JP2006154800A - 視差画像撮像装置および撮像方法 - Google Patents

視差画像撮像装置および撮像方法 Download PDF

Info

Publication number
JP2006154800A
JP2006154800A JP2005319023A JP2005319023A JP2006154800A JP 2006154800 A JP2006154800 A JP 2006154800A JP 2005319023 A JP2005319023 A JP 2005319023A JP 2005319023 A JP2005319023 A JP 2005319023A JP 2006154800 A JP2006154800 A JP 2006154800A
Authority
JP
Japan
Prior art keywords
imaging
unit
reference position
parallax
parallax image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319023A
Other languages
English (en)
Inventor
Akira Shirokura
明 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005319023A priority Critical patent/JP2006154800A/ja
Publication of JP2006154800A publication Critical patent/JP2006154800A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Holo Graphy (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

【課題】 視差を有する複数の画像を簡単な機構で撮影することができ、被写体とカメラの間の距離が変化することで生じる問題を解決できる。
【解決手段】 カメラユニット32に搭載したカメラ36を仮想的に設定された撮影基準位置310に向けつつ、カメラユニット送り機構34によって直線レール上を移動させる。θ=−45°からθ=+45°まで、4秒かけてレール上を±1500mmの範囲、カメラユニット32を移動させる。カメラユニット32の移動を等速直線運動させた場合、またはカメラユニット32の回転を等角速度運動させた場合のパラメータの変化を予め求めることができる。求められたパラメータの変化に基づいてカメラユニット32の焦点距離調整動作を制御して焦点のずれを防止できる。さらに、画角φの変化から倍率を制御することができる。
【選択図】 図2

