JP2006215212A - 光合分波器とその製造方法 - Google Patents

光合分波器とその製造方法 Download PDF

Info

Publication number
JP2006215212A
JP2006215212A JP2005026976A JP2005026976A JP2006215212A JP 2006215212 A JP2006215212 A JP 2006215212A JP 2005026976 A JP2005026976 A JP 2005026976A JP 2005026976 A JP2005026976 A JP 2005026976A JP 2006215212 A JP2006215212 A JP 2006215212A
Authority
JP
Japan
Prior art keywords
light
filter element
refractive index
wavelength
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026976A
Other languages
English (en)
Inventor
Hiromi Totani
浩巳 戸谷
Hayami Hosokawa
速美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2005026976A priority Critical patent/JP2006215212A/ja
Priority to KR1020050129476A priority patent/KR100726580B1/ko
Priority to CNB2006100022561A priority patent/CN100356217C/zh
Priority to EP06101110A priority patent/EP1688768A1/en
Priority to US11/345,941 priority patent/US7228026B2/en
Publication of JP2006215212A publication Critical patent/JP2006215212A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/2937In line lens-filtering-lens devices, i.e. elements arranged along a line and mountable in a cylindrical package for compactness, e.g. 3- port device with GRIN lenses sandwiching a single filter operating at normal incidence in a tubular package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12164Multiplexing; Demultiplexing

Abstract

【課題】 フィルタ素子を挟んでその両側にコアを配置し、一方のコアからコリメートレンズを用いることなく光をフィルタ素子に入射させるようにした光合分波器において、両側のコアの軸ズレ量を最適化することによって透過光の損失を小さくする。
【解決手段】 フィルタ素子26の両側に位置するコア21とコア23は、光軸間がδだけずれている。この軸ズレ量δは、
δ=A(λ)・T・tanθ
で決められる。ここで、A(λ)は入射光の波長に依存する所定の係数、θは入射光の光軸とフィルタ素子の入射面に垂直な法線とのなす角度である。Tは、フィルタ素子の多層膜を構成する高屈折率層や低屈折率層の屈折率等に依存する媒質換算厚みである。
【選択図】 図7

