に付与された蛍光色素が蛍光を発する。フローサイトメータは、この蛍光を検出することにより、測定対象物の情報を取得することができる。
蛍光検出装置及び蛍光検出方法を用いたフローサイトメータは、蛍光試薬でラベル化された細胞、DNA、RNA、酵素、蛋白等の測定対象物をシース液に流す。この測定対象物にレーザ光を照射することにより、測定対象物に付与された蛍光色素が蛍光を発する。フローサイトメータは、この蛍光を検出することにより、測定対象物の情報を取得することができる。
このような状況下、設定された変調周波数で強度変調したレーザ光を測定対象物に照射し、測定対象物が発する蛍光を受光することにより蛍光緩和時間(蛍光寿命)を算出する蛍光検出装置及び蛍光検出方法が知られている(特許文献1)。
蛍光検出装置では、蛍光を光電変換器で受光する前に、蛍光とレーザ光の散乱光とを分離するために光学フィルタが用いられる。しかし、光学フィルタでは蛍光とレーザ光の分離が十分でなく、除去されなかったレーザ光の散乱光の強度が、蛍光強度に対して依然として高い状態で受光素子が受光する場合があり、受光素子の出力した受光信号は十分な出力を持った蛍光信号とならない場合がある。
また、レーザ光の除去を高めるために光学フィルタを複数枚使用することもできる。しかし、この場合、光学フィルタは、透過率が低いため透過する蛍光の強度も同時に低下する。蛍光とレーザ光の散乱光とを分離するために、高価な分光器を用いることも可能であるが、装置が大型化し、コストも上昇する。また、受光素子では、蛍光とレーザ光の散乱光を同時に受光するため、受光素子の感度を上げることもできない。
そこで、本発明は、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる蛍光検出装置および蛍光検出方法を提供することを目的とする。
本発明の一態様は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置である。当該蛍光検出装置は、
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するレーザ光源部と、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光する受光部と、
前記受光部が前記蛍光を受光する時、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記受光部が前記蛍光と同時に受光するように、前記参照光を出射する参照光源を含む参照光源部と、
前記受光部から出力された受光信号から、前記角周波数ωνの成分を取り出すフィルタ部と、
前記フィルタ部で取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求める処理部と、を有する。
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するレーザ光源部と、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光する受光部と、
前記受光部が前記蛍光を受光する時、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記受光部が前記蛍光と同時に受光するように、前記参照光を出射する参照光源を含む参照光源部と、
前記受光部から出力された受光信号から、前記角周波数ωνの成分を取り出すフィルタ部と、
前記フィルタ部で取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求める処理部と、を有する。
具体的な好ましい形態は以下の通りである。
前記参照光源部は、強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光と、強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光とを、それぞれ前記参照光として出射する。
前記受光部は、前記第1参照光を受光する第1受光素子と、前記第1参照光に対して90度位相がシフトした前記第2参照光を受光する第2受光素子と、を有する。
前記フィルタ部は、前記第1受光素子から出力された第1受光信号から、前記角周波数ωνの成分を取り出す第1フィルタと、前記第2受光素子から出力された第2受光信号から、前記角周波数ωνの成分を取り出す第2フィルタと、を有する。
前記処理部は、前記第1フィルタで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するとともに、前記第2フィルタで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調する復調部と、前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求める蛍光寿命算出部を有する。
前記参照光源部は、強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光と、強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光とを、それぞれ前記参照光として出射する。
前記受光部は、前記第1参照光を受光する第1受光素子と、前記第1参照光に対して90度位相がシフトした前記第2参照光を受光する第2受光素子と、を有する。
前記フィルタ部は、前記第1受光素子から出力された第1受光信号から、前記角周波数ωνの成分を取り出す第1フィルタと、前記第2受光素子から出力された第2受光信号から、前記角周波数ωνの成分を取り出す第2フィルタと、を有する。
前記処理部は、前記第1フィルタで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するとともに、前記第2フィルタで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調する復調部と、前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求める蛍光寿命算出部を有する。
その際、前記参照光源部は、前記参照光源から前記受光素子までの前記参照光の光路長を時間変化させることにより、光の位相を時間変調することが好ましい。
前記参照光源部は、超音波振動子と前記超音波振動子に設けられた反射面ミラとを含み、前記超音波振動子の振動によって前記反射ミラの位置が変動する状態で、前記参照光源から入射した参照光を前記受光素子に向けて反射させることにより、前記光の位相を時間変調することが好ましい。
前記蛍光検出装置は、前記蛍光を受光する前に、前記蛍光を、バイアス信号による光の誘導放出を行うことにより、前記蛍光を増幅する光増幅部を備えることが好ましい。
前記蛍光検出装置は、例えば、管路中を一列になって順次流れ、レーザ光の照射位置を通過する複数の検査対象サンプルのそれぞれを測定対象物として蛍光検出を行うフローサイトメータである。
また、本発明の他の一態様は、測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出方法である。当該方法は、
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するステップと、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光するとともに、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記蛍光と同時に受光するステップと、
前記受光により得られた受光信号から、前記角周波数ωνの成分の信号を取り出すステップと、
前記取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求めるステップと、を有する。