Description

この発明は、例えばホログラフィックステレオグラムの作成に対して適用される視差画像撮像装置および撮像方法に関する。
異なる視点から見た被写体の2次元画像を原画として、3次元画像を再生するホログラムを合成することが可能である。ホログラフィックステレオグラムは、例えば、被写体を異なる観察点から順次撮影することにより得られた多数の画像を原画として、これらを1枚のホログラム用記録媒体に短冊状又はドット状の要素ホログラムとして順次記録することにより作製される。
例えば、横方向のみに視差情報を持つホログラフィックステレオグラムは、図11に示すように、被写体11を横方向の異なる観察点から順次撮影することにより複数の視差画像12a〜12eを順次得る。視差画像列(12a〜12e)のそれぞれを例えばホログラム用記録媒体13上で線焦点を結ぶようにすると共に、適切な角度で参照光を使用して記録する。すなわち、図12に示すように、視差方向に短冊状に分割して、異なる視差画像における短冊状のデータを再構成する。いわゆるslice and Diceの画像処理を行い、ホログラム画像D2を生成する。ホログラム画像D2は、画像記録装置により、短冊状の要素ホログラムがホログラム用記録媒体13に順次記録されることにより作製される。
このホログラフィックステレオグラムでは、横方向の異なる観察点から順次撮影することにより得られた画像情報が短冊状の要素ホログラムとして横方向に順次記録されているので、このホログラフィックステレオグラムを観察者が両目で見たとき、その左右の目にそれぞれ写る2次元画像は若干異なるものとなる。これにより、観察者は視差を感じることとなり、3次元画像が再生されることとなる。以降、ホログラフィックステレオグラムも含めて、単にホログラムと適宜称する。
ホログラフィック・ステレオグラムと同様の表示効果があるものとして、レンティキュラなどのマイクロレンズアレイを使ったステレオグラムもある。記録できる視差画像の数はホログラフィックステレオグラムより一般的に少ないが、被写体を異なる観察点から順次撮像した映像から記録するという点では、同様である。
ところで、これら複数の原画像を得るための視差画像列撮像装置は、移動式カメラや多眼式カメラ等のカメラユニットによって被写体を撮影して、視差情報を含む多数の撮像画像を作成する。図13は、視差画像列撮像装置においては、被写体31とカメラユニット32との配置関係の複数の例を示す。
図13Aに示す例は、被写体31に対して、一台のカメラユニット32が所定の時間をかけて水平移動するとともに、被写体31に対するカメラユニット32の向きが変化せず、カメラユニット32が目標として捉える方向も変化しない形態(いわゆるStraight-ahead Camera on Straight Track)である。すなわち、この形態では、カメラユニット32
が被写体31を、常時は捉えずに撮影する。
図13Bは、被写体31に対して、一台のカメラユニット32が所定の時間をかけて水平移動するとともに、被写体31に対するカメラユニット32の向きが変化し、カメラユニット32が目標として捉える方向が変化しない形態(いわゆるPanning Camera on Straight Track)を示す。すなわち、この形態では、カメラユニット32の水平移動にともない、被写体31に対するカメラユニット32の向きが変化することによって、カメラユニット32が常時被写体31を捉えて撮影する。
図13Cは、被写体31に対して、一台のカメラユニット32が所定の時間をかけて水平移動するとともに、被写体31に対するカメラユニット32の向きが変化することなく、カメラユニット32が目標として捉える方向が変化する形態(いわゆるRe-centering Camera on Straight Track)を示す。この形態では、カメラユニット32の水平移動にと
もない、被写体31に対するカメラユニット32の向きは変化しないが、カメラユニット32内部の撮像素子等が移動することによって、カメラユニット32が常時被写体31を捉えて撮影する。
図13Cに示す配置を有する視差画像列撮像装置は、下記の特許文献1に記載されている。撮影用レンズの向きは変わらないが、ステッピングモータによってカメラユニットが水平方向に移動されるのに同期してCCDカメラが水平方向に移動し、カメラユニットが水平方向に移動しても、CCDカメラは、撮影用レンズを介して被写体を中心に捉えることができる。
特開2000−066568号公報
さらに、図13Dは、被写体31の周囲円周上を一台のカメラユニット32が所定の時間をかけて移動する形態(いわゆるRotating Camera)を示す。被写体31が回転する形態は、Rotating Objectと称される。この形態では、カメラユニット32が被写体31の周
囲を円状に移動して、常時被写体31を捉えて撮影する。
なお、視差画像列撮像装置においては、カメラユニット32を複数設けて、同時に被写体31を撮影してもよく、或いはカメラユニット32ではなく被写体31を移動させてもよい。
図13に示す4つの形態の視差画像列撮像装置は、それぞれ長所短所がある。図13Aに示されるStraight Trackの形態は、構造が簡単であるが、被写体が含まれるように、画角を広くとって撮像する必要があり、被写体以外には撮影した画像のほとんどの部分は使われないため、有効解像度が悪くなってしまう。
図13Cに示されるRe-centering方式は、撮像素子に応じて、その大きさより広い面積で、しかも通常のアスペクト比とは異なるエリアに結像させたり、縦横結像倍率の異なるアナモルフィック結像させたり、といずれにせよ、特殊な光学レンズ系を製作する必要がある。銀塩写真の35mm用レンズなどの市販レンズを使用することもできるが、その場合は、逆に撮像素子が大きすぎると解像度が取れず、小さすぎると画角が広く取れない、という制約があり、市販の撮像素子をそのまま使える可能性が低くなる。
図13Bに示す形態(いわゆるPanning Camera on Straight Track)並びに図13Dに示す形態(いわゆるRotating Camera)は、本来のカメラユニットをそのままの形で使うことができるために、最新の高品質のカメラを改造することなく構成できるメリットがある。
図13Dに示す形態では、被写体固定でカメラを円軌道に走らせたり、カメラを固定で被写体を回転させたりして、比較的簡単な構成で容易に撮影できる利点はある。しかしながら、平面状のホログラムを作る場合は、台形歪を補正する必要がある点、さらに厳密には、後から補正しきれない歪が残ってしまい正確な3次元定位情報が得られなくなるという点が欠点としてあげられる。前者の台形歪は、画像処理により補正可能なものであるが、後者は、カメラと被写体の位置が一定の位置から撮影したデータしか得られないのに、平面ホログラムを記録するときにはホログラム面と被写体の距離が変わっている情報を元に画像を構成しなければならないためからくるパースペクティブの歪であり、補正不可能な歪である。例えば1.4m離れた位置から撮影すべきにもかかわらず、距離が1m一定の場合には、不自然な歪みが発生する。
