WO2010143367A1 - 蛍光検出装置および蛍光検出方法 - Google Patents

蛍光検出装置および蛍光検出方法 Download PDF

Info

Publication number
WO2010143367A1
WO2010143367A1 PCT/JP2010/003563 JP2010003563W WO2010143367A1 WO 2010143367 A1 WO2010143367 A1 WO 2010143367A1 JP 2010003563 W JP2010003563 W JP 2010003563W WO 2010143367 A1 WO2010143367 A1 WO 2010143367A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
signal
light
measurement object
light receiving
Prior art date
Application number
PCT/JP2010/003563
Other languages
English (en)
French (fr)
Inventor
土井恭二
林弘能
星島一輝
浅野有美
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Priority to CN2010800256268A priority Critical patent/CN102822665A/zh
Priority to US13/377,698 priority patent/US20120085933A1/en
Priority to EP10785899A priority patent/EP2442094A1/en
Priority to JP2010521148A priority patent/JP4698766B2/ja
Publication of WO2010143367A1 publication Critical patent/WO2010143367A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing

Definitions

  • the present invention relates to a fluorescence detection apparatus and a fluorescence detection method for receiving fluorescence emitted from a measurement object by irradiating the measurement object with laser light and performing signal processing of a fluorescence signal obtained from the fluorescence.
  • This flow cytometer can measure, for example, the relative amounts of intracellular DNA, RNA, enzymes, proteins, and the like, and can analyze these functions in a short time.
  • FRET Fluorescence Resonance Energy Transfer
  • FRET means that the energy of the first molecule is excited by the laser light irradiation to excite the second molecule, whereby the energy of the first molecule is transferred to the energy of the second molecule.
  • Patent Document 1 listed below describes a detection method and apparatus capable of quantitatively measuring FRET efficiency by excluding uncertain elements of fluorescence detection information.
  • the detection method and apparatus irradiates the measurement target sample by time-modulating the intensity of the laser light at a predetermined frequency, and receives the fluorescence of the measurement target sample at this time by a plurality of detection sensors.
  • a detection value including fluorescence intensity information and phase information of fluorescence is collected.
  • a light-reducing filter is provided in front of the light-receiving surface of an element such as a PMT or an avalanche photodiode, and the light intensity is mechanically adjusted using the light-reducing filter in accordance with the required fluorescence intensity, thereby outputting the light-receiving element. Can be prevented.
  • this method it is difficult to adjust the measurement position irradiated with the laser light within a short time such as several tens of milliseconds through which the measurement target sample passes.
  • the present invention provides a fluorescence detection apparatus and a fluorescence detection method for receiving fluorescence emitted from a measurement object by irradiating the measurement object at a measurement position with laser light and performing signal processing of a fluorescence signal obtained from the fluorescence.
  • An object of the present invention is to improve the saturation of the output of the light receiving unit by a method different from the conventional method.
  • the fluorescence detection device (A) a laser light source unit that emits laser light to irradiate a measurement object; (B) a light receiving unit that outputs a fluorescence signal of fluorescence emitted from a measurement object irradiated with laser light; (C) a light source control unit that generates a modulation signal of a predetermined frequency in order to time-modulate the intensity of the laser light emitted from the laser light source unit; (D) a processing unit that calculates the fluorescence relaxation time of the fluorescence of the measurement object from the fluorescence signal output from the light receiving unit by irradiating the measurement object with time-modulated laser light; Have (E) The light receiving unit includes a lens that collects fluorescence between the measurement position
  • the said light-receiving part has a signal adder which adds the partial fluorescence signal obtained for every said some area
  • the light receiving unit is preferably provided with a switching circuit for each of the plurality of regions to determine whether or not to supply the partial fluorescence signal obtained for each of the plurality of regions to the signal adder.
  • the processing unit calculates a fluorescence intensity from the fluorescence signal. When the fluorescence intensity exceeds a predetermined threshold, the switching circuit supplies the partial fluorescence signal to the signal adder. It is preferable to limit the number.
  • the light receiving unit is provided with a gain adjuster that adjusts the gain of the partial fluorescent signal for each of the plurality of regions before the partial fluorescent signal is supplied to the switching circuit, and the gain of the partial fluorescent signal is aligned. It is preferable that
  • the light receiving unit includes a diffusing plate between the lens and the light receiving surface and forms an image of the fluorescence on the diffusing plate by the lens.
  • the light receiving unit includes a cylindrical optical waveguide provided between the lens and the light receiving surface so that incident fluorescent light is reflected by the wall surface and is provided in parallel to the optical axis of the lens.
  • the lens of the light receiving portion forms fluorescence having a light beam having a uniform light intensity distribution by making the condensed fluorescence substantially parallel light.
  • Generating a partial fluorescence signal of (H) adding at least some of the plurality of partial fluorescence signals to generate one fluorescence signal; (I) calculating the fluorescence relaxation time of the fluorescence of the measurement object from the generated fluorescence signal using the modulation signal.
  • the fluorescence that has passed through the lens is converted into a light beam having a uniform light intensity distribution, and then the fluorescent light beam is divided into a plurality of regions and received separately in the plurality of regions. .
  • fluorescence having a uniform light intensity distribution is received by being distributed to a plurality of light receiving surfaces, so that the saturation of the output of the light receiving element in the light receiving unit can be improved.
  • a switching circuit when a switching circuit is used, when the fluorescence intensity output when all the switching circuits are initially turned on exceeds a predetermined threshold, a part of the switching circuit can be switched off.
  • the signal level in the processing unit can be freely controlled by the switching circuit, so that the dynamic range of the fluorescence intensity that can be processed in the processing unit can be made larger than before, and the fluorescence can be reduced with a wide dynamic range. Time can be calculated.
  • FIG. 2 is a diagram illustrating a schematic configuration of an example of a control / processing unit of the flow cytometer illustrated in FIG. 1. It is a figure which shows the schematic structure of an example of the analyzer of the flow cytometer shown in FIG. It is a figure which shows the schematic structure of another example of the light-receiving part shown in FIG. It is a figure which shows the structure of the outline of another example of the light-receiving part shown in FIG.
  • FIG. 1 is a schematic configuration diagram of a flow cytometer 10 using a fluorescence detection device.
  • the flow cytometer 10 includes a signal processing device 20 and an analysis device (computer) 80.
  • the signal processing device 20 receives the laser light and emits the fluorescent dye emitted from the fluorescent dye in the sample 12.
  • Signal processing is performed by detecting the fluorescence signal.
  • the analyzer 80 calculates the fluorescence relaxation time of the measurement object in the sample 12 and analyzes the measurement object from the processing result obtained by the signal processing device 20.
  • the signal processing device 20 includes a laser light source unit 22, light receiving units 24 and 26, a control / processing unit 28, and a conduit 30.
  • the control / processing unit 28 includes a control unit that modulates the intensity of the laser light from the laser light source unit 22 at a predetermined frequency, and a signal processing unit that processes the fluorescence signal from the sample 12.
  • the pipe line 30 is included in a sheath liquid that forms a high-speed flow, and the sample 12 flows to form a laminar sheath flow.
  • a recovery container 32 is provided at the outlet of the conduit 30.
  • the flow cytometer 10 it is determined whether or not the sample 12 is a specific sample within a short time by irradiating the laser beam, and a cell sorter for separating the sample 12 from other samples is arranged and separated into separate collection containers. It can also be configured as follows.
  • the laser light source unit 22 emits laser light having a predetermined wavelength.
  • a lens is provided so that the laser beam is focused at a predetermined position in the pipe 30, and this focused position becomes a measurement position for examining the fluorescence of the sample 12.
  • FIG. 2 is a diagram illustrating an example of the configuration of the laser light source unit 22.
  • the laser light source unit 22 includes a laser light source 22a, a lens 22b, and a laser driver 22c.
  • the laser light source 22a emits intensity-modulated laser light having a predetermined wavelength in the visible light band of 350 nm to 800 nm.
  • the laser light source 22a emits red laser light as CW (continuous wave) laser light having a constant intensity, and emits the CW laser light while modulating the intensity of the CW laser light at a predetermined frequency.
  • the green laser light is emitted as CW laser light having a constant intensity, and the intensity of the CW laser light is emitted while being modulated at a predetermined frequency.
  • blue laser light is emitted as CW laser light having a constant intensity, and the intensity of the CW laser light is emitted while being modulated at a predetermined frequency.
  • the lens 22 b focuses the laser beam on the measurement position in the pipe line 30.
  • the laser beam is applied to the sample 12 as a beam having a diameter of about several tens of ⁇ m.
  • the laser driver 22 c generates a signal for driving the laser light source 22 a using the signal supplied from the control / processing unit 28.
  • a semiconductor laser is used as the laser light source 22a.
  • the laser beam has an output of about 5 to 100 mW, for example.
  • the frequency (modulation frequency) for modulating the intensity of the laser light is slightly longer than the fluorescence relaxation time of the fluorescent dye of the sample 12, for example, 10 to 50 MHz.
  • the laser light source 22a oscillates in a predetermined wavelength band so that the laser light excites the fluorescent dye to emit fluorescence in a specific wavelength band.
  • the fluorescent dye excited by the laser light is attached to the sample 12 to be measured, and when the sample 12 passes through the measurement position of the conduit 30 as a measurement object, it is identified by receiving laser light irradiation at the measurement position. Fluorescent at a wavelength of.