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するステップと、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光するとともに、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記蛍光と同時に受光するステップと、
前記受光により得られた受光信号から、前記角周波数ωνの成分の信号を取り出すステップと、
前記取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求めるステップと、を有する。
その際、蛍光検出方法は、以下のステップを含む形態が好ましい。
前記蛍光を受光するステップは、
(A)強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光を前記参照光として受光するステップと、
(B)強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光を前記参照光として前記蛍光と同時に受光する第2ステップ、を含む。
前記角周波数ωνの成分を取り出すステップは、
(C)前記(A)のステップで得られた第1受光信号から、前記角周波数ωνの成分を取り出すステップと、
(D)前記(B)のステップで得られた第2受光信号から、前記角周波数ωνの成分を取り出すステップ、を含む。
前記蛍光寿命を求めるステップは、
(E)前記(D)のステップで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するステップと、
(F)前記(E)のステップで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調するステップと、
(G)前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求めるステップと、
を含む。
前記蛍光を受光するステップは、
(A)強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光を前記参照光として受光するステップと、
(B)強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光を前記参照光として前記蛍光と同時に受光する第2ステップ、を含む。
前記角周波数ωνの成分を取り出すステップは、
(C)前記(A)のステップで得られた第1受光信号から、前記角周波数ωνの成分を取り出すステップと、
(D)前記(B)のステップで得られた第2受光信号から、前記角周波数ωνの成分を取り出すステップ、を含む。
前記蛍光寿命を求めるステップは、
(E)前記(D)のステップで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するステップと、
(F)前記(E)のステップで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調するステップと、
(G)前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求めるステップと、
を含む。
上述の蛍光検出装置及び蛍光検出方法では、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる。
以下、本発明の蛍光検出装置及び蛍光検出方法について詳細に説明する。
図1は、本実施形態の蛍光検出方法を実施する蛍光検出装置の構成の一例を示す概略図である。
図1は、本実施形態の蛍光検出方法を実施する蛍光検出装置の構成の一例を示す概略図である。
(フローサイトメータ)
以下、図1を参照して、本実施形態のフローサイトメータの構成について説明する。フローサイトメータは、フローセル中の管路に、複数の検査対象サンプルを順次一列に流し、このとき、レーザ光の照射位置(測定場)を通過する検査対象サンプルのそれぞれを測定対象物として蛍光検出を行う。具体的に、フローサイトメータは、測定対象物にレーザ光を照射し、レーザ光が照射された測定対象物から発せられる蛍光を受光することにより、測定対象物の情報を取得する。本実施形態は、フローサイトメータを用いる例であるが、フローサイトメータに限られない。例えば、測定対象物が静止した状態でレーザ光を照射する蛍光顕微鏡に適用することもできる。
本実施形態では、強度が周波数fで時間変調したレーザ光を出射して測定対象物に照射する。このとき測定対象物が発する蛍光を受光部が受光する。この受光のとき、蛍光と同じ波長成分を有し、光の位相が角周波数(以降、変調角周波数という)ωνで時間変調し、強度が周波数fで時間変調した参照光を蛍光と同時に、受光部は受光する。受光部が出力する受光信号は蛍光の信号と参照光の信号を含む。フローサイトメータは、蛍光の信号の情報を取り出すために、受光信号に対してフィルタ処理をして変調角周波数ωνの成分の信号を取り出し、さらに、変調角周波数ωνの成分の信号に対して、変調角周波数ωνを用いて復調処理を施す。さらに、フローサイトメータは、復調処理の結果の情報を用いて、蛍光の発光の、レーザ光の照射に対する位相遅れを求め、この位相遅れから蛍光の蛍光寿命を求める。これにより、受光部が受光する光にレーザ光の散乱光が含まれているとしても、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる。
以下、図1を参照して、本実施形態のフローサイトメータの構成について説明する。フローサイトメータは、フローセル中の管路に、複数の検査対象サンプルを順次一列に流し、このとき、レーザ光の照射位置(測定場)を通過する検査対象サンプルのそれぞれを測定対象物として蛍光検出を行う。具体的に、フローサイトメータは、測定対象物にレーザ光を照射し、レーザ光が照射された測定対象物から発せられる蛍光を受光することにより、測定対象物の情報を取得する。本実施形態は、フローサイトメータを用いる例であるが、フローサイトメータに限られない。例えば、測定対象物が静止した状態でレーザ光を照射する蛍光顕微鏡に適用することもできる。
本実施形態では、強度が周波数fで時間変調したレーザ光を出射して測定対象物に照射する。このとき測定対象物が発する蛍光を受光部が受光する。この受光のとき、蛍光と同じ波長成分を有し、光の位相が角周波数(以降、変調角周波数という)ωνで時間変調し、強度が周波数fで時間変調した参照光を蛍光と同時に、受光部は受光する。受光部が出力する受光信号は蛍光の信号と参照光の信号を含む。フローサイトメータは、蛍光の信号の情報を取り出すために、受光信号に対してフィルタ処理をして変調角周波数ωνの成分の信号を取り出し、さらに、変調角周波数ωνの成分の信号に対して、変調角周波数ωνを用いて復調処理を施す。さらに、フローサイトメータは、復調処理の結果の情報を用いて、蛍光の発光の、レーザ光の照射に対する位相遅れを求め、この位相遅れから蛍光の蛍光寿命を求める。これにより、受光部が受光する光にレーザ光の散乱光が含まれているとしても、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる。
フローサイトメータは、フローセル10と、レーザ光源部20と、第1受光部30と、参照光源部32,34と、第2受光部40と、制御部50と、処理部60と、出力部70と、を備える。また、フローセル10の下流には、測定対象物12を回収するための容器16が配置される。以下、各構成について詳細に説明する。
