JP2006161624A - 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 - Google Patents
風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 Download PDFInfo
- Publication number
- JP2006161624A JP2006161624A JP2004352310A JP2004352310A JP2006161624A JP 2006161624 A JP2006161624 A JP 2006161624A JP 2004352310 A JP2004352310 A JP 2004352310A JP 2004352310 A JP2004352310 A JP 2004352310A JP 2006161624 A JP2006161624 A JP 2006161624A
- Authority
- JP
- Japan
- Prior art keywords
- wind power
- bismuth
- power generation
- support device
- grease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Rolling Contact Bearings (AREA)
- Lubricants (AREA)
- Wind Motors (AREA)
- Support Of The Bearing (AREA)
Abstract
【課題】
高負荷による短寿命、軽負荷に伴なうすべりによる表面損傷、つば部での摩耗を防止し、実質寿命を延長できる複列自動調心ころ軸受および該軸受を用いた風力発電用主軸支持装置を提供する。
【解決手段】
ブレードが取り付けられた主軸が、軸受ハウジングに設置された少なくとも1個の転がり軸受により支持された風力発電用主軸支持装置であって、上記転がり軸受は、内輪と、外輪と、この内輪および外輪間に介在する転動体とを備え、上記転動体の周囲にグリースを封入してなる転がり軸受であり、上記グリースは基油と、増ちょう剤と、無機ビスマスとを含み、該無機ビスマスが、上記グリース全体に対して 0.01〜15 重量%配合され、複列自動調心ころ軸受は、上記風力発電用主軸支持装置に用いられる。
【選択図】図3
高負荷による短寿命、軽負荷に伴なうすべりによる表面損傷、つば部での摩耗を防止し、実質寿命を延長できる複列自動調心ころ軸受および該軸受を用いた風力発電用主軸支持装置を提供する。
【解決手段】
ブレードが取り付けられた主軸が、軸受ハウジングに設置された少なくとも1個の転がり軸受により支持された風力発電用主軸支持装置であって、上記転がり軸受は、内輪と、外輪と、この内輪および外輪間に介在する転動体とを備え、上記転動体の周囲にグリースを封入してなる転がり軸受であり、上記グリースは基油と、増ちょう剤と、無機ビスマスとを含み、該無機ビスマスが、上記グリース全体に対して 0.01〜15 重量%配合され、複列自動調心ころ軸受は、上記風力発電用主軸支持装置に用いられる。
【選択図】図3
Description
本発明は、風力発電用主軸支持装置および風力発電用主軸を支持する複列自動調心ころ軸受に関する。
大型の風力発電機における風車主軸用軸受には、転がり軸受、特に図5に示すような大型の複列自動調心ころ軸受24が用いられることが多い。主軸23は、ブレード22が取り付けられた軸であり、風力を受けることによって回転し、その回転を増速機(図示せず)で増速して発電機を回転させ、発電する。風を受けて発電している際に、ブレード22を支える主軸23は、ブレード22にかかる風力による軸方向荷重(軸受スラスト荷重)と、軸径方向(軸受ラジアル荷重)が負荷される。複列自動調心ころ軸受24は、ラジアル荷重とスラスト荷重を同時に負荷することができ、調心性を持つため、軸受ハウジング21の精度誤差や、取り付け誤差による主軸23の傾きを吸収でき、かつ、運転中の主軸23の撓みを吸収できる。そのため、風力発電用主軸軸受に適した軸受であり、利用されている。(非特許文献1)
しかしながら、風車においては、ラジアル荷重に比べてスラスト荷重が大きく、複列のころ27、28のうち、スラスト荷重を受ける列のころ27が、もっぱらラジアル荷重とスラスト荷重を同時に負荷することになる。そのため、転がり疲労寿命が短くなる。また、スラスト荷重が負荷されることから、つば部ですべり運動が起こり摩耗を生じるという問題があった。加えて、反対側の列では軽負荷となり、ころ28が内外輪25、26の軌道面25a、26aですべりを生じ、表面損傷や摩耗を生じるという問題がある。そのため、軸受サイズを大きくすることで対処しているが、軽負荷側では余裕が大きくなりすぎて、不経済である。また、無人で運転されたり、ブレード22が大型となるために高所に設置される風力発電用主軸軸受では、メンテナンスフリー等のために、潤滑面でも簡易な軸受とすることが望まれる。
NTN社カタログ「新世代風車用軸受」A65.CAT.No.8404/04/JE、2003年5月1日発行
しかしながら、風車においては、ラジアル荷重に比べてスラスト荷重が大きく、複列のころ27、28のうち、スラスト荷重を受ける列のころ27が、もっぱらラジアル荷重とスラスト荷重を同時に負荷することになる。そのため、転がり疲労寿命が短くなる。また、スラスト荷重が負荷されることから、つば部ですべり運動が起こり摩耗を生じるという問題があった。加えて、反対側の列では軽負荷となり、ころ28が内外輪25、26の軌道面25a、26aですべりを生じ、表面損傷や摩耗を生じるという問題がある。そのため、軸受サイズを大きくすることで対処しているが、軽負荷側では余裕が大きくなりすぎて、不経済である。また、無人で運転されたり、ブレード22が大型となるために高所に設置される風力発電用主軸軸受では、メンテナンスフリー等のために、潤滑面でも簡易な軸受とすることが望まれる。