  • the light receiving unit 24 is disposed so as to face the laser light source unit 22 with the pipe line 30 interposed therebetween, and the sample 12 passes through the measurement position when the laser beam is forward scattered by the sample 12 passing through the measurement position.
  • a photoelectric converter that outputs a detection signal to that effect.
  • the signal output from the light receiving unit 24 is supplied to the control / processing unit 28, and is used as a trigger signal for notifying the timing at which the sample 12 passes through the measurement position in the pipe 30 in the control / processing unit 28.
  • the light receiving unit 26 is a measurement that is perpendicular to the emission direction of the laser light emitted from the laser light source unit 22 and perpendicular to the flow direction of the sample 12 in the pipe line 30 and the plane passing through the measurement position.
  • the photomultiplier tube is disposed at a position on the line of intersection with a plane passing through the position, and receives fluorescence emitted from the sample 12 at the measurement position.
  • FIG. 3 is a configuration diagram illustrating a schematic configuration of an example of the light receiving unit 26. 3 includes a lens 26a, a diffusion plate 26b, a bandpass filter 26c, PMTs (photomultiplier tubes) 26d 1 to d n (n is an integer of 1 or more), and a gain adjuster. 26e 1 ⁇ e n (n is an integer of 1 or more) and the switching circuits 26f 1 ⁇ f n (n is an integer of 1 or more), a signal adding circuit (power combiner) 26 g, the lens array 26h 1 ⁇ h n (n is an integer of 1 or more).
  • PMTs photomultiplier tubes
  • the lens 26a is a lens that collects the fluorescence emitted from the sample 12.
  • the diffusion plate 26 b is a plate member that diffuses the fluorescence imaged on the surface of the diffusion plate 26 b by the lens 26.
  • the diffuser plate 26b is a sheet having a surface with irregularities so that light incident on the transparent substrate is irregularly reflected, or a sheet having a fine particle that causes irregular reflection dispersed in the transparent substrate. It is done.
  • the fluorescence incident on the diffusion plate 26b is emitted from the diffusion plate 26b as diffused light having a uniform light intensity distribution.
  • Bandpass filter 26c is provided on the front surface of the light receiving surface of PMT26d 1 ⁇ d n, a filter bank only the fluorescence of a predetermined wavelength band is transmitted.
  • the wavelength band of the transmitted fluorescence is set corresponding to the wavelength band of the fluorescence.
  • the lens arrays 26h 1 to h n efficiently receive light from the fluorescent light beams that have passed through the band-pass filter 26c, as well as the portions located in the gaps and partitions of the light receiving surfaces of a plurality of PMTs 26d 1 to d n described later. Condensed to Further, electrons run the partition portion by fluorescence incident on the partition portion of PMT26d 1 ⁇ d n, unnecessary fluorescence signal based on the long electron transit time is generated. Therefore, the lens array 26h 1 ⁇ h n correspond to the light receiving surface of PMT26d 1 ⁇ d n, fluorescence partition portion so as not incident are set interval and size.
  • the PMTs 26d 1 to d n are portions that output fluorescent fluorescence signals, and the fluorescent luminous flux is divided into a plurality of regions and received separately in the plurality of regions.
  • the PMTs 26d 1 to d n are formed by bundling a plurality of PMTs, but a multi-channel PMT may be used.
  • an avalanche photodiode may be used instead of the PMT.
  • Gain adjuster 26e 1 ⁇ e n the current - and a voltage converter and a voltage regulator. Since the outputs of the PMTs 26d 1 to d n are currents, the current-voltage conversion unit converts the currents into voltages in order to enable signal addition processing.
  • the voltage adjustment unit adjusts the voltage by adjusting the amplification factor of the voltage amplification amplifier or the resistance value of the variable resistor. As a result, even when light having a constant light intensity distribution is incident, gain adjustment is performed so that the fluorescence signal is output at the same voltage. That is, before the fluorescence signals of each region are supplied to the switching circuits 26f 1 to f n , the gains are adjusted and aligned for each region. The reason why the gains of the fluorescent signals (hereinafter referred to as partial fluorescent signals) in each region are adjusted and the gains are made uniform between the regions is because the number of partial fluorescent signals added is controlled by the switching circuits 26f 1 to f n as described later. It is.
  • the switching circuits 26f 1 to f n perform an on / off operation of supplying partial fluorescent signals in each region in order to control whether or not to supply partial fluorescent signals that have become voltage signals to a signal adding circuit 26g described later. Do. This on / off operation is controlled by a control signal from a signal control unit 80d of the analyzer 80 described later. Thereby, the number of partial fluorescence signals supplied to the signal addition circuit 26g can be limited.
  • the signal addition circuit 26g adds the partial fluorescence signals supplied via the switching circuits 26f 1 to f n to form one fluorescence signal. That is, among the plurality of regions, the partial fluorescence signals supplied via the switching circuits 26f 1 to f n are added and one fluorescence signal is output.
  • Control signals for on / off operations of the switching circuits 26f 1 to f n are generated in the analyzer 80. Specifically, when the fluorescence intensity calculated in the analyzer 80 exceeds a predetermined threshold value, the switching circuits 26f 1 to f n are controlled so as to limit the number of partial fluorescence signals supplied to the signal adding circuit 26g. Generate a signal. Of the switching circuits 26f 1 to f n , which position of the switching circuit is turned on is not particularly limited.
  • Fluorescence signal is a signal obtained by receiving in diffused light and is in PMT26d 1 ⁇ d n of uniform light intensity by the diffusion plate 26b, moreover, are adjusted so that the gain of the portion the fluorescence signal of each region are aligned It is because it is a signal.
  • One fluorescence signal generated by the signal adding circuit 26g is supplied to the amplifier 54 in the signal processing unit 42 of the control / processing unit 28.
  • the current gain adjuster 26e 1 ⁇ provided e n and the switching circuit 26f 1 ⁇ f n, but the PMT26d 1 ⁇ d n where light having a luminous flux having a uniform light intensity output If are aligned, omitting the gain adjusters 26e 1 ⁇ e n, after selectively adding each current through the switching circuit, it is also possible to use a structure for converting the voltage. Since the addition of the current only uses a switching circuit, a simple configuration can be achieved.
  • the on / off operation of the switching circuits 26f 1 to f n is controlled by a control signal from the signal control unit 80d of the analyzer 80.
  • the operator of the flow cytometer 10 may set a switching circuit to be turned on or off in the switching circuits 26f 1 to f n by manual input while referring to the output of the fluorescence intensity calculation result. .
  • the control / processing unit 28 includes a signal generation unit 40, a signal processing unit 42, and a controller 44.
  • the signal generation unit 40 and the controller 44 form a light source control unit that generates a modulation signal having a predetermined frequency.
  • the signal generator 40 is a part that generates a modulation signal for modulating (amplitude modulation) the intensity of the laser light at a predetermined frequency.
  • the signal generation unit 40 includes an oscillator 46, a power splitter 48, and amplifiers 50 and 52, and supplies the generated modulation signal to the laser driver 22c of the laser light source unit 22 via the amplifier 50.
  • the signal is supplied to the signal processing unit 42 via the amplifier 52.
  • the reason why the modulation signal is supplied to the signal processing unit 42 is to use it as a reference signal for detecting the fluorescence signal output from the signal adding circuit 26g, as will be described later.
  • the modulation signal is a sine wave signal having a predetermined frequency, and is set to a frequency in the range of 10 to 50 MHz.
  • the signal processing unit 42 is a part for extracting information on the phase delay of the fluorescence emitted from the sample 12 by the laser light irradiation, using the fluorescence signal output from the signal addition circuit 26g.
  • the signal processing unit 42 includes an amplifier 54, an IQ mixer 58, a low pass filter 60, and an amplifier 62.
  • the amplifier 54 amplifies the fluorescence signal output from the signal addition circuit 26g.
  • the IQ mixer 58 receives the modulated fluorescence signal, which is a sine wave signal supplied from the signal generation unit 40, and synthesizes the amplified fluorescence signal with the amplified fluorescence signal using the modulated signal as a reference signal.
  • the low-pass filter 60 filters the result processed by the IQ mixer 58 and extracts a low-frequency component including a DC component.
  • the amplifier 62 amplifies the low frequency component signal.
  • the IQ mixer 58 is a device that synthesizes the fluorescence signal supplied from the signal addition circuit 26g with the modulation signal supplied from the signal generation unit 40 as a reference signal. Specifically, the IQ mixer 58 multiplies the reference signal by the fluorescence signal (RF signal) to generate a processing signal including a cos component and a high frequency component of the fluorescence signal, and shifts the phase of the reference signal by 90 degrees. The processed signal is multiplied by the fluorescence signal to generate a processing signal including the sin component and the high frequency component of the fluorescence signal. The processing signal including the cos component and the processing signal including the sin component are supplied to the low pass filter 50.
  • RF signal fluorescence signal
  • the cos component and sin component of the fluorescence signal are extracted from the processing signal, and the cos component (hereinafter referred to as Re component data) and sin component (hereinafter referred to as Im component data) of the fluorescence signal are obtained by the amplifier 62. Amplified and supplied to the analyzer 80.
  • the controller 44 controls the signal generation unit 40 to generate a sine wave signal having a predetermined frequency, generates a trigger signal for starting processing of the sample 12 using the detection signal supplied from the light receiving unit 24, and Output to IQ mixer 58.
  • the IQ mixer 58 knows the timing of the measurement position of the sample 12 and starts processing the fluorescence signal.
  • the analyzer 80 obtains the values of the fluorescence phase delay ⁇ and the fluorescence intensity using the supplied Re component data (cos component of the fluorescence signal) and Im component data (sin component of the fluorescence signal). Further, when the value of the fluorescence intensity deviates from a preset range, the analyzer 80 generates a control signal that limits the number of partial fluorescence signals supplied to the signal addition circuit 26g by the switching circuits 26f 1 to f n. And supplied to the switching circuits 26f 1 to f n .
