JP2006187090A - 発電機電力制御装置 - Google Patents

発電機電力制御装置 Download PDF

Info

Publication number
JP2006187090A
JP2006187090A JP2004376551A JP2004376551A JP2006187090A JP 2006187090 A JP2006187090 A JP 2006187090A JP 2004376551 A JP2004376551 A JP 2004376551A JP 2004376551 A JP2004376551 A JP 2004376551A JP 2006187090 A JP2006187090 A JP 2006187090A
Authority
JP
Japan
Prior art keywords
generator
command value
generated
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004376551A
Other languages
English (en)
Inventor
Hidehiko Sugita
秀彦 杉田
Hideki Kawashima
英樹 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004376551A priority Critical patent/JP2006187090A/ja
Priority to US11/293,309 priority patent/US7441616B2/en
Priority to EP05026972A priority patent/EP1674327A2/en
Priority to KR1020050129233A priority patent/KR100741622B1/ko
Priority to CNB2005101341983A priority patent/CN100364228C/zh
Publication of JP2006187090A publication Critical patent/JP2006187090A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】発電電圧と発電電流の両方を制御して、効率の良い発電制御を行うことができる発電機電力制御装置を提供する。
【解決手段】モータトルク指令値Ttに基づいて発電機7が出力すべき電力Pgを演算し、この電力Pgを出力するための発電電圧指令値Vdc*と発電電流指令値Idc*とを演算する。そして、PWMパルス幅を変更することでインバータ9の負荷を変更して、実発電電圧値Vdc及び実発電電流値Idcが発電電圧指令値Vdc*及び発電電流指令値Idc*に追従するように制御する。
【選択図】 図1