Description

本発明は、光合分波器とその製造方法に関する。具体的にいうと、本発明は、コリメートレンズを用いることなくフィルタ素子に光を入射させるようにした構造の光合分波器とその製造方法に関する。
光通信は近年のブロードバンドの要求により、幹線系−メトロ系−アクセス系へと利用技術範囲を広げている。メトロ系から加入者に繋がるアクセス系では、加入者系の波長多重システムが導入されている。このような波長多重システムにおいては、信号光を合波及び分波するための光合分波器が必要とされる。
図1は従来の光ファイバコリメータを用いた光合分波器208を説明する模式図である。図1において、符号201および202は2芯光ファイバコリメータ203の光ファイバ芯線、204は2芯光ファイバコリメータ203のコリメートレンズ、205はフィルタ素子、206は集光用のレンズ、207は光ファイバ芯線である。
図1に示す光合分波器208の光学系においては、コリメートレンズ204の焦点の付近にフィルタ素子205が配置されている。2芯光ファイバコリメータ203の一方の光ファイバ芯線201を伝送されてその端面から発散された光はコリメートレンズ204によって平行光にされた後に、その波長に応じてコリメートレンズ204の焦点付近に設置されたフィルタ素子205によって反射または透過される。透過光はレンズ206で光ファイバ芯線207に結合し、反射光は再びコリメートレンズ204を通過した後、光軸と平行に戻り、2芯光ファイバコリメータ203の他方の光ファイバ芯線202に光結合する。この際のフィルタ素子205を置く位置精度を見積もると、例えば光ファイバの開口数NAが0.1、2芯光ファイバコリメータ203の光ファイバ芯線201と光ファイバ芯線202の中心間距離を125μm、コリメートレンズ204の焦点距離fを1.8mmとしたとき、フィルタ素子205を置く位置の誤差を±1mmとしても光ファイバ芯線201と光ファイバ芯線202の間の損失は0.2dB程度となる。この誤差はフィルタ素子205の基板を除いた部分の厚さ10〜20μmと比べても充分に小さな値である。したがって、コリメートレンズを用いた光合分波器では、フィルタ素子205を置く位置の精度は全く問題にされていなかった。むしろ、実際の組み立て作業においては、フィルタ素子205を置く位置の精度よりもフィルタ素子205の配置角度の方が反射損失に大きく作用していた。
しかし、光通信の利用分野がメトロ系からアクセス系へと広がるにつれ、システムのコスト低減と小型化のため、光導波路や光ファイバから出射された光をコリメートレンズを用いないでフィルタ素子に入射させるようにした光合分波器が次第に重要になってきている。このような光合分波器では、コリメートレンズで光を平行光化することができないので、フィルタ素子を光ファイバ芯線の端面にできるだけ近づけて配置する必要がある。そのため、フィルタ素子としては厚みの薄いものが要求され、一般には、フッ素化ポリイミド薄膜を基板とし、その上にフィルタ用の誘電体多層膜を形成したフッ素化ポリイミドフィルタ(以下、ポリイミドフィルタ素子という)が用いられている。ポリイミドフィルタ素子については、例えば特許文献1にその特徴と製造方法が詳しく述べられている。さらには、幹線系−メトロ系に用いる光合分波器は、扱う波長間隔が狭いことなどにより高性能な光合分波器が必要とされている。
図2はコリメートレンズを用いない光合分波器210を説明する断面図である。図2において、符号211、212及び216は光導波路のコア、211a、212a及び216aはそれぞれコア211、212、216の中心線、213はフッ素化ポリイミド薄膜を用いたポリイミドフィルタ素子、213aはポリイミドフィルタ素子213のフィルタ機能を有する多層膜、213bはフッ素化ポリイミド薄膜で形成されている基板、214は光合分波器210の入射面としての多層膜の表面、217は接着剤である。
ポリイミドフィルタ素子(フッ素化ポリイミドフィルタ)に関しては、例えば特許文献1に詳述されているので、ここでの詳しい記述は割愛するが、ポリイミドフィルタ素子は、例えば光学ガラスのような材料を用いた仮基板の上に、熱膨張の比較的小さい特性を有するフッ素化ポリイミドの薄膜(たとえば、厚さ5μm)を形成し、このフッ素化ポリイミドの薄膜の上に誘電体多層膜を形成し、その後仮基板から、上に誘電体多層膜を形成してあるフッ素化ポリイミドの薄膜を誘電体多層膜を付けた状態で剥離し、フッ素化ポリイミドの薄膜を基板とするポリイミドフィルタ素子を得るようにしたものである。このポリイミドフィルタ素子は、基板を含めたフィルタ全体の厚みを非常に薄くすることができ、光導波路の切断面に接着するなどして光合分波器を形成することができ、これからの有望な光部品として期待されている。
フィルタを使用する光導波路については、例えば非特許文献2に、波長選択フィルタを使用した例が記載されている。図3及び図4は、非特許文献2に記載された従来の光導波路に波長選択フィルタを挿入した光合分波器を表わしている。図3は、波長が1300nmの光を反射し1550nmの光を透過するLPF(Long Pass Filter)231を波長選択フィルタとして使用した光導波路230を示す。図3において、符号232〜234は光導波路230のコア、235〜238は光の進行を説明するための矢印である。また、図4は波長が1300nmの光を透過し1550nmの光を反射するSPF(Short Pass Filter)251を波長選択フィルタとして使用した光導波路250を示す。図4において、符号252〜254は光導波路250のコア、255〜258は光の進行を説明するための矢印である。
LPF231を用いた図3の光導波路230の場合には、コア232を矢印235の方向に進行する波長が1300nmの光は、LPF231で反射されてコア233を矢印236の方向に進行する。また、コア233を矢印237の方向に進行する波長が1550nmの光はLPF231を透過してコア234を矢印238の方向に進行する。
SPF251を用いた図4の光導波路250の場合には、コア252を矢印255の方向に進行する波長が1550nmの光はSPF251で反射されてコア253を矢印256の方向に進行する。また、コア253を矢印257の方向に進行する波長が1300nmの光はSPF251を透過してコア254を矢印258の方向に進行する。
図3の光導波路230と図4の光導波路250で用いられているフィルタは、フッ素化ポリイミドフィルムを基板に用いたフィルタ素子(ポリイミドフィルタ素子)で、フィルタ素子全体の厚みは14〜16μmである。また、光導波路の設計上の注意点としては、フィルタ素子の屈折率を考慮し、フィルタ素子の両側のコアどうしの間にオフセットを持たせている。非特許文献2には、光合分波器の性能を向上させるための要因として光路にオフセットを設けることが記載されているが、オフセットの内容についての詳細は明らかにされていない。そこで、スネルの法則に基づく光の屈折によるオフセットについて説明する。
屈折率の変化による光路のシフト、すなわちオフセットを図5により説明する。図5は、図3及び図4の光導波路のフィルタ挿入部に挿入されたポリイミドフィルタ素子530を示す拡大断面図である。このポリイミドフィルタ素子530(つまり、LPF231又はSPF251)は、基板533の上に、厚みが設計基準波長の4分の1波長にほぼ等しくて屈折率が比較的高い層(以下、高屈折率層Hという)と、厚みが設計基準波長の4分の1波長にほぼ等しくて屈折率が比較的低い層(以下、低屈折率層Lという)を交互に積層して誘電体多層膜を形成したものである。ポリイミドフィルタ素子530は、実際には基板533の上に低屈折率層Lと高屈折率層Hを交互に積層して形成されているが、ポリイミドフィルタ素子530内における光の挙動と光路のオフセットを説明する都合上、図5では高屈折率層Hどうしを1層に集合させた全体を符号531で表わし、低屈折率層Lどうしを1層に集合させた全体を符号532で表わしている。図5における符号536は入射光、537〜540は入射光536がポリイミドフィルタ素子530に入射してから出射するまでの光路、536aは入射光536を延長した点線を示す。符号550は入射光536の入射点、535は入射点550において入射面545に立てた法線、θ1は入射光536と法線535のなす角度、θ2〜θ5はそれぞれ光路537〜540と法線535とのなす角度である。符号546はポリイミドフィルタ素子530を透過する光の出射面、551は出射光の出射点、552は点線536aと出射面546の交点である。また、入射光536が入射面545からポリイミドフィルタ素子530に入射して屈折して該フィルタ素子530内を進行し、該フィルタ素子530の出射面546から出射する出射点551と、出射面546と点線536aとの交点552との間の距離をd1で表わす。
光導波路内にポリイミドフィルタ素子530がある場合には、図5に示すように、矢印547の方向ヘ進行してきた入射光536は入射点550でポリイミドフィルタ素子530に入射し、スネルの法則に従って該フィルタ素子530を構成する高屈折率層H全体によって屈折しながら光路537ヘ進行し、該フィルタ素子530を構成する低屈折率層L全体によって屈折しながら光路538へ進行し、さらに基板533によって屈折して光路539に進行し、出射面546の出射点551から出射して光路540を矢印548の方向へ進行する。一方、ポリイミドフィルタ素子530が存在しないと仮定した場合には、入射光536は点線536aに沿って真っ直ぐに進行し、点線536aと出射面546の交点552から矢印548の方向へ出射される。よって、ポリイミドフィルタ素子530を光導波路内に挿入することにより、出射光540は出射面546において距離d1だけシフトした位置から出射されることになる。これがスネルの法則に基づいて起きる屈折率の変化による光路のオフセットである。
フィルタ素子を用いた光合分波器においては、このような光路のオフセットを考慮して光合分波器を設計すれば、フィルタ素子を透過した透過光に関する損失を小さくすることができると考えられる。
しかしながら、本発明の発明者が鋭意検討した結果では、屈折による光路のオフセットを考慮して設計するだけでは、透過光の損失を十分に低減することができないだけでなく、透過光の損失のバラツキが大きいという問題も十分に解決することができなかった。
特開平4-211203号公報(特許第2608633号) 李正中 著、(株)アルバック訳、アグネ技術センター発行、「光学薄膜と成膜技術」(2002年9月25日発行)、178〜183ぺージ 「ポリマ光導波路設計技術」(増田宏、柴田智章、井戸立身、高橋誠 著、2002年7月発行の日立化成テク二カルレポートNo.39、37〜40ページ)
本発明は、上記のような技術的背景に鑑みて成されたものであり、その目的とするところは、コア間にフィルタ素子を挿入した構造の光合分波器において、そのコア間における信号光の損失をより小さくすることができる光合分波器とその製造方法を提供することにある。
本発明に係る光合分波器は、フィルタ素子を挟んで該フィルタ素子の両側にそれぞれ1又は2以上の導光体が配置され、前記導光体のうちのある第1の導光体とある第2の導光体とが前記フィルタ素子の透過域にある光を第1の導光体から第2の導光体へフィルタ素子を透過させて伝送させるようになった光合分波器であって、前記多層膜は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層した多層膜を有し、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
によって定められ、さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとし、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき、前記第1の導光体の光軸と第2の導光体の光軸とが、次の式1で定義される軸ズレ量δ
δ=A(λ)・T・tanθ …(式1)
を有していることを特徴としている。前記係数A(λ)は、実験的に求められたフィルタの伝送損失から軸ズレに起因する分を抽出し、ある定数を掛けて無次元化することにより得られたものであり、フィルタ素子内におけるスネルの法則に従った屈折に加え、フィルタ素子内における多重反射なども考慮したものである。
本発明の光合分波器によれば、フィルタ素子を透過して導光体に入射する光の、フィルタ素子内における屈折以外の要因、例えばフィルタ素子内部での多重反射なども考慮して導光体どうしの最適な軸ズレ量を決めることができる。よって、フィルタ素子を透過して伝搬する光の損失を小さくすることができる。