  • FIG. 5 is a diagram showing a schematic configuration of the analyzer 80.
  • the analyzer 80 includes a fluorescence intensity signal generation unit 80a, a fluorescence intensity calculation unit 80b, a phase lag calculation unit 80c, a signal control unit 80d, and a fluorescence relaxation time calculation unit 80e.
  • Each of these parts is a module formed by executing a program executable by a computer. That is, the analysis device 80 generates each function by starting software on the computer.
  • the analyzer 80 includes an AD converter 80f.
  • the fluorescence intensity signal generation unit 80a calculates a fluorescence intensity signal by calculating the square root by adding the square of Re component data and Im component data supplied from the amplifier 62 and converted into a digital signal by the AD converter 80f. It is.
  • the calculated fluorescence intensity signal is sent to the fluorescence intensity calculator 80b.
  • the fluorescence intensity signal is time-series data calculated using Re component data and Im component data continuously supplied during a period in which the sample 12 passes the measurement point of the laser beam.
  • the fluorescence intensity calculation unit 80b obtains the value of the fluorescence intensity during the period in which the sample 12 passes the measurement position from the fluorescence intensity signal of the time series data output from the fluorescence intensity signal generation unit 80a.
  • the fluorescence intensity calculating unit 80b obtains the value of the fluorescence intensity using the information on the number of ON operations.
  • the value of the fluorescence intensity is obtained using a larger correction coefficient value than when all of the switching circuits 26f 1 to f n are ON.
  • the value to be obtained may be a value for each time of the fluorescence intensity, or may be one integral value during a period of passing through the measurement position.
  • the passage of the measurement position of the sample 12 can be known from the detection signal supplied from the light receiving unit 24.
  • the value of the fluorescence intensity thus obtained is supplied to the signal control unit 80d.
  • the phase delay calculation unit 80c uses the Re component data and the Im component data supplied from the amplifier 62 and converted into a digital signal by the AD converter 80f, and tan ⁇ 1 (Im / Re) (Im is Im component data). And Re is the value of Re component data) to calculate the phase delay ⁇ .
  • the calculated phase delay ⁇ is supplied to the signal control unit 80d. Also supplied to the fluorescence relaxation time calculation unit 80e.
  • the reason why the fluorescence relaxation time ⁇ can be obtained according to the above equation is that the fluorescence follows a relaxation response with a substantially first-order lag. Note that the frequency f of the modulation signal is fixed in advance.
  • the signal control unit 80d determines whether or not the value of the fluorescence intensity supplied from the fluorescence intensity calculation unit 80b falls within a preset range, and controls the switching circuits 26f 1 to f n according to the determination result. Generate a signal. When the value falls within a preset range, an instruction to output the fluorescence intensity calculation result and the fluorescence relaxation time calculation result is given to the fluorescence intensity calculation unit 80b and the fluorescence relaxation time calculation unit 80e. That is, if the fluorescence intensity value supplied from the fluorescence intensity calculation unit 80b does not fall within the preset range, the signal control unit 80d obtains the number of switching circuits 26f 1 to f n to be switched off, In response, a control signal is generated. Specifically, when the fluorescence intensity exceeds a predetermined threshold, the number of partial fluorescence signals supplied to the signal adder 26g by the switching circuits 26f 1 to f n is limited.
  • the on / off operation of the switching circuits 26f 1 to f n is executed according to the determination result of the fluorescence intensity in the signal control unit 80d.
  • the calculated fluorescence intensity, fluorescence relaxation time ⁇ , fluorescence signal of time series data and phase delay data are output to an output device (not shown).
  • the intensity of laser light applied to the sample 12 is time-modulated with a modulation signal having a predetermined frequency, and the sample 12 is irradiated at the measurement position.
  • the fluorescence emitted from the sample 12 by irradiating the sample 12 with laser light is converted into a light beam having a uniform light intensity distribution by the light receiving unit 26 using the diffusion plate 26b, and this fluorescent light beam is converted into PMT 126d 1- . in d n, received in a plurality of regions. Thereby, a partial fluorescence signal for each of a plurality of regions is generated.
  • the signal adding circuit 26g at least a part of the generated partial fluorescent signals for each of the plurality of regions is added to generate one fluorescent signal.
  • the control / processing unit 28 and the analyzer 80 extract the fluorescence Re component data and Im component data of the sample 12 from the generated fluorescence signal using the modulation signal, and use this Re component data and Im component data to obtain fluorescence. Calculate relaxation time. Then, if the fluorescence intensity of the fluorescence of the sample 12 is calculated from the fluorescence signal exceeds a predetermined threshold value, limits the addition number of parts fluorescence signal for each area generated by PMT126d 1 ⁇ d n.
  • the light receiving unit 26 of the flow cytometer 10 includes the lens 26a and the diffusion plate 26b, and the light receiving unit 26 uses the diffusion plate 26b to distribute the light that has passed through the lens 26a with a uniform light intensity distribution. Then, the fluorescent luminous flux is divided into a plurality of areas by the PMTs 26d 1 to d n and received separately in the plurality of areas. Therefore, since the fluorescence is dispersed and received on the plurality of light receiving surfaces as light having a uniform light intensity distribution, output saturation in the PMTs 26d 1 to d n can be improved.
  • FIG. 6 is a diagram illustrating a configuration of a light receiving unit 126 that is a modification of the light receiving unit 26 illustrated in FIG. 3. Similarly to the light receiving unit 26, the light receiving unit 126 is perpendicular to the emission direction of the laser light emitted from the laser light source unit 22 and is parallel to the measurement position and the moving direction of the sample 12 in the pipe 30. And a photomultiplier tube that is arranged on a line perpendicular to the plane passing through the measurement position and receives fluorescence emitted from the sample 12 at the measurement position.
  • the light receiving unit 126 includes a lens 126a that collects fluorescence from the sample 12, a bandpass filter 126c, an optical waveguide 126i, and PMTs (photomultiplier tubes) 126d 1 to d n (n is an integer of 1 or more).
  • the optical waveguide 126i is provided on the light receiving surface side from the imaging position of the lens 126a, and is incident after passing through the band-pass filter 126c in a state where the fluorescent luminous flux is diffused.
  • the optical waveguide 126i has a cylindrical shape of a polygonal column (for example, a hexagonal column), and the wall surface of the polygonal column is a complete reflection surface.
  • the lens 126a It passes through the lens 126a, the fluorescence that has passed through the image forming position, while diffusing the light beam, while reflection on the wall surface of the optical waveguide 126i, since reaching the lens array 26h 1 ⁇ h n, the lens array 26h 1 ⁇ When h n is reached, the fluorescence becomes diffuse light with a uniform light intensity distribution traveling in various directions.
  • the optical waveguide 126i include a TECSPEC (registered trademark) light pipe manufactured by Edmund Optics.
  • the light receiving unit 126 includes the lens 126a and the optical waveguide 126i similarly to the light receiving unit 26 illustrated in FIG. 3, and the light receiving unit 126 transmits the fluorescence that has passed through the lens 126a to the optical waveguide 126i.
  • the fluorescent light beam is divided into a plurality of regions by the PMTs 126d 1 to d n and received separately in the plurality of regions. Therefore, since the fluorescence is dispersed and received on the plurality of light receiving surfaces as light having a uniform light intensity distribution, output saturation in the PMTs 126d 1 to d n can be improved.
  • the analyzer 80 calculates the fluorescence intensity using information on the number of ON operations of the switching circuits 126f 1 to f n .
  • FIG. 7 is a diagram illustrating a configuration of a light receiving unit 136 that is a modification of the light receiving unit 26 illustrated in FIG. 3. Similar to the light receiving unit 26, the light receiving unit 136 is perpendicular to the emission direction of the laser light emitted from the laser light source unit 22 and passes through the measurement position and the moving direction of the sample 12 in the pipe 30. And a photomultiplier tube that is arranged on a line perpendicular to the plane passing through the measurement position and receives fluorescence emitted from the sample 12 at the measurement position.
  • a line segment connecting the position of the principal point of the lens 136a and the measurement position of the sample 12 is located on the optical axis of the lens 136a, and the distance of this line segment is approximately equal to the focal length of the lens 136a ( The lens) is positioned. Therefore, the fluorescence emitted from the sample 12 passes through the lens 136a to form a substantially parallel light beam having a uniform light intensity distribution. Fluorescence of the substantially parallel beam is separately received in a plurality of regions by PMT136d 1 ⁇ d n is divided into a plurality of regions. In this example, the fluorescence is a substantially parallel light beam, but is not limited to a completely parallel light beam. It is preferable that the light flux spreads almost uniformly on at least the light receiving surfaces of PMTs 136d 1 to d n .
  • the light receiving unit 136 forms a substantially parallel light beam having a uniform light intensity distribution from the fluorescence that has passed through the lens 136a, and then the fluorescent light beam.
  • the PMTs 136d 1 to d n are divided into a plurality of areas by the PMTs 136d 1 to d n and received separately in the plurality of areas. Therefore, since fluorescence having a uniform light intensity distribution is received by being distributed to a plurality of light receiving surfaces, saturation of output in each of the PMTs 136d 1 to d n can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 蛍光を検出するとき、測定対象物に照射するレーザ光の強度を所定の周波数の変調信号で時間変調させて測定対象物に照射する。次に、レーザ光の照射を受けた測定対象物が発する蛍光を、光強度の分布が均一な光束とし、この蛍光の光束を、複数の領域に分けて受光することにより、複数の部分蛍光信号を生成する。この複数の部分蛍光信号の少なくとも一部を加算して1つの蛍光信号を生成する。生成した蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する。蛍光信号から算出される測定対象物の蛍光の蛍光強度が所定の閾値を越える場合、前記部分蛍光信号の加算数を制限する。これにより、受光部の出力の飽和を改善する。

