JP2006156519A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2006156519A
JP2006156519A JP2004341643A JP2004341643A JP2006156519A JP 2006156519 A JP2006156519 A JP 2006156519A JP 2004341643 A JP2004341643 A JP 2004341643A JP 2004341643 A JP2004341643 A JP 2004341643A JP 2006156519 A JP2006156519 A JP 2006156519A
Authority
JP
Japan
Prior art keywords
film
insulating film
dielectric constant
low
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341643A
Other languages
English (en)
Inventor
Seiichi Kondo
誠一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004341643A priority Critical patent/JP2006156519A/ja
Publication of JP2006156519A publication Critical patent/JP2006156519A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【目的】 キャップ絶縁膜がlow−k膜から剥離することを抑制することを目的とする。
【構成】 本発明の半導体装置の製造方法は、基体上にlow−k材料を用いたlow−k膜を形成するlow−k膜形成工程(S104)と、low−k膜を研磨する研磨工程(S106)と、研磨されたlow−k膜上に前記low−k膜を覆うキャップ絶縁膜となるSiO膜を形成するSiO膜形成工程(S112)と、前記SiO膜上に導電性材料を堆積させる導電性材料堆積工程(S116〜S120)と、前記導電性材料を研磨して平坦化させる平坦化工程(S122)と、を備えたことを特徴とする。
【選択図】 図1

Description

本発明は、半導体装置の製造方法に係り、特に、銅(Cu)配線と多孔質低誘電率(ポーラスlow−k)膜を用いた半導体装置の製造方法に関するものである。
近年、半導体集積回路(LSI)の高集積化、及び高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(ケミカル・メカニカル・ポリッシング:chemical mechanical polishing:CMP)法もその一つであり、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、或いは埋め込み工程において頻繁に利用されている技術である(例えば、特許文献1参照)。
特に、最近はLSIの高速性能化を達成するために、配線技術を従来のアルミ(Al)合金から低抵抗のCu或いはCu合金(以下、まとめてCuと称する。)に代える動きが進んでいる。Cuは、Al合金配線の形成において頻繁に用いられたドライエッチング法による微細加工が困難であるので、溝加工が施された絶縁膜上にCu膜を堆積し、溝内に埋め込まれた部分以外のCu膜をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン(damascene)法が主に採用されている(例えば、特許文献2参照)。Cu膜はスパッタ法などで薄いシード層を形成した後に電解めっき法により数100nm程度の厚さの積層膜を形成することが一般的である。
さらに、最近は層間絶縁膜として比誘電率の低いlow−k膜を用いることが検討されている。すなわち、比誘電率kが、約4.2のシリコン酸化膜(SiO膜)から比誘電率kが例えば3.5以下のlow−k膜を用いることにより、配線間の寄生容量を低減することが試みられている。また、比誘電率kが2.5以下のlow−k膜材料の開発も進められており、これらは材料中に空孔が入ったポーラス材料となっているものが多い。このようなlow−k膜(若しくはポーラスlow−k膜)とCu配線を組み合わせた多層配線構造を有する半導体装置の製造方法は次のようなものである。
図10は、従来のlow−k膜とCu配線を組み合わせた多層配線構造を有する半導体装置の製造方法を示す工程断面図である。
図10では、デバイス部分等の形成方法は省略している。
図10(a)において、シリコン基板による基体200上に化学気相成長(CVD)等の方法により第1の絶縁膜221を成膜する。
図10(b)において、フォトリソグラフィ工程及びエッチング工程により、Cu金属配線或いはCuコンタクトプラグを形成するための溝構造(開口部H)を第1の絶縁膜221に形成する。
図10(c)において、第1の絶縁膜221上にバリアメタル膜240、Cuシード膜及びCu膜260をかかる順序で形成して、150℃から400℃の温度で約30分間アニール処理する。
図10(d)において、Cu膜260とバリアメタル膜240をCMPにより除去することにより、溝である開口部HにCu配線を形成する。
図10(e)において、前記Cu膜260表面に還元性プラズマ処理を施した後に第2の絶縁膜281を成膜する。
さらに、多層Cu配線を形成する場合は、これらの工程を繰り返して積層していくのが一般的である。ここで、第1の絶縁膜221と第2の絶縁膜281の大半がlow−k膜となる。
前記CMPに関し、層間絶縁膜上にハードマスクとなる絶縁膜を形成し、その上にバリアメタル膜とCu膜が形成された基板に対し、Cu膜とバリアメタル膜をCMPにより除去する場合に、さらに、ハードマスクとなる絶縁膜もCMPにより除去する技術が開示されている(例えば、特許文献3参照)。
米国特許番号4944836 特開平2−278822号公報 特開2003−77920号公報
図11は、CMPを用いた研磨工程時の半導体装置の断面例を示す図である。