Description

本発明は、主駆動軸を駆動する内燃機関(エンジン)で発電機を駆動し、その発電機で交流モータを駆動する4WD車両において、発電機の電力を制御する発電機電力制御装置に関するものである。
従来の発電機電力制御装置としては、モータトルク指令値に基づいて発電機に必要な電圧指令値を演算し、発電機の出力電圧値がこの電圧指令値となるようにフィードバック制御してモータへ電圧を供給するというものが知られている(例えば、特許文献1参照)。
特開2001−239852号公報
しかしながら、上記従来の発電機電力制御装置にあっては、電圧指令値と出力電圧値との偏差に対してフィードバック制御を施すことで発電制御を行っているだけであり、発電電圧と発電電流の両方を制御することはできない。そのため、モータの要求に応じた必要電力を効率良く供給することができない可能性があることから、適切にトルクを出すことができない可能性があるという未解決の課題がある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、発電電圧と発電電流の両方を制御して、適切な発電制御を行うことができる発電機電力制御装置を提供することを目的としている。
上記目的を達成するために、本発明に係る発電機電力制御装置は、電力演算手段で交流モータの要求に応じて発電機が出力すべき必要電力を演算し、界磁制御手段で前記発電機の界磁を制御し、負荷変更手段でインバータの負荷を変更し、電力制御手段で、前記界磁制御手段と前記負荷変更手段とにより、前記発電機の発電電圧及び発電電流を、前記必要電力を出力するための発電電圧指令値及び発電電流指令値に制御する。
本発明によれば、発電機の界磁の制御とインバータ負荷の変更とにより発電電流と発電電圧の両方を指令値に追従させることができるので、モータの要求に応じた電力を効率良く供給することができ、適切な発電制御を行って必要なトルクを出すことができるという効果が得られる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明を四輪駆動車両に適用した場合の概略構成図である。
この図1に示すように、本実施形態の車両は、左右前輪1L、1Rが、内燃機関であるエンジン2によって駆動される主駆動輪であり、左右後輪3L、3Rが、モータ4によって駆動可能な従駆動輪である。
前記エンジン2の吸気管路には、例えばメインスロットルバルブとサブスロットルバルブとが介装されている。メインスロットルバルブは、アクセルペダルの踏込み量等に応じてスロットル開度が調整制御される。サブスロットルバルブは、ステップモータ等をアクチュエータとし、そのステップ数に応じた回転角により開度が調整制御される。従って、サブスロットルバルブのスロットル開度をメインスロットルバルブの開度以下等に調整することによって、運転者のアクセルペダルの操作とは独立して、エンジンの出力トルクを減少させることができる。つまり、サブスロットルバルブの開度調整が、エンジン2による前輪1L、1Rの加速スリップを抑制する駆動力制御となる。
上記エンジン2の出力トルクTeは、トランスミッション及びデファレンスギヤ5を通じて左右前輪1L、1Rに伝達される。また、エンジン2の出力トルクTeの一部は、無端ベルト6を介して発電機7に伝達されることで、発電機7は、エンジン2の回転数Neにプーリ比を乗じた回転数Ngで回転する。
上記発電機7は、4WDコントローラ8によって調整される界磁電流Ifgに応じてエンジン2に対し負荷となり、その負荷トルクに応じた発電をする。この発電機7の発電電力の大きさは、回転数Ngと界磁電流Ifgとの大きさにより決定される。なお、発電機7の回転数Ngは、エンジン2の回転数Neからプーリ比に基づき演算することができる。
発電機7が発電した電力は、ジャンクションボックス10及びインバータ9を介してモータ4に供給可能となっている。前記モータ4の駆動軸は、減速機11及びクラッチ12を介して後輪3L、3Rに接続可能となっている。なお、本実施形態のモータ4は交流モータである。また、図中の符号13はデファレンスギヤを示す。
ジャンクションボックス10内には、インバータ9と発電機7とを接続・遮断するリレーが設けられている。そして、このリレーが接続されている状態で、発電機7から供給された電力は、インバータ9内で三相電流に変換されてモータ4を駆動する。
また、ジャンクションボックス10内には、発電電圧を検出する発電機電圧センサと、インバータ9の入力電流である発電電流を検出する発電機電流センサとが設けられ、これらの検出信号は4WDコントローラ8に出力される。また、モータ4の駆動軸にはレゾルバが連結されており、モータ4の磁極位置信号θを出力する。