Description

蛍光検出装置および蛍光検出方法
 本発明は、測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う蛍光検出装置および蛍光検出方法に関する。
 医療、生物分野で用いられるフローサイトメータは、光を照射することにより測定対象物の発する光を受光して、測定対象物の種類を特定し、分析する装置である。
 具体的には、フローサイトメータは、細胞、DNA、RNA、酵素、蛋白等の生体物質を含む混濁液を蛍光試薬でラベル化し、圧力を与えて毎秒10m以内程度の速度で管路内を流れるシース液に測定対象物を流してラミナーシースフローを形成する。このフロー中の測定対象物にレーザ光を照射することにより、測定対象物に付着した蛍光色素が発する蛍光を受光し、この蛍光をラベルとして識別することで測定対象物を特定する。
 このフローサイトメータでは、例えば、細胞内のDNA、RNA、酵素、蛋白質等の細胞内相対量を計測し、またこれらの働きを短時間で解析することができる。特に、医療分野において、蛋白質同士の相互作用に関する研究が盛んに行われ、FRET(Fluorescence Resonance Energy Transfer:蛍光共鳴エネルギー移動)が効率よく利用されている。FRETは、レーザ光の照射によって励起された第1分子のエネルギーが第2分子を励起することにより、第1分子のエネルギーが第2分子のエネルギーに移動することをいう。
 下記特許文献1には、蛍光検出情報の不確定要素を除外して、定量的にFRET効率を測定することを可能とする検出方法および装置が記載されている。
 当該検出方法及び装置は、レーザ光の強度を所定の周波数で時間変調して測定対象サンプルについて照射し、このときの測定対象サンプルの蛍光を複数の検出センサで受光することにより、測定対象サンプルの蛍光の蛍光強度情報および位相情報を含む検出値を収集する。
特開2007-240424号公報
 しかし、上記公報に記載される検出方法および装置では、測定対象サンプルが発する蛍光の蛍光強度のダイナミックレンジが広いので、蛍光を受光する受光素子の出力が飽和状態となり、蛍光の位相情報が得られない場合がある。
 一方、光電子増倍管(PMT)の場合、加速電圧を制御してゲイン調整をすることにより、一般に受光素子の出力の飽和を防止することができる。しかし、このゲイン調整は、PMT内部で電子を加速させる加速電圧を制御し、電子走行時間が変化するため、蛍光の位相情報が正しく得られないといった問題がある。このため、較正用のテーブルを用意しておくといった煩雑さがある。
 このような受光素子の出力の飽和の問題は、FRETを用いた蛍光検出に限られない。
 また、PMTやアバランシェフォトダイオード等の素子の受光面の前面に減光フィルタを設け、求められる蛍光強度に応じて減光フィルタを用いて機械的に光強度を調整することにより、受光素子の出力の飽和を防止することができる。しかし、この方法は、レーザ光の照射される測定位置を測定対象サンプルが通過する数10m秒等の短時間内に調整することは難しい。
 そこで、本発明は、測定位置にある測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う蛍光検出装置および蛍光検出方法において、従来と異なる方法により、受光部の出力の飽和を改善することを目的とする。
 上記目的は、測定位置にある測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う、以下の蛍光検出装置により達成される。
 すなわち、蛍光検出装置は、
(A)測定対象物に照射するレーザ光を出射するレーザ光源部と、
(B)レーザ光の照射された測定対象物から発する蛍光の蛍光信号を出力する受光部と、
(C)前記レーザ光源部から出射するレーザ光の強度を時間変調させるために、所定の周波数の変調信号を生成する光源制御部と、
(D)時間変調したレーザ光を測定対照物に照射することにより前記受光部で出力された蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する処理部と、を有する。
(E)前記受光部は、前記測定対象物の測定位置と蛍光の受光面との間に、蛍光を集光するレンズを有し、さらに、前記受光部は、前記レンズを通過した前記蛍光について、均一な光強度の分布を有する光束を形成させる手段と、この手段により形成された蛍光の前記光束を、複数の領域に分けて別々に受光する受光素子とを有する。
 その際、前記受光部は、前記複数の領域毎に得られる部分蛍光信号を加算して1つの蛍光信号とする信号加算器を有することが好ましい。
 前記受光部には、前記複数の領域毎に得られた部分蛍光信号を前記信号加算器に供給するか否かを行うスイッチング回路が前記複数の領域毎に設けられていることが好ましい。
 前記処理部は、前記蛍光緩和時間を算出するほか、前記蛍光信号から蛍光強度を算出し、蛍光強度が所定の閾値を越える場合、前記スイッチング回路による前記部分蛍光信号の前記信号加算器への供給数を制限することが好ましい。
 前記受光部には、前記部分蛍光信号が前記スイッチング回路に供給される前に、前記複数の領域毎に前記部分蛍光信号をゲイン調整するゲイン調整器が設けられ、前記部分蛍光信号のゲインが揃えられていることが好ましい。
 前記受光部は、前記レンズと前記受光面の間に、拡散板を備え、前記レンズにより前記蛍光を前記拡散板上で結像させる構成であることが好ましい。
 前記受光部は、前記レンズと前記受光面の間に、入射した蛍光を壁面で反射させる、前記レンズの光軸に平行に設けられた筒状の光導波管を備える構成であることも同様に好ましい。
 あるいは、前記受光部の前記レンズは、集光した蛍光を略平行光とすることにより、均一な光強度の分布を有する光束を持つ蛍光を形成する、ことも同様に好ましい。
 さらに、上記目的は、測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う、以下の蛍光検出方法により、達成される。
 すなわち、蛍光検出方法は、
(F)測定対象物に照射するレーザ光の強度を所定の周波数の変調信号で時間変調させて測定対象物に照射するステップと、
(G)測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を、光強度の分布が均一な光束とし、前記蛍光の光束を、複数の領域に分けて受光することにより、複数の部分蛍光信号を生成するステップと、
(H)前記複数の部分蛍光信号の少なくとも一部を加算して1つの蛍光信号を生成するステップと、
(I)生成した前記蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出するステップと、を有する。
 その際、前記蛍光信号から算出される測定対象物の蛍光の蛍光強度が所定の閾値を越える場合、前記部分蛍光信号の加算数を制限することが好ましい。 
 上述の蛍光検出装置および蛍光検出方法では、レンズを通過した蛍光を、均一な光強度の分布を有する光束にした後、蛍光の光束を、複数の領域に分けて複数の領域で別々に受光する。上述の蛍光検出装置および蛍光検出方法は、均一な光強度の分布を持つ蛍光を、複数の受光面に分散させて受光するので、受光部における受光素子の出力の飽和を改善することができる。
 また、スイッチング回路が用いられる場合、最初、スイッチング回路の全てをオン動作させたときに出力される蛍光強度が所定の閾値を越える場合、スイッチング回路の一部をオフに切り替えることができる。このため、処理部内での信号レベルをスイッチング回路にて自在に抑制することができるので、処理部内で処理可能な蛍光強度のダイナミックレンジを従来よりも大きく取ることができ、広いダイナミックレンジで蛍光緩和時間を算出することができる。
本発明の一実施形態である蛍光検出装置を用いたフローサイトメータの概略構成図である。 図1に示すフローサイトメータのレーザ光源部の一例の構成を示す図である。 図1に示すフローサイトメータの受光部の一例の概略の構成を示す図である。 図1に示すフローサイトメータの制御・処理部の一例の概略の構成を示す図である。 図1に示すフローサイトメータの分析装置の一例の概略の構成を示す図である。 図3に示す受光部の別の例の概略の構成を示す図である。 図3に示す受光部のさらに別の例の概略の構成を示す図である。
 以下、本発明の蛍光検出装置および蛍光検出方法を、添付図面に示された実施形態に基づいて説明する。
(実施形態)
 図1は、蛍光検出装置を用いたフローサイトメータ10の概略構成図である。フローサイトメータ10は、信号処理装置20と分析装置(コンピュータ)80とを有する。信号処理装置20は、測定対象とする蛍光染色された蛍光蛋白質等の試料12が蛍光検出のための測定位置を通過するとき、レーザ光の照射を受けて試料12中の蛍光色素が発する蛍光の蛍光信号を検出して信号処理をする。分析装置80は、信号処理装置20で得られた処理結果から試料12中の測定対象物の蛍光緩和時間の算出および測定対象物の分析を行なう。
 信号処理装置20は、レーザ光源部22と、受光部24、26と、制御・処理部28と、管路30とを有する。
 制御・処理部28は、レーザ光源部22からのレーザ光を所定の周波数で強度変調させる制御部、及び試料12からの蛍光信号を処理する信号処理部を含む。管路30は、高速流を形成するシース液に含ませて試料12を流してラミナーシースフローを形成する。
 管路30の出口には、回収容器32が設けられている。フローサイトメータ10には、レーザ光の照射により短時間内に試料12が特定の試料か否かを見つけ出し、他の試料から分離するためのセル・ソータを配置して別々の回収容器に分離するように構成することもできる。
 レーザ光源部22は、所定の波長のレーザ光を出射する。レーザ光が管路30中の所定の位置に集束するようにレンズが設けられ、この集束位置が試料12の蛍光を調べる測定位置となる。
 図2は、レーザ光源部22の構成の一例を示す図である。
レーザ光源部22は、レーザ光源22aと、レンズ22bと、レーザドライバ22cとを有する。
 レーザ光源22aは、350nm~800nmの可視光帯域内の所定の波長を有し、強度変調したレーザ光を出射する。レーザ光源22aは、例えば、赤色のレーザ光を強度が一定のCW(連続波)レーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら出射する。あるいは、緑色のレーザ光を強度が一定のCWレーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら出射する。あるいは、例えば、青色のレーザ光を、強度が一定のCWレーザ光として出射し、かつこのCWレーザ光の強度を所定の周波数で変調しながら出射する。
 レンズ22bは、レーザ光を管路30中の測定位置に集束させる。レーザ光は、直径数10μm程度のビームとして試料12に照射する。レーザドライバ22cは、制御・処理部28から供給された信号を用いてレーザ光源22aを駆動する信号を生成する。
 レーザ光源22aとして例えば半導体レーザが用いられる。レーザ光は、例えば5~100mW程度の出力である。一方、レーザ光の強度を変調する周波数(変調周波数)は、その周期が試料12の蛍光色素の蛍光緩和時間に比べてやや長い、例えば10~50MHzである。
 レーザ光源22aは、レーザ光が蛍光色素を励起して特定の波長帯域の蛍光を発するように、予め定められた波長帯域で発振する。レーザ光によって励起される蛍光色素は測定しようとする試料12に付着されており、試料12が測定対象物として管路30の測定位置を通過する際、測定位置でレーザ光の照射を受けて特定の波長で蛍光を発する。