NTN社カタログ「新世代風車用軸受」A65.CAT.No.8404/04/JE、2003年5月1日発行
本発明における課題は、ラジアル荷重とスラスト荷重が負荷する用途に用いられた場合に、高負荷による短寿命、軽負荷に伴なうすべりによる表面損傷、つば部での摩耗を防止し、実質寿命を延長できる複列自動調心ころ軸受および該軸受を用いた風力発電用主軸支持装置を提供することである。
本発明の風力発電用主軸支持装置は、ブレードが取り付けられた主軸が、軸受ハウジングに設置された少なくとも1個の転がり軸受により支持された風力発電用主軸支持装置であって、上記転がり軸受は、内輪と、外輪と、この内輪および外輪間に介在する転動体とを備え、上記転動体の周囲にグリースを封入してなる転がり軸受であり、上記グリースは基油と、増ちょう剤と、無機ビスマスとを含み、該無機ビスマスが、上記グリース全体に対して 0.01〜15 重量%配合されていることを特徴とする。
上記無機ビスマスは、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの無機ビスマスであることを特徴とする。
上記基油は、ポリ-α-オレフィン油、鉱油、エステル油およびエーテル油からから選ばれた少なくとも1つの油からなり、かつ 40 ℃における基油の動粘度が 30〜500 mm2/s であることを特徴とする。
上記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも1つの化合物であることを特徴とする。
本発明の複列自動調心ころ軸受は、内輪と、外輪と、この内輪および外輪間に介在する複列のころとを備え、上記外輪の軸方向の軌道面および上記ころの軸方向の外周面を同じ曲率半径を有する球面状とすることで、上記ころの外周面を上記外輪の軌道面に沿って配設し、上記ころの周囲にグリースを封入してなる複列自動調心ころ軸受であって、該複列自動調心ころ軸受は、上記風力発電用主軸支持装置に用いられることを特徴とする。
上記無機ビスマスは、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの無機ビスマスであることを特徴とする。
上記基油は、ポリ-α-オレフィン油、鉱油、エステル油およびエーテル油からから選ばれた少なくとも1つの油からなり、かつ 40 ℃における基油の動粘度が 30〜500 mm2/s であることを特徴とする。
上記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも1つの化合物であることを特徴とする。
本発明の複列自動調心ころ軸受は、内輪と、外輪と、この内輪および外輪間に介在する複列のころとを備え、上記外輪の軸方向の軌道面および上記ころの軸方向の外周面を同じ曲率半径を有する球面状とすることで、上記ころの外周面を上記外輪の軌道面に沿って配設し、上記ころの周囲にグリースを封入してなる複列自動調心ころ軸受であって、該複列自動調心ころ軸受は、上記風力発電用主軸支持装置に用いられることを特徴とする。
本発明の風力発電用主軸支持装置に用いられる複列自動調心ころ軸受は、耐熱耐久性に優れた無機ビスマスを使用したグリースを封入しているので、無機ビスマスが転がり接触部に補給されることによって、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される複列自動調心ころ軸受および該軸受を用いた風力発電用主軸支持装置に好適に利用することができる。
転がり軸受および複列自動調心ころ軸受の耐久性について検討した結果、転動体を設置した空間内に、無機ビスマスがグリース全体に対し 0.01〜15 重量%含まれるグリースを封入した転がり軸受および複列自動調心ころ軸受は、高荷重およびすべり運動下での摩耗を防止し、長期耐久性に優れた転がり軸受および複列自動調心ころ軸受となることを見出した。本発明はこのような知見に基づくものである。
本発明の風力発電用主軸支持装置を図1および図2より説明する。図1は風力発電用主軸支持装置を含む風力発電機全体の模式図であり、図2は図1の風力発電用主軸支持装置を示す図である。図1または図2に示すように、風力発電機1は、風車となる羽根2が取り付けられた主軸3を、ナセル4内の軸受ハウジング15に設置された軸受5により回転自在に支持し、さらにナセル4内に増速機6および発電機7を設置したものである。増速機6は、主軸3の回転を増速して発電機7の入力軸に伝達するものである。ナセル4は、支持台8上に旋回座軸受20を介して旋回自在に設置され、図2の旋回用のモータ9の駆動により、減速機10を介して旋回させられる。ナセル4の旋回は、風向きに羽根2の方向を対向させるために行なわれる。主軸支持用の軸受5は、図2の例では2個設けているが、1個であってもよい。
主軸支持用の軸受5の設置構造を図3により説明する。図3は、本発明の風力発電用主軸支持装置における主軸支持用の軸受5の設置構造を示す図である。軸受5は、一対の軌道輪となる内輪11および外輪12と、これら内外輪11、12間に介在した複数の転動体13とを有する。軸受5は、スラスト負荷が可能なラジアル軸受であればよく、自動調心ころ軸受の他に、アンギュラ玉軸受や、円すいころ軸受、深溝玉軸受等であってもよい。これらの中で、軽荷重から突風時の重荷重まで幅広い荷重域で、かつ風向の変化が絶えず生じる状態で運転される風力発電用主軸支持軸受としては、運転に伴なう主軸の撓みを吸収できる自動調心ころ軸受が好ましい。また、複列のころ軸受にかかる負荷容量が各列毎に異なっていても対応できる複列の自動調心ころ軸受に、無機ビスマス含有のグリースを封入した本発明の複列自動調心ころ軸受は、ラジアル荷重に比べて大きなスラスト荷重がかかり、かつブレードから遠い方の軸受部分が近い方の列の軸受部分よりも、大きな負荷容量となる風力発電用主軸支持軸受として耐摩耗性とともに、長期間耐久性に優れ、好適に使用できる。