前記係数A(λ)は、前記フィルタ素子が少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有する場合には、入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波とするとき、
入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73である。ここに挙げた波長は光通信において一般的に用いられる波長であり、これらの波長の光を用いる場合には、A(λ)としてこれらの値を用いることによって本発明の光合分波器を容易に設計することができる。
また、前記係数A(λ)は、波長が1480nm以上の光に対する値を用いるのが望ましい。光軸ズレによる透過光の損失は光の波長が1480nm付近より顕著になるので、1480nm以上の波長に対する係数A(λ)を用いて光軸ズレδを見積もる方が、より大きな損失低減効果が得られるからである。
また、複数波長の光を用いる場合には、各波長λ1、λ2、…、λp(pは波長の数であって自然数)に対する前記係数A(λ1)、A(λ2)、A(λ3)、…、A(λp)を求め、そのの平均値から係数A(λ)を求めて用いることが望ましい。このような処理を行なえば、本発明を複数波長の光を用いる場合にも適用でき、しかも各波長の平均値を用いることで最適な設計を行なうことができる。
また、本発明の実施態様は、前記第1の導光体を有する第1の光導波路と前記第2の導光体を有する第2の光導波路は、組立前においては互いに独立した導光体であり、前記式1を満たすようにして前記フィルタ素子の両側に前記両導光体を配置して前記フィルタ素子と接着固定している。この実施態様によれば、第1の光導波路と第2の光導波路を作製した後で、両光導波路の組立状態を確認しながら軸ズレ量を調整できるので、透過光の損失低減の効果が高くなる。
本発明の光合分波器の製造方法は、光導波路においてフィルタ挿入部の一方の側に少なくとも2つの第1の導光体を配置し、フィルタ挿入部の他方の側に少なくとも1つの第2の導光体を配置し、前記フィルタ挿入部にフィルタ素子が挿入され、前記フィルタ挿入部の両側に配置されている第1及び第2の導光体のうち一方の導光体と他方の導光体とが前記フィルタ素子の透過域にある光をフィルタ素子を透過させて伝送させるようになった光合分波器の製造方法であって、
前記フィルタ素子は、少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有し、入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波として、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき
入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73であり
前記多層膜は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層したものであり、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
によって定められ、さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとするとき、前記フィルタ第1の導光体の光軸と第2の導光体の光軸との間の軸ズレ量δが次の式1
δ=A(λ)・T・tanθ …(式1)
で定められるとき、
前記第1の導光体のうちの少なくとも1つの導光体の光軸と前記第2の導光体のうちの少なくとも1つの導光体の光軸との間の距離が前記軸ズレ量δに等しくなるようにして前記第1の導光体と第2の導光体を前記光導波路に形成する工程と、前記第1の導光体と第2の導光体の中間において前記導波路にフィルタ素子を差し込むための溝を形成する工程と、前記溝にフィルタ素子を差し込む工程と、前記フィルタ素子を前記溝に接着剤により固定する工程とを経て光合分波器が製造される。
本発明の光合分波器の製造方法によれば、フィルタ素子を透過して導光体に入射する光の、フィルタ素子内における屈折以外の要因、例えばフィルタ素子内部での多重反射なども考慮して導光体どうしの最適な軸ズレ量を決めることができる。よって、フィルタ素子を透過して伝搬する光の損失を小さくすることができる。しかもこの方法では、あらかじめ光導波路に形成されている導光体に所定の軸ズレ量を持たせているので、光合分波器の量産性が高くなる。
本発明の別な光合分波器の製造方法は、フィルタ素子の一方の側に、少なくとも2つの導光体を有する第1の光導波路を配置し、フィルタ素子の他方の側に、少なくとも1つの導光体を有する第2の光導波路を配置し、第1の光導波路の導光体と第2の光導波路の導光体とが前記フィルタ素子の透過域にある光をフィルタ素子を透過させて第1の光導波路の導光体と第2の光導波路の導光体との間で伝送させるようになった光合分波器の製造方法であって、
前記フィルタ素子は、少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有し、入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波として、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき
入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73であり
前記多層膜は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層したものであり、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
によって定められ、さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとするとき、前記第1の導光体の光軸と第2の導光体の光軸との間の軸ズレ量δが次の式1
δ=A(λ)・T・tanθ …(式1)
で定められるとき、
少なくとも2つの導光体を有する第1の光導波路を形成する工程と、少なくとも1つの導光体を有する第2の光導波路を形成する工程と、第1及び第2の光導波路を前記フィルタ素子の両側に配置して、第1の光導波路の少なくとも1つの導光体の光軸と第2の光導波路の少なくとも1つの導光体の光軸との間の距離が前記軸ズレ量δに等しくなるように調整する工程と、調整後の第1の光導波路と第2の光導波路とフィルタ素子を接着剤により接合させる工程とを経て光合分波器が製造される。
本発明の光合分波器によれば、フィルタ素子を透過して導光体に入射する光の、フィルタ素子内における屈折以外の要因、例えばフィルタ素子内部での多重反射なども考慮して導光体どうしの最適な軸ズレ量を決めることができる。よって、フィルタ素子を透過して伝搬する光の損失を小さくすることができる。しかも、この製造方法によれば、第1の光導波路と第2の光導波路を作製した後で、両光導波路の組立状態を確認しながら軸ズレ量を調整できるので、透過光の損失低減の効果が高くなる。
なお、本発明の以上説明した構成要素は、可能な限り任意に組み合わせることができる。
以下、図面を参照しながら本発明の実施の形態を詳細に説明する。なお、以下においては、導光体としてコアを例にとって説明するが、導光体はコアに限定されるものではない。
図6は本発明の実施の形態による光合分波器11を示す概略平面図である。光合分波器11は、光導波路12とフィルタ素子26とからなる。光導波路12は透明樹脂材料で形成された複数本のコア21、22及び23を有し、コア21〜23は、該コア21〜23よりも屈折率の小さな透明樹脂材料からなるクラッド33内に埋め込まれている。光導波路12には、光導波路12に溝を切り込むことにより、あるいは光導波路12を2分割することによりフィルタ挿入部32が形成されており、フィルタ挿入部32内にフィルタ素子26が挿入されている。コア21、22とコア23とは、フィルタ挿入部32を隔てて互いに反対側に配設されている。コア21とコア23は直線状に形成されており、互いにほぼ同一直線上に位置するように配置され、フィルタ挿入部32を挟んで互いの端面どうしがほぼ対向している。コア22のフィルタ挿入部32と反対側の端部は、コア21と平行となるようにして直線状に形成されており、コア22は中間部分で湾曲していてフィルタ挿入部32側の端部はコア21とつながって一体となっている。
図7は上記光合分波器11のフィルタ素子26近傍を拡大して表わした断面図である。コア21の端面21a、コア22の端面22aおよびコア23の端面23aはそれぞれフィルタ挿入部32内に露出している。コア21とコア22の端部はコア挿入部32に臨む位置でつながって一体となっており、コア挿入部32側の端部ではコア21とコア22は互いにθtの角度をなしている。また、コア23のフィルタ挿入部32側の端部とコア21のフィルタ挿入部32側の端部とは、フィルタ挿入部32を挟んで互いに対向しており、コア23の端部の光軸は、コア21の端部の光軸と平行となっているが、両光軸どうしは後述のように若干の軸ズレを有している。
なお、コア21、22の端部間の角度θtは、コア21とコア22の接近する部分での微妙な変化を除いて、コア21とコア22のそれぞれの光軸がなす角度に等しい。また、以下の説明において、フィルタ挿入部32の近傍において、特に限定なくコア21とコア22の光軸という場合は、コア21とコア22の接近する部分での微妙な変化を除いた代表的に表現した光軸、あるいは後述の入射ビームと出射ビームの光軸を指すものとする。また、この実施の形態では、コア挿入部を挟んで一方に2本のコアが設けられ、他方に1本のコアが設けられた例を説明したが、一般的には、コア挿入用間隙の一方に少なくとも1本のコアが設けられ、他方にも少なくとも1本のコアが設けられていればよい。
フィルタ素子26は、例えばフッ素化ポリイミドフィルムの薄膜からなる基板25の上にイオンアシスト蒸着などの方法で誘電体多層膜24を形成したもの(フッ素化ポリイミドフィルタ)である。フィルタ素子26は、コア21、22とコア23とを仕切るようにして光導波路のフィルタ挿入部32に納められており、コア21、22の端面21a、22aに接着剤27で接着固定されている。あるいは、フィルタ素子26は、コア23の端面23aに接着剤で接着固定してもよい。フィルタ素子26をコア23の端面23aに接着固定すれば、フィルタ素子26の基板側が接着されることになるので、製造過程での配置調整時に、反射位置の調整も可能となり、より反射光の損失やそのバラツキを低減することができる。なお、フィルタ素子26に光を平行光化して入射させるためのコリメートレンズは用いられていない。
図7における符号28〜30は光導波路の各コア21〜23の中心線を表わし、28aと29aは例としての信号光の進行方向を表すための矢印である。24aはコア21(あるいは、コア22)から第1の特定波長である波長λaの光がフィルタ素子26に入射しコア22(コア21)の方向に反射される光の物理的な反射点(多層膜24を構成する各単層積層膜のそれぞれによる屈折や反射を考慮した反射の重心点)を含みフィルタ素子26の表面に平行な面(以下、実効反射面という。)、24cは多層膜24の表面であるとともにフィルタ素子26の一方の入射面である。24dはコア21を進行してきてフィルタ素子26に入射する光の入射点(コア22を進行してきて多層膜24で反射した光の出射点ということもある。)、24eはコア21を進行してきてフィルタ素子26に入射した光がフィルタ素子26で反射されて入射面24cから出射するときの出射点(コア22を進行してきてフィルタ素子26に入射する光の入射点ということもある。)である。
この光合分波器11に用いられているフィルタ素子26の特性が、波長1300nmの光を反射し1550nmの光を透過するものであるとすれば、コア22を矢印29aと反対向きに進行する波長が1300nmの光はフィルタ素子26で反射されてコア21を矢印28aと反対向きに進行する。また、コア21を矢印28aの方向に進行する波長が1550nmの光は、フィルタ素子26を透過してコア23を矢印30aの方向に進行する。
ここで、コア22からフィルタ素子26に入射し、フィルタ素子26で反射されてコア21に入る光は、フィルタ素子26の表面24cで反射される訳ではなく、フィルタ素子26に入射した光は前記実効反射面24aで反射される。