 受光部24は、管路30を挟んでレーザ光源部22と対向するように配置されており、測定位置を通過する試料12によってレーザ光が前方散乱することにより、試料12が測定位置を通過する旨の検出信号を出力する光電変換器を備える。この受光部24から出力される信号は、制御・処理部28に供給され、制御・処理部28において試料12が管路30中の測定位置を通過するタイミングを知らせるトリガ信号として用いられる。
 一方、受光部26は、レーザ光源部22から出射されるレーザ光の出射方向に対して垂直な、測定位置を通る平面と、管路30中の試料12の流れ方向に対して垂直な、測定位置を通る平面との交線上の位置に配置されており、測定位置において試料12が発する蛍光を受光する光電子増倍管を備える。
 図3は、受光部26の一例の概略の構成を示す構成図である。図3に示す受光部26は、レンズ26aと、拡散板26bと、バンドパスフィルタ26cと、PMT(光電子増倍管)26d1~dn(nは、1以上の整数)と、ゲイン調整器26e1~en(nは、1以上の整数)と、スイッチング回路26f1~fn(nは、1以上の整数)と、信号加算回路(パワー・コンバイナ)26gと、レンズアレイ26h1~hn(nは、1以上の整数)とを有する。
 レンズ26aは、試料12が発する蛍光を集光するレンズである。
 拡散板26bは、レンズ26により拡散板26bの面で結像した蛍光を拡散する板部材である。拡散板26bは、透明基板に入射した光が乱反射するように、表面が凹凸状に形成されたシート状のものや、透明基板中に乱反射を引き起こす微粒子等を分散させたシート状のものが用いられる。拡散板26bに入射した蛍光は、均一な光強度の分布を持った拡散光となって拡散板26bから出射する。
 バンドパスフィルタ26cは、PMT26d1~dnの受光面の前面に設けられ、所定の波長帯域の蛍光のみが透過するフィルタバンクである。透過する蛍光の波長帯域は、蛍光の波長帯域に対応して設定されている。
 レンズアレイ26h1~hnは、バンドパスフィルタ26cを通過した蛍光の光束のうち、後述する複数のPMT26d1~dnの受光面の間隙や仕切部に位置する部分も効率よく受光されるように集光する。また、PMT26d1~dnの仕切部に入射した蛍光によって仕切部内を電子が走り、走行時間の長い電子に基づいた不要な蛍光信号が生成される。したがって、レンズアレイ26h1~hnは、PMT26d1~dnの受光面に対応し、仕切部に蛍光が入射しないように、間隔や大きさが設定されている。
 PMT26d1~dnは、蛍光の蛍光信号を出力する部分で、蛍光の光束を、複数の領域に分けて複数の領域で別々に受光する。PMT26d1~dnは、PMTを複数個束ねて形成されたものであるが、多チャンネルPMTを用いてもよい。受光部26では、PMTの替わりにアバランシェフォトダイオードを用いてもよい。
 ゲイン調整器26e1~enは、電流-電圧変換部と電圧調整部とを有する。電流-電圧変換部は、PMT26d1~dnの出力は電流であるので、信号の加算処理を可能とするために電流を電圧に変換する。電圧調整部は、電圧増幅アンプの増幅率あるいは可変抵抗器の抵抗値の調整により電圧を調整する。これにより、一定の光強度の分布の光が入射しても、同じ電圧で蛍光信号が出力するようにゲイン調整される。すなわち、各領域の蛍光信号がスイッチング回路26f1~fnに供給される前に、領域毎にゲインが調整されて揃えられている。各領域の蛍光信号(以降、部分蛍光信号という)のゲインを調整し領域間でゲインを揃えるのは、後述するように、スイッチング回路26f1~fnにより部分蛍光信号の加算数を制御するからである。
 スイッチング回路26f1~fnは、電圧信号となった部分蛍光信号を後述する信号加算回路26gへ供給するか否かの制御のために、各領域の部分蛍光信号の供給のオン/オフ動作を行う。このオン/オフ動作は、後述する分析装置80の信号制御部80dからの制御信号によって制御される。これにより、信号加算回路26gへ供給する部分蛍光信号数を制限することができる。
 信号加算回路26gは、スイッチング回路26f1~fnを介して供給された部分蛍光信号を加算して、1つの蛍光信号とする。すなわち、複数の領域のうち、スイッチング回路26f1~fnを介して供給された部分蛍光信号が加算されて1つの蛍光信号が出力される。
 スイッチング回路26f1~fnのオン/オフ動作の制御信号は、分析装置80において生成される。具体的には、分析装置80において算出される蛍光強度が所定の閾値を越える場合、スイッチング回路26f1~fnに対して部分蛍光信号の信号加算回路26gへの供給数を制限するように制御信号を生成する。スイッチング回路26f1~fnのうち、どの位置のスイッチング回路をONにするか、については、特に制限されない。蛍光信号は、拡散板26bによって均一な光強度の拡散光となってPMT26d1~dnで受光されて得られた信号であり、しかも、各領域の部分蛍光信号のゲインが揃うように調整された信号であるからである。
 信号加算回路26gで生成された1つの蛍光信号は、制御・処理部28の信号処理部42内のアンプ54に供給される。
 なお、本実施形態では、ゲイン調整器26e1~enおよびスイッチング回路26f1~fnを設けるが、均一な光強度の光束を持った光を受光したPMT26d1~dnが出力する各電流が揃っている場合、ゲイン調整器26e1~enを省略し、スイッチング回路を通して各電流を選択的に加算した後、電圧に変換する構成を用いることもできる。電流の加算は、スイッチング回路を用いるだけなので簡素な構成とすることができる。
 また、本実施形態では、スイッチング回路26f1~fnのオン/オフ動作は、分析装置80の信号制御部80dからの制御信号によって制御される。しかし、フローサイトメータ10の操作者が、蛍光強度の算出結果の出力を参照しながら、マニュアル入力により、スイッチング回路26f1~fnの中でオンあるいはオフにするスイッチング回路を設定してもよい。
 制御・処理部28は、図4に示すように、信号生成部40と、信号処理部42と、コントローラ44と、を有する。信号生成部40及びコントローラ44は、所定の周波数の変調信号を生成する光源制御部を形成する。
 信号生成部40は、レーザ光の強度を所定の周波数で変調(振幅変調)するための変調信号を生成する部分である。具体的には、信号生成部40は、発振器46、パワースプリッタ48及びアンプ50,52を有し、生成される変調信号を、アンプ50を介してレーザ光源部22のレーザドライバ22cに供給するとともに、アンプ52を介して信号処理部42に供給する。信号処理部42に変調信号を供給するのは、後述するように、信号加算回路26gから出力される蛍光信号を検波するための参照信号として用いるためである。なお、変調信号は、所定の周波数の正弦波信号であり、10~50MHzの範囲の周波数に設定される。
 信号処理部42は、信号加算回路26gから出力される蛍光信号を用いて、レーザ光の照射により試料12が発する蛍光の位相遅れに関する情報を抽出する部分である。信号処理部42は、アンプ54と、IQミキサ58と、ローパスフィルタ60と、アンプ62と、を有する。アンプ54は、信号加算回路26gから出力される蛍光信号を増幅する。IQミキサ58は、増幅された蛍光信号を信号生成部40から供給された正弦波信号である変調信号を受け、この変調信号を参照信号として増幅された蛍光信号と合成する。ローパスフィルタ60は、IQミキサ58で処理された結果をフィルタリングして、直流成分を含む低周波成分を取り出す。アンプ62は、低周波成分の信号を増幅する。
 IQミキサ58は、信号加算回路26gから供給される蛍光信号を、信号生成部40から供給される変調信号を参照信号として合成する装置である。具体的には、IQミキサ58は、参照信号を蛍光信号(RF信号)と乗算して、蛍光信号のcos成分と高周波成分を含む処理信号を生成するとともに、参照信号の位相を90度シフトさせた信号を蛍光信号と乗算して、蛍光信号のsin成分と高周波成分を含む処理信号を生成する。このcos成分を含む処理信号及びsin成分を含む処理信号は、ローパスフィルタ50に供給される。ローパスフィルタ50では、上記処理信号から蛍光信号のcos成分とsin成分が取り出され、この蛍光信号のcos成分(以降、Re成分データという)とsin成分(以降、Im成分データという)がアンプ62で増幅されて、分析装置80に供給される。
 コントローラ44は、信号生成部40に所定の周波数の正弦波信号を生成させるように制御するとともに、受光部24から供給された検出信号を用いて、試料12の処理開始のトリガ信号を生成し、IQミキサ58に出力する。これにより、IQミキサ58は、試料12の測定位置のタイミングを知り、蛍光信号の処理を開始する。
 分析装置80は、供給されたRe成分データ(蛍光信号のcos成分)およびIm成分データ(蛍光信号のsin成分)を用いて蛍光の位相遅れθおよび蛍光強度の値を求める。さらに、分析装置80は、この蛍光強度の値が予め設定された範囲からはずれるとき、スイッチング回路26f1~fnにより、信号加算回路26gへ供給する部分蛍光信号の数を制限する制御信号を生成し、スイッチング回路26f1~fnへ供給する。
 図5は、分析装置80の概略の構成を示す図である。分析装置80は、蛍光強度信号生成部80aと、蛍光強度算出部80bと、位相遅れ算出部80cと、信号制御部80dと、蛍光緩和時間算出部80eとを有する。これらの各部分は、コンピュータが実行可能なプログラムを実行することで形成されるモジュールである。すなわち、分析装置80は、コンピュータ上で、ソフトウェアを起動することにより各機能が生成される。分析装置80には、この他に、AD変換器80fを備える。
 蛍光強度信号生成部80aは、アンプ62から供給され、AD変換器80fでデジタル信号とされたRe成分データとIm成分データとを二乗加算して平方根を求めることにより、蛍光強度信号を算出する部分である。算出された蛍光強度信号は蛍光強度算出部80bに送られる。なお、蛍光強度信号は、試料12がレーザ光の測定点を通過する期間に連続して供給されるRe成分データとIm成分データを用いて算出される時系列データである。
 蛍光強度算出部80bは、蛍光強度信号生成部80aから出力される時系列データの蛍光強度信号から、試料12が測定位置を通過する期間中の蛍光強度の値を求める。上述したスイッチング回路26f1~fnのオン動作の数が制限されている場合、蛍光強度算出部80bは、このオン動作の数の情報を用いて、蛍光強度の値を求める。オン動作の数が制限されている場合、スイッチング回路26f1~fnがすべてオンの場合に比べて、大きな補正係数の値を用いて蛍光強度の値を求める。求める値は、蛍光強度の各時間毎の値でもよいし、あるいは、測定位置を通過する期間中の1つの積分値でもよい。試料12の測定位置の通過は、受光部24から供給される検出信号により知ることができる。こうして求められた蛍光強度の値は、信号制御部80dに供給される。
 位相遅れ算出部80cは、アンプ62から供給され、AD変換器80fでデジタル信号とされて供給されたRe成分データとIm成分データを用いてtan-1(Im/Re)(ImはIm成分データの値、ReはRe成分データの値である)を算出することで、位相遅れθを算出する部分である。算出された位相遅れθは信号制御部80dに供給される。また、蛍光緩和時間算出部80eに供給される。