また、前記クラッチ12は、例えば湿式多板クラッチであって、4WDコントローラ8からの指令に応じて締結及び開放を行う。なお、本実施形態においては、締結手段としてのクラッチを湿式多板クラッチとしたが、例えばパウダークラッチやポンプ式クラッチであってもよい。
また、各車輪1L、1R、3L、3Rには、車輪速センサ27FL、27FR、27RL、27RRが設けられている。各車輪速センサ27FL、27FR、27RL、27RRは、対応する車輪1L、1R、3L、3Rの回転速度に応じたパルス信号を車輪速検出値として4WDコントローラ8に出力する。
前記4WDコントローラ8は、例えばマイクロコンピュータ等の演算処理装置を備えて構成され、前記各車輪速度センサ27FL〜27RRで検出される車輪速度信号、ジャンクションボックス10内の電圧センサ及び電流センサの出力信号、モータ4に連結されたレゾルバの出力信号及びアクセルペダル(不図示)の踏込み量に相当するアクセル開度等が入力される。
4WDコントローラ8は、図2に示すように、目標モータトルク演算部8A、電力演算手段としての発電機供給電力演算部8B、発電電流指令演算部8C、界磁制御手段としての発電機制御部8D、モータ制御部8E、TCS制御部8F、クラッチ制御部8Gを備える。
目標モータトルク演算部8Aは、4輪の車輪速度信号に基づいて算出される前後輪の車輪速度差とアクセルペダル開度信号とから、モータトルク指令値Ttを算出する。
発電機供給電力演算部8Bは、トルク指令値Tt、モータ回転数Nmに基づいて、次式をもとに発電機供給電力Pgを演算する。
Pg=Tt×Nm/Иm ………(1)
ここで、Иmはインバータ効率である。即ち、発電機供給電力Pgは、トルク指令値Ttとモータ回転数Nmとの積により求められるモータに必要な電力Pm(=Tt×Nm)よりインバータ効率Иm分多い値となる。
発電電流指令演算部8Cは、前記発電機供給電力演算部8Bで算出された発電機供給電力Pgと、後述するモータ制御部8Eで算出される発電電圧指令値Vdc*とに基づいて、次式をもとに発電電流指令値Idc*を演算する。
Idc*=Pg/Vdc* ………(2)
TCS制御部8Fは、図示しないエンジントルク制御コントローラ(ECM)からのエンジン発生駆動トルクデマンド信号Tet、左右前輪の回転速度VFR,VFL、車速Vに基づいて、公知の方法によりECMに対してエンジン発生駆動トルクデマンド信号Teを送り返すことにより前輪トラクションコントロール制御を行う。
クラッチ制御部8Gは、上記クラッチ12の状態を制御し、4輪駆動状態と判定している間はクラッチ12を接続状態に制御する。
図3は、発電機7の発電制御を行う発電機制御部8Dの詳細を示すブロック図である。
この発電機制御部8Dは、P制御部101と、I制御部102と、FF制御部103と、制御量加算部104と、界磁制御部105とで構成され、界磁電圧PWMデューティー比C1を決定して発電機7の界磁電流IfgをPWM制御する。
P制御部101では、前記(2)式により算出された発電電流指令値Idc*と実発電電流値Idcとの偏差に基づいてP制御を行う。先ず、発電電流指令値Idc*と実発電電流値Idcとの偏差に所定のゲインを乗算する。そして、発電機の回転数変動に対してゲインの感度を一定にするために、この値に発電機回転数Ngの逆数を乗算し、これをP制御における制御量Vpとして後述する制御量加算部104に出力する。
I制御部102では、前記(2)式により算出された発電電流指令値Idc*と実発電電流値Idcとの偏差に基づいてI制御を行う。つまり、発電電流指令値Idc*と実発電電流値Idcとの偏差を積分していく。ここで、積分値は上限値及び下限値をもつ。そして、上記P制御同様、この積分値に発電機回転数Ngの逆数を乗算し、これをI制御における制御量Viとして後述する制御量加算部104に出力する。
FF制御部103では、予め格納された各回転数毎の発電機特性マップを参照し、発電電圧指令値Vdc*と発電電流指令値Idc*とに基づいて、フィードフォワードで発電機界磁電圧のPWMデューティー比D1を求める。そして、そのPWMデューティー比D1と発電電圧指令値Vdc*とに基づいて、次式をもとにFF制御における制御量Vffを算出し、制御量加算部104に出力する。
Vff=D1×Vdc* ………(3)
制御量加算部104では、制御量Vpと制御量Viと制御量Vffとを加算し、これを界磁コイルにかける電圧Vfとして界磁制御部105に出力する。
界磁制御部105では、実発電電圧値Vdcが発電機7の界磁電流電源としてのバッテリ電圧Vb(12V)以下であるか否かを判定し、Vdc≦Vbであるときには下記(4)式をもとに界磁電圧PWMのデューティー比C1を算出する。
C1=Vf/Vb ………(4)
一方、Vdc>Vbであるときには、下記(5)式をもとに界磁電圧PWMデューティー比C1を算出する。
C1=Vf/Vdc ………(5)