図11では、図10における第1の絶縁膜は、下地CVD膜となるSiC膜212とlow−k膜220とキャップ絶縁膜となるSiO膜222とにより構成される。
図11において、図10に示す前述の方法によってlow−k膜220を基体200となるシリコンウエハ上に形成しても、low−k膜220はSiO膜222と比較して機械的強度が弱いため、CMPの研磨荷重Pによって構造的な破壊が起こったり、キャップCVD膜となるSiO膜222がlow−k膜220から剥離する問題があった。もしくはlow−k膜220と下地CVD膜となるSiC膜212の界面で剥離する問題があった。特にヤング率や硬度が低いlow−k材料や、キャップCVD膜とlow−k膜の接着強度が低い材料でこの問題が頻発した。
従来はこのようなlow−k膜の剥離を抑制するために、CMPの研磨荷重を下げることで対処していた。しかし、研磨荷重を下げると研磨速度も低下するという問題があった。そのために、従来は安定した研磨速度とウエハ面内均一性を得るために6.9×10Pa(1psi)以上の研磨荷重でCMPを行うことが一般的であった。この問題が、層間絶縁膜としてlow−k材を、配線としてCuを用いるlow−k/Cu配線開発の大きな問題となっていた。
本発明は、上述した問題点を克服し、キャップ絶縁膜がlow−k膜から剥離することを抑制することを目的とする。
本発明の半導体装置の製造方法は、
基体上に低誘電率絶縁材料を用いた低誘電率絶縁膜を形成する低誘電率絶縁膜形成工程と、
前記低誘電率絶縁膜を研磨する第1の研磨工程と、
研磨された前記低誘電率絶縁膜上に前記低誘電率絶縁膜を覆うキャップ絶縁膜を形成するキャップ絶縁膜形成工程と、
前記キャップ絶縁膜上に導電性材料を堆積させる導電性材料堆積工程と、
前記導電性材料を研磨する第2の研磨工程と、
を備えたことを特徴とする。
前記第1の研磨工程において、前記低誘電率絶縁膜を研磨することにより、後述するように前記低誘電率絶縁膜表面を改質することができる。その結果、前記低誘電率絶縁膜を覆うキャップ絶縁膜との接着性を向上させることができる。したがって、第2の研磨工程において、前記導電性材料を研磨する場合の荷重に対して対抗することができる。
さらに、本発明における前記低誘電率絶縁膜形成工程において、前記低誘電率絶縁材料として、比誘電率が3.0以下の材料を用いる場合に、特に有効である。
比誘電率が3.0以下の材料では、機械的強度が弱いため本発明において課題とするキャップ絶縁膜の剥離が生じやすいため、本発明を適用することは、特に有効である。
さらに、本発明における前記低誘電率絶縁膜形成工程において、前記低誘電率絶縁材料として、多孔質材料を用いる場合に、特に有効である。
記低誘電率絶縁膜の低誘電率化に伴い、多孔質材料を用いることになる。そして、多孔質材料は、さらに、機械的強度が弱いため本発明において課題とするキャップ絶縁膜の剥離がさらに生じやすい。よって、本発明を適用することは、特に有効である。
さらに、本発明における前記第1の研磨工程において、前記低誘電率絶縁膜の研磨量を50nm以下とすることが望ましい。
さらに、本発明における前記第1の研磨工程において、研磨液を用いた化学機械研磨(CMP)を行ない、
前記半導体装置の製造方法は、前記キャップ絶縁膜形成工程の前に、さらに、研磨された前記低誘電率絶縁膜をアニール処理するアニール工程を備えたことを特徴とする。
前記低誘電率絶縁膜をアニール処理することにより、前記第1の研磨工程において用いた研磨液によって吸湿した水分を除去することができる。水分を除去することにより比誘電率の上昇を抑制することができる。
さらに、本発明における前記キャップ絶縁膜形成工程において、キャップ絶縁膜の材料として、二酸化シリコン(SiO)を用いることを特徴とする。
後述するように前記低誘電率絶縁膜表面を改質することによりSiOとの接着性を向上させることができるため、キャップ絶縁膜の材料として、SiOを用いることは、特に有効である。
さらに、本発明における前記導電性材料堆積工程において、前記導電性材料として、銅(Cu)を用いることを特徴とする。
前記第2の研磨工程において、摩擦力の大きいCuを研磨する場合に、特に、前記低誘電率絶縁膜とキャップ絶縁膜との剥離が生じやすい。よって、前記導電性材料として、銅(Cu)を用いる場合に、本発明を適用することは、特に有効である。
本発明の半導体装置の製造方法は、
基体上に低誘電率絶縁材料を用いた低誘電率絶縁膜を形成する低誘電率絶縁膜形成工程と、
前記低誘電率絶縁膜表面の性質がより親水性側になるように前記低誘電率絶縁膜表面を改質する改質工程と、
表面が改質された前記低誘電率絶縁膜上に前記低誘電率絶縁膜を覆うキャップ絶縁膜を形成するキャップ絶縁膜形成工程と、
前記キャップ絶縁膜上に導電性材料を堆積させる導電性材料堆積工程と、
前記導電性材料を研磨する研磨工程と、
を備えたことを特徴とする。
前記低誘電率絶縁膜表面の性質がより親水性側になるように前記低誘電率絶縁膜表面を改質することにより、前記低誘電率絶縁膜を覆うキャップ絶縁膜との接着性を向上させることができる。したがって、上述したように研磨工程において、前記導電性材料を研磨する場合の荷重に対して対抗することができる。
さらに、本発明における前記改質工程において、前記低誘電率絶縁膜表面を化学機械研磨(CMP)することを特徴とする。
前記低誘電率絶縁膜表面をCMP処理を行なうことにより、前記低誘電率絶縁膜表面の性質がより親水性側になるように前記低誘電率絶縁膜表面を改質することができる。
さらに、本発明における前記低誘電率絶縁膜表面には、メチル基(CH)が結合され、
前記改質工程において、前記低誘電率絶縁膜表面に結合されるメチル基(CH)をヒドロキシ基(OH基)に改質することを特徴とする。
メチル基(CH)をヒドロキシ基(OH基)に改質することにより、前記低誘電率絶縁膜表面の性質をより親水性側にすることができる。さらに、前記低誘電率絶縁膜表面の結合がOH基となることによりキャップ絶縁膜と結合しやすくすることができる。
以上説明したように、本発明によれば、前記低誘電率絶縁膜を覆うキャップ絶縁膜との接着性を向上させることができ、前記導電性材料を研磨する場合の荷重に対して対抗することができるので、前記低誘電率絶縁膜とキャップ絶縁膜との剥離を抑制することができる。
実施の形態1.