この点において、図13Bに示す形態は、光学レンズ系の歪などを除けば、平面ホログラムを作成するのに適したパースペクティブ歪が無い画像が得られるメリットがある。一方、焦点距離を固定としている場合には、カメラと被写体の距離が変わるために、フォーカスが合わなくなるという欠点があった。フォーカスの制御方法としては、オートフォーカス機能を使用して常に被写体にフォーカスを合わせる方法が考えられる。その場合には、複数の被写体の一つのみにフォーカスが合ったり、多数の視差画像を撮影中に意図しない物体が撮影画面中に入り込んだ場合にその物体にフォーカスが合ってしまう等の問題が生じる。そのために、オートフォーカス機能を使用することは必ずしも好ましくない。
また、同様にカメラと被写体の距離が変わると、画角が同一の場合、被写体の大きさが変化してしまう。平面ホログラムを作成する場合は、原則視点位置が変化しても同じ大きさに見える必要があるため、ズーミング処理が必要である。これは、撮影後の画像処理で行うこともできるが、ズーミングして使われない不要が画像を撮像してしまうことになり、解像度低下の問題が合った上、リアルタイムでモニターする場合、被写体の大きさが変化してしまう不自然さが残るという問題もあった。
このリアルタイムでモニターする場合について、補足する。図13において、参照符号50が視差画像列撮像装置を示す。視差画像列撮像装置50は、被写体31とカメラユニット32との間にハーフミラー40が配設される。すなわち、カメラユニット32は、上下の基板41および42と、側壁43と、ハーフミラー40とによって囲まれる空間に配置される。
視差画像列撮像装置50における撮影ユニット33は、カメラユニット32と、カメラユニット送り機構34と、撮影中の被写体31を照らす照明光源35aとからなる。
カメラユニット32は、例えば撮影用の2/3インチCCDカメラ36と、ステッピングモータによって駆動するカメラ送り機構と、撮影用レンズ39とからなる。カメラユニット32は、所定長さ、例えば2700mmの全長を有するカメラユニット送り機構34の上に載置される。撮影が開始されると、図示しないステッピングモータ等によってカメラユニット送り機構34が駆動される。カメラユニット32は、カメラユニット送り機構34の駆動によって水平方向に移動する。
この場合、視差画像列撮像装置50においては、カメラユニット32がハーフミラー40によって遮られるため、被写体31がカメラユニット32を見ることはほとんどない。したがって、視差画像列撮像装置において、被写体31がカメラユニット32の移動を意識することなく、視差情報を含む多数の撮像画像を撮影することができる。
また、側壁42の上部にテレビモニタ51が配設される。テレビモニタ51には、例えば、作成されるホログラフィックステレオグラムの画像フレームや撮像画像と合成するための他の画像といった、被写体31が位置すべき情報が撮影に先立って被写体31に認識できるような、撮影に必要となる条件とともに、被写体31の正面からの画像が映し出される。
被写体31の画像は、撮影に先立ってCCDカメラ36を被写体31の正面位置に移動させて撮影してもよく、または別のCCDカメラ52等を被写体31の正面に配置して撮影するようにしてもよい。
なお、撮像画像D1を撮影中にテレビモニタ51に映し出される画像は、上述したような撮影に先立って撮影された静止画像であってもよく、または撮像画像の撮影中における被写体31の正面からの像を映し出してもよい。
また、テレビモニタ51には、上述したような被写体31の正面からの画像ではなく、撮影される被写体31の視差情報を含む多数の撮像画像を順次映し出してもよい。
以上のような構成にすることで、視差画像列撮像装置50においては、被写体31がカメラユニット32の移動を意識することなく、視差情報を含む多数の撮像画像を撮影することができ、撮影中に被写体31が自らの像を注視することで、被写体31の視線が固定され、被写体31が不必要に動いてしまったりすることがない。したがって、視差画像列撮像装置50は、高画質の撮像画像を作成することができる。
また、視差画像列撮像装置50においては、撮影時に、被写体31が自らの撮影位置といった撮影に必要となる条件や撮影状態を、撮影前および撮影中に把握できる。
さらに、視差画像列撮像装置50は、他の画像と合成してホログラフィックステレオグラムを作成する際に、出来上がったホログラフィックステレオグラムを予想することができる。
この他にも、ハーフミラー40を使わず、カメラレールに対して被写体とは反対側、ほぼカメラに近い高さにモニターを配置することによっても、撮影中に被写体がモニターを見るようにすることができる。
ところで、図12Bに示す形態では、直線カメラレール上をカメラユニット32を移動する場合、カメラユニット32がレールの両端付近に位置する撮影の最初と最後では、中央に位置する状態と比べて、遠くから被写体を撮影するため、出来上がったホログラムには、印画されない情報が周辺部に撮影されてしまうことになるが、このようなリアルタイムモニターを使う場合、フレーミングを誤る可能性がある。そこで、被写体の大きさが変わらず、出来上がるホログラムのフレーミングに近い情報がモニターできることが重要となってくるのである。
また、直線上をカメラ移動させながら回転もさせるということで最低でも2軸の動作制御が必要で、複雑であった。また後処理にて、画像処理をする必要上、カメラ移動などのパラメータを明確に規定する必要があった。
したがって、この発明の目的は、視差画像撮像装置によって視差画像列を作成する際に、常にフォーカスのあった、画像解像度劣化もない画像を、リアルタイムでも確認できるような形で実現できる視差画像撮像装置および撮像方法を提供することにある。
上述した課題を解決するために、この発明は、被写体に対して複数の方向から撮影することによって視差画像列を生成する視差画像撮像装置において、
被写体の視差画像を撮影するために撮像素子と結像光学系が一体となった撮像手段と、
撮像手段が搭載され、撮像手段を視差方向に回転させる回転手段と、
回転手段の回転と同期させながら撮像手段および回転手段を直線的に移動させる撮像ユニット移動手段と、
撮像ユニット移動手段による移動範囲のほぼ中心位置から垂直方向に所定の距離の撮影基準位置を設定し、撮影基準位置が常に撮影画像の中心にくるように、回転手段および撮像ユニット移動手段を制御する制御手段と、