細胞、DNA(Deoxyribonucleic Acid)、RNA(Ribonucleic Acid)、酵素、蛋白等の測定対象物12は、シース液に囲まれてフローセル10の内部を流れる。例えば、フローサイトメータは、蛍光蛋白等の蛍光物質が付着した生体物質を内部に取り込んだ細胞等を測定対象物12とし、フローセル10内に流す。後述するように、レーザ光源部20が測定対象物12にレーザ光を照射し、その際に発せられる蛍光から測定対象物12の情報を取得するため、測定対象物12には、蛍光色素14が予め付与されている。蛍光色素14は、例えば、CFP(Cyan Fluorescent Protein)、YFP(Yellow Fluorescent Protein)等が用いられる。フローセル10の内部では、シース液に囲まれた測定対象物12が、流体力学的絞り込みを受けることにより細い液流となって、フローセル10の内部を流れる。
レーザ光源部20は、例えば、350nm〜800nmの可視光帯域の波長を有し、周波数fの変調信号を用いて強度変調されたレーザ光を測定対象物12に照射する。
図2に示すように、レーザ光源部20は、レーザ光源21と、レンズ系22と、レーザドライバ23と、を有している。
レーザ光源21は、強度が一定のCW(連続波)レーザ光を強度変調して出射する。
レンズ系22は、レーザ光源21から出射されたレーザ光を、フローセル10中の所定の照射位置(測定場)に集束させる。
レーザドライバ23は、後述する制御部50と電気的に接続されており、制御部50から供給された周波数f(変調周波数)の変調信号によりレーザ光の強度を変調するように構成されている。
なお、レーザ光源部20は、1つのレーザ光源を用いてもよいし、複数のレーザ光源を用いてもよい。複数のレーザ光源が用いられる場合には、複数のレーザ光源からのレーザ光がダイクロイックミラー等を用いて、1つのレーザ光のビームに合成されることにより、測定場に向けて出射されるレーザ光が形成されることが好ましい。
図2に示すように、レーザ光源部20は、レーザ光源21と、レンズ系22と、レーザドライバ23と、を有している。
レーザ光源21は、強度が一定のCW(連続波)レーザ光を強度変調して出射する。
レンズ系22は、レーザ光源21から出射されたレーザ光を、フローセル10中の所定の照射位置(測定場)に集束させる。
レーザドライバ23は、後述する制御部50と電気的に接続されており、制御部50から供給された周波数f(変調周波数)の変調信号によりレーザ光の強度を変調するように構成されている。
なお、レーザ光源部20は、1つのレーザ光源を用いてもよいし、複数のレーザ光源を用いてもよい。複数のレーザ光源が用いられる場合には、複数のレーザ光源からのレーザ光がダイクロイックミラー等を用いて、1つのレーザ光のビームに合成されることにより、測定場に向けて出射されるレーザ光が形成されることが好ましい。
レーザ光を出射する光源として、例えば、半導体レーザを用いることができる。レーザ光の出力は、例えば、5mW〜100mWである。また、変調信号の周波数fの周期は蛍光寿命(蛍光緩和時間)に比べてやや長く、変調信号の周波数fは、例えば10MHz〜200MHzである。
第1受光部30は、フローセル10の測定場を基準として、レーザ光源部20と反対側に配置される。第1受光部30は、フローセル10の測定場を通過する測定対象物12にレーザ光が照射されたときに、測定対象物12で散乱するレーザ光の前方散乱光を受光する。
第1受光部30は、例えば、フォトダイオード等の光電変換器を備える。光電変換器は、受光した前方散乱光を電気信号に変換する。
第1受光部30の光電変換器によって変換された電気信号は処理部60へ出力され、当該電気信号は、測定対象物12がフローセル10の測定場を通過するタイミングを知らせるためのトリガ信号として用いられる。
また、第1受光部30は、例えば、前方散乱光を光電変換器に集束させるレンズ系(図示省略)と、レーザ光が光電変換器に直接入射しないようにレンズ系の測定対象物12側前面に設けられた遮蔽板(図示省略)とを有してもよい。
第1受光部30は、例えば、フォトダイオード等の光電変換器を備える。光電変換器は、受光した前方散乱光を電気信号に変換する。
第1受光部30の光電変換器によって変換された電気信号は処理部60へ出力され、当該電気信号は、測定対象物12がフローセル10の測定場を通過するタイミングを知らせるためのトリガ信号として用いられる。
また、第1受光部30は、例えば、前方散乱光を光電変換器に集束させるレンズ系(図示省略)と、レーザ光が光電変換器に直接入射しないようにレンズ系の測定対象物12側前面に設けられた遮蔽板(図示省略)とを有してもよい。
第2受光部40は、レーザ光源部20から出射されるレーザ光の出射方向に対して垂直方向であって、且つ、フローセル10中の測定対象物12の移動方向に対して垂直方向に配置されている。第2受光部40は、フローセル10の測定場を通過する測定対象物12にレーザ光が照射されたときに測定対象物12から発せられる蛍光を、光増幅器で増幅して受光する。さらに受光部40は、蛍光を受光するとき、後述する参照光源部32,34から出射される参照光も同時に受光する。参照光については後述する。
図3は、本実施形態の第2受光部40の構成の一例を示す図である。
図3に示すように、第2受光部40は、レンズ系41と、バンドパスフィルタ(BPF)42と、光増幅器43と、バンドパスフィルタ44と、ハーフミラ45と、光電子倍増管46a,46bと、バンドパスフィルタ47a,47bと、反射ミラ48と、を有する。
図3に示すように、第2受光部40は、レンズ系41と、バンドパスフィルタ(BPF)42と、光増幅器43と、バンドパスフィルタ44と、ハーフミラ45と、光電子倍増管46a,46bと、バンドパスフィルタ47a,47bと、反射ミラ48と、を有する。
レンズ系41は、第2受光部40に入射した光を集光する。
BPF42は、光増幅器43の前面に設けられ、蛍光の波長成分の光のみを透過させるフィルタである。なお、透過させる光の波長帯域は、測定対象物12に含まれる蛍光色素が発する蛍光の波長帯域に対応して設定されている。また、BPF42の代わりに、バンドリジェクトフィルタを用いてもよい。BPF42は、蛍光の光強度に比べて光強度が強いレーザ光の側方散乱光を蛍光から十分に分離できず、光増幅器43に入射される場合がある。
BPF42は、光増幅器43の前面に設けられ、蛍光の波長成分の光のみを透過させるフィルタである。なお、透過させる光の波長帯域は、測定対象物12に含まれる蛍光色素が発する蛍光の波長帯域に対応して設定されている。また、BPF42の代わりに、バンドリジェクトフィルタを用いてもよい。BPF42は、蛍光の光強度に比べて光強度が強いレーザ光の側方散乱光を蛍光から十分に分離できず、光増幅器43に入射される場合がある。
光増幅器43は、例えば半導体光増幅器であり、制御部50で生成されたDCバイアス信号を光の誘導放出のための信号として用いて、入射した蛍光の光信号を増幅する。
光増幅器43は、蛍光の光信号を増幅するために設けられており制御部50と電気的に接続され、制御部50から送信されたDCバイアス信号を光の誘導放出のための信号として受ける。これにより、光増幅器43を構成するレーザ媒質の原子あるいは分子は、DCバイアス信号により励起される。そして、蛍光が入射すると、光増幅器43は、レーザ媒質の原子あるいは分子の蛍光と同じ波長を持つ光の誘導放出を行い、この結果、光増幅器43に入射した蛍光は増幅されることになる。すなわち、光増幅器43は、測定対象物12が発する蛍光の波長に対応した波長の光を誘導放出するように、レーザ媒質は構成されている。したがって、レーザ光の側方散乱光は増幅されない。このため、光増幅器43を出た光は、蛍光の強度が極めて強くなった光となり、レーザ光の側方散乱光のような迷光に比べて強度が大きくなる。なお、光増幅器43は、本発明における光増幅部の一例である。