軸受5の外輪12は軌道面12aが球面状とされ、各転動体13は外周面が外輪軌道面12aに沿う球面状のころとされている。内輪11は各列の軌道面11a、11aを個別に有するつば付きの構造とされている。転動体13は、各列毎に保持器14で保持されている。
外輪12は軸受ハウジング15の内径面に嵌合して設置され、内輪11は主軸3の外周に嵌合して主軸3を支持している。軸受ハウジング15は、軸受5の両端を覆う側壁部15aと主軸3との間にラビリンスシール等のシール16が構成されている。軸受ハウジング15で密封性が得られるため、軸受5にはシールなしの構造が用いられている。軸受5は、本発明の実施形態にかかる風力発電用主軸軸受となるものである。
主軸支持用の軸受5の設置構造を図3により説明する。図3は、本発明の風力発電用主軸支持装置における主軸支持用の軸受5の設置構造を示す図である。軸受5は、一対の軌道輪となる内輪11および外輪12と、これら内外輪11、12間に介在した複数の転動体13とを有する。軸受5は、スラスト負荷が可能なラジアル軸受であればよく、自動調心ころ軸受の他に、アンギュラ玉軸受や、円すいころ軸受、深溝玉軸受等であってもよい。これらの中で、軽荷重から突風時の重荷重まで幅広い荷重域で、かつ風向の変化が絶えず生じる状態で運転される風力発電用主軸支持軸受としては、運転に伴なう主軸の撓みを吸収できる自動調心ころ軸受が好ましい。また、複列のころ軸受にかかる負荷容量が各列毎に異なっていても対応できる複列の自動調心ころ軸受に、無機ビスマス含有のグリースを封入した本発明の複列自動調心ころ軸受は、ラジアル荷重に比べて大きなスラスト荷重がかかり、かつブレードから遠い方の軸受部分が近い方の列の軸受部分よりも、大きな負荷容量となる風力発電用主軸支持軸受として耐摩耗性とともに、長期間耐久性に優れ、好適に使用できる。
軸受5の外輪12は軌道面12aが球面状とされ、各転動体13は外周面が外輪軌道面12aに沿う球面状のころとされている。内輪11は各列の軌道面11a、11aを個別に有するつば付きの構造とされている。転動体13は、各列毎に保持器14で保持されている。
外輪12は軸受ハウジング15の内径面に嵌合して設置され、内輪11は主軸3の外周に嵌合して主軸3を支持している。軸受ハウジング15は、軸受5の両端を覆う側壁部15aと主軸3との間にラビリンスシール等のシール16が構成されている。軸受ハウジング15で密封性が得られるため、軸受5にはシールなしの構造が用いられている。軸受5は、本発明の実施形態にかかる風力発電用主軸軸受となるものである。
本発明に適用できるグリースを構成する無機ビスマス、基油、増ちょう剤および添加剤について以下に述べる。
本発明に使用することができる無機ビスマスとしては、ビスマス粉末、炭酸ビスマス、塩化ビスマス、硝酸ビスマスおよびその水和物、硫酸ビスマス、フッ化ビスマス、臭化ビスマス、ヨウ化ビスマス、オキシフッ化ビスマス、オキシ塩化ビスマス、オキシ臭化ビスマス、オキシヨウ化ビスマス、酸化ビスマスおよびその水和物、水酸化ビスマス、セレン化ビスマス、テルル化ビスマス、リン酸ビスマス、オキシ過塩素酸ビスマス、オキシ硫酸ビスマス、ビスマス酸ナトリウム、チタン酸ビスマス、ジルコン酸ビスマス、モリブデン酸ビスマス等が挙げられるが、本発明において、特に好ましいのは、耐熱耐久性に優れ、熱分解しにくいため、極圧性効果の高いビスマス粉末、硫酸ビスマスおよび三酸化ビスマスである。
本発明に使用することができる無機ビスマスとしては、ビスマス粉末、炭酸ビスマス、塩化ビスマス、硝酸ビスマスおよびその水和物、硫酸ビスマス、フッ化ビスマス、臭化ビスマス、ヨウ化ビスマス、オキシフッ化ビスマス、オキシ塩化ビスマス、オキシ臭化ビスマス、オキシヨウ化ビスマス、酸化ビスマスおよびその水和物、水酸化ビスマス、セレン化ビスマス、テルル化ビスマス、リン酸ビスマス、オキシ過塩素酸ビスマス、オキシ硫酸ビスマス、ビスマス酸ナトリウム、チタン酸ビスマス、ジルコン酸ビスマス、モリブデン酸ビスマス等が挙げられるが、本発明において、特に好ましいのは、耐熱耐久性に優れ、熱分解しにくいため、極圧性効果の高いビスマス粉末、硫酸ビスマスおよび三酸化ビスマスである。
ビスマスは、水銀を除く全ての金属中最低の熱伝導度を有し、比重 9.8 、融点 271.3 ℃の銀白色の金属である。ビスマス粉末は、比較的軟質の金属であり、極圧を受けると膜状になりやすい。そのため粉末の粒径は、グリース中に分散できる粒径であればよい。本発明の風力発電用主軸支持装置の軸受に封入するグリースに使用するビスマス粉末としては、 5〜500 μm であることが好ましい。
本発明に使用できる無機ビスマスは、1種類または、2種類を混合してグリースに添加してもよい。
また、無機ビスマスの添加量は、グリース全体に対し 0.01〜15 重量%である。好ましくは 1〜10 重量%である。添加量が 0.01 重量%未満では、耐摩耗性の向上効果が発揮されず、また、 15 重量%をこえると、回転時のトルクが大きくなって、発熱が増大し、回転障害を生じるためである。
また、無機ビスマスの添加量は、グリース全体に対し 0.01〜15 重量%である。好ましくは 1〜10 重量%である。添加量が 0.01 重量%未満では、耐摩耗性の向上効果が発揮されず、また、 15 重量%をこえると、回転時のトルクが大きくなって、発熱が増大し、回転障害を生じるためである。