上述したCu−CMPプロセスにおけるlow−k膜の剥離の問題は、low−k膜表面をCMPによって改質してからキャップCVD絶縁膜を成膜することによって解決することができる。
図1は、実施の形態1における半導体装置の製造方法の要部を表すフローチャートである。
図1において、本実施の形態では、絶縁膜形成工程として、SiC膜を形成するSiC膜形成工程(S102)、多孔質の絶縁性材料を用いたlow−k膜を形成するlow−k膜形成工程(S104)、研磨工程(S106)、アニール工程(S108)、low−k膜表面をプラズマ処理するヘリウム(He)プラズマ処理工程(S110)、SiO膜を形成するSiO膜形成工程(S112)と、開口部を形成する開口部形成工程(S114)と、導電性材料を堆積させる導電性材料堆積工程として、バリアメタル膜形成工程(S116)、シード膜形成工程(S118)、電解めっき工程(S120)と、平坦化工程(S122)という一連の工程を実施する。そして、さらに、拡散防止膜形成工程、絶縁膜形成工程と繰り返すことにより多層配線を形成する。
図2は、図1のフローチャートに対応して実施される工程を表す工程断面図である。
図2では、図1のSiC膜形成工程(S102)からHeプラズマ処理工程(S110)までを示している。それ以降の工程は後述する。
図2(a)において、SiC膜形成工程として、基体200上に、CVD法によって、SiCを用いた膜厚25nmの下地SiC膜を堆積し、SiC膜212を形成する。ここでは、CVD法によって成膜しているが、その他の方法を用いても構わない。SiC膜212は、エッチングストッパとしての機能を有する。SiC膜を生成するのは難しいためSiC膜の代わりに炭酸化シリコン(SiOC)膜を用いても構わない。或いは、炭窒化シリコン(SiCN)膜、窒化シリコン(SiN)膜を用いることができる。基体200として、例えば、直径300ミリのシリコンウエハ等の基板を用いる。ここでは、デバイス部分の形成を省略している。基体200には、金属配線またはコンタクトプラグ等、デバイス部分が形成された層が形成されていても構わない。或いは、その他の層が形成されていても構わない。
図2(b)において、low−k膜形成工程として、基体200の上に形成された前記SiC絶縁膜形成工程により形成されたSiC膜212の上に多孔質の絶縁性材料を用いたlow−k膜220を200nmの厚さで形成する。low−k膜220を形成することで、比誘電率kが3.5よりも低い層間絶縁膜を得ることができる。low−k膜220の材料としては、例えば、多孔質のメチルシルセスキオキサン(methyl silsequioxane:MSQ)を用いることができる。また、その形成方法としては、例えば、溶液をスピンコートし熱処理して薄膜を形成するSOD(spin on dielectic coating)法を用いることができる。ここでは、スピナーの回転数は900min−1(900rpm)で成膜した。このウエハをホットプレート上で窒素雰囲気中150℃の温度で75秒間の第1のベークを行い、さらに250℃の温度で75秒間第2のベークを行った後、最終的にホットプレート上で窒素雰囲気中450℃の温度で10分間のキュアを行った。MSQの材料や形成条件などを適宜調節することにより、所定の物性値を有する多孔質の絶縁膜が得られる。例えば、比誘電率kが2.3、空孔率が30%、ヤング率が3.0GPaの物性値を有するlow−k膜220が得られる。
図2(c)において、改質工程の一例である研磨工程として、low−k膜220をCMPによって研磨する。low−k膜220をCMPによって研磨することによってlow−k膜220表面が改質されることで、low−k膜220とlow−k膜220上に形成する後述するキャップ膜としてのCVD−SiO膜222との接着性を強くすることができる。後述するCu−CMPの際、Cu表面ではCMP中の摩擦が高いために剥離が発生するが、low−k膜表面では摩擦が低いためにCMP剥離は起こらない。low−k膜220表面をCMPによって改質する際に除去されるポーラスlow−k膜220の膜厚(研磨量)は、50nm以下であることが望ましい。
図3は、CMP装置の構成を示す概念図である。
ここでは、一例として、CMP装置はオービタル方式で、ノベラスシステムズ社のMomentum300を用いた。図3(a)に示すように、オービタル回転型のCMP装置において、プラテン820上に配置された研磨パッド825上に、研磨面を下に向けて基板300をキャリア810が保持する。そして、プラテン820を図に示すようにオービタル回転させながら、図3(b)に示すように、スラリーを供給液840として、研磨パッド825の下側から供給口822を通って供給する。供給液840を研磨パッド825の下側から供給することで、供給液840が基板300面内に供給される。供給された供給液840は、プラテン820の回転に伴い、外周部から排出される。CMP荷重は1.03×10Pa(1.5psi)、オービタル回転数は600min−1(600rpm)、ヘッド回転数は24min−1(24rpm)、スラリー供給速度は0.3L/min(300cc/分)、研磨パッドは発泡ポリウレタン製の単層硬質パッド(ロデール社のIC1000)を用いた。研磨用のスラリーは、コロイダルシリカを用いた。CMPによって研磨されたポーラスlow−k膜200の膜厚は30nmとした。研磨時間は、20秒である。CMP前のポーラスlow−k膜表面の水の接触角は100度であったが、CMPによって40度まで低下した。すなわち、CMP処理により、表面が改質されて疎水性から親水性に近づけることができる。
CMP装置は、以下のような装置を用いても構わない。
図4は、別のCMP装置の構成を説明するための概念図である。