光増幅器43は、蛍光の光信号を増幅するために設けられており制御部50と電気的に接続され、制御部50から送信されたDCバイアス信号を光の誘導放出のための信号として受ける。これにより、光増幅器43を構成するレーザ媒質の原子あるいは分子は、DCバイアス信号により励起される。そして、蛍光が入射すると、光増幅器43は、レーザ媒質の原子あるいは分子の蛍光と同じ波長を持つ光の誘導放出を行い、この結果、光増幅器43に入射した蛍光は増幅されることになる。すなわち、光増幅器43は、測定対象物12が発する蛍光の波長に対応した波長の光を誘導放出するように、レーザ媒質は構成されている。したがって、レーザ光の側方散乱光は増幅されない。このため、光増幅器43を出た光は、蛍光の強度が極めて強くなった光となり、レーザ光の側方散乱光のような迷光に比べて強度が大きくなる。なお、光増幅器43は、本発明における光増幅部の一例である。
BPF44は、光増幅された蛍光を透過させ、レーザ光の側方散乱光を分離するフィルタである。
こうして、得られた蛍光は、ハーフミラ45で分離され、ハーフミラ45を透過した蛍光は、受光素子の一例である光電子倍増管46aにより受光される。また、ハーフミラ45を反射した蛍光は、受光素子の一例である光電子倍増管46bにより受光される。このとき、光電子倍増管46a,46bは、参照光源部32,34から出射した光の位相が変調角周波数ωνで時間変調し、強度が周波数fで時間変調した参照光を同時に受光する。この点は後述する。
こうして、得られた蛍光は、ハーフミラ45で分離され、ハーフミラ45を透過した蛍光は、受光素子の一例である光電子倍増管46aにより受光される。また、ハーフミラ45を反射した蛍光は、受光素子の一例である光電子倍増管46bにより受光される。このとき、光電子倍増管46a,46bは、参照光源部32,34から出射した光の位相が変調角周波数ωνで時間変調し、強度が周波数fで時間変調した参照光を同時に受光する。この点は後述する。
光電子倍増管46a,46bから出力された受光信号は、バンドパスフィルタ47a,47bに送られる。バンドパスフィルタ47a,47bは、変調角周波数ωνの成分を取り出すフィルタ部の一例である。バンドパスフィルタ47a,47bは、後述するように、参照光の位相が変調角周波数ωνで変動する受光信号の成分を抽出し、レーザ光の強度の時間変調の周波数fの成分、さらに周波数ων/(2π)と周波数2・ω1/(2π)とが加減算された周波数の成分を除去する。バンドパスフィルタ47a,47bを透過した受光信号はそれぞれ、処理部60に送られる。すなわち、バンドパススフィルタ47a,47bは、変調角周波数ωνに対応する周波数ων/(2π)で振動する受光信号の成分を抽出し、受光信号の周波数fの成分、さらには、周波数ων/(2π)と周波数2・ω1/(2π)とが加減算された周波数の成分、を除去するように、透過周波数帯域が設定されている。
図4は、制御部50の構成の一例を示す図である。制御部50は、変調信号の周波数fを制御する。図4に示すように、制御部50は、発振器51と、パワースプリッタ52と、アンプ(AMP)53,54,56と、90度位相シフタ55と、を有している。
発振器51は、処理部60からの指示により、周波数fの信号、例えば正弦波信号やパルス信号等を生成し、出力する。発振器51から出力される信号は変調信号として用いられる。上記信号の周波数は、例えば、10〜200MHzである。
発振器51から出力された周波数fの信号(変調信号)は、パワースプリッタ52に送られ、アンプ53、アンプ54及び90度位相シフタ55に送られる。アンプ53は、周波数fの変調信号を増幅して、レーザ光源部20のレーザドライバ23に送る。アンプ54は、周波数fの変調信号を増幅して、参照光源部32のレーザドライバ32a(図5参照)に送る。一方、90度位相シフタ55は、周波数fの変調信号の位相を4分の1周期(90度)遅らせて、アンプ56に送る。アンプ56は、位相を遅らせた周波数fの変調信号を増幅して、参照光源部34のレーザドライバ34a(図5参照)に送る。参照光源部32,34については後述する。
発振器51から出力された周波数fの信号(変調信号)は、パワースプリッタ52に送られ、アンプ53、アンプ54及び90度位相シフタ55に送られる。アンプ53は、周波数fの変調信号を増幅して、レーザ光源部20のレーザドライバ23に送る。アンプ54は、周波数fの変調信号を増幅して、参照光源部32のレーザドライバ32a(図5参照)に送る。一方、90度位相シフタ55は、周波数fの変調信号の位相を4分の1周期(90度)遅らせて、アンプ56に送る。アンプ56は、位相を遅らせた周波数fの変調信号を増幅して、参照光源部34のレーザドライバ34a(図5参照)に送る。参照光源部32,34については後述する。
図5は、光電子倍増管46a,46bに向けて参照光を出射する参照光源部32,34の構成の一例を示す図である。参照光源部32,34は、レーザ光源34a,34bを有する。参照光源部32の構成及び参照光源部34の構成は同じであるので、以下、参照光源部32を主にして説明し、参照光源部34についての説明は、括弧内に記載する。なお、レーザ光源34bが出射する参照光の強度変調の位相は、レーザ光源34aが出射する参照光の強度変調の位相に対して90度位相が遅れているが、この位相の遅れは、光電子倍増管46a,46bで参照光が蛍光とともに受光されるときも維持されている。すなわち、光電子倍増管46bで受光される参照光の強度変調の位相は、光電子倍増管46aで受光される参照光の強度変調の位相に対して90度遅れるように、参照光源部32,34が設けられている。
参照光源部32(34)は、参照光源部32(34)が発する参照光が光電子倍増管46a(46b)に入射するように設けられている。参照光源部32(34)は、レーザドライバ32a(34a)及びレーザ光源32b(34b)を有する。レーザドライバ32a(34a)は、制御部50から送られた周波数fの変調信号に基づいて、レーザ光源32b(34b)の強度を周波数fの変調信号に従って変調するように、レーザ光源32b(34b)を駆動する。
レーザ光源32b(34b)は、蛍光と同じ波長成分を有する一定の強度の光を周波数fで強度を時間変調したレーザ光を参照光として出射する。参照光は、光の位相が時間変調するためレーザ光である。参照光源部32(34)は、レーザ光源32b(34b)から光電子倍増管46a(46b)までの光路長を時間変化させることにより、光の位相を時間変調する。図5に示す例では、参照光源部32(34)は、変調角周波数ωνで振動する超音波振動子32c(34c)と、超音波振動子32c(34c)に設けられた反射ミラ32d(34d)とを含む。参照光源部32(34)は、超音波振動子32c(34c)の振動によって反射ミラ32d(34d)の位置が変動する状態で、レーザ光源32b(34b)から入射した参照光を光電子倍増管46a(46b)の受光面に向けて反射させることにより、光の位相を時間変調する。なお、測定対象物12が測定場を通過する測定時間が数10μ秒であること考慮すると、変調角周波数ωνに対応する周波数ων/(2π)は、MHzのオーダ、例えば、数MHzであることが好ましい。なお、参照光源部32の超音波振動子32cと超音波振動子34cは、処理部60の指示により、変調角周波数ωνで振動するように制御される。
上述したように、参照光源部34のレーザドライバ34aに送られる変調信号の位相は、レーザドライバ32aに送られる変調信号の位相に対して位相が90度遅れている。このため、光電子倍増管46bで受光するときの参照光も、光電子倍増管46aで受光するときの参照光に対して位相が90度遅れている。
このようにして、参照光源部32,34から出射したレーザ光は、図3に示すように、光電子倍増管46a,46bで、蛍光とともに受光される。なお、参照光源部34から出射したレーザ光は、図3に示すように、反射ミラ48で反射して光電子倍増管46bで受光される。