本発明に使用できる基油としては、例えば、鉱油、PAO油、エステル油、フェニルエーテル油、フッ素油、さらに、フィッシャートロプシュ反応で合成される合成炭化水素油(GTL基油)などが挙げられる。この中でも、PAO油、鉱油、エステル油およびエーテル油から選ばれた少なくとも一種を使用することが好ましい。上記のPAO油としては、通常、α−オレフィンまたは異性化されたα−オレフィンのオリゴマーまたはポリマーの混合物である。α−オレフィンの具体例としては、1−オクテン、1−ノネン、1−デセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、1−ドコセン、1−テトラコセン等を挙げることができ、通常はこれらの混合物が使用される。また、鉱油としては、例えば、パラフィン系鉱油、ナフテン系鉱油等の通常潤滑油やグリースの分野で使用されているものをいずれも使用することができる。
本発明に使用できる基油は、好ましくは、 40 ℃における動粘度が 30〜500 mm2/s である。 30 mm2/s 未満の場合は、蒸発量が増加し、耐熱性が低下するので好ましくなく、また、 500 mm2/s をこえると回転トルクの増加による軸受の温度上昇が大きくなるので好ましくない。
本発明に使用できる増ちょう剤として、アルミニウム、リチウム、ナトリウム、複合リチウム、複合カルシウム、複合アルミニウムなどの金属石けん系増ちょう剤、および下記式(1)のジウレア化合物が挙げられる。好ましくは、ジウレア化合物またはリチウム石けんである。これらの増ちょう剤は、1種類単独で用いても2種類以上組み合わせて用いてもよい。
(式(1)中のR2 は、炭素数6〜15の芳香族炭化水素基を、R1およびR3 は、炭素数6〜12の芳香族炭化水素基または炭素数6〜20の脂環族炭化水素基または炭素数6〜20の脂肪族炭化水素基をそれぞれ示し、R1 およびR3 は、同一であっても異なっていてもよい。)
式(1)で表されるウレア系化合物は、例えば、ジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、1,5−ナフチレンジイソシアネート、2,4−トリレンジイソシアネート、3,3−ジメチル−4,4−ビフェニレンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p−トルイジン、シクロヘキシルアミン等が挙げられる。
ウレア化合物は、イソシアネート化合物とアミン化合物を反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。
基油にウレア化合物を配合して各種配合剤を配合するためのベースグリースが得られる。ベースグリースは、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。
式(1)で表されるウレア系化合物は、例えば、ジイソシアネートとモノアミンの反応で得られる。ジイソシアネートとしては、フェニレンジイソシアネート、ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート、1,5−ナフチレンジイソシアネート、2,4−トリレンジイソシアネート、3,3−ジメチル−4,4−ビフェニレンジイソシアネート、オクタデカンジイソシアネート、デカンジイソシアネート、ヘキサンジイソシアネー卜等が挙げられ、モノアミンとしては、オクチルアミン、ドデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アニリン、p−トルイジン、シクロヘキシルアミン等が挙げられる。
ウレア化合物は、イソシアネート化合物とアミン化合物を反応させることにより得られる。反応性のある遊離基を残さないため、イソシアネート化合物のイソシアネート基とアミン化合物のアミノ基とは略当量となるように配合することが好ましい。
基油にウレア化合物を配合して各種配合剤を配合するためのベースグリースが得られる。ベースグリースは、基油中でイソシアネート化合物とアミン化合物とを反応させて作製する。
本発明に使用するグリースは、必要に応じて公知の添加剤をグリースに含有させることができる。この添加剤として、例えば、有機亜鉛化合物、アミン系、フェノール系、イオウ系等の酸化防止剤、ベンゾトリアゾール、亜硝酸ソーダなどの金属不活性剤、ポリメタクリレート、ポリスチレン等の粘度指数向上剤、二硫化モリブデン、グラファイト等の固体潤滑剤等が挙げられる。これらを単独または2種類以上組み合せて添加することができる。
本発明に使用できるグリースは、複列自動調心ころ軸受以外の高負荷がかかる軸受にも使用することができる。
実施例1〜実施例11
反応容器中で、基油中に増ちょう剤を加え、3 本ロールミルを用いて均一化処理して、表1に示すLi石けん/鉱油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 220 )、ウレア/PAO油系グリース( 40 ℃基油粘度 46 mm2/s 、混和ちょう度 280 )、Li石けん/エステル油系グリース( 40 ℃基油粘度 33 mm2/s 、混和ちょう度 250 )、ウレア/エーテル油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 300 )を得た。
さらに、極圧剤として無機ビスマスを、表1に示す割合で上記グリースに添加して、各実施例のグリースを作製した。得られたグリースにつき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表1に併記した。