そして、このようにして算出されたデューティー比C1に応じて、発電機7の界磁電流Ifgを制御する。
つまりこの発電機制御部8Dでは、トルク指令値Ttから決まる発電機供給電力Pgを実現する発電機動作点をフィードフォワードで指定すると共に、発電電圧指令値Vdc*と実発電電圧値Vdcとの偏差をPI補償にてフィードバックすることにより、実発電電圧値Vdcを発電電圧指令値Vdc*に追従させる。
なお、ここではフィードバック制御に用いる制御手法としてPI補償を適用しているが、これに限定されるものではなく、系を安定にする制御手法であればよい。
ところで、モータ4がトルク指令値Ttに一致するためのトルクを出すためには、発電機7は発電電圧指令値Vdc*と発電電流指令値Idc*とを出力する必要がある。この発電電圧指令値Vdc*及び発電電流指令値Idc*は、発電機7が発電機供給電力Pgを供給するために最も効率の良い電圧及び電流である。つまり、発電電圧指令値Vdc*と発電電流指令値Idc*との両方を満足することができれば、効率良く発電機供給電力Pgを出力することができる。
図4は、発電機7の特性を示す図であり、横軸は発電電流、縦軸は発電電圧である。この図4において、直線Aは発電機7の界磁電流Ifgが一定であるときに、インバータ負荷(インピーダンス)によって発電機7の出力が取り得るIf一定線である。つまり、インピーダンスが小さいときには、界磁電流Ifgが同じでも点bに示すように電圧が低く電流が高くなり、逆にインピーダンスが大きいときには、界磁電流Ifが同じでも点cに示すように電圧が高く電流が低くなるなど、発電機7が取り得る動作点はIf一定線上を動くことになる。
そのため、発電電圧指令値Vdc*と発電電流指令値Idc*との両方を満足し、最も効率の良い動作点aとするためには、インバータ負荷を調整する必要がある。
図5は、インバータ9によりモータ4を制御するモータ制御部8Eの詳細を示すブロック図である。
モータ制御部8Eは、Id,Iq指令値演算部201と、Vd,Vq指令値演算部202と、Vdc*指令値演算部203と、2相/3相変換部204と、PI制御部205と、振幅補正部206と、PWM制御部207と、界磁電流指令値演算部208と、界磁磁束演算部209とで構成され、トルク指令値Ttが入力されて実モータトルクTがトルク指令値Ttとなるようにインバータ9の3相のパワー素子をスイッチング制御する。
Id,Iq指令値演算部201では、トルク指令値Ttとモータ回転数Nmとに基づいて、このトルク指令値Ttに一致するトルクを出力するためのd軸(磁束成分)電流とq軸(トルク成分)電流との指令値Idr、Iqrを演算し、Vd,Vq指令値演算部202に出力する。
Vd,Vq指令値演算部202では、Id,Iq指令値演算部201から入力される電流指令値Idr、Iqrと、モータ回転数Nmと、後述する界磁磁束演算部209から入力されるモータパラメータ(インダクタンス、界磁磁束)とに基づいて、d軸電流値Idをd軸電流指令値Idrにするためのd軸電圧指令値Vdrと、q軸電流値Iqをq軸電流指令値Iqrにするためのq軸電圧指令値Vqrとを演算する。
Vdc*指令値演算部203では、Vd,Vq指令値演算部202で算出された電圧指令値Vdr、Vqrに基づいて、発電電圧指令値Vdc*を演算し、前述した図3の発電機制御部8Dに出力する。
2相/3相変換部204では、dq軸電圧指令値Vdr,Vqrを3相正弦波指令値である3相座標系のU相電圧指令値Vur、V相電圧指令値Vvr、W相電圧指令値Vwrに変換し、後述する振幅補正部206に出力する。
また、PI制御部205では、前記Vdc*指令値演算部203で算出された発電電圧指令値Vdc*と実発電電圧Vdcとの偏差ΔVdcを入力としてPI制御を行って、振幅補正部206に出力する。なお、ここではΔVdcに対してPI制御を行う場合について説明したが、これに限定されるものではなく、系を安定にする補償方法であればよい。
そして、振幅補正部206では、前記2相/3相変換部204から出力された3相正弦波指令値の振幅を補正し、PWM制御部207で、補正された3相正弦波指令値と三角波とを比較してPWM指令を演算し、インバータ9に出力するスイッチング信号を生成する。インバータ9は、このスイッチング信号に応じたPWM波電圧を生成してモータ4へ印加し、これによりモータ4が駆動される。
上記振幅補正では、発電電圧指令値Vdc*と実発電電圧Vdcとを比較し、Vdc*>Vdcであるときには振幅を小さくすることにより、PWMのパルス幅を小さくする。その結果、インピーダンスは大きくなって、電圧を大きくすることができる。逆に、Vdc*<Vdcであるときには振幅を大きくすることにより、PWMのパルス幅を大きくする。その結果、インピーダンスは小さくなって、電圧を小さくすることができる。