図4(a)に示すように、ロータリ型のCMP装置において、プラテン520上に配置された研磨パッド525上に、研磨面を下に向けて基板300をキャリア510が保持する。供給ノズル530から供給液540としてスラリーを供給する。図4(b)に示すように、キャリア510を図に示すように回転することで基板300を回転させ、プラテン520も回転させる。プラテン520の回転方向先に位置する基板300の手前(図5(b)の540に示す位置)に供給液540を供給することで、供給液540が基板300面内に供給される。
そして、アニール工程として、研磨されたポーラスlow−k膜200をアニール処理する。350℃で窒素雰囲気中で30分間アニールを行なう。アニール処理を行なうことにより、CMPスラリーによって吸湿された水分を除去することができる。
ここでは、比較対象として、CMPによる研磨工程とアニール工程を行なわなかった試料も準備した。以降、CMPによる研磨工程とアニール工程を行なった試料とCMPによる研磨工程とアニール工程とを行なわなかった試料との2種類の試料に対し、処理を進めた。
図2(d)において、Heプラズマ処理工程として、このlow−k膜220表面をCVD装置内でヘリウム(He)プラズマ照射によって表面改質する。Heプラズマ照射によって表面が改質されることで、low−k膜220とlow−k膜220上に形成する後述するキャップ膜としてのCVD−SiO膜222との接着性をさらに強くすることができる。ガス流量は1.7Pa・m/s(1000sccm)、ガス圧力は1000Pa、高周波パワーは500W、低周波パワーは400W、温度は400℃とした。キャップCVD膜をlow−k膜上に成膜する際は、low−k膜表面にプラズマ処理を施すことがキャップCVD膜との接着性を改善する上で有効である。プラズマガスの種類としてはアンモニア(NH)、亜酸化窒素(NO)、水素(H)、He、酸素(O)、シラン(SiH)、アルゴン(Ar)、窒素(N)などがあり、これらの中でもHeプラズマはlow−k膜へのダメージが少ないために特に有効である。また、プラズマガスはこれらのガスを混合したものでも良い。例えば、Heガスは他のガスと混合して用いると効果的である。
図5は、図1のフローチャートに対応して実施される工程を表す工程断面図である。
図5では、図1のSiO膜形成工程(S110)からシード膜形成工程(S118)までを示している。それ以降の工程は後述する。
図5(a)において、SiO膜形成工程として、前記Heプラズマ処理を行った後、low−k膜220を覆うキャップ絶縁膜として、CVD法によってlow−k膜220上にSiOを膜厚50nm堆積することで、SiO膜222を形成する。SiO膜222を形成することで、直接リソグラフィを行うことができないlow−k膜220を保護し、low−k膜220にパターンを形成することができる。かかるキャップCVD膜は、SiO膜、SiC膜、SiOC膜、SiCN膜などがあるが、ダメージ低減の観点からはSiO膜が優れ、低誘電率化の観点からはSiOC膜が、耐圧向上の観点からはSiC膜やSiCN膜が優れている。さらに、SiO膜とSiC膜の積層膜、もしくはSiO膜とSiCO膜の積層膜、もしくはSiO膜とSiCN膜の積層膜を用いることができる。さらにキャップCVD膜の一部、もしくは全てが後述する平坦化工程においてCMPにより除去されても良い。キャップ膜を除去することで誘電率をさらに低減することができる。キャップ膜の厚さとしては10nmから150nmが良く、10nmから50nmが実効的な比誘電率を低減する上で効果的である。本実施の形態では、後述するように、ヒドロキシ基(OH基)と結合しやすいSiO膜が特に有効である。
以上の説明において、下層配線における層間絶縁膜は、比誘電率が3.5以下のlow−k膜でなくても構わないが、low−k膜を含む場合に有効である。特に、low−k膜がポーラスlow−k膜である場合に特に有効である。なぜならば、ポーラスlow−k膜の機械的強度は非常に低いためにCu−CMPで剥離が発生しやすいからである。比誘電率が3.5以下の低誘電率絶縁膜としてlow−k膜を一部に形成することで、半導体装置の微細化を図ることができる。low−k膜の種類としては、塗布されることにより形成されるMSQやHSQ(Hydrogen Silsesquioxane)、ポリマー、CVDにより形成されるSiOC系やポリマーのいずれも用いることができる。また、low−k膜の比誘電率は3.0以下のもの、特に2.6以下のものに対して有効である。また、CVD膜とスピン塗布膜を比較した場合、特にスピン塗布膜に対して有効である。前記low−k膜の膜厚としては、100nmから1000nmの範囲であることが望ましい。前述のMSQ膜の組成としては、珪素の濃度は20%から40%、炭素の濃度は10%から30%、酸素の濃度は40%から60%が望ましい。
図5(b)において、開口部形成工程として、リソグラフィ工程とドライエッチング工程でダマシン配線を作製するための配線溝構造である開口部150をSiO膜222とlow−k膜220と下地SiC膜212内に形成する。図示していないレジスト塗布工程、露光工程等のリソグラフィ工程を経てSiO膜222の上にレジスト膜が形成された基体200に対し、露出したSiO膜222とその下層に位置するlow−k膜220を、下地SiC膜212をエッチングストッパとして異方性エッチング法により除去し、その後、下地SiC膜212をエッチングして開口部150を形成すればよい。異方性エッチング法を用いることで、基体200の表面に対し、略垂直に開口部150を形成することができる。例えば、一例として、反応性イオンエッチング法により開口部150を形成すればよい。