レーザ光源32b(34b)は、蛍光と同じ波長成分を有する一定の強度の光を周波数fで強度を時間変調したレーザ光を参照光として出射する。参照光は、光の位相が時間変調するためレーザ光である。参照光源部32(34)は、レーザ光源32b(34b)から光電子倍増管46a(46b)までの光路長を時間変化させることにより、光の位相を時間変調する。図5に示す例では、参照光源部32(34)は、変調角周波数ωνで振動する超音波振動子32c(34c)と、超音波振動子32c(34c)に設けられた反射ミラ32d(34d)とを含む。参照光源部32(34)は、超音波振動子32c(34c)の振動によって反射ミラ32d(34d)の位置が変動する状態で、レーザ光源32b(34b)から入射した参照光を光電子倍増管46a(46b)の受光面に向けて反射させることにより、光の位相を時間変調する。なお、測定対象物12が測定場を通過する測定時間が数10μ秒であること考慮すると、変調角周波数ωνに対応する周波数ων/(2π)は、MHzのオーダ、例えば、数MHzであることが好ましい。なお、参照光源部32の超音波振動子32cと超音波振動子34cは、処理部60の指示により、変調角周波数ωνで振動するように制御される。
上述したように、参照光源部34のレーザドライバ34aに送られる変調信号の位相は、レーザドライバ32aに送られる変調信号の位相に対して位相が90度遅れている。このため、光電子倍増管46bで受光するときの参照光も、光電子倍増管46aで受光するときの参照光に対して位相が90度遅れている。
このようにして、参照光源部32,34から出射したレーザ光は、図3に示すように、光電子倍増管46a,46bで、蛍光とともに受光される。なお、参照光源部34から出射したレーザ光は、図3に示すように、反射ミラ48で反射して光電子倍増管46bで受光される。
図6は、処理部60の構成について説明する。処理部60は、CPU64、メモリ66を主体として構成されたコンピュータであり、第1受光部30から送られるトリガ信号に従って、第2受光部40のバンドパススフィルタ47a,47bから出力された信号を用いて、蛍光強度を算出する。処理部60は、AD変換ボード62と、CPU64と、メモリ66と、入出力ポート68と、を有する。入出力ポート68には、出力部70としてディスプレイ70a及びプリンタ70bが接続されている。メモリ66には、プログラムが記憶されている。メモリ66に記憶されたプログラムを読み出して実行することにより、処理部60は、復調部70及び蛍光寿命算出部72を形成する。すなわち、復調部70及び蛍光寿命算出部72は、コンピュータが実行可能なプログラムを実行することで形成されるソフトウェアモジュールである。復調部70及び蛍光寿命算出部72の実質的な機能は、CPU64によって行われる。
上述したように、光電子倍増管46a,46bは、光増幅器43で増幅した蛍光の他に、光の位相が変調角周波数ωνで変調する参照光を同時に受光する。この参照光は、参照光源部32によって生成される。
蛍光は平面波であり、光電子倍増管46aが受光する蛍光は、下記式(1)のように複素数表示で表すことができる。また、参照光も平面波であり、光電子倍増管46aが受光する参照光は、下記式(2)のように複素数表示で表すことができる。
蛍光は平面波であり、光電子倍増管46aが受光する蛍光は、下記式(1)のように複素数表示で表すことができる。また、参照光も平面波であり、光電子倍増管46aが受光する参照光は、下記式(2)のように複素数表示で表すことができる。
このとき、光電子倍増管46aでは、光のエネルギが受光信号として出力されるので、光電子倍増管46aが出力する受光信号Saは、下記式(3)に示す式に比例する。この式を整理することにより、下記式(4)を得る。さらに、参照光は、蛍光と同じ波長成分を有し、ωp1=ωp2であるので、光電子倍増管46aで得られる受光信号Saは下記式(5)で表される。式(5)を詳細に記載すると、下記式(6)が得られる。
式(5)において、φ=ωνtである(参照光の位相は変調角周波数ωνで時間変調している)ので、受光信号Saは、周波数f(角周波数ω1=2πf)の成分と変調角周波数ωνで変動するAC成分とを含む。バンドパスフィルタ47aは、受光信号から上記周波数f(角周波数ω1=2πf)の成分、さらには周波数ων/(2π)と周波数2・ω1/(2π)とが加減算された周波数の成分を除去し、変調角周波数ωνの周波数成分の信号成分を抽出する。したがって、バンドパスフィルタ47aから送られてきた受光信号Sa’は、式(6)の右辺の第1項〜第3項が除去されて、下記式(7)に示すように表される。
同様に、光電子倍増管46bが受光する参照光は、図4に示されるように変調信号の位相が90度遅れるので、下記式(2)のcos(ω2t)がsin(ω2t)に変更される。
この変更にしたがって、式(3)〜(7)と同様の処理により、バンドパスフィルタ47bから送られてきた受光信号Sb’は、下記式(8)に示すように表される。
この変更にしたがって、式(3)〜(7)と同様の処理により、バンドパスフィルタ47bから送られてきた受光信号Sb’は、下記式(8)に示すように表される。
このような受光信号Sa’,Sb’が処理部60に入力される。
AD変換ボード62は、第1受光部30からのトリガ信号によって起動して、受光信号Sa’,Sb’をAD変換する。デジタル化された受光信号S’は、入出力ポート68を通して、メモリ66に一旦記録される。
復調部70は、受光信号S’をメモリ66から呼び出し、復調部70で変調角周波数ωνの情報に基づいて別途生成されたcos(ωνt)と受光信号Sa’とを乗算することにより、さらに、復調部70で生成したcos(ωνt)と受光信号Sb’とを乗算することにより、式(7),(8)中の右辺のcos(ωνt)が除去された値が算出される。すなわち、復調部70は、受光信号Sa’と受光信号Sb’の復調処理を行う。さらに、復調部70は、受光信号Sb’の復調処理結果に対する受光信号Sa’の復調処理結果の比を求める。これにより復調部70は、蛍光のレーザ光に対する位相遅れをθとしたときのtanθを求めることができる。復調部70は、このtanθから蛍光のレーザ光に対する位相遅れθを求める。求めた位相遅れθは、メモリ66に一端記憶される。
AD変換ボード62は、第1受光部30からのトリガ信号によって起動して、受光信号Sa’,Sb’をAD変換する。デジタル化された受光信号S’は、入出力ポート68を通して、メモリ66に一旦記録される。
復調部70は、受光信号S’をメモリ66から呼び出し、復調部70で変調角周波数ωνの情報に基づいて別途生成されたcos(ωνt)と受光信号Sa’とを乗算することにより、さらに、復調部70で生成したcos(ωνt)と受光信号Sb’とを乗算することにより、式(7),(8)中の右辺のcos(ωνt)が除去された値が算出される。すなわち、復調部70は、受光信号Sa’と受光信号Sb’の復調処理を行う。さらに、復調部70は、受光信号Sb’の復調処理結果に対する受光信号Sa’の復調処理結果の比を求める。これにより復調部70は、蛍光のレーザ光に対する位相遅れをθとしたときのtanθを求めることができる。復調部70は、このtanθから蛍光のレーザ光に対する位相遅れθを求める。求めた位相遅れθは、メモリ66に一端記憶される。
蛍光寿命算出部72は、メモリ66に記憶された位相遅れθを呼び出して、この位相遅れθを用いて、蛍光寿命(蛍光緩和時間)τをτ=tanθ/(2πf)(fは変調信号の周波数の値である)に従って算出する。蛍光寿命τを、上記式に従って求めることができるのは、蛍光は、略1次遅れの緩和応答に従うからである。
算出した蛍光寿命τは、ディスプレイ70aあるいはプリンタ70bに送られ、画面表示され、またプリント出力される。また、本実施形態のフローサイトメータでは、測定対象物12が順次フローセル10中の測定場を通過するので、測定対象物12が測定場を通過するたびに、蛍光寿命τが順次算出される。したがって、処理部60は、算出される蛍光寿命τを順次メモリ66に記憶させ、測定対象物12の検査が全て終了した後、メモリ66に記憶した全ての蛍光寿命τを呼び出して統計処理により蛍光の分析を行うこともできる。