次に、フィルタ素子26を透過する透過光の損失をできるだけ小さくすることを考える。フィルタ素子を用いた従来例の光導波路においても、図5で説明したようにオフセットを考慮しているが、これだけでは透過光の損失を真に低減できないだけでなく、損失のバラツキも大きく、小型で製造コストの安価な光合分波器を実用化することは困難である。本発明の発明者は、透過光のオフセットを考慮すると共に、フィルタ素子の透過光の出射位置を透過光の波長に応じて狭い範囲に限定するように管理したフィルタ素子を使用することにより、フィルタ素子を用いた光合分波器の透過光の損失を極めて効果的に低減する方法を提案する。
次に、フィルタ素子における透過光の損失を低減する方法を説明する。図8はこの方法を説明するための模式図である。フィルタ素子26は、厚みがフィルタ設計波長の4分の1波長で屈折率が比較的高い層(高屈折率層H)と屈折率が比較的低い層(低屈折率層L)を交互に積層して作製した誘電体多層膜24を、基板25の表面に設けたものである。図8においては、透過光の入射面24cと出射面24fをそのまま表示し、多層膜24を、入射面24cと基板25の間の高屈折率層Hだけを集めて描いた高屈折率層Hの集合41と、低屈折率層Lだけを集めて描いた低屈折率層Lの集合42とに分けて示している。また、符号51はフィルタ素子26への入射光、46は入射光51が入射した位置すなわち入射点24dにおいて入射面24cに立てた法線、24dは入射光51の入射面24cへの入射点である。43〜45は入射光51がフィルタ素子26に入射してからの光路を説明するための位置であって、このうち45は出射点である。34は入射光51を延長した方向を破線で示し、フィルタ素子26がない場合の入射光51の進路に相当する。θ及びθ12〜θ15は入射光51のフィルタ素子26への入射点24dと入射光51がフィルタ素子26に入射してからの光路を模式的に説明するための位置43〜45を順次結んだ線分と法線46とのなす角度である。また、d11は、入射光51がフィルタ素子26に入射して図5の場合と同様な従来のスネルの法則に従ったオフセットの考え方でフィルタ素子26内で屈折してフィルタ素子26内を進行してフィルタ素子26の出射面24fから出射すると仮定したときの仮定出射点47と、出射面24fと破線34の交点との距離である。d12は、入射光51が入射面24cの入射点24dからフィルタ素子26に入射し、出射面24fから出射する出射光52の出射点45と仮定出射点47の距離である。48は破線34と出射面24fの交点である。
フィルタ素子26は、実際には基板25の上に低屈折率層Lと高屈折率層Hを交互に積層して形成されているが、図8では、従来の考え方によるオフセットを説明する都合上と本発明の透過光の出射位置を説明する都合上、高屈折率層Hは高屈折率層Hだけで集合させて集合41で示し、低屈折率層Lは低屈折率層Lだけで集合させて集合42で示して、入射光51のフィルタ素子26内での屈折による進行を説明するのに便利なように表わしている。
図8で、矢印28aの方向へ進行してきた入射光51は、入射面24cの入射点24dからフィルタ素子26に入射し、従来のスネルの法則によるオフセットの考え方では、フィルタ素子26を構成する高屈折率層Hの全体41によって屈折させられた分と、フィルタ素子26を構成する低屈折率層Lの全体42によって屈折させられた分と、さらに基板25によって屈折させられた分の屈折現象によって、出射面24fの仮定出射点47から出射することになる。しかし、本発明においては、従来のオフセットを考慮した上に、さらにフィルタ素子26内での多重反射の結果も加わり、図8で矢印28aの方向へ進行してきた入射光51は入射面24cの入射点24dからフィルタ素子26に入射した後、出射面24fにおいて仮定出射点47から破線34と出射面24fの交点48の方向へd12だけ離れた出射点45から矢印30aの方向へ向けて出射する。
したがって、図6及び図7に示す本発明の光導波路12では、図7に図示するように、光導波路12のコア23の中心線30(光軸)が図8の出射点45の位置からの出射光52の光路と一致するように、かつ、出射面24fとコア23の端面の媒質の屈折率の影響による出射光52の進行を考慮して出射光52を受光できるよう、図9に示すようにコア21とコア23の光軸間に軸ズレ量δを持たせれば、透過光の損失を小さくすることができる。
図9及び図10はコア21とコア23の軸ズレ量δを決める方法を説明するための図であって、ある開口数NAを有する2つのコアの開口端を対向させたときの、コア間距離xとコアの軸ズレ量δに関する結合損失を説明するものである。ここで、対向する2つのコアは端面の近くにおいて直線状であるとする。
図9において21と23はコアを表わし、28はコア21の中心線(光軸)を表わし、30はコア23の中心線(光軸)を表わす。δはコア21の中心線28とコア23の中心線30の軸ズレ量、xはコア21の端面21aとコア23の端面23aの間の距離(端面間距離)である。また、図10に示す曲線71〜74は図9に示す系の結合損失曲線であって、横軸はコア21、23の端面間距離xを表わし、縦軸は結合損失L(x)を表わしている。
コア21〜23の端面の間に光路に対して傾けてフィルタ素子を挿入するためのフィルタ挿入部32を設ける場合には、コア21〜23の端面を斜めに切断してフィルタ挿入部32を形成する場合が多い。この場合、コア21〜23の屈折率とフィルタ素子26を接着する接着剤27の屈折率が一致していれば、コア21の端面から出射される光の光軸とコア23の光軸が一致する。しかし、コア21の屈折率と接着剤27の媒質の屈折率は、一般には異なる。例えば、コア21等に石英を用いた場合の屈折率は約1.46で、プラスチックで形成した場合の屈折率は約1.5というように、コア自体も材質によって屈折率が異なる。コア21等の屈折率と接着剤27の媒質の屈折率が異なる場合、フィルタ素子26の出射側のコア23の光軸と出射光の光軸は厳密には一致しない。フィルタ素子26の入射側のコア21の光軸についても同様である。すなわち、本発明でいう軸ズレ量δとは、出射光と入射光のコア端面におけるシフト量を意味している。
図10に示す結合損失曲線は、図9の系で結合させる光の波長が1550nm、コアの端面の開口数NAが0.1、両端面間の媒質の屈折率が1.56として計算したものであって、曲線71は軸ズレ量δ=0μmの時の曲線、曲線72はδ=1μmの時の曲線、曲線73はδ=2μmの時の曲線、曲線74はδ=3μmの時の曲線である。
図10のグラフから分かるように、結合損失L(x)は端面間距離xの関数であるが、軸ズレ量δの関数でもある。そして、変数xに対する変化よりもパラメータδに対する変化の方が極めて大きい。したがって、従来はコアの端面間にフィルタ素子を波長選択素子として用いた光合分波器においては、結合損失を少なくするためにフィルタ素子の厚みを薄くできるフッ素化ポリイミドフィルタを用いるなどして、端面間距離xを小さくすることに重点をおいてきたが、図10の結果を鑑みれば、軸ズレ量δの方をより重要視して、結合損失L(x)の低減に努めなければならないことが分かる。
本発明の発明者は、これらの基本的な考え方に基づき、実際に光合分波器に使用するフィルタ素子とそれを用いる光結合系について種々の検討を行った。その結果、対向する少なくとも2個のコアの端面の間にその光軸に対して傾斜したフィルタ素子を挿入する光合分波器においては、対向するコアのうち一方のコアの端面から出射する光の光軸と他方のコアの端面に入射する光の光軸の間に、次式で表わされる軸ズレ量δを与えるように対向するコアどうしを配置することにより、損失特性やPDL特性の優れた光合分波器を安価に提供することができることを見出した。
δ=A(λ)・T・tanθ
ここで、Tはフィルタ素子の媒質換算厚みであって、フィルタ素子の周囲媒質の屈折率をn(0)、低屈折率層Lの屈折率をn(L)、高屈折率層Hの屈折率をn(H)、低屈折率層L全層の物理厚さをt(L)、高屈折率層H全層の物理厚さをt(H)とするとき、
T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
で定義される。また、θは入射光が多層反射膜の入射面に入射するとき、その入射点における入射面の法線と入射光線とがなす角度(図8参照)である。
A(λ)は、実験的に求められたフィルタ素子の伝送損失から軸ズレに起因する分を抽出し、それにある定数を掛けて無次元化したものであって、入射光の波長λに依存して変化する係数である。いま、フィルタ素子が波長λが少なくとも1300nmと1480nmと1500nmの3種類の光を透過するとともに波長λが1550nmの光を反射する波長選択フィルタであり、入射光の入射点におけるフィルタ素子の入射面の面法線と入射光の入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波とするとき、入射光の波長λに依存する前記係数A(λ)は、次のようになる。すなわち、
入射光の波長λが1300nmのS偏波に対しては、係数A(λ)は0.066〜0.075の値をとる。
入射光の波長λが1480nmのS偏波に対しては、係数A(λ)は0.40〜0.50の値をとる。
入射光の波長λが1500nmのS偏波に対しては、係数A(λ)は0.60〜0.90の値をとる。
入射光の波長λが1300nmのP偏波に対しては、係数A(λ)は0.060〜0.090の値をとる。
入射光の波長λが1480nmのP偏波に対しては、係数A(λ)は0.38〜0.48の値をとる。
入射光の波長λが1500nmのP偏波に対しては、係数A(λ)は0.55〜0.73の値をとる。
以下の取扱における係数A(λ)としては、出射光としてS偏波を重視するときは前記S偏波に対する値を用い、出射光としてP偏波を重視するときは前記P偏波に対する値を用い、出射光としてS偏波とP偏波の双方を重視するときは前記S偏波に対する値と前記P偏波に対する値の単純平均と偏波状況に応じた加重平均のいずれか一方を用いることとする。
この係数A(λ)の条件は、広い使用範囲において適用できるものであるが、例えばこれに狭く限定されないが、光通信における幹線用や中間装置用や端末用といった要求される仕様の程度が異なる用途に対して、そのコストを低減するために上記係数A(λ)の条件で製造したものから、仕様がより高度なもの用を選択するよりも、あらかじめ狭い範囲に係数A(λ)の条件を設定しておいて製造すれば、損失特性やPDL特性の良好な光合分波器をよりやすいコストで提供することができる。
そのための係数A(λ)のより緩和した条件は、次のようになる。すなわち、
波長λが1300nmのS偏波に対しては、係数A(λ)は0.058〜0.075の範囲の値であり、
波長λが1480nmのS偏波に対しては、係数A(λ)は0.40〜0.53の範囲の値であり、
波長λが1500nmのS偏波に対しては、係数A(λ)は0.60〜0.91の範囲の値である。
さらに厳しい要求の仕様に対しては、
波長λが1300nmのS偏波に対しては、係数A(λ)を0.067〜0.069の範囲の値とし、
波長λが1480nmのS偏波に対しては、係数A(λ)を0.42〜0.50の範囲の値とし、
波長λが1500nmのS偏波に対しては、係数A(λ)を0.625〜0.900の範囲の値とすればよい。
そして、上記各条件に関しては、フィルタ素子を透過させて利用する光信号が波長の異なる複数種類の信号であるときには、それらの各波長をλ1、λ2、λ3、…、λp(ただし、pは自然数)とし、前記A(λ)は、A(λ1)〜A(λp)の平均値を用いることが好ましい。
前記係数A(λ)は、フィルタ素子の透過特性によって決められるべきものである。従来、フィルタ素子に関して、これらの係数は全く管理されていなかった。しかしながら、本発明の発明者が調べた結果、以下に説明するように、多層膜の積層数も厚みもおおむね同じフィルタ素子において、これらの係数はかなり広くばらついた値を有することが明らかになった。
前記係数A(λ)の値の範囲は、本発明における前記の諸検討を行った結果得られた結論である。図11〜図21に、フィルタ素子による実際のバラツキの一例を示す。図11〜図21は、フィルタ素子の有する係数A(λ)のバラツキの例を説明する図で、いずれの図も縦軸に係数A(λ)をとり、横軸に入射光の波長λをとって表している。後述のように、これらの曲線には、係数A(λ)が前記本発明の範囲に入るものと入らないものとがある。
図11〜図21においては、符号75〜85で示す曲線は、S偏波について係数A(λ)と波長λの関係を表わしたものであり、符号75a〜85aで示す曲線は、P偏波について係数A(λ)と波長λの関係を表わしたものである)。入射光の波長λが1300nmのS偏波に対するフィルタ素子の有する係数A(λ)の値を図11〜図21から求めると、次の通りである。
図11の曲線75によれば、A(λ)=0.068
図12の曲線76によれば、A(λ)=0.059
図13の曲線77によれば、A(λ)=0.099