SiO膜222とポーラスlow−k膜220のドライエッチング加工の際は、CF/N/Arガスをチャンバ内圧力3.325Pa(25mTorr)で用いた。SiC膜212のドライエッチング加工の際は、同じCF/N/Arガスをチャンバ内圧力5.32Pa(40mTorr)で用いた。ここでは、ドライエッチ装置として、東京エレクトロンのTelius SCCMを用いた。
その後、アッシング工程として、それぞれのウエハをH/Heガスを用いて350℃でアッシングを行った。アッシングを行なうことにより、開口部形成工程においてマスクとして用いたレジストを剥離することができる。水素濃度は5%、圧力133Pa、パワーは2000W、流量は5000sccmの条件である。ここでは、アッシング装置として、芝浦製のICE−300を用いた。
図5(c)において、バリアメタル膜形成工程として、前記開口部形成工程により形成された開口部150及びSiO膜222表面にバリアメタル材料を用いたバリアメタル膜240を形成する。物理気相成長法(physical vapor deposition:PVD)法の1つであるスパッタ法を用いるスパッタリング装置内で窒化タンタル(TaN)を膜厚5nm、タンタル(Ta)膜を膜厚8nm堆積し、バリアメタル膜240を形成する。TaN膜とTa膜とを積層することで、TaN膜によりCuのlow−k膜220への拡散防止を図り、Ta膜によりCuの密着性向上を図ることができる。バリアメタル材料の堆積方法としては、原子層気相成長(atomic layer deposition:ALD法、あるいは、atomic layer chemical vapor deposition:ALCVD法)やCVD法などを用いることでPVD法を用いる場合より被覆率を良くすることができる。
前記バリアメタル膜は、Ta膜、TaN膜、もしくはその積層膜であることが望ましい。前記バリアメタル膜の成膜方法は、CVD法もしくはALD法であることが被覆性の観点から望ましいが、上述したスパッタ法などのPVD法であっても有効である。
図5(d)において、シード膜形成工程として、スパッタ等の物理気相成長(PVD)法により、次の工程である電解めっき工程のカソード極となるCu薄膜をシード膜250としてバリアメタル膜240が形成された開口部150内壁及び基体200表面に堆積(形成)させる。ここでは、シード膜250を膜厚50nm堆積させた。
図6は、図1のフローチャートに対応して実施される工程を表す工程断面図である。
図6では、図1の電解めっき工程(S120)から平坦化工程(S122)までを示している。
図6(a)において、めっき工程として、シード膜250をカソード極として、電解めっき等の電気化学成長法によりCu膜260を開口部150及び基体200表面に堆積させる。ここでは、膜厚500nmのCu膜260を堆積させ、堆積させた後にアニール処理を250℃の温度で30分間行った。
図6(b)において、研磨工程でもある平坦化工程として、CMP法によってSiO膜222の表面に堆積された導電部としての配線層となるCu膜260、シード膜250、及びバリアメタル膜240をCMP研磨により除去することにより、図6(b)に表したような埋め込み構造を形成する。
CMP装置は、図3において説明したオービタル方式で、ノベラスシステムズ社のMomentum300を用いた。CMP荷重は1.03×10Pa(1.5psi)、オービタル回転数は600min−1(600rpm)、ヘッド回転数は24min−1(24rpm)、スラリー供給速度は0.3L/min(300cc/分)、研磨パッドは発泡ポリウレタン製の単層硬質パッド(ロデール社のIC1000)、CMPスラリーはCu用に砥粒フリースラリー(日立化成工業製のHS−C430−TU)、バリアメタル除去用にコロイダルシリカ砥粒スラリー(日立化成工業製のHS−T605−8)を用いた。Cu用のスラリーの選択比(Cu対バリアメタル)は、1000以上を有する。バリアメタル用のスラリーの選択比(Cu対バリアメタル対SiO)は、1:4:2である。上述の条件でCMPを行い、溝外部のCu膜260とバリアメタル膜240を除去してダマシンCu配線を形成した。必要に応じてSiO膜222の一部もしくは全てを除去してもよい。
そして、研磨処理後、還元性プラズマ処理工程として、CVD装置内でアンモニア(NH)プラズマ処理を行なう。この処理により図6(b)における平坦化工程でのCu−CMPの際にスラリーとの反応によって形成されたCu表面の錯体を還元し、キャップSiO膜上に存在する残留有機物を除去することができる。この処理によりCu−CMPの際にスラリーとの反応によって形成されたCu表面の錯体が還元され、キャップSiO2膜上にある残留有機物も除去されることから絶縁耐圧は改善される。前記還元性のプラズマはアンモニアプラズマ、もしくは水素(H)プラズマが効果的であり、特にアンモニアプラズマが処理装置内におけるガスの扱い易さから好ましい。
還元性プラズマ処理工程では、図示していないCVD装置内におけるチャンバの内部にて、下部電極を兼ねた温度が400℃に制御された基板ホルダの上に基体200となる半導体基板を設置する。そして、チャンバの内部に上部電極内部からガスを供給する。供給するガス流量は11.8Pa・m/s(7000sccm)とした。真空ポンプにより233Paのガス圧力になるように真空引きされたチャンバの内部の上記上部電極と下部電極との間に高周波電源を用いてプラズマを生成させる。高周波パワーは560W、低周波パワーは250W、処理時間は10秒とした。
図7は、low−k膜の表面改質の状況を説明するための図である。
図7(a)に示すように、CMP前のポーラスlow−k膜表面の水の接触角は100度であったが、図7(b)に示すように、CMPによって40度まで低下した。すなわち、表面が改質されて疎水性から親水性に近くなった。