また、界磁電流指令値演算部208では、モータ回転数Nmに基づいて界磁電流指令値を演算して界磁磁束演算部209に出力し、この界磁磁束演算部209で界磁磁束を演算して前述したVd,Vq指令値演算部202に出力する。
この図5において、PI制御部205及び振幅補正部206が負荷変更手段(パルス幅変更手段)に対応し、PWM制御部207がPWM制御手段に対応している。
次に、本実施形態の動作について説明する。
今、車両が4輪駆動状態と判定されて、車輪速及びアクセルペダル開度に基づいてモータトルク指令値Ttが算出されたものとする。この場合には、発電機制御部8Dにおいて、モータトルク指令値Ttにより算出される発電電流指令値Idc*と実発電電流値Idcとの偏差に対してPI制御が施され、実発電電流値Idcが発電電流指令値Idc*に追従するように発電機7の界磁電流Ifgが制御される。このとき、図4の発電機7の特性図において、直線Aに示すIf一定線が決定されることになる。
そして、モータ制御部8Eにおいて、トルク指令値Ttやモータ回転数Nmに基づいてインバータ9の3相のパワー素子をスイッチング制御するために3相正弦波指令を演算し、この3相正弦波指令に基づいてPWM指令を演算しインバータ9に出力する。このとき、発電電圧指令値Vdc*と実発電電圧値Vdcとの偏差に対してPI制御を施し、3相正弦波指令の振幅を補正する。
実発電電圧値Vdcが発電電圧指令値Vdc*より低い場合には、動作点はIf一定線上の点bにあることになる。そこで、インピーダンスを変更して動作点bをモータトルクを出すために最も効率の良い動作点aにもっていくようにする。
つまり、Vdc<Vdc*であるときには、3相正弦波指令の振幅を小さく補正する。これにより、PWMのパルス幅は小さくなり、インバータ9のインピーダンスは大きくなって実発電電圧値Vdcは大きくなる。このようにして、動作点bを動作点aに一致させる。これは、一点鎖線に示す負荷一定線(インバータ負荷一定のときに発電機が取り得る動作点)を決定することに相当する。
したがって、実発電電圧Vdc及び実発電電流Idcは、発電電圧指令値Vdc*及び発電電流指令値Idc*に追従することになり、最も効率の良い動作点でモータを駆動することができる。
また、曲線B1〜B4は、発電機7の自励領域において、界磁電圧PWMデューティー比C1を固定とし、発電機7の負荷を徐々に変化させた場合の動作点の軌跡であり、曲線B1〜B4はデューティー比C1の違いを示している。
このように、本実施形態では、発電機制御で実発電電流値と発電電流指令値との偏差に基づいて、実発電電流値が発電電流指令値に追従するように制御し、モータ制御で、実発電電圧値と発電電圧指令値との偏差に基づいてインバータの負荷を変更することにより、実発電電圧値が発電電圧指令値に追従するように制御するので、適切な発電制御が行われて効率よくトルクを出すことができる。
また、モータに供給するPWMパルス幅を変更することでインバータの負荷を変更するので、比較的容易に実発電電圧値を発電電圧指令値に追従させることができる。
なお、上記実施形態においては、発電電圧指令値と実発電電圧との偏差に基づいて3相正弦波指令値の振幅を補正することでPWMパルス幅を変更する場合について説明したが、これに限定されるものではなく、発電電圧指令値と実発電電圧との偏差に基づいてd,q軸電流指令値やd,q軸電圧指令値等、インバータの負荷に寄与する変数を補正することでPWMパルス幅を変更するようにしてもよい。
また、上記実施形態においては、発電機制御で発電電流を目標値に追従させ、モータ制御で発電電圧を目標値に追従させる場合について説明したが、これに限定されるものではなく、発電機制御で発電電圧を目標値に追従させ、モータ制御で発電電流を目標値に追従させるようにしてもよい。
本発明の実施形態を示す概略構成図である。 4WDコントローラのブロック図である。 発電機制御部の詳細を示すブロック図である。 発電機の特性図である。 モータ制御部の詳細を示すブロック図である。
符号の説明
1L、1R 前輪
2 エンジン
3L、3R 後輪
4 モータ
6 ベルト
7 発電機
8 4WDコントローラ
8A 目標モータトルク演算部
8B 発電機供給電力演算部
8C 発電電流指令演算部
8D 発電機制御部
8E モータ制御部
8F TCS制御部
8G クラッチ制御部
9 インバータ
10 ジャンクションボックス
11 減速機
12 クラッチ
27FL、27FR、27RL、27RR 車輪速センサ
101 P制御部
102 I制御部
103 FF制御部
104 制御量加算部
105 界磁制御部
201 Id,Iq指令値演算部
202 Vd,Vq指令値演算部
203 Vdc*指令値演算部
204 2相/3相変換部
205 PI制御部
206 振幅補正部
207 PWM制御部
208 界磁電流指令値演算部
209 界磁磁束演算部