図14の曲線78によれば、A(λ)=0.067
図15の曲線79によれば、A(λ)=0.066
図16の曲線80によれば、A(λ)=0.105
図17の曲線81によれば、A(λ)=0.068
図18の曲線82によれば、A(λ)=0.069
図19の曲線83によれば、A(λ)=0.071
図20の曲線84によれば、A(λ)=0.068
図21の曲線85によれば、A(λ)=0.067
また、入射光の波長λが1300nmのP偏波に対してフィルタ素子の有する係数A(λ)の値を図11〜〜図21から求めると、次の通りである。
図11の曲線75aによれば、A(λ)=0.063
図12の曲線76aによれば、A(λ)=0.055
図13の曲線77aによれば、A(λ)=0.091
図14の曲線78aによれば、A(λ)=0.079
図15の曲線79aによれば、A(λ)=0.078
図16の曲線80aによれば、A(λ)=0.115
図17の曲線81aによれば、A(λ)=0.084
図18の曲線82aによれば、A(λ)=0.087
図19の曲線83aによれば、A(λ)=0.091
図20の曲線84aによれば、A(λ)=0.075
図21の曲線85aによれば、A(λ)=0.073
また、入射光の波長λが1480nmのS偏波に対してフィルタ素子の有する係数A(λ)の値を図11〜図21から求めると、次の通りである。
図11の曲線75によれば、A(λ)=0.435
図12の曲線76によれば、A(λ)=0.387
図13の曲線77によれば、A(λ)=0.537
図14の曲線78によれば、A(λ)=0.425
図15の曲線79によれば、A(λ)=0.396
図16の曲線80によれば、A(λ)=0.563
図17の曲線81によれば、A(λ)=0.454
図18の曲線82によれば、A(λ)=0.489
図19の曲線83によれば、A(λ)=0.535
図20の曲線84によれば、A(λ)=0.406
図21の曲線85によれば、A(λ)=0.409
また、入射光の波長λが1480nmのP偏波に対してフィルタ素子の有する係数A(λ)の値を図11〜図21から求めると、次の通りである。
図11の曲線75aによれば、A(λ)=0.385
図12の曲線76aによれば、A(λ)=0.347
図13の曲線77aによれば、A(λ)=0.468
図14の曲線78aによれば、A(λ)=0.397
図15の曲線79aによれば、A(λ)=0.377
図16の曲線80aによれば、A(λ)=0.507
図17の曲線81aによれば、A(λ)=0.424
図18の曲線82aによれば、A(λ)=0.455
図19の曲線83aによれば、A(λ)=0.492
図20の曲線84aによれば、A(λ)=0.376
図21の曲線85aによれば、A(λ)=0.378
また、入射光の波長λが1500nmのS偏波に対してフィルタ素子の有する係数A(λ)の値を図11〜図21から求めると、次の通りである。
図11の曲線75によれば、A(λ)=0.677
図12の曲線76によれば、A(λ)=0.567
図13の曲線77によれば、A(λ)=0.872
図14の曲線78によれば、A(λ)=0.658
図15の曲線79によれば、A(λ)=0.534
図16の曲線80によれば、A(λ)=0.897
図17の曲線81によれば、A(λ)=0.738
図18の曲線82によれば、A(λ)=0.864
図19の曲線83によれば、A(λ)=1.094
図20の曲線84によれば、A(λ)=0.599
図21の曲線85によれば、A(λ)=0.603
また、入射光の波長λが1500nmのP偏波に対してフィルタ素子の有する係数A(λ)の値を図11〜図21から求めると、次の通りである。
図11の曲線75aによれば、A(λ)=0.575
図12の曲線76aによれば、A(λ)=0.501
図13の曲線77aによれば、A(λ)=0.733
図14の曲線78aによれば、A(λ)=0.581
図15の曲線79aによれば、A(λ)=0.491
図16の曲線80aによれば、A(λ)=0.764
図17の曲線81aによれば、A(λ)=0.640
図18の曲線82aによれば、A(λ)=0.719
図19の曲線83aによれば、A(λ)=0.850
図20の曲線84aによれば、A(λ)=0.532
図21の曲線85aによれば、A(λ)=0.535
図11〜図21に特性を示した各フィルタ素子は、厚みが5μmのフッ素化ポリイミド薄膜(基板)の上に低屈折率層Lと高屈折率層Hとを交互に71層積層して多層膜を形成したものである。厚みが5μmのフッ素化ポリイミド薄膜の上に形成した多層膜は製造工程において扱いやすい。ここで、一例として図11の特性を有するフィルタ素子について述べると、次の通りである。
図11の特性を有するフィルタ素子は、基板として厚みが5μmのフッ素化ポリイミド薄膜を用い、その上にTa(五酸化タンタル)からなる高屈折率層HとSi0(二酸化ケイ素)からなる低屈折率層Lとを交互に積層した多層膜を形成したものである。そして、設計基準波長λcを1805nmとし、多層膜を構成する各低屈折率層Lと高屈折率層Hの各屈折率n(L)、n(H)の値が基板側から表面側へ順に、それぞれ低屈折率層L、高屈折率層Hの順に、
1.19、 1.43、 0.73、 1.28、 1.04、
0.95、 1.11、 0.998、 1.02、 0.998、
1.02、 0.998、 1.02、 0.998、 1.02、
0.998、 1.02、 0.98、 1.02、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.001、 1.001、 1.001、 1.001、
1.001、 1.02、 0.98、 1.017、 1.001、
1.017、 1.001、 1.017、 1.001、 1.017、
1.001、 1.017、 1.001、 1.04、 1.03、
1.09、 0.92、 1.3、 0.79、 1.41、
1.27
になるように単層の低屈折率層Lと高屈折率層Hを71層積層して多層膜を形成している。そしてその多層膜の厚さ(基板を含めない多層膜自体の厚さ)は、物理厚さで18.14μmである。図12〜図21の特性を有するフィルタ素子の構成については省略するが、図11の特性を有するフィルタ素子とは、各層の屈折率が異なっている。
図22は、図11の特性を有するフィルタ素子の透過率波長特性を示す図であって、縦軸は透過率を示し、横軸は入射光の波長λを示す。図23は、図11の特性を有するフィルタ素子の反射率波長特性を示す図であって、縦軸は反射率を示し、横軸は入射光の波長を示す。図22及び図23において、符号171〜176で示す曲線は、コリメータレンズを用いない発散入射光に対する特性曲線であり、符号171a〜176aで示す曲線は、コリメータレンズを用いて平行光化した入射光に対する特性曲線である。また、符号171と171aで示す曲線は、透過波長域における透過特性曲線(S偏波に対する特性曲線とP偏波に対する特性曲線が重なっているため一本の線に見える)である。符号172と172aで示す曲線は反射波長域における反射特性曲線(S偏波に対する特性曲線とP偏波に対する特性曲線が重なっているため一本の線に見える)である。符号173と173aで示す曲線は、透過波長域と反射波長域の境界部分におけるS偏波に対する透過特性曲線である。符号174と174aで示す曲線は、透過波長域と反射波長域の境界部分におけるP偏波に対する透過特性曲線である。符号175と175aで示す曲線は、透過波長域と反射波長域の境界部分におけるS偏波に対する反射特性曲線である。符号176と176aで示す曲線は、透過波長域と反射波長域の境界部分におけるP偏波に対する反射特性曲線である。
図22及び図23で示したフィルタ素子の波長特性は、図11に示したように、係数A(λ)が本発明の範囲に入る特性を有しているとともに、フィルタ素子の透過光を1300nm、1480nm、1500nmとし、反射光を1550nmとした場合に、曲線171、172が示すように、有害なリップルがなく、フィルタ素子として要求される損失特性とPDL特性を満たすものであり、光合分波器に使用できるものである。これらの例示したフィルタ素子は、波長が1550nmの光を透過率が−25dB以下であるように反射し、波長が1480〜1500nmの光を損失が0.6dB以内で透過させている。
前記のように、図11〜図21における曲線75a〜85aは、S偏波に対する曲線75〜85に対応するP偏波、すなわち、入射光の入射点における前記フィルタ素子の前記コアの光軸に対して傾斜した入射面の面法線と入射方向を含む平面に平行な方向の偏波に対するA(λ)の特性を示す曲線である。これから、波長が1300nm、1480nm、1500nm、1550nm以外の波長の入射光に対する係数A(λ)を求めることができる。
図11〜図21は、基板が5μmのフッ素化ポリイミドの上に、層Lと層Hを交互に合わせて71層の、物理厚みd(以下、単に厚みdともいう)が18.1μm前後の多層膜として形成したそれぞれ異なるフィルタ素子の例である。これらの中でも、前記係数A(λ)の値は、前記のように広い範囲に分布している。
図17は、前記同様の基板の上に、低屈折率層Lと高屈折率層Hを交互に61層積層して厚みdが15.6μm前後の多層膜を形成したフィルタ素子の例である。図18は、前記同様の基板の上に、低屈折率層Lと高屈折率層Hを交互に55層積層して厚みdが14.1μm前後の多層膜を形成したフィルタ素子の例である。図19は、前記同様の基板の上に、低屈折率層Lと高屈折率層Hを交互に51層積層して厚みdが13.1μm前後の多層膜を形成したフィルタ素子の例である。図20は、前記同様の基板の上に、低屈折率層Lと高屈折率層Hを交互に101層積層して厚みdが25.8μm前後の多層膜を形成したフィルタ素子の例である。図21は、前記同様の基板の上に、低屈折率層Lと高屈折率層Hを交互に101層積層して厚みdが29.3μm前後の多層膜を形成したフィルタ素子の例である。
前記各層数のフィルタ素子と層数および高屈折率層Hと低屈折率層Lの形成条件が同じフィルタ素子を基板の上に形成した後、該基板を除去したフィルタ素子を作成して特性を調べたところ、前記特性の基板に関係する部分を除いたデータとおおむね同じ結果を得ることができた。これらから分かるように、係数A(λ)の値は、フィルタ素子の層数や厚みによってもある範囲で変動するが、層数や厚みが同じでもある範囲で変動する。
本発明では、この変動の様子を調ベ、係数A(λ)の値として前記課題を解決する手段のところに記した範囲の値を用いて軸ズレ量を設定し、フィルタ素子を挿入した光合分波器を作製し、損失特性とPDL特性の大幅な改善を実現した。
損失特性とPDL特性の観点からは、特に層数が64層以上のフィルタ素子が好ましい結果をもたらした。また、前記基板のないフィルタ素子を用いることによりフィルタ挿入部分の厚みを薄くすることができ、いっそう好ましい結果を得ることができた。以上においては、本発明の光合分波器について、軸ズレ量を決める係数の範囲について説明した。
(製造方法)
次に、本発明の光合分波器11の製造方法を説明する。図24(a)(b)(c)は第1の製造方法を説明する図である。この方法では、図24(a)に示すように、始めに2つの光導波路12a、12bが別々に成形される。光導波路12aにおいては、クラッド33に2つのコア21と22が形成されている。コア21とコア22の一方の端部は交差するように互いにつながっている。光導波路12bにおいては、クラッド33にコア23が形成されている。また、光導波路12a、12bのフィルタ素子26に接合させられる接合面55a、55bは、信号光の入射及び出射に用いることができるように光学的諸条件を考慮して形成されている。
つぎに、係数A(λ)の値が前記のような好ましい範囲にあるフィルタ素子26を用意する。そして、それぞれ独立している光導波路12aとフィルタ素子26を、適当な位置決め治具等を用いるなどしてそれぞれが図24(b)に示した所定位置近傍にくるように配列する。その状態を保ったままで、波長が1550nmの光をコア22の一端に入力させ、コア22の他端からその光を出射させてフィルタ素子26に入射させる。そして、フィルタ素子26で反射した光をコア21の一端に入射させ、コア21の他端から出射させる。コア21の他端から出射した光の伝送特性を測定しながら、フィルタ素子26を図24(b)の矢印56に交差する方向に適宜動かしてコア21の他端から出射する光の伝送特性が所定の状態になるように光導波路12aとフィルタ素子26の相対位置を決める。