図8は、low−k膜の表面での分子の結合状態を示す図である。
図8(a)に示すように、CMP前のポーラスlow−k膜では、ポーラスlow−k膜の材料がメチル基(CH基)を有していることから、ポーラスlow−k膜表面では、CH基が結合される。CH基が結合されるとポーラスlow−k膜表面は疎水性になる。かかる状態において、図8(b)に示すように、CMPによって、表面に結合されるCH基をヒドロキシ基(OH基)に改質することができる。また、Heプラズマ工程によりさらにOH基に改質することができる。OH基が結合されるとポーラスlow−k膜表面は親水性になる。図8(c)に示すように、かかる状態でキャップ絶縁膜となるSiOをCVDにより堆積させると、図8(d)に示すように、OH基の酸素(O)が、SiOのシリコン(Si)と結合され、代わりに、OH基のHが、SiOのOと結合され、水(HO)となり飛んでいく。言い換えれば、CH基に比べ、OH基の方が、キャップ絶縁膜となるSiOと結合されやすく、結合力が強い。すなわち、接着性が強い。したがって、表面に結合されるCH基をOH基に改質することにより、キャップ絶縁膜となるSiO膜との接着性を向上させることができる。
半導体装置の製造をさらに進めていくには、以下のようにしていけばよい。
図9は、平坦化する研磨工程後、第2の絶縁膜としてのlow−k膜形成工程までを示す工程断面図である。
次の層における第2の絶縁膜形成工程の一部であるSiC膜形成工程として、還元性プラズマ処理した同じCVD装置内で400℃の温度で30nmの膜厚のSiC膜275を形成する。SiC膜275は拡散防止膜の働きがあり、このSiC膜275を形成することで、Cuの拡散を防止することができる。かかるCVD法で形成されるSiC膜275の他に、SiCN膜、SiCO膜、SiN膜、SiO膜を用いることができる。そして、low−k膜形成工程として、図2(b)で説明した工程と同様に、SiC膜275の上にSiC膜275よりも比誘電率の低い低誘電率膜である、多孔質の絶縁性材料を用いたlow−k膜280を形成する。ポーラスlow−k膜280と下地拡散防止絶縁膜となるSiC膜275との接着性を向上するためには、ポーラスlow−k膜280を形成する前にArスパッタを行うことが効果的である。スパッタ量は1〜3nmで十分な効果が得られる。以降、多層配線を必要に応じ順次形成していけばよい。
これらCMPによる研磨工程とアニール工程を行なったウエハとCMPによる研磨工程とアニール工程とを行なわなかったウエハとの2種類のウエハに、保護膜とパッド電極を形成して、Cu配線間の配線抵抗測定を行った。前述の2種類のウエハにおいて、Cu配線の幅が0.10マイクロメートル、配線間のスペースが0.10マイクロメートルの構造において配線抵抗を調べた。その結果、本実施の形態におけるポーラスlow−k膜のCMP処理を行ったウエハでは正常な値の配線抵抗が得られた。99%以上の歩留りであった。これに対して、前述のCMP処理を行っていないウエハではCu−CMPの際のポーラスlow−k膜の剥離によって配線抵抗の歩留りが50%まで低下した。剥離したCu配線をTEMで観察した結果、ポーラスlow−k膜220とキャップCVD膜となるSiO膜222の間で剥離が発生していた。一方、CMP処理を行ったウエハでは剥離は全く見られなかった。
本実験をデバイスが搭載されたウエハで実施しても同様の効果を確認することができた。1層目のCu配線層だけでなく、2層目のCu配線層においてもポーラスlow−k膜の剥離なくCu配線を形成することができ、さらに3層目以上のCu配線層でも剥離なく形成することができた。
low−k材料としては、MSQ以外にHSQ(Hydrogen Silsesquioxane)やポリマー、CVD法によるSiOCを用いても剥離なくCu配線を形成することができた。
前記実施の形態において、比誘電率が2.6以下の場合、ポーラスlow−k膜の空孔が1nm以上となることが多いため、配線溝におけるlow−k膜の側壁が20nm以下の膜厚のCVD膜で被覆保護されていることが望ましい。これはポーラスlow−k膜のポアシーリングの働きがある。特に、側壁に形成する拡散防止金属(バリアメタル)膜をCVD法やALD法によって形成する場合に染み込みが無くなるために効果的である。このポアシーリングのためのCVD膜の種類としては、SiC膜、SiCH膜、SiCN膜、SiCO膜、SiN膜、SiO膜が望ましい。特に、低誘電率の観点からSiC膜やSiCH膜が最適である。
以上の説明において、バリアメタルとして、Ta、TaNに限らず、TaCN(炭化窒化タンタル)、WN(窒化タングステン)、WCN(炭化窒化タングステン)、TiN(窒化チタン)等の高融点金属の窒化膜或いは窒化炭素膜であっても構わない。或いはチタン(Ti)、WSiN等であっても構わない。
ここで、上記各実施の形態における配線層の材料として、Cu以外に、Cu−Sn合金、Cu−Ti合金、Cu−Al合金等の、半導体産業で用いられるCuを主成分とする材料を用いて同様の効果が得られる。
なお、多層配線構造などを形成する場合には、各図において基体200は、下層の配線層と絶縁膜とが形成されたものである。
上記各実施の形態においては、多孔質絶縁膜の材料としては、多孔質誘電体薄膜材料としてのMSQに限らず、他の多孔質無機絶縁体膜材料、多孔質有機絶縁体膜材料を用いても同様の効果を得ることができる。
特に、多孔質の低誘電率材料に上記各実施の形態を適用した場合には、上述の如く顕著な効果が得られる。上記各実施の形態において多孔質絶縁膜の材料として用いることができるものとしては、例えば、各種のシルセスキオキサン化合物、ポリイミド、炭化フッ素(fluorocarbon)、パリレン(parylene)、ベンゾシクロブテンをはじめとする各種の絶縁性材料を挙げることができる。