Claims (3)

  1. 主駆動輪を駆動する内燃機関と、その内燃機関で駆動される発電機と、当該発電機の電力がインバータを介して供給されて従駆動輪を駆動する交流モータとを備える発電機電力制御装置において、
    前記交流モータの要求に応じて前記発電機が出力すべき必要電力を演算する電力演算手段と、前記発電機の界磁を制御する界磁制御手段と、前記インバータの負荷を変更する負荷変更手段と、前記界磁制御手段と前記負荷変更手段とにより、前記発電機の発電電圧及び発電電流を、前記必要電力を出力するための発電電圧指令値及び発電電流指令値に制御することで、前記発電機の電力を制御する電力制御手段とを備えることを特徴とする発電機電力制御装置。
  2. 前記界磁制御手段は、前記発電電圧及び前記発電電流のうち一方がその指令値に追従するように前記発電機の界磁を制御し、前記負荷変更手段は、前記発電電圧及び前記発電電流のうち他方がその指令値に追従するように前記インバータの負荷を変更することを特徴とする請求項1に記載の発電機電力制御装置。
  3. 前記インバータを制御して前記交流モータにPWM波電圧を印加するPWM制御手段を有し、前記負荷変更手段は、前記PWM波電圧のパルス幅を変更することで前記インバータの負荷を変更するパルス幅変更手段を備えることを特徴とする請求項1又は2に記載の発電機電力制御装置。
JP2004376551A 2004-12-27 2004-12-27 発電機電力制御装置 Withdrawn JP2006187090A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004376551A JP2006187090A (ja) 2004-12-27 2004-12-27 発電機電力制御装置
US11/293,309 US7441616B2 (en) 2004-12-27 2005-12-05 Generated power control system
EP05026972A EP1674327A2 (en) 2004-12-27 2005-12-09 Power control system for a hybrid vehicle
KR1020050129233A KR100741622B1 (ko) 2004-12-27 2005-12-26 발전 전력 제어 시스템
CNB2005101341983A CN100364228C (zh) 2004-12-27 2005-12-27 发电功率控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376551A JP2006187090A (ja) 2004-12-27 2004-12-27 発電機電力制御装置