この測定においては、これとは逆に、波長が1550nmの光をコア21の一端に入力させ、コア21の他端からその光を出射させてフィルタ素子26に入射させ、フィルタ素子26で反射した光をコア22の一端に入射させ、コア22の他端から出射した光の伝送特性を測定し、光導波路12aとフィルタ素子26の位置調整を行うようにしてもよい。
つぎに、位置決めした光導波路12aとフィルタ素子26に光導波路12bを対向させ、適当な位置決め治具等を用いるなどしてそれぞれが図24(c)に示した所定位置近傍にくるように配列する。ついで、波長が1480nmの光をコア21の一端に入力させ、コア21の他端から出射した光をフィルタ素子26に入射させて透過させ、フィルタ素子26を透過した光をコア23の一端に入射させ、コア23の他端から出射する光の伝送特性を測定する。そして、光導波路12bを図24の矢印57の方向あるいは矢印57に交差する方向に適宜動かしてコア23の他端から出射する光の伝送特性が所定の状態になるように光導波路12bとフィルタ素子26の相対位置を決める。
つぎに、波長が1300nmの光をコア21の一端に入力させ、コア21の他端から出射させてフィルタ素子26に入射させて透過させ、フィルタ素子26を透過した光をコア23の一端に入射させ、コア23の他端から光を出射させてその伝送特性を測定する。そして、波長が1300nmの入射光の場合の伝送損失よりも波長が1480nmの入射光の場合の伝送損失が少なくなっていることを確認する。もしこれを確認できない場合には、光導波路12bとフィルタ素子26の相対位置を微調整しながら波長が1480nmの入射光に対する伝送損失を改善する。
つぎに、波長が1500nmの光をコア21の一端に入力させ、コア21の他端からこの光を出射させてフィルタ素子26を透過させ、透過した光をコア23の一端に入射させ、コア23の他端から出射した光の伝送特性を測定する。
このようにして測定した前記伝送特性を比較し、波長が1480nmの入射光の場合の伝送特性と波長が1300nmの入射光の場合の伝送特性と波長が1500nmの入射光の場合の伝送特性が所定の範囲になっていることを確認し、必要に応じて構成要素の相対位置を微調整し、接着剤を硬化させて各構成要素を図24(c)の光合分波器11として固定する。
なお、上記のように実際に光を伝送させて伝送特性を観察する代わりに、光導波路12aのコア21の中心軸と光導波路12bのコア23の中心軸を検出し、コア21の中心軸とコア23の中心軸の間の軸ズレ量が予め計算、シミュレーション又は実験により求められている軸ズレ量δと等しくなるように光導波路12a、12bどうしの位置を調整してもよい。
従来は、信号光としての波長が1310nmの光の伝送特性が最良になるように光導波路12aと光導波路12bの相対位置を調整していた。このような従来方法よりも、本発明の方法のように、波長が1480nmの光の伝送損失が波長が1300nmの光の伝送損失よりも少なくなるように、光導波路12aとフィルタ素子26の相対位置を調整することにより、前記フィルタ素子26の透過波長域の波長が1260nm〜1360nmの入射光と波長が1480nm〜1500nmの入射光とに対する伝送特性が良好な光合分波器11を歩留まり良く製造することができ、製造コストを大幅に低減することができる。
図25〜図27は光合分波器11の別な製造方法を説明する図である。この製造方法の場合には、まずクラッド33に3つのコア21、22、23が埋め込まれた光導波路12を成形する。このとき、予め使用波長等を想定して上記のようにして最適な軸ズレ量δを計算しておき、図25に示すように、コア21の中心線28とコア23の中心線30とが最適な軸ズレ量δを持つように金型を設計し、その金型を用いて光導波路12を成形する。よって、このようにして成形された図25の光導波路12はコア21、23間に最適な軸ズレ量δが実現されている。
ついで、図26に示すように、コア21及び22とコア23との間において、光導波路12にダイシングソーを用いて溝を切り込んでフィルタ挿入部32を形成する。そして、図27に示すように、フィルタ挿入部32にフィルタ素子26を差し込んで接着剤で固定することにより、光合分波器11を製作する。
かかる製造方法によれば、最適な軸ズレ量δが得られるように、精密な成形金型を製作しておけば、その成形金型を用いて光合分波器11を量産することができ、先の製造方法のように一つ一つの光合分波器11を調整する手間を省くことができる。
本発明に関しては、本発明の発明者が検討した結果、以下のような事実が明らかになった。すなわち、フィルタ素子に入力してフィルタ素子を透過する光が、多層膜(多層膜に基板がある場合には、基板を除いた多層膜部分)から出射する位置は、多層膜を構成する積層膜の層数と多層膜の厚みが同一でも、多層膜によって大きくばらつく。しかも、入射光の波長によっても異なる。このことは、従来にあっては問題にされておらず、光合分波器として全く管理されていなかった。
本発明で検討したように、フィルタ素子を用いた良好な特性を有する光合分波器を安価に提供するためには、図6〜図10を用いて説明した透過光における軸ズレによる損失が重要である。フィルタ素子の層数が64層以上の場合には、本発明の軸ズレの検討が特に重要である。
本発明においては、反射光に対する伝送特性が良好で、そのバラツキが少なくなるような光導波路とフィルタ素子の良好な相対位置関係を簡単に正確に決めることができるよう、透過光に対する伝送損失を低減するため、フィルタ素子でのこの出射位置を波長に依存する係数A(λ)を導入し、係数A(λ)の範囲を前記一定の範囲にするようにフィルタ素子を作製し、両者を両立させたフィルタ素子を用いて光合分波器の損失特性とPDL特性を大幅に改善することができた。
すなわち、前記のように本発明でいうフィルタ素子は、波長選択多層膜エッジフィルタであり、このフィルタ素子を光合分波器に用いる場合には、フィルタ素子に対向するコアの光軸を出射光のビーム軸にできるだけ合わせなければ、光合分波器の特性を望ましいレベルまで改善することができない。その一つの方法として、フィルタ素子を挟んで対向する2個のコアの端面の間の光軸をフィルタ素子からの出射光に合わせて配置することが挙げられる。しかし、多層膜側に大きなバラツキがあっては、それを挿入する光導波路を多数用意して適合する組合せを探さなければならないことになる。また、フィルタ素子からの出射光の位置を不適切に管理すると、フィルタ特性を犠牲にしたり、製造歩留まりを極端に低下させてしまうことになりかねない。
本発明では、これらの点に留意して、歩留まりやフィルタ特性を犠牲にせずに、前記対向する2本のコアの端面の間の光軸を管理する方法を提案し、それを利用した優れた損失特性とPDL特性を実現した。
係数A(λ)が前記のような好ましい範囲を満たしていれば、図22と図23にその一例を示したように、損失特性とPDL特性が優れた、そしてリップル条件も実用域に達しているフィルタ素子を製作することが可能なことが明らかで、本発明による光合分波器を工業的に実現可能なことがわかる。
本発明による光合分波器は、前記のように、対向するコアの光軸(一方のコアからの出射ビームの軸と他方のコアへの入射ビームの軸)の間に、
δ=A(λ)・T・tanθ
で決まる軸ズレ量δを与えるように前記対向するコアどうしを配置することによって実現することができる。そして、透過光波長が複数ある場合には、係数A(λ)の値は、それらの当該波長に対応する係数A(λ)の平均値を用いることが好ましい。その場合、各波長における損失やPDLの加重平均によって、係数の平均を求めてもよい。
図11〜図21の例では、フィルタ素子の透過波長が1300nm〜1500nmであり、1300nm、1480nm、1500nmの波長の光を透過させる光合分波器として用いることができる。このような光合分波器の製造においては、前記データが示すように、1480nmを係数A(λ)を与える波長として用いることにより、良好な損失特性とPDL特性を有する光合分波器を製造歩留まりよく量産することができる。
本発明による光合分波器の作製に当たっては、先ず、回路としてのフィルタへの要求仕様を満たすフィルタ素子の中から、前記軸ズレ量δを調べて回路構成を決め、フィルタの特性を真に生かした光合分波器の構造を決めることができる。
本発明による光合分波器の損失特性とPDL特性は、従来の技術思想で作成したものの中からトップデータを抽出して報じられている現状と対比しても正しい比較は難しいが、量産における平均値で比較すると、50%以上の改善が見られる。
以上、本発明の光合分波器とその製造方法をいくつかの例を用いて説明したが、説明の重複を避けるため、本発明の光合分波器の説明から前記課題を解決する手段に開示した本発明の光合分波器の製造方法の特徴を理解できる部分、ならびに、本発明の光合分波器の製造方法の説明から前記課題を解決する手段に開示した本発明の光合分波器の製造方法の特徴を理解できる部分については一方の説明で他方の説明をも兼ねることにした。また、前記課題を解決する手段に開示した本発明の特徴の説明でわかる部分に関しても、説明の重複を避けることにした。
なお、いくつかの例を用いて本発明の詳細を説明したが、本発明はこれに狭く限定されるものではなく、種々のバリエーションを可能とするものである。導光体が光ファイバでもよい。反射光を利用することに関しては、従来試行錯誤的に導光体をあてはめて行っていたものを、本発明では反射光側の導光体の端面の位置を簡単に正確に決めることができるため、特性の改善はもとより、歩留まりの大幅な改善ができるため、量産を可能にすることができるものである。
(効果の比較)
本発明の光合分波器と従来例の光合分波器とを比較した。ここで用いた両光合分波器のパラメータは、次のとおりである。
フィルタ素子の周囲媒質の屈折率 n(0)=1.5
低屈折率層Lの屈折率 n(L)=1.5
高屈折率層Hの屈折率 n(H)=2.0
フィルタ素子の基板の屈折率 n(Sub)=1.5
低屈折率層L全層の物理厚さ t(L)=6μm
高屈折率層H全層の物理厚さ t(H)=12μm
フィルタ素子の基板の厚さ t(Sub)=5μm
入射光線がフィルタ素子の表面に
垂直な法線となす角度 θ=9°
従来例の光合分波器においては、スネルの法則に従ったフィルタ素子内の屈折だけを考慮したところ、その軸シフトd1(図5参照)は、d1=−0.24μmとなった。また、本発明の設計方法によりシフト量d12−d11(図8参照)を求めたところ、d12−d11=1.15μmであった。なお、シフト量の−符号は、図5又は図8の紙面の下向きにシフトしていることを表わし、符号のないもの(+符号)は、図5又は図8の上向きにシフトしていることを表わす。
この結果、波長1300nm、1480nm、1500nmの光における透過光の伝送損失は図28の通りであった。この結果から分かるように、本発明によれば、透過光の伝送損失、特に波長1480nm以上の光に対する伝送損失が低減することが分かる。
以上説明したように、本発明によって、極めて良好な損失特性とPDL特性を有する波長分波回路を量産可能な状態で安価に提供することができ、光通信分野や建築分野などに広く利用して、それらの分野を大きく発展させることができる。
従来のコリメートレンズを用いた光合分波器を説明する模式図である。 従来のコリメートレンズを用いない光導波路光合分波器を説明する図である。 非特許文献2に記載された従来の光合分波器を説明する図である。 非特許文献2に記載された従来の光合分波器を説明する図である。 従来のフィルタ素子を挿入した光導波路におけるオフセットについて説明する図である。 本発明にかかる波長合分波器を示す概略平面図である。 同上の一部を拡大して示した図である。 フィルタ素子を透過する光の挙動を説明する図である。 光合分波器における開口部間距離と軸ズレ量を示す説明図である。 2つの導光体の開口部を対向させたときの、開口部間距離と軸ズレに関する結合損失について説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 係数A(λ)の例を説明する図である。 図11の特性を有するフィルタ素子の波長特性を説明する図である。 図11の特性を有するフィルタ素子の波長特性を説明する図である。 (a)(b)及び(c)は、本発明による光合分波器の製造方法を説明する図である。 本発明による光合分波器の別な製造方法を説明する図である。 図25の工程に続く工程を説明する図である。 図26の工程に続く工程を説明する図である。 本発明の光導波路と従来例の光導波路における伝送損失を比較して示す図である。
符号の説明
11 光合分波器
12 光導波路
21、22、23 コア
24 多層膜
25 基板
26 フィルタ素子
27 接着剤
28、29、30 中心線
32 フィルタ挿入部
33 クラッド
δ 軸ズレ量
x コアの端面間距離
T フィルタ素子の媒質換算厚み