算出した蛍光寿命τは、ディスプレイ70aあるいはプリンタ70bに送られ、画面表示され、またプリント出力される。また、本実施形態のフローサイトメータでは、測定対象物12が順次フローセル10中の測定場を通過するので、測定対象物12が測定場を通過するたびに、蛍光寿命τが順次算出される。したがって、処理部60は、算出される蛍光寿命τを順次メモリ66に記憶させ、測定対象物12の検査が全て終了した後、メモリ66に記憶した全ての蛍光寿命τを呼び出して統計処理により蛍光の分析を行うこともできる。
(蛍光検出方法)
図7は、本実施形態の蛍光検出方法のフローの一例を示す図である。
まず、フローサイトメータは、測定対象物12を含む複数の検査対象サンプルを、シース液とともにフローセル10中に一列に流す。このとき、制御部50からの指示により、レーザ光源部20は、測定場を通過した測定対象物12にレーザ光を照射する。このとき、参照光源部32,34は、蛍光と同じ波長成分を有し、光の位相が変調角周波数ωνで時間変調し、かつ強度が周波数fで時間変調した参照光をそれぞれ出射する(ステップS10)。参照光源部34から出射し受光される参照光の強度変調の位相は、参照光源部32から出射し受光される参照光の強度変調の位相に対して90度遅れている。
図7は、本実施形態の蛍光検出方法のフローの一例を示す図である。
まず、フローサイトメータは、測定対象物12を含む複数の検査対象サンプルを、シース液とともにフローセル10中に一列に流す。このとき、制御部50からの指示により、レーザ光源部20は、測定場を通過した測定対象物12にレーザ光を照射する。このとき、参照光源部32,34は、蛍光と同じ波長成分を有し、光の位相が変調角周波数ωνで時間変調し、かつ強度が周波数fで時間変調した参照光をそれぞれ出射する(ステップS10)。参照光源部34から出射し受光される参照光の強度変調の位相は、参照光源部32から出射し受光される参照光の強度変調の位相に対して90度遅れている。
次に、測定対象物12にレーザ光を照射したときに測定対象物12の発する蛍光は、レンズ系41を通してBPF42に入射する。光増幅器43は、BPF42を透過した蛍光を、DCバイアス信号による光の誘導放出を行うことにより、増幅する(ステップS20)。
増幅された蛍光は、BPF44を透過し、ハーフミラ45で分離されて、光電子倍増管46a,46bにいたる。このとき、参照光源部32,34は参照光を出射しているので、分離した蛍光は、参照光とともに、同時に光電子倍増管46a,46bで受光される(ステップS30)。
増幅された蛍光は、BPF44を透過し、ハーフミラ45で分離されて、光電子倍増管46a,46bにいたる。このとき、参照光源部32,34は参照光を出射しているので、分離した蛍光は、参照光とともに、同時に光電子倍増管46a,46bで受光される(ステップS30)。
蛍光及び参照光の受光により光電子倍増管46a,46bが出力する受光信号は、バンドパスフィルタ47a,47bによりバンドパスフィルタ処理が行われる(ステップS40)。バンドパスフィルタ処理では、受光信号の周波数fの成分等が除去され、参照光の位相の時間変調に用いた変調角周波数ωνを角周波数とする成分が抽出される。この抽出された成分は、処理部60に送られる。処理部60は、既知の情報である変調角周波数ωνを用いて復調の処理を施す(ステップS50)。すなわち、上記式(7)からcos(ωνt)が取り除かれた値と、式(8)からからcos(ωνt)が取り除かれた値とが復調の処理により算出される。式(7)及び式(8)から明らかなように、cos(ωνt)が取り除かれ、式(8)からからcos(ωνt)が取り除かれた値は、DC成分の信号であるので、復調部70は、式(7)からからcos(ωνt)が取り除かれた値と式(8)からからcos(ωνt)が取り除かれた値との比を算出する。これにより、蛍光の位相遅れθに対するtanθが算出される(ステップS60)。さらに、復調部70は、tanθから位相遅れθを算出する。
蛍光寿命算出部72は、算出した位相遅れθを用いて、蛍光寿命(蛍光緩和時間)τをτ=tanθ/(2πf)(fは変調信号の周波数の値である)に従って算出する。
算出した蛍光寿命τは、メモリ66に記憶されるとともに、ディスプレイ70a、プリンタ70bに送られ、画面表示され、プリント出力される。
蛍光寿命算出部72は、算出した位相遅れθを用いて、蛍光寿命(蛍光緩和時間)τをτ=tanθ/(2πf)(fは変調信号の周波数の値である)に従って算出する。
算出した蛍光寿命τは、メモリ66に記憶されるとともに、ディスプレイ70a、プリンタ70bに送られ、画面表示され、プリント出力される。
このように、本実施形態では、測定対象物12が発する蛍光を光増幅器43で増幅し、レーザ光の散乱光を増幅しないので、光電子倍増管46a及び光電子倍増管46bには、増幅された蛍光が受光される。このとき、参照光源部32,34は、強度変調の位相がレーザ光の強度変調の位相と同相である第1参照光と、強度変調の位相がレーザ光の強度変調の位相に対して90度シフトした第2参照光とを、それぞれ参照光として出射する。光電子倍増管46aは、第1参照光を蛍光と同時に受光し、光電子倍増管46bは、第2参照光を蛍光と同時に受光する。
バンドパスフィルタ47aは、第1受光信号から、変調角周波数ωνの成分を取り出し、バンドパスフィルタ47bは、第2受光信号から、変調角周波数ωνの成分を取り出す。
処理部60の復調部70は、バンドパスフィルタ47aで取り出した変調角周波数ωνの成分の第1信号を、変調角周波数ωνを用いて復調するとともに、バンドパスフィルタ47bで取り出した変調角周波数ωνの成分の第2信号を、変調角周波数ωνを用いて復調する。復調部70は、第1信号の復調結果と第2信号の復調結果の比率を用いて、位相遅れθを算出する。蛍光寿命算出部72は、この位相遅れθから蛍光寿命を求める。このような構成をフローサイトメータは有するので、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる。
バンドパスフィルタ47aは、第1受光信号から、変調角周波数ωνの成分を取り出し、バンドパスフィルタ47bは、第2受光信号から、変調角周波数ωνの成分を取り出す。
処理部60の復調部70は、バンドパスフィルタ47aで取り出した変調角周波数ωνの成分の第1信号を、変調角周波数ωνを用いて復調するとともに、バンドパスフィルタ47bで取り出した変調角周波数ωνの成分の第2信号を、変調角周波数ωνを用いて復調する。復調部70は、第1信号の復調結果と第2信号の復調結果の比率を用いて、位相遅れθを算出する。蛍光寿命算出部72は、この位相遅れθから蛍光寿命を求める。このような構成をフローサイトメータは有するので、効率よくレーザ光の散乱光を除去し、精度の高い蛍光強度を算出することができる。
本実施形態では、受光信号の復調処理のために、レーザ光と同様に周波数fで強度が時間変調する蛍光の信号を、周波数fの参照信号として用いてミキサでミキシングすることを行わない。すなわち、本実施形態では、ミキサを有するミキシング回路を用いない。ミキサは、ミキシングした結果にDC成分が乗りやすい。このため、微弱な蛍光を受光したとき、上記DC成分の影響を受けて精度の高い位相遅れθ、ひいては蛍光寿命τを算出することができない。本実施形態では、光の位相が角周波数ωνで時間変調する参照光を蛍光と同時に受光させ、受光信号からバンドパスフィルタ47a,47bを用いて角周波数ωνの成分を抽出する構成をとるので、ミキサを用いない。したがって、本実施形態は、このような従来の問題が生じない。