Publications (1)

Publication Number Publication Date
JP2006187090A true JP2006187090A (ja) 2006-07-13

Family

ID=36739767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376551A Withdrawn JP2006187090A (ja) 2004-12-27 2004-12-27 発電機電力制御装置

Country Status (2)

Country Link
JP (1) JP2006187090A (ja)
CN (1) CN100364228C (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306800A (ja) * 2007-06-05 2008-12-18 Hitachi Ltd 発電制御装置
JP2009040111A (ja) * 2007-08-06 2009-02-26 Nissan Motor Co Ltd 車両の発電機制御装置
US9050903B2 (en) 2007-02-28 2015-06-09 GM Global Technology Operations LLC Torque control arbitration in powertrain systems

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456134B2 (ja) * 2007-05-08 2010-04-28 トヨタ自動車株式会社 車両の駆動力制御装置
JP2012165584A (ja) * 2011-02-08 2012-08-30 Nippon Densan Corp 風力発電装置
CN102686081A (zh) * 2011-03-10 2012-09-19 深圳市安托山特种机电有限公司 一种数码发电机组机架
CN103187734A (zh) * 2011-12-27 2013-07-03 北京能高自动化技术股份有限公司 全功率风电机组并网变流器低电压穿越控制方法
FI124495B (en) * 2013-06-27 2014-09-30 Abb Oy Method for controlling electric drive and electric drive
CN103532455B (zh) * 2013-10-21 2016-08-10 中国船舶重工集团公司第七一二研究所 一种混合动力系统发电机励磁控制系统及其方法
KR102406065B1 (ko) * 2016-12-14 2022-06-08 현대자동차주식회사 마일드 하이브리드 차량의 에너지 회생 제어 방법
DE102018216334A1 (de) * 2018-02-08 2019-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur externen Überwachung eines Stromrichters
CN109263485A (zh) * 2018-09-11 2019-01-25 安徽江淮汽车集团股份有限公司 一种智能发电机的控制方法及系统
JP7257784B2 (ja) * 2018-12-21 2023-04-14 オークマ株式会社 電力算出装置
CN110371104B (zh) * 2019-07-30 2021-06-18 江铃控股有限公司 蓄能缓冲控制方法及控制系统
CN113276830B (zh) * 2021-05-26 2022-01-11 苏州达思灵新能源科技有限公司 一种智能车载直流发电系统控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3288256B2 (ja) * 1997-05-01 2002-06-04 日野自動車株式会社 ハイブリッド自動車
JPH11332021A (ja) * 1998-05-18 1999-11-30 Toyota Motor Corp ハイブリッド車両および動力出力装置
JP2000115907A (ja) * 1998-10-09 2000-04-21 Mitsubishi Electric Corp 内燃機関型電気機関車用制御装置
JP3352987B2 (ja) * 1999-12-20 2002-12-03 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3593983B2 (ja) * 2001-01-16 2004-11-24 日産自動車株式会社 車両の駆動力制御装置
JP4023171B2 (ja) * 2002-02-05 2007-12-19 トヨタ自動車株式会社 負荷駆動装置、負荷駆動装置における電力貯蔵装置の充電制御方法および充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050903B2 (en) 2007-02-28 2015-06-09 GM Global Technology Operations LLC Torque control arbitration in powertrain systems
JP2008306800A (ja) * 2007-06-05 2008-12-18 Hitachi Ltd 発電制御装置
JP4489098B2 (ja) * 2007-06-05 2010-06-23 日立オートモティブシステムズ株式会社 発電制御装置
JP2009040111A (ja) * 2007-08-06 2009-02-26 Nissan Motor Co Ltd 車両の発電機制御装置

Also Published As

Publication number Publication date
CN1797934A (zh) 2006-07-05
CN100364228C (zh) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4876429B2 (ja) 車両用駆動制御装置
KR100741622B1 (ko) 발전 전력 제어 시스템
JP4350676B2 (ja) ハイブリッド車両の制御装置
US8073600B2 (en) Controller of field winding type synchronous motor, electric drive system, electric four wheel driving vehicle, and hybrid automobile
JP4591320B2 (ja) モータ制御装置
US7235937B2 (en) Traction motor control system
JP4075863B2 (ja) 電動トルク使用型車両
JP2006187090A (ja) 発電機電力制御装置
JP2009220665A (ja) 車両用駆動制御装置
JP2009035212A (ja) 車両用駆動装置
JP4747961B2 (ja) 車両用駆動制御装置
JP2008126867A (ja) 車両用駆動力制御装置
JP2009214738A (ja) 車両の駆動力制御装置
JP5023873B2 (ja) 車両の発電機制御装置
JPH10178705A (ja) 電気自動車
JP2007245763A (ja) 車両用駆動制御装置
JP6128016B2 (ja) 交流電動機の制御装置
JP2007245967A (ja) 車両用駆動制御装置
JP6187242B2 (ja) 車両の駆動力制御装置
JP2007245762A (ja) 車両用駆動制御装置
JP2006206040A (ja) 車両用駆動制御装置
JP4702120B2 (ja) 車両用駆動制御装置
JP2008187812A (ja) 車両用駆動制御装置
JP5076920B2 (ja) 車両用駆動制御装置
JP2006306144A (ja) 車両用駆動制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091009