撮像手段の焦点距離を撮影基準位置に合わせるように、焦点距離を連続的に変化させる焦点距離制御手段とを有することを特徴とする視差画像撮像装置である。
この発明は、被写体に対して複数の方向から撮影することによって視差画像列を生成する視差画像撮像方法において、
被写体の視差画像を撮影するために撮像素子と結像光学系が一体となった撮像手段を視差方向に回転させると共に、
回転と同期させながら撮像手段および回転手段を直線的に移動させ、
移動範囲のほぼ中心位置から垂直方向に所定の距離の撮影基準位置を設定し、撮影基準位置が常に撮影画像の中心にくるように、撮像手段の回転および移動を制御し、
撮像手段の焦点距離を撮影基準位置に合わせるように、焦点距離を連続的に変化させることを特徴とする視差画像撮像方法である。
この発明によれば、視差画像を撮影する装置として、撮影カメラを選ばずに、例えば平面ホログラムを作成するのに適したパースペクティブ歪が無い画像が得られるパンニング方式において、撮影基準位置を設定することによって、カメラと被写体の距離が変わるために、撮影基準位置に対してフォーカスを合わせることができる。
また、同様にパンニング撮影方式において、カメラと被写体の距離が変わると、画角が同一の場合、被写体の大きさが変化してしまうという欠点をズーミング処理により解決することができた。さらに、このズーミングを光学的に行うことにより、解像度低下の問題を解決し、リアルタイムでモニターする場合、被写体の大きさが変化してしまう不自然さも改善した。
また、直線上をカメラ移動させながら回転もさせ、同時にフォーカスやズーミングも動作するという煩雑な動きを、同期制御して行い、そのパラメータを管理することにより、続く、プリント処理のために、正確な画像処理をすることが可能となった。
以下、この発明の一実施形態について、図面を参照しながら詳細に説明する。なお、この発明は以下の例に限定されるものではなく、この発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。
図1は、この発明による視差画像撮像装置の概略的構成を示す。なお、理解の容易のため、図14と共通の参照符号を使用することにする。撮影ユニット33は、カメラユニ
ット32と、カメラユニット送り機構34と撮影中の被写体31を照らす照明光源35aおよび35bとからなる。
カメラユニット32は、例えば動画撮影用の2/3インチCCDカメラ36を有する。カメラユニット32は、所定長さ、例えば3000mmの全長を有するカメラユニット送り機構34の上に載置される。
撮影が開始されると、図示しないステッピングモータ等によってカメラユニット送り機構34が駆動される。カメラユニット32は、カメラユニット送り機構34の駆動にともない、水平方向に移動する。カメラユニット送り機構34は、後述するように、ラックおよびピニオンと直線レールからなる構成が使用されている。
一実施形態は、 図12Bを参照して説明したように、被写体31に対して、一台のカ
メラユニット32が所定の時間をかけて水平移動するとともに、被写体31に対するカメラユニット32の向きが変化し、カメラユニット32が目標として捉える方向が変化しない形態(いわゆるPanning Camera on Straight Track)の構成を有する。すなわち、この形態では、カメラユニット32の水平移動にともない、被写体31に対するカメラユニット32の向きが変化することによって、カメラユニット32が常時被写体31を捉えて撮影する。
カメラユニット32を水平に移動させるための駆動源としてステッピングモータが使用され、また、カメラユニット32の向きを変化させる駆動源として他のステッピングモータが使用される。二つのステッピングモータが例えば共通の駆動パルスを使用することで同期して回転する。ステッピングモータに限らず、ACサーボモータ等を駆動源として使用できる。
一実施形態では、実際の被写体31の位置とは別に撮影基準位置を仮想的に設定する。撮影時には、撮影基準位置の方向にカメラユニット32の向きが変化し、撮影基準位置が常に撮影画像の中心にくるように、カメラユニット32が制御される。また、撮影基準位置に対してカメラユニット32のビデオカメラの焦点が合うように、焦点距離が連続的に変化するように制御される。
撮影基準位置は、撮像ユニット32の移動範囲のほぼ中心位置から被写体側に垂直に延長した線上で、撮像ユニット32のビデオカメラと所定の距離に設定される。所定の距離は、作成されるホログラフィックステレオグラムを観察する距離に関連して設定される。簡単な例として、作成される幅が20cmのホログラフィックステレオグラムを30cmの距離から観察する場合には、被写体31の幅が60cmであれば、所定の距離が90cmに設定れる。
図2は、一実施の形態における被写体31と撮像ユニット32との位置関係を示している。図2において、参照符号310が撮影基準位置であり、図2の例では、撮影基準位置310に被写体31が位置している。また、カメラユニット32の移動方向の位置をxとし、カメラユニット32が移動方向(x方向)に対してなす角度(カメラ角と適宜称する)をθとし、被写体32を臨む画角をφとし、カメラユニット32の位置と撮影基準位置310との距離をfとする。一例として、θ=−45°からθ=+45°まで、4秒かけてレール上を±1500mmの範囲、カメラユニット32を移動させた場合のパラメータの変化について説明する。カメラ36が動画を撮影する場合、4秒間に得られた動画から必要枚数の静止画が切り出され、静止画が視差画像として使用される。カメラ36が静止画カメラであって所定のタイミングでシャッタをオンとする構成としても良い。
図2の例では、被写体31が撮影基準位置310とほぼ重なった位置であるが、図3に示すように、被写体31が撮影基準位置310と異なる位置であっても、設定された撮影基準位置310に対して、焦点、倍率、画角、歪補正などが調整される。さらに、複数の被写体が存在していても、撮影基準位置310に対して、焦点、倍率、画角、歪補正などが調整される。図3Aでは、被写体31が撮影基準位置310の右側にずれた位置に存在する。図3Bでは、被写体31が撮影基準位置310の前方にずれた位置に存在する。図3Cでは、被写体31が撮影基準位置310の後方にずれた位置に存在する。このように、画像基準位置310を固定しておけば、複数の被写体が存在したり、撮影中に不要な物体が撮影画面に入り込んだりした場合に、意図しない焦点距離が設定されるおそれを少なくできる。