Claims (7)

  1. フィルタ素子を挟んで該フィルタ素子の両側にそれぞれ1又は2以上の導光体が配置され、前記導光体のうちのある第1の導光体とある第2の導光体とが前記フィルタ素子の透過域にある光を第1の導光体から第2の導光体へフィルタ素子を透過させて伝送させるようになった光合分波器であって、
    前記フィルタ素子は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層した多層膜を有し、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
    T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
    によって定められ、
    さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとし、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき、前記第1の導光体の光軸と第2の導光体の光軸とが、次の式1で定義される軸ズレ量δ
    δ=A(λ)・T・tanθ …(式1)
    を有していることを特徴とする光合分波器。
  2. 前記フィルタ素子は、少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有し、
    入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波とするとき、前記係数A(λ)は、
    入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
    入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
    入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
    入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
    入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
    入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73である、ことを特徴とする請求項1に記載の光合分波器。
  3. 前記係数A(λ)は、波長が1480nm以上の光に対する値を用いられていることを特徴とする、請求項1に記載の光合分波器。
  4. 前記導光体を伝搬する光が複数波長の光である場合には、各波長λ1、λ2、…、λp(pは波長の数であって自然数)に対する前記係数A(λ1)、A(λ2)、A(λ3)、…、A(λp)の平均値を係数A(λ)として用いることを特徴とする、請求項1に記載の光合分波器。
  5. 前記第1の導光体を有する第1の光導波路と前記第2の導光体を有する第2の光導波路は、組立前においては互いに独立した導光体であり、前記式1を満たすようにして前記フィルタ素子の両側に前記両導光体を配置して前記フィルタ素子と接着固定していることを特徴とする、請求項1に記載の光合分波器。
  6. 光導波路においてフィルタ挿入部の一方の側に少なくとも2つの第1の導光体を配置し、フィルタ挿入部の他方の側に少なくとも1つの第2の導光体を配置し、前記フィルタ挿入部にフィルタ素子が挿入され、前記フィルタ挿入部の両側に配置されている第1及び第2の導光体のうち一方の導光体と他方の導光体とが前記フィルタ素子の透過域にある光をフィルタ素子を透過させて伝送させるようになった光合分波器の製造方法であって、
    前記フィルタ素子は、少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有し、
    入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波として、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき
    入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
    入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
    入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
    入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
    入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
    入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73であり
    前記多層膜は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層したものであり、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
    T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
    によって定められ、
    さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとするとき、前記フィルタ第1の導光体の光軸と第2の導光体の光軸との間の軸ズレ量δが次の式1
    δ=A(λ)・T・tanθ …(式1)
    で定められるとき、
    前記第1の導光体のうちの少なくとも1つの導光体の光軸と前記第2の導光体のうちの少なくとも1つの導光体の光軸との間の距離が前記軸ズレ量δに等しくなるようにして前記第1の導光体と第2の導光体を前記光導波路に形成する工程と、
    前記第1の導光体と第2の導光体の中間において前記導波路にフィルタ素子を差し込むための溝を形成する工程と、
    前記溝にフィルタ素子を差し込む工程と、
    前記フィルタ素子を前記溝に接着剤により固定する工程と、
    を備えた光合分波器の製造方法。
  7. フィルタ素子の一方の側に、少なくとも2つの導光体を有する第1の光導波路を配置し、フィルタ素子の他方の側に、少なくとも1つの導光体を有する第2の光導波路を配置し、第1の光導波路の導光体と第2の光導波路の導光体とが前記フィルタ素子の透過域にある光をフィルタ素子を透過させて第1の光導波路の導光体と第2の光導波路の導光体との間で伝送させるようになった光合分波器の製造方法であって、
    前記フィルタ素子は、少なくとも波長が1300nmと1480nmと1500nmの3種類の光を透過するとともに、波長が1550nmの光を反射する多層膜を有し、
    入射光の入射点における前記フィルタ素子の入射面に立てた法線と入射方向を含む平面に対して垂直な方向の偏波をS偏波とし、S偏波に直交する偏波をP偏波として、前記フィルタ素子への入射光の波長λに依存して変化する係数をA(λ)とするとき
    入射光の波長λが1300nmのS偏波に対しては、A(λ)=0.066〜0.075であり、
    入射光の波長λが1480nmのS偏波に対しては、A(λ)=0.40〜0.50であり、
    入射光の波長λが1500nmのS偏波に対しては、A(λ)=0.60〜0.90であり、
    入射光の波長λが1300nmのP偏波に対しては、A(λ)=0.060〜0.090であり、
    入射光の波長λが1480nmのP偏波に対しては、0.38〜0.48であり、
    入射光の波長λが1500nmのP偏波に対しては、0.55〜0.73であり
    前記多層膜は、屈折率が比較的高い高屈折率層と屈折率が比較的小さい低屈折率層を交互に積層したものであり、前記フィルタ素子の周囲媒質の屈折率をn(0)、前記低屈折率層の屈折率及び全体の物理的厚さをそれぞれn(L)及びt(L)、前記高屈折率層の屈折率及び全体の物理的厚さをそれぞれn(H)及びt(H)とするとき、前記フィルタ素子の媒質換算厚みTが、
    T=t(H)・n(0)/n(H)+t(L)・n(0)/n(L)
    によって定められ、
    さらに、前記フィルタ素子に入射する光が前記フィルタ素子の表面に立てた法線となす角度をθとするとき、前記第1の導光体の光軸と第2の導光体の光軸との間の軸ズレ量δが次の式1
    δ=A(λ)・T・tanθ …(式1)
    で定められるとき、
    少なくとも2つの導光体を有する第1の光導波路を形成する工程と、
    少なくとも1つの導光体を有する第2の光導波路を形成する工程と、
    第1及び第2の光導波路を前記フィルタ素子の両側に配置して、第1の光導波路の少なくとも1つの導光体の光軸と第2の光導波路の少なくとも1つの導光体の光軸との間の距離が前記軸ズレ量δに等しくなるように調整する工程と、
    調整後の第1の光導波路と第2の光導波路とフィルタ素子を接着剤により接合させる工程と、
    を備えた光合分波器の製造方法。
JP2005026976A 2005-02-02 2005-02-02 光合分波器とその製造方法 Pending JP2006215212A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005026976A JP2006215212A (ja) 2005-02-02 2005-02-02 光合分波器とその製造方法
KR1020050129476A KR100726580B1 (ko) 2005-02-02 2005-12-26 광합파기/분파기와 그 제조 방법
CNB2006100022561A CN100356217C (zh) 2005-02-02 2006-01-27 光合波/分波器及其制造方法
EP06101110A EP1688768A1 (en) 2005-02-02 2006-01-31 Optical multiplexer/demultiplexer and manufacturing method thereof
US11/345,941 US7228026B2 (en) 2005-02-02 2006-02-02 Optical multiplexer/demultiplexer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026976A JP2006215212A (ja) 2005-02-02 2005-02-02 光合分波器とその製造方法