以上、具体例を参照しつつ各実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
例えば、各実施の形態で層間絶縁膜が形成された基体200は、図示しない各種の半導体素子あるいは構造を有するものとすることができる。また、半導体基板ではなく、層間絶縁膜と配線層とを有する配線構造の上に、さらに層間絶縁膜を形成してもよい。開口部も半導体基板が露出するように形成してもよいし、配線構造の上に形成してもよい。
さらに、層間絶縁膜の膜厚や、開口部のサイズ、形状、数などについても、半導体集積回路や各種の半導体素子において必要とされるものを適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての半導体装置の製造方法は、本発明の範囲に包含される。
また、説明の簡便化のために、半導体産業で通常用いられる手法、例えば、フォトリソグラフィプロセス、処理前後のクリーニング等は省略しているが、それらの手法が含まれることは言うまでもない。
実施の形態1における半導体装置の製造方法の要部を表すフローチャートである。 図1のフローチャートに対応して実施される工程を表す工程断面図である。 CMP装置の構成を説明するための概念図である。 別のCMP装置の構成を説明するための概念図である。 図1のフローチャートに対応して実施される工程を表す工程断面図である。 図1のフローチャートに対応して実施される工程を表す工程断面図である。 low−k膜の表面改質の状況を説明するための図である。 low−k膜の表面での分子の結合状態を示す図である。 平坦化する研磨工程後、第2の絶縁膜としてのlow−k膜形成工程までを示す工程断面図である。 従来のlow−k膜とCu配線を組み合わせた多層配線構造を有する半導体装置の製造方法を示す工程断面図である。 CMPを用いた研磨工程時の半導体装置の断面例を示す図である。
符号の説明
300 基板
150 開口部
200 基体
212 SiC膜
220,280 low−k膜
221,281 絶縁膜
222 SiO
240 バリアメタル膜
250 シード膜
260 Cu膜
277 窒化シリコン膜
510,810 キャリア
520,820 プラテン
525,825 研磨パッド
530 供給ノズル
540,840 供給液
822 供給口

Claims (7)

  1. 基体上に低誘電率絶縁材料を用いた低誘電率絶縁膜を形成する低誘電率絶縁膜形成工程と、
    前記低誘電率絶縁膜を研磨する第1の研磨工程と、
    研磨された前記低誘電率絶縁膜上に前記低誘電率絶縁膜を覆うキャップ絶縁膜を形成するキャップ絶縁膜形成工程と、
    前記キャップ絶縁膜上に導電性材料を堆積させる導電性材料堆積工程と、
    前記導電性材料を研磨する第2の研磨工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  2. 前記低誘電率絶縁膜形成工程において、前記低誘電率絶縁材料として、比誘電率が3.0以下の材料を用いることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記第1の研磨工程において、前記低誘電率絶縁膜の研磨量を50nm以下とすることを特徴とする請求項1又は2記載の半導体装置の製造方法。
  4. 前記第1の研磨工程において、研磨液を用いた化学機械研磨(CMP)を行ない、
    前記半導体装置の製造方法は、前記キャップ絶縁膜形成工程の前に、さらに、研磨された前記低誘電率絶縁膜をアニール処理するアニール工程を備えたことを特徴とする請求項1〜3いずれか記載の半導体装置の製造方法。
  5. 前記キャップ絶縁膜形成工程において、キャップ絶縁膜の材料として、二酸化シリコン(SiO)を用いることを特徴とする請求項1〜4いずれか記載の半導体装置の製造方法。
  6. 基体上に低誘電率絶縁材料を用いた低誘電率絶縁膜を形成する低誘電率絶縁膜形成工程と、
    前記低誘電率絶縁膜表面の性質がより親水性側になるように前記低誘電率絶縁膜表面を改質する改質工程と、
    表面が改質された前記低誘電率絶縁膜上に前記低誘電率絶縁膜を覆うキャップ絶縁膜を形成するキャップ絶縁膜形成工程と、
    前記キャップ絶縁膜上に導電性材料を堆積させる導電性材料堆積工程と、
    前記導電性材料を研磨する研磨工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  7. 前記低誘電率絶縁膜表面には、メチル基(CH基)が結合され、
    前記改質工程において、前記低誘電率絶縁膜表面に結合されるメチル基(CH基)をヒドロキシ基(OH基)に改質することを特徴とする請求項6記載の半導体装置の製造方法。
JP2004341643A 2004-11-26 2004-11-26 半導体装置の製造方法 Pending JP2006156519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341643A JP2006156519A (ja) 2004-11-26 2004-11-26 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341643A JP2006156519A (ja) 2004-11-26 2004-11-26 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006156519A true JP2006156519A (ja) 2006-06-15

Family