図4は、カメラユニット32が常に撮影基準位置に向いた状態で、カメラユニット32を水平方向に等速直線運動させた撮影中のパラメータの変化を示す。図4Aにおいて、実線61がカメラユニット32の位置xの変化を示し、破線62がカメラおよび撮影基準位置間の距離fの変化を示す。図4Bにおいて、実線63がカメラ角θの変化を示し、破線64が画角φの変化を示す。等速直線運動の場合では、位置xの変化が時間に比例したものとなる。
図5は、カメラユニット32が常に撮影基準位置に向いた状態で、カメラユニット32の回転動作を等角速度運動させた撮影中のパラメータの変化を示す。図5Aにおいて、実線71がカメラユニット32の位置xの変化を示し、破線72がカメラおよび撮影基準位置間の距離fの変化を示す。図5Bにおいて、実線73がカメラ角θの変化を示し、破線74が画角φの変化を示す。等加速度運動の場合では、カメラ角θの変化が時間に比例したものとなる。
等速直線運動させた撮影中のパラメータの変化、または等角速度運動させた撮影中のパラメータの変化を予め求めておくことは、種々の制御および補正にとって必要である。カメラおよび撮影基準位置間の距離fの変化からカメラユニット32の焦点距離調整動作を制御するための情報を得ることができる。また、カメラ角θの変化からカメラユニット32の向きを制御するための情報を得ることができる。さらに、位置xによる画角φの変化から倍率を制御するための情報を得ることができる。
次に、この発明の一実施形態におけるカメラユニット32が搭載される撮像ユニット移動手段としてのキャリア部分の構造について、図6および図7を参照して説明する。参照符号101は、キャリアを全体として示す。キャリア101は、モータ保持部102およびカメラ保持部103からなる。モータ保持部102およびカメラ保持部103は、平行する2本の水平に保持されたレール104aおよび104b上を移動する。
モータ保持部102上には、例えばステッピングモータの構成の送りモータ106が取り付けられている。送りモータ106の回転軸に対して保持部102の下側でピニオン107が取り付けられている。モータ106の回転がピニオン107を介し、レール104a側に固定されたラック105に伝達されるため、保持部102および103と、その上に搭載されるカメラユニット全体は、レール104aおよび10b上を動くことになる。
カメラ保持部103上には、カメラユニットを視差方向に回転させる回転手段としての回転テーブル111が取り付けられている。回転テーブル111は、カメラユニットが固定されるもので、水平方向に回転自在に取り付けられている。回転テーブル111には、その中心近傍から径方向に延びる長穴状の切欠き112が形成されている。切欠き112内に円柱状の突起であるフォロワ113が入り込んでいる。
カメラ保持部103の下側に駆動源例えば電動シリンダが取り付けられている。フォロア113は、シリンダにより回転されるボールねじに取り付けられたスライダに直結されている。フォロワ113は、電動シリンダによって、回転テーブル111の回転軸とはずれた位置で、水平方向に一次元的に変位される。図6中の矢印がフォロワ113の変位の方向を示す。フォロワ113があるストローク動くと、それに応じて回転テーブル111が回転し、カメラユニットの向きが変化する構成とされている。例えば被写体を中心とする±45°の範囲でカメラユニットを変位させる場合、回転テーブル111の中心から28mmずれた位置で、フォロワ113が±14mm水平に変位するようになされている。
送りモータ106の回転と電動シリンダによる回転テーブル111の回転とは、互いに同期したものとされるため、レールを端から端まで動く間にカメラユニットも回転し、常に被写体を向くようにできる。
例えばキャリア101があるストロークを等速直線運動するように送りモータ106が等速回転すると同時に、電動シリンダが等速直線運動を行うことにより、常に撮影基準位置を向いた撮影は可能となる。図4を参照して説明したように、カメラユニットの水平方向の移動の変化61に対してカメラユニットの角度θを実線63で示すように変化させることによってカメラユニットが常に撮影基準位置を向くように制御できる。
また、回転テーブル111が等角速度回転をするようにフォロワ113が変位することにより、常に撮影基準位置を向いた撮影は可能となる。図5を参照して説明したように、カメラユニットの水平方向の移動の変化71と、カメラユニットの角度θの変化73とを図5に示すように変化させることによってカメラユニットが常に撮影基準位置を向くように制御できる。
等速直線運動および等角速度運動のいずれの場合も、キャリア101の動きとフォロワ113の動きとは、ある速度比をもって、同様の動きをするので、アクチュエータはひとつにすることも可能である。すなわち、送りモータ106からの回転を減速機構を介してフォロア113に伝達しても良い。
また、キャリア101に送りモータ106を搭載した、いわゆる自走式の構成としたが、レール104aおよび104bの端部にモータを配置し、ベルトやロープ、チェーンなどにより、伝達駆動しても良い。例えば一つのアクチュエータで、2本のベルトを駆動し、一方のベルトをキャリア101全体につなげ、他方のベルトをフォロア113につなげることで、実現することも可能である。
図8、図9および図10は、それぞれカメラユニット32を回転テーブル111上に取り付け、カメラユニット32によって被写体を撮影する場合の3つの状態を示す。図8は、キャリア101が撮影基準位置からみて右端に位置している状態を示す。図9は、キャリア101が撮影基準位置からみて中心に位置している状態を示す。図10は、キャリア101が撮影基準位置からみて左端に位置している状態を示す。
カメラユニット32を構成するカメラは、ハンデイタイプのディジタルビデオ撮像装置が使用されている。このディジタルビデオ撮像装置は、外部のシステムコントローラからの制御信号によって焦点距離調整動作およびズーム動作が制御可能な構成とされている。但し、図では簡単のため、撮像装置から導出されているケーブルの図示が省略されている。
この発明の一実施形態においては、上述したカメラの動きに応じて、カメラのフォーカス、すなわち、焦点距離をリアルタイムで変化させる。すなわち、カメラと被写体の距離は、図4および図5を参照して説明したように、カメラの動きに応じて変化してしまうために、この発明を利用しない場合は、焦点のずれが生じてしまう。
図4および図5に示すように、カメラの移動距離、移動角度が既知であるため、これに応じて、常に焦点距離が撮影基準位置までの距離と一致するように、予めプログラミングされたデータに基づきレンズを同期駆動するようになされる。
他の方法として、例えば、図2に示したように、単一の被写体31がたまたま撮影基準位置310に近い場所にあるような場合に限り、カメラの内部にある距離センサーによりレンズを動かしてリアルタイムで焦点調整を行う方法をとってもよい。さらに、カメラ自身が有するオートフォーカス機能を利用することができる。