 蛍光緩和時間算出部80eは、位相遅れ算出部80cから供給された位相遅れθを用いて、蛍光緩和時間τをτ={1/(2πf)}・tanθに従って求める。蛍光緩和時間τを、上記式に従って求めることができるのは、蛍光は、略1次遅れの緩和応答に従うからである。なお、変調信号の周波数fは、予め固定されている。
 信号制御部80dは、蛍光強度算出部80bから供給された蛍光強度の値が、予め設定された範囲に入るか否かを判定し、判定結果に応じて、スイッチング回路26f1~fnの制御信号を生成する。上記値が予め設定された範囲に入る場合、蛍光強度の算出結果と蛍光緩和時間の算出結果を出力する指示を、蛍光強度算出部80bおよび蛍光緩和時間算出部80eに与える。
 すなわち、信号制御部80dは、蛍光強度算出部80bから供給された蛍光強度の値が予め設定された範囲に入らない場合、スイッチング回路26f1~fnのスイッチオフにする数を求め、これに応じて制御信号を生成する。具体的には、蛍光強度が所定の閾値を越える場合、スイッチング回路26f1~fnによる部分蛍光信号の信号加算器26gへの供給数を制限する。
 信号制御部80dにおける蛍光強度の判定結果に応じて、スイッチング回路26f1~fnのオン/オフ動作が実行される。算出された蛍光強度、蛍光緩和時間τ、時系列データの蛍光信号および位相遅れのデータが、図示されない出力装置へ出力される。
 このようなフローサイトメータ10では、まず、試料12に照射するレーザ光の強度を所定の周波数の変調信号で時間変調させて、測定位置にて試料12に照射する。次に、試料12にレーザ光を照射することにより試料12が発する蛍光を、受光部26は、拡散板26bを用いて光強度の分布が均一な光束とし、この蛍光の光束を、PMT126d1~dnにおいて、複数の領域に分けて受光する。これにより、複数の領域毎の部分蛍光信号を生成する。信号加算回路26gでは、生成された複数の領域毎の部分蛍光信号の少なくとも一部を加算して1つの蛍光信号を生成する。制御・処理部28および分析装置80では、生成した蛍光信号から、変調信号を用いて試料12の蛍光のRe成分データとIm成分データを取り出し、このRe成分データとIm成分データを用いて、蛍光緩和時間を算出する。そのとき、蛍光信号から算出される試料12の蛍光の蛍光強度が所定の閾値を越える場合、PMT126d1~dnにて生成される領域毎の部分蛍光信号の加算数を制限する。
 以上のように、フローサイトメータ10の受光部26は、レンズ26aと拡散板26bとを備え、受光部26は、レンズ26aを通過した蛍光を、拡散板26bを用いて均一な光強度の分布を有する光束を形成させた後、蛍光の光束を、PMT26d1~dnにより、複数の領域に分けて複数の領域で別々に受光する。したがって、蛍光を均一な光強度の分布を持つ光として、複数の受光面に分散させて受光させるので、PMT26d1~dnにおける出力の飽和を改善することができる。
 また、最初、スイッチング回路26f1~fnの全てをオン動作させ、分析装置80で算出される蛍光強度が閾値を越える場合、スイッチング回路26f1~fnの一部をオフに切り替えることができる。このため、信号処理部42および分析装置80内での信号レベルを自在に抑制することができるので、信号処理部42および分析装置80内で処理可能な蛍光強度のダイナミックレンジを従来よりも大きく取ることができ、広いダイナミックレンジで蛍光緩和時間を算出することができる。受光する蛍光の強度分布は、光束内で均一であるので、スイッチング回路26f1~fnによりオフにする部分蛍光信号の数の情報だけを得ればよく、どのスイッチング回路26f1~fnをオフにするかを知る必要はない。
(実施形態の変形例1)
 図6は、図3に示す受光部26の変形例である受光部126の構成を示す図である。受光部126は、受光部26と同様に、レーザ光源部22から出射されるレーザ光の出射方向に対して垂直な、測定位置を通る平面と、管路30中の試料12の移動方向に対して垂直な、測定位置を通る平面との交線上に配置されており、測定位置において試料12が発する蛍光を受光する光電子増倍管を備える。
 受光部126は、試料12からの蛍光を集光するレンズ126aと、バンドパスフィルタ126cと、光導波管126iと、PMT(光電子増倍管)126d1~dn(nは、1以上の整数)と、ゲイン調整器126e1~en(nは、1以上の整数)と、スイッチング回路126f1~fn(nは、1以上の整数)と、信号加算回路126gと、レンズアレイ126h1~hn(nは、1以上の整数)とを有する。
 レンズ126aと、バンドパスフィルタ126cと、PMT(光電子増倍管)126d1~dn(nは、1以上の整数)と、ゲイン調整器126e1~enと、スイッチング回路126f1~fnと、信号加算回路126gと、レンズアレイ126h1~hnは、レンズ26aと、バンドパスフィルタ26cと、PMT(光電子増倍管)26d1~dn(nは、1以上の整数)と、ゲイン調整器26e1~enと、スイッチング回路26f1~fnと、信号加算回路26gと、レンズアレイ26h1~hnと同様の構成及び機能を持つのでその説明は省略する。
 光導波管126iは、レンズ126aの結像位置より受光面側に設けられ、蛍光の光束が拡散する状態でバンドパスフィルタ126cを通過した後入射される。光導波管126iは、多角柱(例えば、6角柱)の筒形状を成し、多角柱の壁面は完全反射面となっている。
 レンズ126aを通過し、結像位置を通過した蛍光は、その光束を拡散させつつ、光導波管126iの壁面で反射させながら、レンズアレイ26h1~hnに到達するので、レンズアレイ26h1~hnに到達したとき、蛍光は、種々の方向に進む均一な光強度の分布を持つ拡散光となる。この均一な光強度の分布を持つ蛍光をレンズアレイ126h1~hnにて集光し、PMT126d1~dnに受光させる。光導波管126iは、例えば、エドモンドオプティックス社製のTECSPEC(登録商標)ライトパイプが挙げられる。
 以上のように、受光部126は、図3に示す受光部26と同様に、レンズ126aと光導波管126iとを備え、受光部126は、レンズ126aを通過した蛍光を、光導波管126iを用いて均一な光強度の分布の光束を形成させた後、蛍光の光束を、PMT126d1~dnにより、複数の領域に分けて複数の領域で別々に受光する。したがって、蛍光を均一な光強度の分布を持つ光として、複数の受光面に分散させて受光させるので、PMT126d1~dnにおける出力の飽和を改善することができる。
 また、最初、スイッチング回路126f1~fnの全てをオン動作させたとき、分析装置80で算出される蛍光強度が閾値を越える場合、スイッチング回路126f1~fnの一部はオフに切り替えることができる。このため、信号処理部42および分析装置80内での信号レベルを自在に抑制することができる。その結果、信号処理部42および分析装置80内で処理可能な蛍光強度のダイナミックレンジを従来よりも大きく取ることができ、広いダイナミックレンジで蛍光緩和時間を算出することができる。なお、分析装置80は蛍光強度を算出するとき、スイッチング回路126f1~fnのオン動作の数の情報を用いて、蛍光強度を算出する。
(実施形態の変形例2)
 図7は、図3に示す受光部26の変形例である受光部136の構成を示す図である。受光部136は、受光部26と同様に、レーザ光源部22から出射されるレーザ光の出射方向に対して垂直な、測定位置を通る平面と、管路30中の試料12の移動方向に対して垂直な、測定位置を通る平面との交線上に配置されており、測定位置において試料12が発する蛍光を受光する光電子増倍管を備える。
 受光部136は、試料12からの蛍光を集光させるレンズ136aと、バンドパスフィルタ136cと、PMT(光電子増倍管)136d1~dn(nは、1以上の整数)と、ゲイン調整器136e1~en(nは、1以上の整数)と、スイッチング回路136f1~fn(nは、1以上の整数)と、信号加算回路136gと、レンズアレイ136h1~hn(nは、1以上の整数)とを有する。
 レンズ136aと、バンドパスフィルタ136cと、PMT(光電子増倍管)136d1~dn(nは、1以上の整数)と、ゲイン調整器136e1~enと、スイッチング回路136f1~fnと、信号加算回路136gと、レンズアレイ136h1~hnは、レンズ26aと、バンドパスフィルタ26cと、PMT(光電子増倍管)26d1~dn(nは、1以上の整数)と、ゲイン調整器26e1~enと、スイッチング回路26f1~fnと、信号加算回路26gと、レンズアレイ26h1~hnと同様の構成及び機能を持つのでその説明は省略する。
 なお、レンズ136aの主点の位置と試料12の測定位置とを結ぶ線分がレンズ136aの光軸上に位置し、この線分の距離がレンズの焦点距離に略一致するようにレンズ136a(レンズ)は位置決めされている。したがって、試料12の発する蛍光は、レンズ136aを通過することにより、均一な光強度の分布を持つ略平行な光束を形成する。この略平行光束の蛍光は、複数の領域に分けてPMT136d1~dnにより複数の領域で別々に受光される。なお、この例では、蛍光を略平行な光束とするが、完全に平行な光束には限定されない。蛍光は、少なくとも、PMT136d1~dnの受光面に略均一に光束が広がるようになっているとよい。
 以上のように、受光部136は、図3に示す受光部26と同様に、レンズ136aを通過した蛍光を、均一な光強度の分布を持つ略平行な光束を形成させた後、蛍光の光束を、PMT136d1~dnにより、複数の領域に分けて複数の領域で別々に受光する。したがって、均一な光強度の分布を持つ蛍光を、複数の受光面に分散させて受光させるので、PMT136d1~dnのそれぞれにおける出力の飽和を改善することができる。
 また、最初、スイッチング回路136f1~fnの全てをオン動作させたとき、分析装置80で算出される蛍光強度が閾値を越える場合、スイッチング回路136f1~fnの一部をオフに切り替えることができる。このため、信号処理部42および分析装置80内での信号レベルを自在に抑制することができる。その結果、信号処理部42および分析装置80内で処理可能な蛍光強度のダイナミックレンジを従来よりも大きく取ることができ、広いダイナミックレンジで蛍光緩和時間を算出することができる。なお、分析装置80にて蛍光強度を算出するとき、スイッチング回路136f1~fnのオン動作の数の情報を用いて、蛍光強度を算出する。
 以上、本発明の蛍光検出装置及び蛍光検出方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 フローサイトメータ
12 試料
22 レーザ光源部
22a レーザ光源
22b レンズ
22c レーザドライバ
24,26,126,136 受光部
26a、126a,136a レンズ
26b 拡散板
26c,126c,136c バンドパスフィルタ
26d1~dn,126d1~dn,136d1~dn 光電子増倍管
26e1~en,126e1~en,136e1~en ゲイン調整器
26f1~fn,126f1~fn,136f1~fn スイッチング回路
26g,126g,136g 信号加算回路
26h1~hn,126h1~hn,136h1~hn レンズアレイ
126i 光導波管
28 制御・信号処理部
30 管路
32 回収容器
40 信号生成部
42 信号処理部
44 コントローラ
46 発振器
48 パワースプリッタ
50,52,54,62 アンプ
58 IQミキサ
60 ローパスフィルタ
80 分析装置
80a 蛍光強度信号生成部
80b 蛍光強度算出部
80c 位相遅れ算出部
80d 信号制御部
80e 蛍光緩和時間算出部