また、本実施形態では、光増幅器43を用いなくてもよい。光電子倍増管46a,46bにおいてレーザ光の散乱光が受光されるとしても、レーザ光の散乱光は、周波数fで強度が時間変調しているとしても、受光により得られる受光信号の中から、変調角周波数ωνの成分の信号を取り出すバンドパスフィルタ47a,47bによってレーザ光の散乱光の信号成分は除去される。このため、光増幅器43を用いなくても、レーザ光の散乱光の信号を受光信号から取り除くことができる。しかし、より効果的にレーザ光の散乱光の信号を受光信号に含めないようにするには、本実施形態のように、光増幅器43を用いることが好ましい。
参照光源部32,34は、参照光源32,34から光電子倍増管46a,46bまでの光路長を時間変化させることにより、光の位相を時間変調する。このため、容易に、参照光の位相の時間変調を行うことができる。例えば、簡易な構成として、超音波振動子32c,34cと超音波振動子32c,34cに設けられた反射面ミラ32d,34dとを含み、超音波振動子32c,32dの振動によって反射ミラ32d,32dの位置が変動する状態で、参照光源32b,34bから入射した参照光を光電子倍増管46a,46bに向けて反射させる。これにより、参照光の位相の時間変調を容易に実現する。参照光源部32,34の構成は、光の位相が時間変調するものであればどのようなものであってもよいが、簡易な構成とするには、超音波振動子32c,34cに設けられた反射面ミラ32d,34dを用いる構成が好ましい。
以上、本発明の蛍光検出装置及び蛍光検出方法について詳細に説明したが、本発明の蛍光検出装置及び蛍光検出方法は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 フローセル
12 測定対象物
20 レーザ光源部
30 第1受光部
32,34 参照光源部
32a,34a レーザドライバ
32b,34b レーザ光源
32c,34c 超音波振動子
32d,34d 反射ミラ
34 参照光源
36 超音波振動子
38 反射ミラ
40 第2受光部
41 レンズ系
42,44 バンドパスフィルタ
45 ハーフミラ
46a,46b 光電子倍増管
47a,47b バンドパスフィルタ
50 制御部
51 発振器
52 パワースプリッタ
53,54,56 アンプ
55 90度位相シフタ
60 処理部
62 AD変換ボード
64 CPU
66 メモリ
68 入出力ポート
70 復調部
72 蛍光寿命算出部
70 出力部
70a ディスプレイ
70b プリンタ
12 測定対象物
20 レーザ光源部
30 第1受光部
32,34 参照光源部
32a,34a レーザドライバ
32b,34b レーザ光源
32c,34c 超音波振動子
32d,34d 反射ミラ
34 参照光源
36 超音波振動子
38 反射ミラ
40 第2受光部
41 レンズ系
42,44 バンドパスフィルタ
45 ハーフミラ
46a,46b 光電子倍増管
47a,47b バンドパスフィルタ
50 制御部
51 発振器
52 パワースプリッタ
53,54,56 アンプ
55 90度位相シフタ
60 処理部
62 AD変換ボード
64 CPU
66 メモリ
68 入出力ポート
70 復調部
72 蛍光寿命算出部
70 出力部
70a ディスプレイ
70b プリンタ
Claims (8)
- 測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出装置であって、
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するレーザ光源部と、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光する受光部と、
前記受光部が前記蛍光を受光する時、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記受光部が前記蛍光と同時に受光するように、前記参照光を出射する参照光源を含む参照光源部と、
前記受光部から出力された受光信号から、前記角周波数ωνの成分を取り出すフィルタ部と、
前記フィルタ部で取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求める処理部と、を有する、ことを特徴とする蛍光検出装置。 - 前記参照光源部は、強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光と、強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光とを、それぞれ前記参照光として出射し、
前記受光部は、前記第1参照光を受光する第1受光素子と、前記第1参照光に対して90度位相がシフトした前記第2参照光を受光する第2受光素子と、を有し、
前記フィルタ部は、前記第1受光素子から出力された第1受光信号から、前記角周波数ωνの成分を取り出す第1フィルタと、前記第2受光素子から出力された第2受光信号から、前記角周波数ωνの成分を取り出す第2フィルタと、を有し、
前記処理部は、前記第1フィルタで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するとともに、前記第2フィルタで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調する復調部と、前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求める蛍光寿命算出部を有する、請求項1に記載の蛍光検出装置。 - 前記参照光源部は、前記参照光源から前記受光素子までの前記参照光の光路長を時間変化させることにより、光の位相を時間変調する、請求項1または2に記載の蛍光検出装置。
- 前記参照光源部は、超音波振動子と前記超音波振動子に設けられた反射面ミラとを含み、前記超音波振動子の振動によって前記反射ミラの位置が変動する状態で、前記参照光源から入射した参照光を前記受光素子に向けて反射させることにより、前記光の位相を時間変調する、請求項1〜3のいずれか1項に記載の蛍光検出装置。
- 前記蛍光を受光する前に、前記蛍光を、バイアス信号による光の誘導放出を行うことにより、前記蛍光を増幅する光増幅部を備える、請求項1〜4のいずれか1項に記載の蛍光検出装置。
- 管路中を一列になって順次流れ、レーザ光の照射位置を通過する複数の検査対象サンプルのそれぞれを測定対象物として蛍光検出を行うフローサイトメータである、請求項1〜5のいずれか1項に記載の蛍光検出装置。
- 測定対象物にレーザ光を照射したときに発せられる蛍光を検出する蛍光検出方法であって、
強度が周波数fで時間変調したレーザ光を出射し前記測定対象物に照射するステップと、
前記測定対象物に前記レーザ光を照射したときに前記測定対象物の発する蛍光を受光するとともに、前記蛍光と同じ波長成分を有し、光の位相が角周波数ωνで時間変調し、かつ強度が前記周波数fで時間変調した参照光を、前記蛍光と同時に受光するステップと、
前記受光により得られた受光信号から、前記角周波数ωνの成分の信号を取り出すステップと、
前記取り出した前記角周波数ωνの成分の信号から、前記角周波数ωνの情報を用いて、前記蛍光の前記レーザ光の強度変調に対する位相遅れを求め、求めた前記位相遅れから、前記蛍光の蛍光寿命を求めるステップと、を有する、ことを特徴とする蛍光検出方法。 - 前記蛍光を受光するステップは、
(A)強度変調の位相が前記レーザ光の強度変調の位相と同相である第1参照光を前記参照光として受光するステップと、
(B)強度変調の位相が前記レーザ光の強度変調の位相に対して90度シフトした第2参照光を前記参照光として前記蛍光と同時に受光する第2ステップ、を含み、
前記角周波数ωνの成分を取り出すステップは、
(C)前記(A)のステップで得られた第1受光信号から、前記角周波数ωνの成分を取り出すステップと、
(D)前記(B)のステップで得られた第2受光信号から、前記角周波数ωνの成分を取り出すステップ、を含み、
前記蛍光寿命を求めるステップは、
(E)前記(D)のステップで取り出した前記角周波数ωνの成分の第1信号を前記角周波数ωνを用いて復調するステップと、