さらに、カメラと被写体の距離が撮影中に変化することから、被写体の大きさが撮影中に変化してしまう。この発明の一実施形態では、被写体の大きさの変化を光学的、またはデジタル画像処理によって、撮影中に倍率補正処理を行い、大きさを一定にするようになされる。具体的には、撮影基準位置を含むカメラに正対した平面上にある長さの縦棒を仮想的に置いたとき、この縦棒の長さが変わらないような倍率補正処理を行うことである。
図4および図5に示すように、既知である撮像素子=撮影基準位置間距離に基づき、移動と同期して倍率変換の画像処理をリアルタイムで行うことで実現することも可能である。
他の方法としては、カメラ内部に光学的に拡大倍率を可変できる倍率可変手段を設け、既知である撮像素子および撮影基準位置間距離に基づき、移動と同期してカメラ内のズームレンズを動かす方法も可能である。
いずれにせよ、撮影中にこの画像の大きさの補正処理を行うことにより、図14に示したような被写体がモニターを確認しながら撮影できる装置においても、正確なフレーミング位置を確認することが可能となる。
次に、この発明を適用した、視差画像列作成方法について説明する。
上述したように、視差画像を撮影する装置のみならず、カメラを直線的に動かしつつ、そのカメラの光軸を常に撮影基準位置に向くように動かす撮影方法において、カメラと撮影基準位置間距離に基づき、移動と同期して画角を変化させることはこの発明の特徴といえる。
これは、実空間の撮影のためのカメラのみならず、コンピュータグラフィックスの仮想空間をレンダリングする方法にも適用できる。
さらに、上述のように全体的に拡大率を変化させて、大きさを一定にするだけでなく、各視差画像作成後の台形歪を補正したり、投影面を変化させたりするために、画像内場所により異なる拡大率で拡大縮小の画像補正処理を行うことも可能である。
既に説明をしたように、図12Aのストレートと称される配置、並びに図12Cのリセンタリングと称される配置で撮影したものは、撮像素子が平面と平行なので台形歪が生じないが、図12Bに示すパンニングと称される配置の撮影系では、撮像素子がホログラム面と平行ではないため、斜めから見たときに正方形は台形に投影されてしまう。平面のホログラフィックステレオグラムを記録する場合、この歪を補正した方が、自然に見えることがある。即ち、撮影基準位置を重心に 直線運動方向に平行な長方形を仮想的に配置した場合、撮影された各視差画像に対し、撮像される仮想的長方形は台形となってしまうが、それを上下方向の倍率変換も施し、台形歪みを補正して長方形にするための画像処理を施せば、自然に見えることになる。
この歪補正処理は、画像内場所により異なる拡大率で拡大縮小の画像補正処理を行うものである。どのような拡大率で補正するかは、既知の撮影パラメータによりわかっているので、撮影のリアルタイムで画像処理を行うことが可能である。
この画像処理は、コンピュータグラフィックスの仮想空間をレンダリングする場合にも適用可能である。適用すれば、不要な部分をレンダリングしてしまうことなく、最適解像度で有効にレンダリングすることが可能となり、時間的、画質的にも有利となる。
以上、この発明の各実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。例えば横方向の視差情報のみを有するホログラフィックステレオグラム(いわゆるHorizontal Parallax Only)に限らず、この発明は、横方向および縦方向の視差情報を有するホログラフィックステレオグラム(いわゆるFull Parallax)にも適用可能であることは勿
論である。かかるホログラフィックステレオグラム作成装置においては、物体光と参照光とを短冊状に集光する代わりにドット状に集光させるとともに、ホログラム用記録媒体を集光位置に対して相対的に二次元的に移動させて全面露光を行うように構成される。この場合、視差画像列撮像装置においては、カメラユニットが二次元的に移動することになる。すなわち、カメラユニットが移動するレール全体を垂直方向に移動させると共に、カメラユニットの向きが撮影基準位置を向くように、カメラユニットのチルト角が制御される。その場合の焦点距離、倍率等の制御は、上述したものと同様になされる。
なお、以上の説明では、この発明をホログラフィックステレオグラムを作成するための視差画像列撮像装置に適用したものについて説明したが、この発明はこれに限定されるものではなく、例えば、レンチキュラ方式のステレオ写真等の多眼式画像を作成するものであれば適用可能である。また、視差画像列撮像装置は、静止画像ばかりではなく、動画を表現できるような多眼式立体ディスプレイ等にも適用可能である。
この発明の一実施形態における撮影ユニットおよび被写体の平面図である。 この発明の一実施形態における撮影中のパラメータの変化の説明に用いる略線図である。 この発明の一実施形態における撮影中の被写体の位置の変化と焦点位置の関係の説明に用いる略線図である。 この発明の一実施形態における等速直線運動の場合の撮影中のパラメータの変化の一例を示すグラフである この発明の一実施形態における等加速度運動の場合の撮影中のパラメータの変化の一例を示すグラフである この発明の一実施形態における撮像ユニット移動手段としてのキャリアの一例の斜視図である。 この発明の一実施形態における撮像ユニット移動手段としてのキャリアの一例の斜視図である。 この発明の一実施形態におけるキャリアに対して撮像ユニットを取り付けた状態の平面図である。 この発明の一実施形態におけるキャリアに対して撮像ユニットを取り付けた状態の平面図である。 この発明の一実施形態におけるキャリアに対して撮像ユニットを取り付けた状態の平面図である。 従来のホログラフィックステレオグラム作成装置の光学系を模式的に説明した図である。 ホログラフィックステレオグラムを作成する際になされる画像処理を説明するの略線図である。 被写体とカメラユニットとの位置関係を模式的に説明する略線図である。 視差画像撮像装置の一例および被写体の側面図であり、被写体とカメラユニットとの間にハーフミラーを配設するとともに、テレビモニタをその上方に配置して、テレビモニタの画像をハーフミラーに映し出している様子を説明する略線図である。
符号の説明
50・・・視差画像列撮像装置
31・・・被写体
32・・・カメラユニット
34・・・カメラユニット送り機構
35a,35b・・・照明光源
36・・・CCDカメラ
40・・・ハーフミラー
51・・・テレビモニタ
101・・・キャリア
104a,104b・・・レール
105・・・ラック
106・・・送りモータ
107・・・ピニオン
111・・・回転テーブル