Claims (10)

  1.  測定位置にある測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う蛍光検出装置であって、
     測定対象物に照射するレーザ光を出射するレーザ光源部と、
     レーザ光の照射された測定対象物から発する蛍光の蛍光信号を出力する受光部と、
     前記レーザ光源部から出射するレーザ光の強度を時間変調させるために、所定の周波数の変調信号を生成する光源制御部と、
     時間変調したレーザ光を測定対照物に照射することにより前記受光部で出力された蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出する処理部と、を有し、
     前記受光部は、前記測定対象物の測定位置と蛍光の受光面との間に、蛍光を集光するレンズを有し、さらに、前記受光部は、前記レンズを通過した前記蛍光について、均一な光強度の分布を有する光束を形成させる手段と、この手段により形成された蛍光の前記光束を、複数の領域に分けて別々に受光する受光素子とを有する、ことを特徴とする蛍光検出装置。
  2.  前記受光部は、前記複数の領域毎に別々に分けて得られる部分蛍光信号を加算して1つの蛍光信号を出力する信号加算器を有する、請求項1に記載の蛍光検出装置。
  3.  前記受光部には、前記部分蛍光信号を前記信号加算器に供給するか否かを行うスイッチング回路が前記複数の領域毎に設けられている、請求項2に記載の蛍光検出装置。
  4.  前記処理部は、前記蛍光緩和時間を算出するほか、前記蛍光信号から蛍光強度を算出し、蛍光強度が所定の閾値を越える場合、前記スイッチング回路による前記部分蛍光信号の前記信号加算器への供給数を制限する、請求項3に記載の蛍光検出装置。
  5.  前記受光部には、前記部分蛍光信号が前記スイッチング回路に供給される前に、前記複数の領域毎に前記部分蛍光信号をゲイン調整するゲイン調整器が設けられ、前記部分蛍光信号のゲインが揃えられている、請求項3または4に記載の蛍光検出装置。
  6.  前記受光部は、前記レンズと前記受光面の間に、拡散板を備え、前記レンズにより前記蛍光を前記拡散板上で結像させる、請求項1~5のいずれか1項に記載の蛍光検出装置。
  7.  前記受光部は、前記レンズと前記受光面の間に、入射した蛍光を壁面で反射させる、前記レンズの光軸に平行に設けられた筒状の光導波管を備える、請求項1~5のいずれか1項に記載の蛍光検出装置。
  8.  前記受光部の前記レンズは、集光した蛍光を略平行光とすることにより、均一な光強度の分布を有する光束を持つ蛍光を形成する、請求項1~5のいずれか1項に記載の蛍光検出装置。
  9.  測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を受光し、この蛍光から得られる蛍光信号の信号処理を行う蛍光検出方法であって、
     測定対象物に照射するレーザ光の強度を所定の周波数の変調信号で時間変調させて測定対象物に照射するステップと、
     測定対象物にレーザ光を照射することにより測定対象物が発する蛍光を、光強度の分布が均一な光束とし、前記蛍光の光束を、複数の領域に分けて受光することにより、複数の部分蛍光信号を生成するステップと、
     前記複数の部分蛍光信号の少なくとも一部を加算して1つの蛍光信号を生成するステップと、
     生成した前記蛍光信号から、前記変調信号を用いて測定対象物の蛍光の蛍光緩和時間を算出するステップと、を有することを特徴とする蛍光検出方法。
  10.  前記蛍光信号から算出される測定対象物の蛍光の蛍光強度が所定の閾値を越える場合、前記部分蛍光信号の加算数を制限する、請求項9に記載の蛍光検出方法。
PCT/JP2010/003563 2009-06-12 2010-05-27 蛍光検出装置および蛍光検出方法 WO2010143367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800256268A CN102822665A (zh) 2009-06-12 2010-05-27 荧光检测装置和荧光检测方法
US13/377,698 US20120085933A1 (en) 2009-06-12 2010-05-27 Fluorescence detection device and fluorescence detection method
EP10785899A EP2442094A1 (en) 2009-06-12 2010-05-27 Fluorescence detection device and fluorescence detection method
JP2010521148A JP4698766B2 (ja) 2009-06-12 2010-05-27 蛍光検出装置および蛍光検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009140766 2009-06-12
JP2009-140766 2009-06-12