Publications (1)

Publication Number Publication Date
JP2006215212A true JP2006215212A (ja) 2006-08-17

Family

ID=36143707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026976A Pending JP2006215212A (ja) 2005-02-02 2005-02-02 光合分波器とその製造方法

Country Status (5)

Country Link
US (1) US7228026B2 (ja)
EP (1) EP1688768A1 (ja)
JP (1) JP2006215212A (ja)
KR (1) KR100726580B1 (ja)
CN (1) CN100356217C (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155763B (zh) * 2011-07-13 2017-07-21 华为技术有限公司 分光装置、光复用装置及方法、光分插复用设备
CN102320164B (zh) * 2011-08-15 2014-04-16 西北核技术研究所 一种用于激光变角度入射的多层介质高反射膜
US9052461B2 (en) * 2013-04-23 2015-06-09 Mitsubishi Electric Research Laboratories, Inc. Compound optical combiner
US10261318B2 (en) * 2014-09-29 2019-04-16 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides
GB201615895D0 (en) * 2016-09-19 2016-11-02 Rigal Dara F Illumination device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123437A (ja) * 1996-10-17 1998-05-15 Sumitomo Osaka Cement Co Ltd 光分波装置
JPH11258434A (ja) * 1998-03-12 1999-09-24 Oki Electric Ind Co Ltd 導波形光素子
JP2004333517A (ja) * 2003-04-30 2004-11-25 Optoquest Co Ltd 多層膜フィルタ
JP2004341243A (ja) * 2003-05-15 2004-12-02 Omron Corp 光合分波器
JP2005003891A (ja) * 2003-06-11 2005-01-06 Central Glass Co Ltd フィルタ付き光導波回路
JP2005031321A (ja) * 2003-07-11 2005-02-03 Optoquest Co Ltd 光波長選択回路
JP2005031399A (ja) * 2003-07-14 2005-02-03 Optoquest Co Ltd 多層膜エッジフィルタ
JP2005316457A (ja) * 2004-03-31 2005-11-10 Optoquest Co Ltd 多層膜エッジフィルタ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693544A (en) * 1982-12-14 1987-09-15 Nippon Sheet Glass Co., Ltd. Optical branching device with internal waveguide
GB2189621B (en) * 1986-03-06 1989-11-08 Nippon Sheet Glass Co Ltd Optical demultiplexer and/or multiplexer
JP2608633B2 (ja) 1990-02-13 1997-05-07 日本電信電話株式会社 誘電体多層膜フィルタおよびその製造方法並びにこれを用いた光学要素
EP0442801B1 (en) * 1990-02-13 1995-05-10 Nippon Telegraph And Telephone Corporation Manufacturing method of a dielectric multilayer filter
US5144498A (en) * 1990-02-14 1992-09-01 Hewlett-Packard Company Variable wavelength light filter and sensor system
JPH07261053A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd 光合分波モジュール
JP3344446B2 (ja) * 1995-01-12 2002-11-11 日本電信電話株式会社 光送受信モジュール
US5740288A (en) * 1995-02-22 1998-04-14 E-Tek Dynamics, Inc. Variable polarization beam splitter, combiner and mixer
US6018421A (en) * 1995-06-28 2000-01-25 Cushing; David Henry Multilayer thin film bandpass filter
US5894535A (en) * 1997-05-07 1999-04-13 Hewlett-Packard Company Optical waveguide device for wavelength demultiplexing and waveguide crossing
JP3884857B2 (ja) * 1998-03-12 2007-02-21 富士通株式会社 偏光合成装置および偏光分離装置
US6215924B1 (en) * 1998-08-06 2001-04-10 Optical Coating Laboratory, Inc. Optical coupler device for dense wavelength division multiplexing
GB9828330D0 (en) * 1998-12-22 1999-02-17 Northern Telecom Ltd Dielectric optical filter network
US6320996B1 (en) * 1998-12-31 2001-11-20 Optical Coating Laboratory, Inc. Wavelength selective optical switch
US6529326B2 (en) * 2001-06-13 2003-03-04 Jds Uniphase Corporation Tunable optical filter
US7049004B2 (en) * 2001-06-18 2006-05-23 Aegis Semiconductor, Inc. Index tunable thin film interference coatings
US6850366B2 (en) * 2002-10-09 2005-02-01 Jds Uniphase Corporation Multi-cavity optical filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123437A (ja) * 1996-10-17 1998-05-15 Sumitomo Osaka Cement Co Ltd 光分波装置
JPH11258434A (ja) * 1998-03-12 1999-09-24 Oki Electric Ind Co Ltd 導波形光素子
JP2004333517A (ja) * 2003-04-30 2004-11-25 Optoquest Co Ltd 多層膜フィルタ
JP2004341243A (ja) * 2003-05-15 2004-12-02 Omron Corp 光合分波器
JP2005003891A (ja) * 2003-06-11 2005-01-06 Central Glass Co Ltd フィルタ付き光導波回路
JP2005031321A (ja) * 2003-07-11 2005-02-03 Optoquest Co Ltd 光波長選択回路
JP2005031399A (ja) * 2003-07-14 2005-02-03 Optoquest Co Ltd 多層膜エッジフィルタ
JP2005316457A (ja) * 2004-03-31 2005-11-10 Optoquest Co Ltd 多層膜エッジフィルタ

Also Published As

Publication number Publication date
KR20060088818A (ko) 2006-08-07
KR100726580B1 (ko) 2007-06-11
EP1688768A1 (en) 2006-08-09
US7228026B2 (en) 2007-06-05
CN100356217C (zh) 2007-12-19
US20060171630A1 (en) 2006-08-03
CN1815283A (zh) 2006-08-09

Similar Documents

Publication Publication Date Title
US4296995A (en) Optical fiber beam splitter couplers employing coatings with dichroic properties
JP2009198649A (ja) 光ファイバアレイ
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP2006215212A (ja) 光合分波器とその製造方法
JP2008209520A (ja) 光フィルタモジュール
KR20100126720A (ko) Mems 기반 펠리클 빔스플리터
US7305155B2 (en) Optical element and wavelength separator using the same
JP4305961B2 (ja) 光フィルタを有する光モジュール
JPH11264904A (ja) プリズム型光学素子
JP2005031321A (ja) 光波長選択回路
JPS6360410A (ja) 光デバイスの製造方法
JP2005316457A (ja) 多層膜エッジフィルタ
JP2005309413A (ja) 光学素子およびそれを用いた分波素子
JP2005031399A (ja) 多層膜エッジフィルタ
JP2005031398A (ja) 光波長選択回路
JP2006284767A (ja) 光モジュール
JPH11258434A (ja) 導波形光素子
JP2005173213A (ja) 光コリメータおよびこれを用いた光部品
JPH11190809A (ja) 合分波器
JP2008076815A (ja) 多層膜エッジフィルタおよびそれを用いた光波長選択回路
JP2004333517A (ja) 多層膜フィルタ
JP2007233079A (ja) 光部品および光部品製造方法
JP3476652B2 (ja) 光分波器
JP2006065082A (ja) 光部品およびその製造方法
JP2005352035A (ja) 光合分波器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100401