Claims (15)

  1. 被写体に対して複数の方向から撮影することによって視差画像列を生成する視差画像撮像装置において、
    上記被写体の視差画像を撮影するために撮像素子と結像光学系が一体となった撮像手段と、
    上記撮像手段が搭載され、上記撮像手段を視差方向に回転させる回転手段と、
    上記回転手段の回転と同期させながら上記撮像手段および上記回転手段を直線的に移動させる撮像ユニット移動手段と、
    上記撮像ユニット移動手段による移動範囲のほぼ中心位置から垂直方向に所定の距離の撮影基準位置を設定し、上記撮影基準位置が常に撮影画像の中心にくるように、上記回転手段および上記撮像ユニット移動手段を制御する制御手段と、
    上記撮像手段の焦点距離を上記撮影基準位置に合わせるように、上記焦点距離を連続的に変化させる焦点距離制御手段とを有することを特徴とする視差画像撮像装置。
  2. 上記撮影基準位置とほぼ一致した位置の被写体に対しては、上記撮像手段のオートフォーカス機能によって、上記焦点距離制御手段による焦点距離調整を行うことを特徴とする請求項1記載の視差画像撮像装置。
  3. 上記焦点距離制御手段による焦点距離調整は、既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して上記撮像手段内のレンズを動かすことにより行うことを特徴とする請求項1記載の視差画像撮像装置。
  4. さらに光学的に倍率を可変できる倍率可変手段を有し、既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して上記撮像手段内のズームレンズを動かすことを特徴とする請求項1記載の視差画像撮像装置。
  5. 既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して倍率変換の画像処理をリアルタイムで行うことを特徴とする請求項1記載の視差画像撮像装置。
  6. 上記撮像ユニット移動手段と上記回転手段とが同一のアクチュエータにより駆動されることを特徴とする請求項1記載の視差画像撮像装置。
  7. 上記撮像ユニット移動手段と上記回転手段とは、個別のアクチュエータにより駆動され、上記個別のアクチュエータのそれぞれを同期制御することを特徴とする請求項1記載の視差画像撮像装置。
  8. 上記撮像ユニット移動手段が等速直線運動をするように、上記撮像ユニット移動手段を移動させながら撮像することを特徴とする請求項1記載の視差画像撮像装置。
  9. 上記回転手段が等角速回転運動をするように移動させながら撮像することを特徴とする請求項1記載の視差画像撮像装置。
  10. 上記撮影基準位置を重心に、該直線運動方向に平行な長方形を仮想的に配置した場合、撮影された各視差画像の台形歪みを補正するように、上下方向の倍率変換も施して長方形にするための画像処理手段を有することを特徴とする請求項1記載の視差画像撮像装置。
  11. 被写体に対して複数の方向から撮影することによって視差画像列を生成する視差画像撮像方法において、
    上記被写体の視差画像を撮影するために撮像素子と結像光学系が一体となった撮像手段を視差方向に回転させると共に、
    回転と同期させながら上記撮像手段および上記回転手段を直線的に移動させ、
    移動範囲のほぼ中心位置から垂直方向に所定の距離の撮影基準位置を設定し、上記撮影基準位置が常に撮影画像の中心にくるように、上記撮像手段の回転および移動を制御し、
    上記撮像手段の焦点距離を上記撮影基準位置に合わせるように、上記焦点距離を連続的に変化させることを特徴とする視差画像撮像方法。
  12. 上記撮影基準位置とほぼ一致した位置の被写体に対しては、上記撮像手段のオートフォーカス機能によって、焦点距離調整を行うことを特徴とする請求項11記載の視差画像撮像方法。
  13. 焦点距離調整は、既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して上記撮像手段内のレンズを動かすことにより行うことを特徴とする請求項11記載の視差画像撮像方法。
  14. さらに光学的に倍率を可変できる倍率可変手段を有し、既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して上記撮像手段内のズームレンズを動かすことを特徴とする請求項11記載の視差画像撮像方法。
  15. 既知である撮像素子および上記撮影基準位置との間の距離に基づき、移動と同期して倍率変換の画像処理をリアルタイムで行うことを特徴とする請求項11記載の視差画像撮像方法。
JP2005319023A 2004-11-08 2005-11-02 視差画像撮像装置および撮像方法 Pending JP2006154800A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319023A JP2006154800A (ja) 2004-11-08 2005-11-02 視差画像撮像装置および撮像方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004323448 2004-11-08
JP2005319023A JP2006154800A (ja) 2004-11-08 2005-11-02 視差画像撮像装置および撮像方法