Publications (1)

Publication Number Publication Date
WO2010143367A1 true WO2010143367A1 (ja) 2010-12-16

Family

ID=43308630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003563 WO2010143367A1 (ja) 2009-06-12 2010-05-27 蛍光検出装置および蛍光検出方法

Country Status (5)

Country Link
US (1) US20120085933A1 (ja)
EP (1) EP2442094A1 (ja)
JP (1) JP4698766B2 (ja)
CN (1) CN102822665A (ja)
WO (1) WO2010143367A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060057A1 (ja) * 2010-11-01 2012-05-10 株式会社日立ハイテクノロジーズ 欠陥検査方法、微弱光検出方法および微弱光検出器
JP2014149194A (ja) * 2013-01-31 2014-08-21 Otsuka Denshi Co Ltd 測定装置および測定方法
WO2020017183A1 (ja) * 2018-07-20 2020-01-23 ソニー株式会社 微小粒子測定用スペクトロメータ、該微小粒子測定用スペクトロメータを用いた微小粒子測定装置及び微小粒子測定用光電変換システムの校正方法
JP2021527822A (ja) * 2018-06-19 2021-10-14 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 検出器アレイのための可変多重化スイッチ、システム、およびその使用方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5773939B2 (ja) 2012-04-27 2015-09-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
WO2014014016A1 (ja) * 2012-07-17 2014-01-23 ユニバーサル・バイオ・リサーチ株式会社 反応容器用光測定装置およびその方法
CN103529006B (zh) * 2013-10-18 2016-08-17 大连海事大学 一种基于微流控芯片的便携式荧光检测装置
US10452025B2 (en) * 2013-11-04 2019-10-22 Luminit Llc Substrate-guided wave-based transparent holographic center high mounted stop light and method of fabrication thereof
KR102088363B1 (ko) 2013-12-05 2020-04-14 삼성전자주식회사 플라즈마 광원 장치 및 플라즈마 광 생성 방법
US10908065B2 (en) * 2018-09-17 2021-02-02 Inguran, Llc Light collection from objects within a fluid column
US11584662B2 (en) 2020-03-16 2023-02-21 Inguran, Llc Systems and method for correction of positionally dependent electromagnetic radiation detected from objects within a fluid column

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041891A (ja) * 1999-07-30 2001-02-16 Shimadzu Corp 蛍光検出方法及び装置
JP2006226698A (ja) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 強度変調したレーザ光による蛍光検出装置
JP2007501934A (ja) * 2003-08-12 2007-02-01 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 光ビームの光子検出装置
JP2007240424A (ja) 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Fret検出方法および装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5760900A (en) * 1989-03-18 1998-06-02 Canon Kabushiki Kaisha Method and apparatus for optically measuring specimen
JP3187129B2 (ja) * 1992-04-01 2001-07-11 シスメックス株式会社 粒子分析装置
US5736410A (en) * 1992-09-14 1998-04-07 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US6710871B1 (en) * 1997-06-09 2004-03-23 Guava Technologies, Inc. Method and apparatus for detecting microparticles in fluid samples
US6157037A (en) * 1998-12-04 2000-12-05 Photosense, Llc Sensing device and method for measuring emission time delay during irradiation of targeted samples
US6875973B2 (en) * 2000-08-25 2005-04-05 Amnis Corporation Auto focus for a flow imaging system
EP1328894A4 (en) * 2000-08-25 2005-11-09 Amnis Corp MEASURING THE SPEED OF SMALL MOBILE OBJECTS SUCH AS CELLS
AU2002318269A1 (en) * 2001-07-18 2003-03-03 The Regents Of The University Of Michigan Gas-focusing flow cytometer cell and flow cytometer detection system with waveguide optics
JP3903000B2 (ja) * 2002-11-14 2007-04-11 アークレイ株式会社 測定装置、蛍光測定装置及び蛍光測定方法
US8139210B2 (en) * 2003-04-03 2012-03-20 Bioneer Corporation Real-time monitoring apparatus for biochemical reaction
DE102004003993A1 (de) * 2003-08-12 2005-03-17 Leica Microsystems Heidelberg Gmbh Vorrichtung zum Nachweis von Photonen eines Lichtstrahls
JP2006112882A (ja) * 2004-10-14 2006-04-27 Yokogawa Electric Corp フローセル検出装置及びフローセル検出方法
EP1855102B8 (en) * 2005-02-15 2012-03-14 Mitsui Engineering and Shipbuilding Co, Ltd. Fluorescence detecting device and fluorescence detecting method
US8270781B2 (en) * 2005-10-28 2012-09-18 The Regents Of The University Of California Apparatus and method for improved optical detection of particles in fluid
CA2684221A1 (en) * 2007-04-12 2008-10-23 Regents Of The University Of Minnesota Systems and methods for analyzing a particulate
CA2699319A1 (en) * 2007-09-17 2009-03-26 Luminex Corporation Systems, storage mediums, and methods for identifying particles in flow
WO2009128938A1 (en) * 2008-04-17 2009-10-22 Maxwell Sensors, Inc. Hydrodynamic focusing for analyzing rectangular microbeads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041891A (ja) * 1999-07-30 2001-02-16 Shimadzu Corp 蛍光検出方法及び装置
JP2007501934A (ja) * 2003-08-12 2007-02-01 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー 光ビームの光子検出装置
JP2006226698A (ja) * 2005-02-15 2006-08-31 Mitsui Eng & Shipbuild Co Ltd 強度変調したレーザ光による蛍光検出装置
JP2007240424A (ja) 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd Fret検出方法および装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060057A1 (ja) * 2010-11-01 2012-05-10 株式会社日立ハイテクノロジーズ 欠陥検査方法、微弱光検出方法および微弱光検出器
US9588054B2 (en) 2010-11-01 2017-03-07 Hitachi High-Technologies Corporation Defect inspection method, low light detecting method and low light detector
US10261026B2 (en) 2010-11-01 2019-04-16 Hitachi High-Technologies Corporation Defect inspection method, low light detecting method, and low light detector
JP2014149194A (ja) * 2013-01-31 2014-08-21 Otsuka Denshi Co Ltd 測定装置および測定方法
JP2021527822A (ja) * 2018-06-19 2021-10-14 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company 検出器アレイのための可変多重化スイッチ、システム、およびその使用方法
JP7416729B2 (ja) 2018-06-19 2024-01-17 ベクトン・ディキンソン・アンド・カンパニー 検出器アレイのための可変多重化スイッチ、システム、およびその使用方法
WO2020017183A1 (ja) * 2018-07-20 2020-01-23 ソニー株式会社 微小粒子測定用スペクトロメータ、該微小粒子測定用スペクトロメータを用いた微小粒子測定装置及び微小粒子測定用光電変換システムの校正方法
US11852578B2 (en) 2018-07-20 2023-12-26 Sony Corporation Microparticle measurement spectrometer, microparticle measurement device using the microparticle measurement spectrometer, and method for calibrating microparticle measurement photoelectric conversion system

Also Published As

Publication number Publication date
JPWO2010143367A1 (ja) 2012-11-22
JP4698766B2 (ja) 2011-06-08
US20120085933A1 (en) 2012-04-12
CN102822665A (zh) 2012-12-12
EP2442094A1 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4698766B2 (ja) 蛍光検出装置および蛍光検出方法
US8885165B2 (en) Fluorescence detecting device and fluorescence detecting method
US7822558B2 (en) Fluorescence detecting device and fluorescence detecting method
US20110278471A1 (en) Fluorescence detecting device and fluorescence detecting method
US8450702B2 (en) Fluorescence detecting method and fluorescence detecting device
CN101939633B (zh) 荧光检测装置和荧光检测方法
JP4818481B2 (ja) 蛍光検出装置および蛍光検出方法
US8642976B2 (en) Fluorescence detecting device and fluorescence detecting method
US20120183440A1 (en) Fret measurement method and device
US20120025098A1 (en) Fluorescence detection device and fluorescence detection method
JP4540751B1 (ja) 蛍光検出装置及び蛍光検出方法
US9052288B2 (en) Fluorescence measuring apparatus and fluorescence measuring method
JP5324487B2 (ja) 蛍光検出用較正装置、蛍光検出用較正方法、および蛍光検出装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010521148

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201080025626.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10785899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13377698

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010785899

Country of ref document: EP