反応容器中で、基油中に増ちょう剤を加え、3 本ロールミルを用いて均一化処理して、表1に示すLi石けん/鉱油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 220 )、ウレア/PAO油系グリース( 40 ℃基油粘度 46 mm2/s 、混和ちょう度 280 )、Li石けん/エステル油系グリース( 40 ℃基油粘度 33 mm2/s 、混和ちょう度 250 )、ウレア/エーテル油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 300 )を得た。
さらに、極圧剤として無機ビスマスを、表1に示す割合で上記グリースに添加して、各実施例のグリースを作製した。得られたグリースにつき、以下に記す極圧性評価試験およびころ軸受試験を行なった。結果を表1に併記した。
比較例1〜比較例8
反応容器中で、基油中に増ちょう剤を加え、3本ロールミルを用いて均一化処理して、表2に示すLi石けん/鉱油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 220 )、ウレア/PAO油系グリース( 40 ℃基油粘度 46 mm2/s 、混和ちょう度 280 )、Li石けん/エステル油系グリース( 40 ℃基油粘度 30 mm2/s 、混和ちょう度 250 )、ウレア/エーテル油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 300 )を得た。
さらに、極圧剤として、有機ビスマス、MoDTCまたは亜鉛粉末を、表2に示す割合で上記グリースに添加して、各比較例のグリースを作製した。
反応容器中で、基油中に増ちょう剤を加え、3本ロールミルを用いて均一化処理して、表2に示すLi石けん/鉱油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 220 )、ウレア/PAO油系グリース( 40 ℃基油粘度 46 mm2/s 、混和ちょう度 280 )、Li石けん/エステル油系グリース( 40 ℃基油粘度 30 mm2/s 、混和ちょう度 250 )、ウレア/エーテル油系グリース( 40 ℃基油粘度 100 mm2/s 、混和ちょう度 300 )を得た。
さらに、極圧剤として、有機ビスマス、MoDTCまたは亜鉛粉末を、表2に示す割合で上記グリースに添加して、各比較例のグリースを作製した。
得られたグリースにつき、実施例と同様にして極圧性評価試験およびころ軸受試験を行なった。結果を表2に併記した。
極圧性評価試験:
極圧性評価試験装置を図4に示す。評価試験装置は、回転軸17に固定されたφ40×10 のリング状試験片18と、この試験片18と端面20にて端面同士が擦り合わされるリング状試験片19とで構成される。ころ軸受用グリースを端面20部分に塗布し、回転軸17を回転数 2000 rpm、図4中右方向Aのアキシアル荷重 490 N 、ラジアル荷重 392 N を負荷して、極圧性を評価した。極圧性は両試験片のすべり部の摩擦摩耗増大により生じる回転軸17の振動を振動センサにて測定し、その振動値が初期値の 2 倍になるまで試験を行ない、その時間を測定した。
回転軸17の振動値が初期値の 2 倍になるまでの時間が長いほど極圧性効果が大となり、優れた耐熱耐久性を示す。したがってグリースの耐熱耐久性の評価は、測定された上記時間の長さにて各実施例と各比較例とを対比させて行なった。
ころ軸受試験:
30206円すいころ軸受にグリースを 3.6 g 封入し、アキシアル荷重 980N 、回転数 2600rpm 、室温にて運転し、回転中のつば部表面温度を測定した。運転開始後、 4〜8 時間までのつば部表面温度の平均値を算出した。
つば部と「ころ」との間に発生するすべり摩擦が大きくなると回転中のつば部表面温度は上昇する。そのためグリースの耐熱耐久性の評価は、測定された上記温度の高さにて各実施例と各比較例とを対比させて行なった。上記温度の高さが 70℃以下であることが、グリースの耐熱耐久性を有する基準とした。
極圧性評価試験:
極圧性評価試験装置を図4に示す。評価試験装置は、回転軸17に固定されたφ40×10 のリング状試験片18と、この試験片18と端面20にて端面同士が擦り合わされるリング状試験片19とで構成される。ころ軸受用グリースを端面20部分に塗布し、回転軸17を回転数 2000 rpm、図4中右方向Aのアキシアル荷重 490 N 、ラジアル荷重 392 N を負荷して、極圧性を評価した。極圧性は両試験片のすべり部の摩擦摩耗増大により生じる回転軸17の振動を振動センサにて測定し、その振動値が初期値の 2 倍になるまで試験を行ない、その時間を測定した。
回転軸17の振動値が初期値の 2 倍になるまでの時間が長いほど極圧性効果が大となり、優れた耐熱耐久性を示す。したがってグリースの耐熱耐久性の評価は、測定された上記時間の長さにて各実施例と各比較例とを対比させて行なった。
ころ軸受試験:
30206円すいころ軸受にグリースを 3.6 g 封入し、アキシアル荷重 980N 、回転数 2600rpm 、室温にて運転し、回転中のつば部表面温度を測定した。運転開始後、 4〜8 時間までのつば部表面温度の平均値を算出した。
つば部と「ころ」との間に発生するすべり摩擦が大きくなると回転中のつば部表面温度は上昇する。そのためグリースの耐熱耐久性の評価は、測定された上記温度の高さにて各実施例と各比較例とを対比させて行なった。上記温度の高さが 70℃以下であることが、グリースの耐熱耐久性を有する基準とした。
表1および表2においてLi石けん/鉱油系グリースのデータを、各実施例と各比較例とを対比すると、極圧剤の種類では、有機ビスマスよりも無機ビスマスが、極圧性評価試験およびころ軸受試験において優れた耐熱耐久性を示した。
実施例11および比較例5に示すように、特にビスマス粉末は、有機ビスマスに比して約 6 倍の耐熱耐久性を示すことがわかる。また、実施例2および比較例5において、三酸化ビスマスは、有機ビスマスに比して約 3 倍の耐熱耐久性を示すことがわかる。これらのことから無機ビスマスが有機ビスマスよりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。
また、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスの中では、ビスマス粉末が最も良好な耐熱耐久性を示した。
実施例11および比較例5に示すように、特にビスマス粉末は、有機ビスマスに比して約 6 倍の耐熱耐久性を示すことがわかる。また、実施例2および比較例5において、三酸化ビスマスは、有機ビスマスに比して約 3 倍の耐熱耐久性を示すことがわかる。これらのことから無機ビスマスが有機ビスマスよりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。
また、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスの中では、ビスマス粉末が最も良好な耐熱耐久性を示した。
三酸化ビスマスの添加量が 実施例5の 1 重量%、実施例2の 5 重量%、実施例6の 15 重量%と増加するにつれて極圧性効果が増加する傾向を示すが、三酸化ビスマスの添加量を 15 重量%と添加量 5 重量%の 3 倍に増加させても、極圧性効果の増加は約 1.4 倍に留まる。これは三酸化ビスマスの添加量が 15 重量%に近づくと、回転時のトルクが大きくなって、発熱が増大し、回転障害を生じる傾向にあるためと考えられる。
また、比較例8に示すように、亜鉛粉末を添加した場合には、耐熱耐久性が著しく悪化し、無機化合物ではあっても亜鉛粉末には極圧性効果が認められなかった。これは亜鉛の融点が低く、グリースの耐熱性を向上させることができなかったためと考えられる。
表1および表2においてウレア/PAO油系グリース、Li石けん/エステル油系グリース、ウレア/エーテル油系グリースのデータを、各実施例と各比較例とを対比すると、ウレア/PAO油系グリースの場合、極圧剤の種類では、有機ビスマスよりも硫酸ビスマスおよび三酸化ビスマスといった無機ビスマスが優れた耐熱耐久性を示す。実施例3、実施例4および比較例7に示すように、硫酸ビスマスは有機ビスマスに比して約 3 倍の耐熱耐久性を示し、三酸化ビスマスは有機ビスマスに比して約 4 倍の耐熱耐久性を示すことがわかる。これは無機ビスマスが有機ビスマスよりも耐熱耐久性に優れ、熱分解しにくいため、極圧性効果を長時間持続することができることによるものと考えられる。
また、実施例7および比較例3に示すように、Li石けん/エステル油系グリースの場合、硫酸ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約 13 倍の耐熱耐久性を示した。
また、実施例8および比較例4に示すように、ウレア/エーテル油系グリースの場合、三酸化ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約 6 倍の耐熱耐久性を示した。以上のことから、硫酸ビスマスおよび三酸化ビスマスといった無機ビスマスが極圧性効果を長時間持続することがわかる。
また、実施例8および比較例4に示すように、ウレア/エーテル油系グリースの場合、三酸化ビスマスを極圧剤として用いると極圧剤を使用しない場合に比して約 6 倍の耐熱耐久性を示した。以上のことから、硫酸ビスマスおよび三酸化ビスマスといった無機ビスマスが極圧性効果を長時間持続することがわかる。
また、実施例11のグリースを封入した複列自動調心ころ軸受を風力発電用主軸支持装置に用いた結果、比較例1のグリースを封入した風力発電用主軸支持装置に比べて、軸受の摩耗が少なく、長時間の使用が可能であった。
本発明の風力発電用主軸支持装置に用いられる複列自動調心ころ軸受は、耐熱耐久性に優れた無機ビスマスを使用したグリースを封入した複列自動調心ころ軸受を用いているので、極圧性効果を長期間持続することができる。そのため、耐摩耗性とともに、長期間耐久性の要求される鉄道車両、建設機械、自動車電装補機などに好適に利用することができる。
1 風力発電機
2 羽根
3 主軸
4 ナセル
5 軸受
6 増速機
7 発電機
8 支持台
9 モータ
10 減速機
11 内輪
12 外輪
13 転動体
14 保持器
15 軸受ハウジング
16 シール
17 回転軸
18、19 リング状試験片
20 端面
2 羽根
3 主軸
4 ナセル
5 軸受
6 増速機
7 発電機
8 支持台
9 モータ
10 減速機
11 内輪
12 外輪
13 転動体
14 保持器
15 軸受ハウジング
16 シール
17 回転軸
18、19 リング状試験片
20 端面
Claims (5)
- ブレードが取り付けられた主軸が、軸受ハウジングに設置された少なくとも1個の転がり軸受により支持された風力発電用主軸支持装置であって、前記転がり軸受は、内輪と、外輪と、この内輪および外輪間に介在する転動体とを備え、前記転動体の周囲にグリースを封入してなる転がり軸受であり、前記グリースは基油と、増ちょう剤と、無機ビスマスとを含み、該無機ビスマスが、前記グリース全体に対して 0.01〜15 重量%配合されていることを特徴とする風力発電用主軸支持装置。
- 前記無機ビスマスは、ビスマス粉末、硫酸ビスマスおよび三酸化ビスマスから選ばれた少なくとも1つの無機ビスマスであることを特徴とする請求項1記載の風力発電用主軸支持装置。
- 前記基油は、ポリ-α-オレフィン油、鉱油、エステル油およびエーテル油から選ばれた少なくとも1つの油からなり、かつ 40 ℃における基油の動粘度が 30〜500 mm2/s であることを特徴とする請求項1または請求項2記載の風力発電用主軸支持装置。
- 前記増ちょう剤は、ウレア系化合物およびリチウム石けんから選ばれた少なくとも1つの化合物であることを特徴とする請求項1ないし請求項3のいずれか1項記載の風力発電用主軸支持装置。
- 内輪と、外輪と、この内輪および外輪間に介在する複列のころとを備え、前記外輪の軸方向の軌道面および前記ころの軸方向の外周面を同じ曲率半径を有する球面状とすることで、前記ころの外周面を前記外輪の軌道面に沿って配設し、前記ころの周囲にグリースを封入してなる複列自動調心ころ軸受であって、該複列自動調心ころ軸受は、請求項1ないし請求項4のいずれか1項記載の風力発電用主軸支持装置に用いられることを特徴とする複列自動調心ころ軸受。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352310A JP2006161624A (ja) | 2004-12-06 | 2004-12-06 | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
PCT/JP2005/001930 WO2005075610A1 (ja) | 2004-02-09 | 2005-02-09 | グリース、転がり軸受、等速ジョイントおよび転動部品 |
EP05709982.2A EP1719812B1 (en) | 2004-02-09 | 2005-02-09 | Grease |
US10/587,550 US8003582B2 (en) | 2004-02-09 | 2005-02-09 | Grease, rolling bearing, constant velocity joint, and rolling parts |
US12/932,194 US20110207535A1 (en) | 2004-02-09 | 2011-02-18 | Grease, rolling bearing, constant velocity joint, and rolling parts |
US13/373,945 US20120149614A1 (en) | 2004-02-09 | 2011-12-06 | Grease, rolling bearing, constant velocity joint, and rolling parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352310A JP2006161624A (ja) | 2004-12-06 | 2004-12-06 | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006161624A true JP2006161624A (ja) | 2006-06-22 |
Family
ID=36663928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004352310A Pending JP2006161624A (ja) | 2004-02-09 | 2004-12-06 | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006161624A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111514A (ja) * | 2006-10-31 | 2008-05-15 | Ntn Corp | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
JP2009133403A (ja) * | 2007-11-30 | 2009-06-18 | Ntn Corp | 風力発電装置の主軸支持用転がり軸受 |
WO2011046201A1 (ja) | 2009-10-15 | 2011-04-21 | 協同油脂株式会社 | 風力発電機軸受用グリース組成物 |
WO2011111730A1 (ja) * | 2010-03-12 | 2011-09-15 | Ntn株式会社 | 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法 |
WO2011118814A1 (ja) * | 2010-03-26 | 2011-09-29 | 出光興産株式会社 | グリース組成物 |
CN106468245A (zh) * | 2016-10-24 | 2017-03-01 | 浙江运达风电股份有限公司 | 风力发电机导流罩支撑架试验装置 |
CN111765168A (zh) * | 2020-05-19 | 2020-10-13 | 上海涟屹轴承科技有限公司 | 一种新型风电变速箱用推力轴承结构 |
CN115076225A (zh) * | 2022-06-07 | 2022-09-20 | 山东华工轴承有限公司 | 基于风力发电主轴用双列异形自动调心滚子轴承 |
-
2004
- 2004-12-06 JP JP2004352310A patent/JP2006161624A/ja active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008111514A (ja) * | 2006-10-31 | 2008-05-15 | Ntn Corp | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 |
JP2009133403A (ja) * | 2007-11-30 | 2009-06-18 | Ntn Corp | 風力発電装置の主軸支持用転がり軸受 |
WO2011046201A1 (ja) | 2009-10-15 | 2011-04-21 | 協同油脂株式会社 | 風力発電機軸受用グリース組成物 |
JP2011084646A (ja) * | 2009-10-15 | 2011-04-28 | Kyodo Yushi Co Ltd | 風力発電機軸受用グリース組成物 |
US8859475B2 (en) | 2009-10-15 | 2014-10-14 | Kyodo Yushi Co., Ltd. | Grease composition for bearing of wind power generator |
JP2011208635A (ja) * | 2010-03-12 | 2011-10-20 | Ntn Corp | 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法 |
WO2011111730A1 (ja) * | 2010-03-12 | 2011-09-15 | Ntn株式会社 | 摩耗検知装置およびそれを備える風力発電装置ならびに摩耗検知方法 |
US8881583B2 (en) | 2010-03-12 | 2014-11-11 | Ntn Corporation | Abrasion sensing device, wind turbine generation apparatus including the same, and abrasion sensing method |
WO2011118814A1 (ja) * | 2010-03-26 | 2011-09-29 | 出光興産株式会社 | グリース組成物 |
JP5706883B2 (ja) * | 2010-03-26 | 2015-04-22 | 出光興産株式会社 | グリース組成物 |
CN106468245A (zh) * | 2016-10-24 | 2017-03-01 | 浙江运达风电股份有限公司 | 风力发电机导流罩支撑架试验装置 |
CN111765168A (zh) * | 2020-05-19 | 2020-10-13 | 上海涟屹轴承科技有限公司 | 一种新型风电变速箱用推力轴承结构 |
CN115076225A (zh) * | 2022-06-07 | 2022-09-20 | 山东华工轴承有限公司 | 基于风力发电主轴用双列异形自动调心滚子轴承 |
CN115076225B (zh) * | 2022-06-07 | 2023-08-04 | 山东华工轴承有限公司 | 基于风力发电主轴用双列异形自动调心滚子轴承 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8003582B2 (en) | Grease, rolling bearing, constant velocity joint, and rolling parts | |
JP2004238630A (ja) | グリース組成物および転がり軸受 | |
JP4843260B2 (ja) | 一方向クラッチ内蔵型回転伝達装置 | |
WO2010027019A1 (ja) | グリース組成物、該グリース組成物を封入した転がり軸受および自在継手 | |
JP2006300211A (ja) | 一方向クラッチ内蔵型回転伝達装置 | |
JP4751807B2 (ja) | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 | |
WO2006112502A1 (ja) | グリース組成物、グリース封入軸受、および、一方向クラッチ内蔵型回転伝達装置 | |
JP2006161624A (ja) | 風力発電用主軸支持装置、該装置に用いられる複列自動調心ころ軸受 | |
JP5438938B2 (ja) | グリース組成物、該グリース組成物を封入した転がり軸受および自在継手 | |
JP4262668B2 (ja) | グリース組成物および転がり軸受 | |
JP4262630B2 (ja) | 鉄道車両用軸受 | |
JP6193619B2 (ja) | 転がり軸受 | |
JP2006199761A (ja) | 等速ジョイント用グリースおよび等速ジョイント | |
JP4335182B2 (ja) | 車輪支持装置 | |
JP5305834B2 (ja) | 転がり軸受、画像形成装置、自動車補機およびモータ | |
JP4335080B2 (ja) | 車輪支持装置 | |
JP2006051508A (ja) | 圧延機ロールネック用軸受 | |
JP4545518B2 (ja) | 車輪支持用転がり軸受ユニット | |
JP5170861B2 (ja) | グリース組成物およびグリース封入軸受 | |
JP4545819B2 (ja) | グリース | |
JP2009019703A (ja) | 車輪支持装置 | |
JP2009019129A (ja) | 自在継手用グリースおよび自在継手 | |
JP2009019128A (ja) | グリース組成物およびグリース封入転がり軸受 | |
JP2007056906A (ja) | モータ用グリース封入軸受 | |
JP2009019704A (ja) | 車輪支持用転がり軸受ユニット |