Publications (1)

Publication Number Publication Date
JP2006154800A true JP2006154800A (ja) 2006-06-15

Family

ID=36633104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319023A Pending JP2006154800A (ja) 2004-11-08 2005-11-02 視差画像撮像装置および撮像方法

Country Status (1)

Country Link
JP (1) JP2006154800A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517130A (ja) * 2007-01-15 2010-05-20 ヒューマンアイズ テクノロジーズ リミテッド レンチキュラ印刷のための方法およびシステム
JP2013011801A (ja) * 2011-06-30 2013-01-17 Imagica Corp 3d撮影装置
JP2013250360A (ja) * 2012-05-31 2013-12-12 Casio Comput Co Ltd 撮像装置、撮像方法及びプログラム
KR101800896B1 (ko) * 2010-11-19 2017-11-23 인터내셔널 비지네스 머신즈 코포레이션 입체 화상 생성 방법 및 그 장치
CN113382158A (zh) * 2020-02-25 2021-09-10 佳能株式会社 摄像装置、摄像系统、控制方法和存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426833A (en) * 1987-04-30 1989-01-30 Ei Meihiyuu Kurisutofuaa Image pickup method and apparatus used therefor
JPH01135440A (ja) * 1987-11-20 1989-05-29 Mitsubishi Metal Corp キャリアプレートの冷却装置
JPH07319090A (ja) * 1994-05-26 1995-12-08 Nippon Steel Corp 立体撮影装置の位置と角度の制御装置
JPH07325354A (ja) * 1994-05-31 1995-12-12 Olympus Optical Co Ltd カメラ
JPH08220659A (ja) * 1995-02-15 1996-08-30 Sony Corp ビデオカメラ撮像装置
JPH10115877A (ja) * 1996-10-14 1998-05-06 Photo Kurafutoshiya:Kk 立体写真の撮影装置及び撮影方法
JPH10254079A (ja) * 1996-06-27 1998-09-25 Photo Kurafutoshiya:Kk 立体画像撮影方法及び装置
JPH11127375A (ja) * 1997-10-23 1999-05-11 Toshiba Tec Corp パノラマ撮像装置
JPH11150741A (ja) * 1997-11-18 1999-06-02 Asahi Optical Co Ltd ステレオ写真撮影による3次元画像表示方法および装置
JP2000066568A (ja) * 1998-08-20 2000-03-03 Sony Corp 視差画像列撮像装置
JP2002354302A (ja) * 2001-05-28 2002-12-06 Ricoh Co Ltd 撮像装置及び撮像システム
JP2003187261A (ja) * 2001-12-14 2003-07-04 Canon Inc 3次元画像生成装置、3次元画像生成方法、立体画像処理装置、立体画像撮影表示システム、立体画像処理方法及び記憶媒体
JP2004045628A (ja) * 2002-07-10 2004-02-12 Fuji Photo Film Co Ltd 立体画像記録装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6426833A (en) * 1987-04-30 1989-01-30 Ei Meihiyuu Kurisutofuaa Image pickup method and apparatus used therefor
JPH01135440A (ja) * 1987-11-20 1989-05-29 Mitsubishi Metal Corp キャリアプレートの冷却装置
JPH07319090A (ja) * 1994-05-26 1995-12-08 Nippon Steel Corp 立体撮影装置の位置と角度の制御装置
JPH07325354A (ja) * 1994-05-31 1995-12-12 Olympus Optical Co Ltd カメラ
JPH08220659A (ja) * 1995-02-15 1996-08-30 Sony Corp ビデオカメラ撮像装置
JPH10254079A (ja) * 1996-06-27 1998-09-25 Photo Kurafutoshiya:Kk 立体画像撮影方法及び装置
JPH10115877A (ja) * 1996-10-14 1998-05-06 Photo Kurafutoshiya:Kk 立体写真の撮影装置及び撮影方法
JPH11127375A (ja) * 1997-10-23 1999-05-11 Toshiba Tec Corp パノラマ撮像装置
JPH11150741A (ja) * 1997-11-18 1999-06-02 Asahi Optical Co Ltd ステレオ写真撮影による3次元画像表示方法および装置
JP2000066568A (ja) * 1998-08-20 2000-03-03 Sony Corp 視差画像列撮像装置
JP2002354302A (ja) * 2001-05-28 2002-12-06 Ricoh Co Ltd 撮像装置及び撮像システム
JP2003187261A (ja) * 2001-12-14 2003-07-04 Canon Inc 3次元画像生成装置、3次元画像生成方法、立体画像処理装置、立体画像撮影表示システム、立体画像処理方法及び記憶媒体
JP2004045628A (ja) * 2002-07-10 2004-02-12 Fuji Photo Film Co Ltd 立体画像記録装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517130A (ja) * 2007-01-15 2010-05-20 ヒューマンアイズ テクノロジーズ リミテッド レンチキュラ印刷のための方法およびシステム
KR101800896B1 (ko) * 2010-11-19 2017-11-23 인터내셔널 비지네스 머신즈 코포레이션 입체 화상 생성 방법 및 그 장치
US9933626B2 (en) 2010-11-19 2018-04-03 International Business Machines Corporation Stereoscopic image
JP2013011801A (ja) * 2011-06-30 2013-01-17 Imagica Corp 3d撮影装置
JP2013250360A (ja) * 2012-05-31 2013-12-12 Casio Comput Co Ltd 撮像装置、撮像方法及びプログラム
US9621873B2 (en) 2012-05-31 2017-04-11 Casio Computer Co., Ltd. Apparatus including function to generate stereoscopic image, and method and storage medium for the same
CN113382158A (zh) * 2020-02-25 2021-09-10 佳能株式会社 摄像装置、摄像系统、控制方法和存储介质

Similar Documents

Publication Publication Date Title
US7990467B2 (en) Parallax image pickup apparatus and image pickup method
EP1048167B1 (en) System and method for generating and displaying panoramic images and movies
US7061532B2 (en) Single sensor chip digital stereo camera
JP4017579B2 (ja) 撮影補助器、画像処理方法、画像処理装置、コンピュータプログラム、プログラムを格納した記録媒体
US5583971A (en) Filmless method and apparatus for producing 3-D photographs
JP2006033228A (ja) 画像撮像装置
JP2008052010A (ja) 立体像表示装置と撮影装置
JP2006154800A (ja) 視差画像撮像装置および撮像方法
EP1303788A1 (en) Multiplexed motion picture camera
JPH10224820A (ja) 複眼カメラ装置
JP2007286521A (ja) 複数の撮像体の画像から裸眼立体視可能な立体画像を生成する簡易撮像装置
US8154584B2 (en) Image capture system for a digital holographic printer
JP3650221B2 (ja) 立体画像撮影方法及び装置
JP2006284989A (ja) 立体像撮影用光学アダプター
JP2010066558A (ja) 立体映像撮影装置および立体映像撮影方法
JP4625957B2 (ja) 全周囲ステレオ画像撮影装置
JP2003107601A (ja) 立体画像撮影装置および立体画像撮影方法
US6044232A (en) Method for making three-dimensional photographs
JP5390865B2 (ja) 立体画像撮影装置
JPH118863A (ja) 3次元カメラ
JP2006270620A (ja) 被写体撮影方法、顔面撮影方法及び被写体撮影装置、顔面撮影装置並びに分割撮影用アダプタ
JP2005266569A (ja) 三次元ディスプレイシステム
JP3492921B2 (ja) 立体カメラ装置
JP2010166229A (ja) 立体撮像装置
JPH02240644A (ja) 縮小画像撮影装置並びに合成縮小画像および画像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110412

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Effective date: 20110920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120131

Free format text: JAPANESE INTERMEDIATE CODE: A02