ID=36634438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341643A Pending JP2006156519A (ja) 2004-11-26 2004-11-26 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006156519A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093235A (ja) * 2008-09-11 2010-04-22 Nec Electronics Corp 半導体装置および半導体装置の製造方法
US8026164B2 (en) 2008-12-26 2011-09-27 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
JP2011199059A (ja) * 2010-03-19 2011-10-06 Renesas Electronics Corp 半導体装置およびその製造方法
JP2012160549A (ja) * 2011-01-31 2012-08-23 Renesas Electronics Corp 半導体装置の製造方法および多孔質層の改質方法
US8614146B2 (en) 2010-06-30 2013-12-24 Fujitsu Semiconductor Limited Semiconductor device manufacture method and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093235A (ja) * 2008-09-11 2010-04-22 Nec Electronics Corp 半導体装置および半導体装置の製造方法
US8026164B2 (en) 2008-12-26 2011-09-27 Fujitsu Semiconductor Limited Semiconductor device and method of manufacturing the same
JP2011199059A (ja) * 2010-03-19 2011-10-06 Renesas Electronics Corp 半導体装置およびその製造方法
US8614146B2 (en) 2010-06-30 2013-12-24 Fujitsu Semiconductor Limited Semiconductor device manufacture method and semiconductor device
JP2012160549A (ja) * 2011-01-31 2012-08-23 Renesas Electronics Corp 半導体装置の製造方法および多孔質層の改質方法

Similar Documents

Publication Publication Date Title
US6962869B1 (en) SiOCH low k surface protection layer formation by CxHy gas plasma treatment
KR100413908B1 (ko) 반도체 물질 상의 유전체층 보호 방법, 상호 접속 구조체 형성 방법 및 이중 대머신 상호 접속 구조체 형성 방법
KR100516337B1 (ko) 반도체 디바이스 및 그 제조 방법
TWI528454B (zh) 半導體裝置及半導體裝置之製造方法
US7314828B2 (en) Repairing method for low-k dielectric materials
JP5554951B2 (ja) 半導体装置の製造方法
US7795142B2 (en) Method for fabricating a semiconductor device
JP5326558B2 (ja) 半導体装置の製造方法
US20060261483A1 (en) Semiconductor device and method for manufacturing the same
US7202160B2 (en) Method of forming an insulating structure having an insulating interlayer and a capping layer and method of forming a metal wiring structure using the same
JP2003077920A (ja) 金属配線の形成方法
JP4864402B2 (ja) 半導体装置の製造方法
JP3768480B2 (ja) 半導体装置及びその製造方法
JP2007305755A (ja) 半導体装置の製造方法
JP2006140240A (ja) 研磨パッド、研磨装置及び半導体装置の製造方法
JP2006156519A (ja) 半導体装置の製造方法
JP2005217319A (ja) 多層配線構造、半導体装置及び半導体実装装置
US20060157851A1 (en) Semiconductor device and method for manufacturing the same
JP2005340460A (ja) 半導体装置の形成方法
JP2005340601A (ja) 半導体装置の製造方法及び半導体装置
JP4643975B2 (ja) 半導体装置の製造方法
JP2008023655A (ja) 研磨方法及び研磨パッド
US7273824B2 (en) Semiconductor structure and fabrication therefor
JP4447433B2 (ja) 半導体装置の製造方法及び半導体装置
JP2006147653A (ja) 半導体装置の製造方法