(F)前記(E)のステップで取り出した前記角周波数ωνの成分の第2信号を前記角周波数ωνを用いて復調するステップと、
(G)前記第1信号の復調結果と前記第2信号の復調結果の比率を用いて、前記位相遅れを求めて前記蛍光寿命を求めるステップと、
を含む、請求項7に記載の蛍光検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066902A JP5502124B2 (ja) | 2012-03-23 | 2012-03-23 | 蛍光検出装置及び蛍光検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066902A JP5502124B2 (ja) | 2012-03-23 | 2012-03-23 | 蛍光検出装置及び蛍光検出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013200128A true JP2013200128A (ja) | 2013-10-03 |
JP5502124B2 JP5502124B2 (ja) | 2014-05-28 |
Family
ID=49520493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012066902A Expired - Fee Related JP5502124B2 (ja) | 2012-03-23 | 2012-03-23 | 蛍光検出装置及び蛍光検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5502124B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383083A (zh) * | 2016-11-01 | 2017-02-08 | 北京信息科技大学 | 流式细胞仪光谱重叠信号数字处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431745A (ja) * | 1990-05-28 | 1992-02-03 | Res Dev Corp Of Japan | ヘテロダイン検波受光系を用いた振幅像及び位相像の同時検出装置 |
JP2006226698A (ja) * | 2005-02-15 | 2006-08-31 | Mitsui Eng & Shipbuild Co Ltd | 強度変調したレーザ光による蛍光検出装置 |
JP2007187477A (ja) * | 2006-01-11 | 2007-07-26 | Fujitsu Ltd | 蛍光検出装置 |
JP2010190575A (ja) * | 2009-02-13 | 2010-09-02 | Mitsui Eng & Shipbuild Co Ltd | 蛍光検出装置及び蛍光検出方法 |
WO2010100745A1 (ja) * | 2009-03-05 | 2010-09-10 | オリンパス株式会社 | 光検出装置および光検出方法、並びに、顕微鏡および内視鏡 |
-
2012
- 2012-03-23 JP JP2012066902A patent/JP5502124B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431745A (ja) * | 1990-05-28 | 1992-02-03 | Res Dev Corp Of Japan | ヘテロダイン検波受光系を用いた振幅像及び位相像の同時検出装置 |
JP2006226698A (ja) * | 2005-02-15 | 2006-08-31 | Mitsui Eng & Shipbuild Co Ltd | 強度変調したレーザ光による蛍光検出装置 |
JP2007187477A (ja) * | 2006-01-11 | 2007-07-26 | Fujitsu Ltd | 蛍光検出装置 |
JP2010190575A (ja) * | 2009-02-13 | 2010-09-02 | Mitsui Eng & Shipbuild Co Ltd | 蛍光検出装置及び蛍光検出方法 |
WO2010100745A1 (ja) * | 2009-03-05 | 2010-09-10 | オリンパス株式会社 | 光検出装置および光検出方法、並びに、顕微鏡および内視鏡 |
Non-Patent Citations (1)
Title |
---|
JPN6014006410; Seah L K et al.: 'Phase-resolved fluorescence technique with heterodyne signal processing for imaging of latent finger' Journal of Modern Optics Vol.53, No.12, 20060815, pp.1809-1817 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383083A (zh) * | 2016-11-01 | 2017-02-08 | 北京信息科技大学 | 流式细胞仪光谱重叠信号数字处理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5502124B2 (ja) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101200397B1 (ko) | 형광 검출 장치 및 형광 검출 방법 | |
KR101224976B1 (ko) | 형광 검출 장치 및 형광 검출 방법 | |
JP4500887B2 (ja) | 強度変調したレーザ光による蛍光検出装置および蛍光検出方法 | |
JP4489147B2 (ja) | 強度変調したレーザ光による蛍光検出装置および蛍光検出方法 | |
JP4540751B1 (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP4365439B2 (ja) | 蛍光検出方法及び蛍光検出装置 | |
KR101152614B1 (ko) | 형광 공명 에너지 이동 검출 방법 및 장치 | |
JP2007240424A (ja) | Fret検出方法および装置 | |
JP6703215B1 (ja) | 光学測定装置及び光学測定方法 | |
KR20110118723A (ko) | 형광 검출 방법, 형광 검출 장치 및 프로그램을 기록한 컴퓨터로 읽을 수 있는 매체 | |
JP2013200125A (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP5443404B2 (ja) | 蛍光検出装置、蛍光検出装置の診断方法、および蛍光検出方法 | |
JP5502124B2 (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP4365379B2 (ja) | Fret検出方法及び装置 | |
JP4918178B2 (ja) | 蛍光検出方法 | |
KR20110127170A (ko) | 형광 검출 장치 및 형광 검출 방법 | |
JP2013200285A (ja) | 蛍光検出装置及び蛍光検出方法 | |
JP2012173252A (ja) | 蛍光分析装置および蛍光分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140312 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5502124 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |