JP2006125860A - 表面プラズモンセンサ及び表面プラズモン測定装置 - Google Patents

表面プラズモンセンサ及び表面プラズモン測定装置 Download PDF

Info

Publication number
JP2006125860A
JP2006125860A JP2004310819A JP2004310819A JP2006125860A JP 2006125860 A JP2006125860 A JP 2006125860A JP 2004310819 A JP2004310819 A JP 2004310819A JP 2004310819 A JP2004310819 A JP 2004310819A JP 2006125860 A JP2006125860 A JP 2006125860A
Authority
JP
Japan
Prior art keywords
light
light source
thin film
surface plasmon
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004310819A
Other languages
English (en)
Inventor
Michihiro Nakai
道弘 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004310819A priority Critical patent/JP2006125860A/ja
Publication of JP2006125860A publication Critical patent/JP2006125860A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 本発明は、測定精度向上と低廉化を実現した表面プラズモンセンサの提供を目的とする。
【解決手段】 インコヒーレント光源を用い、光源から出射される光の波長の中心帯域を、金属薄膜の誘電率の絶対値Aと被検試料に含まれる被測定物の誘電率の絶対値Bとの比A/Bから決定し、角度分解能が低下しない構成としたので、安価なコヒーレント光源を使用しても高精度の測定が可能となり、高価なレーザ光源を使用せずに安価で高精度の測定が可能なセンサを実現できる。また、前記比A/Bが10以上の値であれば、測定精度をより向上できる。また、インコヒーレント光源からの光をシングルモード光ファイバに入射、伝搬して空間コヒーレンスの高い光をシングルモード光ファイバから射出して金属薄膜に照射することにより、レーザ光源を用いた場合に比べてコヒーレントノイズが少なくなり、高い測定精度を持つセンサが実現できる。
【選択図】 図1

Description

本発明は、臨床診断分析や環境分析などに利用される表面プラズモンセンサ及び表面プラズモン測定装置に関する。
表面プラズモンセンサは、表面プラズモン共鳴(以下、SPRと記載する)を用いて金属薄膜上の物質の誘電率を測定するもので、感度が高いことと、その場で観察ができることなどから、近年、物質センサとして頻繁に用いられている。
この表面プラズモンセンサ(以下、SPRセンサと記載する)は、金属薄膜上の物質の誘電率(または、屈折率)をモニタすることにより、この誘電率の変化で金属薄膜上の物質の量を測定する。SPRは、金属表面の電子の励振モードである。この励振モードと外部から入力した電磁波を既知の構成を用いて結合させ、その励振モードの波数変化を反射光の強度変化としてとらえる。
このSPRセンサは、当初金属薄膜の膜厚、誘電率測定などに応用が試みられていたが、現在は生体物質間の相互作用をin situ観察する用途が支配的である。これは、金属薄膜上に特定の蛋白質、糖などと結合する試薬を塗布しておき、この金属薄膜上にサンプルを流し、サンプル中にターゲットとする物質が存在すれば、金属薄膜上で試薬と蛋白の特異的結合が起こり、この結合の時間変化をそのまま見ることができるためである。このように、反応の過程をin situで観察できる測定器は従来存在しなかったため、生化学の研究分野でSPRセンサは普及した。
現在主として用いられているSPRセンサは全反射減衰法(以下、ATR法と記載する)と呼ばれる方法のものである。このATR法は、図3に示すように、光照射部7から出射された光を、プリズム2を用いて被検試料9が接触している金属薄膜3に集光し、その反射光をCCD、CMOS又はPDのアレイ等を用いた図示しない受光部8で角度成分に分解して測定する。
ここで、SPRセンサの光源としては、波長が600〜850nmのものが適しており、He−Neレーザ、発光ダイオード(LED)、面発光レーザ、端面発光レーザ等があげられる。この際、特定の角度のみが、SPRのために全反射せず、暗線のピークとなって現れる。図2は、典型的なSPRスペクトルを示すグラフである。このグラフ上に示された暗線のピークの位置を測定するのがSPRセンサの仕組みである。
ここで、前述したSPRセンサに使用される光源の中で、レーザのような狭帯域光源は単色性が高いため、SPR角度に出る暗線が非常にシャープで測定精度が高く、また、空間コヒーレンスが高いため、レンズを使用した角度測定においては非常に高い角度分解能が得られる。
その一方で、レーザ光は、一般に時間コヒーレンスが高く取り扱いが難しいものであるとともに、レーザ特有のモードホップという現象によって波長が不安定になる傾向があり、側定時のノイズの要因となっていた。
他方、SPRセンサに使用される光源にランプ類やLED等の広帯域光源を使用した場合、これらの光はコヒーレンスが非常に低く、多少の散乱光や迷光があってもSN比の低下は小さいというメリットがあり、波長の安定性もレーザを上回る。
その一方で、ランプ類やLED等の広帯域光源は、単色性が低くSPR角度測定において生じる暗線ピークが幅広の状態となることと、光のパワーも不足する傾向があり、測定精度の面で不利であった。また、レンズを使用して光源からの出射光を集光する場合、空間コヒーレンスが低いために十分な角度分解能が得られず、測定精度の向上が困難であった。
表1に、広帯域光源と狭帯域光源の特性の比較を示す。
Figure 2006125860
これらの問題点を解決するため、これまでに以下のようなことが提案されてきた。
まず、波長安定化機能を有する単一モード半導体レーザを用いて測定精度を向上させたSPRセンサが提案されている(例えば、特許文献1)。また、スーパールミネッセントダイオード(以下、SLDと記載する)を用いて測定精度を向上させたSPRセンサが提案されている(例えば、特許文献2)。これらの特許文献では、狭帯域光源の波長の安定性、広帯域光源の適正な帯域幅について、測定精度の観点から述べられている。
特許第3390355号公報 特開2002−257722号公報
しかしながら、上記従来技術では、例えば波長を安定させたレーザを用いた場合、波長が安定したことによってさらに時間コヒーレントが上昇して干渉距離が長くなり、コヒーレントノイズが一層大きくなり、高い角度分解能が得られる反面、測定ノイズも増大するという問題があった。
一方、SLD等の誘導放出を利用したスーパールミネッセンス領域を利用した光源は、放射部の面積が面発光のLEDよりも小さいことから、LEDに比べれば角度分解能は若干向上する。しかしながら、該光源はレーザ等のように光がモードを持つ状態では無く、放射部端面からインコヒーレントに放射されるため、レーザ光源を使用した場合に比べると、角度分解能は低かった。これは、例えば、単一モード面発光レーザ光源(VCSEL)を用いた場合、SLDよりも優れた角度分解能と空間コヒーレンスが得られることからも明らかである。
また、SLDを光源に使用した場合、SLDはLEDに比べて単色性が優れているため、LEDを光源に使用した場合に比べて角度分解能は高くなるものの、レーザ光源に比べれば単色性はかなり劣るため、角度分解能もレーザ光源を使用した場合に比べて低かった。
以上、説明したように、レーザ光源を使用し、且つ、レーザ光源の波長の安定化を行った場合、出射する光の時間コヒーレントが良くなるため、相対的にコヒーレントノイズが大きくなって測定精度が低下する。この問題を回避するため、現状では、高精度の角度測定を行う場合、LEDを始めとするインコヒーレント光源が用いられている。
しかしながら、実際にLEDを光源に用いた場合、上述したように、単色性が低くSPR角度測定で現れる暗線のピークが幅広となり、測定精度低下の要因となっていた。
一方、SLD等のように、インコヒーレント光源の出射面積を小さくしても、光の空間コヒーレントが小さいために十分は角度分解能が得られず、また、単色性の点でも角度分解能の向上に限界があった。
このため、従来、ATR法によるSPRセンサにおいて、ノイズが少なく、且つ、高い角度分解能が得られる光源は存在しなかった。
本発明はこれらの事情に鑑みてなされ、測定精度向上と低廉化を実現したSPRセンサ及びSPR測定装置の提供を目的とする。
前記課題を解決するため、本発明は、被検試料を接触させるSPR励起用の金属薄膜が設けられたセンサ部と、該センサ部の金属薄膜に光を照射する光源と、前記金属薄膜で反射した光の強度変化を検出する受光部とを備えたSPRセンサにおいて、光源としてインコヒーレント光源を用い、該インコヒーレント光源の出射光中心波長が、前記金属薄膜の誘電率の絶対値Aと前記被検試料に含有される被測定物の誘電率の絶対値Bとの比A/Bから決定され、該比が出射光の波長帯域にかかわらず、角度分解能が低下しないような大きさに設定されていることを特徴とするSPRセンサを提供する。
本発明のSPRセンサにおいて、前記比A/Bが10以上であることが好ましい。
本発明のSPRセンサにおいて、前記センサ部の金属薄膜に照射される光が、インコヒーレント光源からの出射光をシングルモード光ファイバに結合し、該シングルモード光ファイバ中を所定の距離伝搬させることによって空間コヒーレンスを向上させた光であることが好ましい。
本発明のSPRセンサにおいて、前記シングルモード光ファイバから出射される光が前記センサ部に直接照射されるように構成することが好ましい。
本発明のSPRセンサにおいて、前記シングルモード光ファイバが、該シングルモード光ファイバの出射光が前記センサ部に直接照射できる開き角が得られるようなコア径とコア−クラッド屈折率差を有するように構成することが好ましい。
本発明のSPRセンサにおいて、前記インコヒーレント光源は端面発光型発光ダイオードであることが好ましい。
また、本発明は、上述したSPRセンサが備えられたSPR測定装置を提供する。
本発明のSPRセンサは、インコヒーレント光源を用い、光源から出射される光の波長の中心帯域を、金属薄膜の誘電率の絶対値Aと被検試料に含まれる被測定物の誘電率の絶対値Bとの比A/Bから決定し、角度分解能が低下しない構成としたので、安価なインコヒーレント光源を使用しても高精度の測定が可能となり、高価なレーザ光源を使用せずに安価で高精度の測定が可能なセンサを実現できる。
また、前記比A/Bが10以上の値であれば、測定精度をより向上できる。
また、インコヒーレント光源からの光をシングルモード光ファイバに入射、伝搬して空間コヒーレンスの高い光をシングルモード光ファイバから射出して金属薄膜に照射することにより、レーザ光源を用いた場合に比べてコヒーレントノイズが少なくなり、高い測定精度を持つセンサが実現できる。
また、シングルモード光ファイバのコア径とコア−クラッドの屈折率差の設定によって、出射光の開き角度をSPR測定における測定範囲としていることにより、レンズによる集光を必要とせず、シングルモード光ファイバの出射光を金属薄膜に直接照射することができるため、SPRセンサの低廉化と小型化を同時に実現できる。
また、インコヒーレント光源に端面発光型発光ダイオードを使用することによって、インコヒーレント光源と光ファイバとの結合が容易となり、安価な構成で高い精度を持つセンサが実現できる。
以下、本発明を実施するための最良の形態について、図面を参照して説明する。
図1は、本発明に係るSPRセンサの実施形態を示す構成図であり、この図中、符号10はSPRセンサ、11はセンサ部を構成する金属薄膜、12はインコヒーレント光源である発光ダイオード(LED)、13はシングルモード光ファイバ、14は受光部、20は測定対象となる被測定物21が含有された被検試料である。
本実施形態におけるSPRセンサ10は、被検試料20を接触させる試料面11a及び光の反射面11bが設けられたSPR励起用の金属薄膜11と、金属薄膜11に光を照射するLED12と、金属薄膜11で反射した光の強度変化を検出する受光部14とを備えおり、光源としてインコヒーレント光源であるLED12を用い、これをシングルモード光ファイバ13により空間コヒーレントを向上させた光とし、センサ部に照射することを特徴としている。
インコヒーレント光源であるLED12から出射される光30の波長は、金属薄膜11を形成する金属の誘電率の絶対値Aと、被検試料20に含まれ測定のターゲットとなる被測定物21の誘電率の絶対値Bの比A/Bによって決定する。この比A/Bは、照射される光30の波長によって変化するが、この比A/Bが大きい程、光30の波長の変化によるSPR共鳴角の変化は小さくなり、LED12から出射される光30の波長帯域にかかわらず、角度分可能は大きく変化せず安定する。このため、LED12から出射される光30の波長帯域の中心波長を、前記比A/Bが十分に大きくなる程度に設定し、その波長帯域の範囲で波長が変化してもSPR共鳴角の変化が極めて小さく無視し得る程度となるため、高い角度分解能を維持することが出来る。
上述の金属の誘電率と光の波長との関係は、文献により明らかになっている(「HandBook of Optics Vol.2」Michael Bass著、McGrow−Hill Inc.)。
インコヒーレント光源であるLED12の出射端には、シングルモード光ファイバ13の一端である入射端面13aが接続され、このシングルモード光ファイバ13の他端である出射端面13bは、金属薄膜11の反射面11bに向けて構成される。また、反射面11bによって光が反射する方向には、この反射光が入射される受光部14が設けられている。
金属薄膜11は、十分な反射率と化学的安定性を持つ板状の金属材料からなり、センサ部として機能する。この金属薄膜11の材質としては、例えば金、銀、アルミニウム等の薄膜が好ましい。また、この金属薄膜11の厚さとしては、10nm〜100nm程度であることが、測定精度上、好ましい。
なお、図1に示したように、本実施形態においては、センサ部を金属薄膜11及びこの金属薄膜11が片面に設けられるセンサチップ15とで構成している。このセンサチップ15は、例えば石英ガラス等からなるものであり、センサチップ15の一方の面に金属薄膜11を成膜する。
LED12は、コヒーレント長がレーザ等の光源と比較して非常に短いという特性を有するインコヒーレント光源である。その中心波長は、550nm〜1310nmの範囲のものを用いることが望ましい。
受光部14は、CCDやCMOS又はPDのアレイ等が用いられ、金属薄膜11の反射面11aで反射した光の入射角度や強度変化を検出して角度成分に分解して測定するものである。
プリズム40は、例えば石英ガラス等、センサチップ15と同じ材料からなり、シングルモード光ファイバ13から出射された光30は、プリズム40を通ってセンサチップ15に成膜された金属薄膜11の反射面11bに照射されるとともに、反射面11bで反射した光30はプリズム40を通って受光部14へ入射される。
被検試料20は、例えば蛋白質や糖分等を含む生体物質であり、測定のターゲットとなる被測定物21を含有しているか、又は含有している可能性がある物質である。
LED12から出射された光30は、前記LED12に接続された入射端面13aからシングルモード光ファイバ13に入射し、該シングルモード光ファイバ13内を伝搬して前記出射端面13bに至る。前記光30はこの出射端面13bに接続されたプリズム40に入射され、プリズム40に接触しているセンサチップ15上に成膜された金属薄膜11の反射面11aに照射される。この反射面11aに照射された光30は、反射面11a表面で反射してプリズム40を通り、受光部14に入射される。この際、金属薄膜11の試料面11aに接触させられた被検試料20に含有される被測定物21の特性によって、反射面11aで反射して受光部14に入射される光30の入射角度や強度が異なったものとなるが、受光部14がこの入射角度や強度を角度成分に分解して測定する。
インコヒーレント光源であるLED12から出射した光30は、シングルモード光ファイバ13に入射した後、シングルモード光ファイバ13内で一定以上の距離を伝搬させることによって光30は単一モード化され、空間コヒーレンスの高い光となって、金属薄膜11に照射される。シングルモード光ファイバ13内で伝搬させる距離については、10mm以上であることが好ましい。この距離が10mm未満であると、空間コヒーレンスの高い光が得られない可能性がある。
本実施形態においては、シングルモード光ファイバ13から出射される単一モード化された光30の出射の開き角度がSPR測定の測定範囲となるように、シングルモード光ファイバ13のコア径とコア−クラッド間の屈折率差を決定し、単一モード化された光30が、シングルモード光ファイバ13の出射端面13bから、レンズを用いずにプリズム40を通り、センサチップ15上に成膜された金属薄膜11に照射されるように構成している。
以下に、本発明に係るSPRセンサ10を用いた被検試料20の測定方法の1例を説明する。
まず、金属薄膜11の試料面11aの表面に図示しない特定の反応試薬をコーティングする。次に、測定対象となる被検試料20を前記反応試薬がコーティングされた金属薄膜11上に接触させる。ここで、被検試料20中にターゲットとなる被測定物21が存在すれば、金属薄膜11上において前記反応試薬と被測定物21との間で特異的結合が起こり、ターゲットとなる被測定物21の量に応じて、この金属薄膜11に接触している被測定物21の誘電率が変化する。次に、金属薄膜11の反射面11aに対して、上述したように、光源であるLED12から出射され、シングルモード光ファイバ13を伝搬して単一モードとなった光30を、その全反射角以上の角度で照射する。金属薄膜11で反射した光30は受光部14に入射され、この受光部14において入射した光30を角度成分に分解して測定する。ここで、ある特定の入射角において、金属薄膜11での吸収が起こり、全反射を起こさなくなり、暗線ピークが観測される。この特定の入射角は、金属薄膜11を形成する金属とこの金属に接している被測定物21の誘電率によって固有の値となる。この原理を用いて金属に接している物質の量を求める。
本実施形態においては、前述したように、インコヒーレント光源であるLED12から出射される光30の中心波長について、次のようにして決定している。
まず、金属薄膜11を形成する金属の誘電率の絶対値Aと、被検試料20に含まれ測定のターゲットとなる被測定物21の誘電率の絶対値Bとの比A/Bを求める。この比A/Bは、照射される光30の波長によって変化するものだが、この比A/Bが大きい程、光30の波長の変化によるSPR共鳴角の変化は小さくなり、測定上無視しうる程度となるため、LED12から出射される光30の波長帯域にかかわらず、角度分可能は大きく変化せず安定する。このため、LED12から出射される光30の波長帯域の中心波長を、前記比A/Bが十分に大きくなる程度に設定することにより、その波長帯域の範囲で波長が変化してもSPR共鳴角の変化が極めて小さく、無視し得る程度となるため、高い角度分解能を維持することが出来る。前記比A/Bについては、10以上であれば更に好ましい。この比A/Bが10未満となるように光30の中心波長を設定した場合、この比A/Bが10以上である場合と比べ、光30が波長帯域の範囲で波長が変化した際にSPR共鳴角の変化が大きくなり、測定精度が低下する可能性がある。
LED12のようなインコヒーレント光源は、レーザーダイオード(LD)等のレーザ光源と比較してコヒーレント長が非常に短いため、コヒーレントノイズを低減することができる。一方、前述したLED12から出射される光30の波長帯域の中心波長の設定により、角度分解能が低下せず、安定した測定が可能となる。
以上、説明したように、本発明のSPRセンサは、インコヒーレント光源を用い、光源から出射される光の波長の中心帯域を、金属薄膜の誘電率の絶対値Aと被検試料に含まれる被測定物の誘電率の絶対値Bとの比A/Bから決定し、角度分解能が低下しない構成としたので、安価なコヒーレント光源を使用しても高精度の測定が可能となり、高価なレーザ光源を使用せずに安価で高精度の測定が可能なセンサを実現できる。
また、前記比A/Bが10以上の値であれば、測定精度をより向上できる。
また、インコヒーレント光源からの光をシングルモード光ファイバに入射、伝搬して空間コヒーレンスの高い光をシングルモード光ファイバから射出して金属薄膜に照射することにより、レーザ光源を用いた場合に比べてコヒーレントノイズが少なくなり、高い測定精度を持つセンサが実現できる。
また、シングルモード光ファイバのコア径とコア−クラッドの屈折率差の設定によって、出射光の開き角度をSPR測定における測定範囲としていることにより、レンズによる集光を必要とせず、シングルモード光ファイバの出射光を金属薄膜に直接照射することができるため、SPRセンサの低廉化と小型化を同時に実現できる。
また、インコヒーレント光源に端面発光型発光ダイオードを使用することによって、インコヒーレント光源と光ファイバとの結合が容易となり、安価な構成で高い精度を持つセンサが実現できる。
なお、本実施形態においては、インコヒーレント光源として発光ダイオード(LED)12を使用して説明しているが、これには限定されず、上述した端面発光型発光ダイオードの他、例えばスーパールミネッセントダイオード(SLD)を用いても同様の効果が得られる。
また、本実施形態においては、LED12から出射された光30をシングルモード光ファイバ13に入射して伝搬させているが、光30を伝搬して単一モードの光にして出射する条件を備えているものであれば、例えば基板型の光導波路等、他の光導波路であっても良い。
また、インコヒーレント光源であるLEDやSLD等の半導体光源とシングルモード光ファイバを結合する方法としては、公知の技術を用いることができる。
なお、金属薄膜11の材質については、上述したアルミニウムを用いる場合、誘電率の実数部と虚数部との関係から、光の波長が紫外域の光源を用いることが好ましい。
次に、本実施形態における実施例を以下に示す。
本例においては、金属薄膜の材質として金(Au)を用いて図1に示すSPRセンサを作製した。この金薄膜は、ガラスチップの一方の面上にスパッタ法によって成膜したものであり、その厚さは40nmである。
被検試料としては、蛋白質を多量に含む水溶液を測定した。この場合、被検試料に含有される被測定物は蛋白質である。
蛋白質や水溶液の誘電率Bは、1.7〜2.0(屈折率は1.3〜1.4)であり、これらの値は、光の波長が600nm〜1000nmの範囲においては大きく変化しない。従って厳密に被測定物の誘電率Bが不明であっても、有効数字2桁程度の大まかな値が、光の波長変動に伴って変化することは無い。
なお、本例における光の波長の範囲の根拠としては、本出願人が知りうる文献等によれば、金属薄膜に金を用いる場合、誘電率の実数部と虚数部の関係から、600nm以下ではSPR共鳴現象をATR法で測定することは困難であることが知られている。
一方、金を用いた金属薄膜の誘電率Aは、この光の波長範囲600nm〜1000nmにおいて、−10(絶対値10)から−45(絶対値45)へと大きく変化する。この際、使用する光の波長ができるだけ長い方が測定精度の上で好ましいため、少なくとも800nm以上とすると、金属薄膜の誘電率の絶対値Aと被測定物の誘電率の絶対値Bとの比A/Bは少なくとも10以上となり、広帯域な発光波長を持つLEDやSLDのような光源を用いても、ATR法における角度測定分解能は0.01〜0.006°と、ほとんど低下しなかった。
さらに、上記の光の波長設定に加え、波長850nmのSLDを光源として用い、このSLDの出射光をシングルモード光ファイバに結合させ、10mm以上伝搬させた後に金を用いた金属薄膜に照射したところ、シングルモード光ファイバを伝搬させない場合と比べ、ATR法における角度分解能が0.006〜0.001°へと、著しく向上した。
本例においては、金属薄膜の材質として銀(Ag)を用いて図1に示すSPRセンサを作製した。この銀薄膜はガラスチップの一方の面上にスパッタ法によって成膜したものであり、その厚さは50nmである。
被検試料としては、二酸化炭素等を含む気体を測定した。この場合、被検試料に含有される被測定物は二酸化炭素である。
気体の誘電率Bは、1.0〜1.2(屈折率は1.0〜1.1)であり、これらの値は、光の波長が550nm〜1000nmの範囲においては大きく変化しない。
なお、本出願人が知りうる文献等によれば、金属薄膜に銀を用いる場合、誘電率の実数部と虚数部の関係から、550nm以下ではSPR共鳴現象をATR法で測定することは困難であることが知られている。
一方、銀を用いた金属薄膜の誘電率Aは、この光の波長範囲550nm〜1000nmにおいて、−10(絶対値10)から−45(絶対値45)へと大きく変化する。この際、使用する光の波長ができるだけ長い方が測定精度の上で好ましいため、少なくとも600nm以上とすると、金属薄膜の誘電率の絶対値Aと被測定物の誘電率の絶対値Bとの比A/Bは少なくとも10以上となり、広帯域な発光波長を持つLEDやSLDのような光源を用いても、ATR法における角度測定分解能は0.01〜0.006°へと、若干の変化に留まり、ほとんど低下しなかった。
さらに、上記の光の波長設定に加え、波長850nmのSLDを光源として用い、このSLDの出射光をシングルモード光ファイバに結合させ、10mm以上伝搬させた後に金を用いた金属薄膜に照射したところ、シングルモード光ファイバを伝搬させない場合と比べ、ATR法における角度分解能が0.006〜0.001°へと、著しく向上した。
本発明のSPRセンサの実施形態を示す概略図である。 典型的なSPRスペクトルを表すグラフである。 従来のSPRセンサの構造を示す概略図である。
符号の説明
10…表面プラズモンセンサ(SPRセンサ)、11…金属薄膜、12…発光ダイオード(LED)、13…シングルモード光ファイバ、14…受光部、20…被検試料、21…被測定物、30…光

Claims (7)

  1. 被検試料を接触させる表面プラズモン励起用の金属薄膜が設けられたセンサ部と、該センサ部の金属薄膜に光を照射する光源と、前記金属薄膜で反射した光の強度変化を検出する受光部とを備えた表面プラズモンセンサにおいて、
    光源としてインコヒーレント光源を用い、該インコヒーレント光源の出射光中心波長が、前記金属薄膜の誘電率の絶対値Aと前記被検試料に含有される被測定物の誘電率の絶対値Bとの比A/Bから決定され、該比が出射光の波長帯域にかかわらず、角度分解能が低下しないような大きさに設定されていることを特徴とする表面プラズモンセンサ。
  2. 前記比A/Bが10以上であることを特徴とする請求項1に記載の表面プラズモンセンサ。
  3. 前記センサ部の金属薄膜に照射される光が、インコヒーレント光源からの出射光をシングルモード光ファイバに結合し、該シングルモード光ファイバ中を所定の距離伝搬させることによって空間コヒーレンスを向上させた光であることを特徴とする請求項1又は2に記載の表面プラズモンセンサ。
  4. 前記シングルモード光ファイバから出射される光が前記センサ部に直接照射されることを特徴とする請求項3に記載の表面プラズモンセンサ。
  5. 前記シングルモード光ファイバは、該シングルモード光ファイバの出射光が前記センサ部に直接照射できる開き角が得られるようなコア径とコア−クラッド屈折率差を有していることを特徴とする請求項3又は4に記載の表面プラズモンセンサ。
  6. 前記インコヒーレント光源は端面発光型発光ダイオードであることを特徴とする請求項1〜5のいずれかに記載の表面プラズモンセンサ。
  7. 請求項1〜6のいずれかに記載の表面プラズモンセンサが備えられた表面プラズモン測定装置。

JP2004310819A 2004-10-26 2004-10-26 表面プラズモンセンサ及び表面プラズモン測定装置 Pending JP2006125860A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310819A JP2006125860A (ja) 2004-10-26 2004-10-26 表面プラズモンセンサ及び表面プラズモン測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310819A JP2006125860A (ja) 2004-10-26 2004-10-26 表面プラズモンセンサ及び表面プラズモン測定装置

Publications (1)

Publication Number Publication Date
JP2006125860A true JP2006125860A (ja) 2006-05-18

Family

ID=36720763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310819A Pending JP2006125860A (ja) 2004-10-26 2004-10-26 表面プラズモンセンサ及び表面プラズモン測定装置

Country Status (1)

Country Link
JP (1) JP2006125860A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889588B1 (ko) 2006-11-29 2009-03-19 한국생명공학연구원 표면 플라즈몬 공명 기반 외팔보 센서 및 이를 이용한시료의 검출 및 정량방법
WO2011125355A1 (ja) * 2010-04-01 2011-10-13 株式会社村田製作所 被測定物の特性の測定方法、および、それに用いられるセンシングデバイス
JP2012519271A (ja) * 2009-02-27 2012-08-23 ライブニッツ−インスティテュート・フュア・アナリティシェ・ビッセンシャフテン−イー・エス・アー・エス−アインゲトラーゲナー・フェライン 2次元検出器表面におけるナノ粒子の高分解能検出のための方法
CN103424791A (zh) * 2013-08-15 2013-12-04 复旦大学 一种基于表面等离子体共振的金属薄膜表面色散调制方法
EP2803974A4 (en) * 2012-01-13 2015-12-30 Univ Tokyo GAS SENSOR
WO2017221981A1 (ja) * 2016-06-21 2017-12-28 日産化学工業株式会社 ラマン散乱による簡易センシング法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250643A (ja) * 1985-08-30 1987-03-05 Fujikura Ltd 湿度センサ
JPS62151744A (ja) * 1985-12-26 1987-07-06 Sumitomo Electric Ind Ltd 液体混合比測定装置
JPH06501546A (ja) * 1990-07-04 1994-02-17 バルション テクニリネン ツツキムスケスクス 表面プラズモン共鳴測定を行うための方法およびその測定において使用されるセンサ
JPH09257696A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ装置
JPH09257698A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ
JP2001183292A (ja) * 1999-12-24 2001-07-06 Toto Ltd 表面プラズモン共鳴を利用したセンサ素子、およびその製造方法
JP2002257722A (ja) * 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 全反射減衰を利用したセンサー
JP2003014623A (ja) * 2001-07-04 2003-01-15 Kanagawa Acad Of Sci & Technol 表面プラズモン共鳴現象を利用したセンシングにおける表面プラズモン共鳴カーブの非対称表面プラズモン共鳴カーブ方程式による決定方法
JP2004016609A (ja) * 2002-06-19 2004-01-22 Omron Healthcare Co Ltd 体液成分濃度測定方法及び体液成分濃度測定装置
JP2004077411A (ja) * 2002-08-22 2004-03-11 Aisin Seiki Co Ltd 表面プラズモン・センサー及びspr装置
JP2004170286A (ja) * 2002-11-21 2004-06-17 Masao Karube 単色光を用いた差動式sprセンサー及び該センサーを用いた測定法
JP2004271337A (ja) * 2003-03-07 2004-09-30 Hiroo Iwata 表面プラズモン共鳴現象を利用した細胞の多検体同時解析装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250643A (ja) * 1985-08-30 1987-03-05 Fujikura Ltd 湿度センサ
JPS62151744A (ja) * 1985-12-26 1987-07-06 Sumitomo Electric Ind Ltd 液体混合比測定装置
JPH06501546A (ja) * 1990-07-04 1994-02-17 バルション テクニリネン ツツキムスケスクス 表面プラズモン共鳴測定を行うための方法およびその測定において使用されるセンサ
JPH09257696A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ装置
JPH09257698A (ja) * 1996-03-19 1997-10-03 Toto Ltd 表面プラズモン共鳴センサ
JP2001183292A (ja) * 1999-12-24 2001-07-06 Toto Ltd 表面プラズモン共鳴を利用したセンサ素子、およびその製造方法
JP2002257722A (ja) * 2000-12-25 2002-09-11 Fuji Photo Film Co Ltd 全反射減衰を利用したセンサー
JP2003014623A (ja) * 2001-07-04 2003-01-15 Kanagawa Acad Of Sci & Technol 表面プラズモン共鳴現象を利用したセンシングにおける表面プラズモン共鳴カーブの非対称表面プラズモン共鳴カーブ方程式による決定方法
JP2004016609A (ja) * 2002-06-19 2004-01-22 Omron Healthcare Co Ltd 体液成分濃度測定方法及び体液成分濃度測定装置
JP2004077411A (ja) * 2002-08-22 2004-03-11 Aisin Seiki Co Ltd 表面プラズモン・センサー及びspr装置
JP2004170286A (ja) * 2002-11-21 2004-06-17 Masao Karube 単色光を用いた差動式sprセンサー及び該センサーを用いた測定法
JP2004271337A (ja) * 2003-03-07 2004-09-30 Hiroo Iwata 表面プラズモン共鳴現象を利用した細胞の多検体同時解析装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100889588B1 (ko) 2006-11-29 2009-03-19 한국생명공학연구원 표면 플라즈몬 공명 기반 외팔보 센서 및 이를 이용한시료의 검출 및 정량방법
JP2012519271A (ja) * 2009-02-27 2012-08-23 ライブニッツ−インスティテュート・フュア・アナリティシェ・ビッセンシャフテン−イー・エス・アー・エス−アインゲトラーゲナー・フェライン 2次元検出器表面におけるナノ粒子の高分解能検出のための方法
WO2011125355A1 (ja) * 2010-04-01 2011-10-13 株式会社村田製作所 被測定物の特性の測定方法、および、それに用いられるセンシングデバイス
JP5859955B2 (ja) * 2010-04-01 2016-02-16 株式会社村田製作所 被測定物の特性の測定方法、および、それに用いられるセンシングデバイス
EP2803974A4 (en) * 2012-01-13 2015-12-30 Univ Tokyo GAS SENSOR
CN103424791A (zh) * 2013-08-15 2013-12-04 复旦大学 一种基于表面等离子体共振的金属薄膜表面色散调制方法
WO2017221981A1 (ja) * 2016-06-21 2017-12-28 日産化学工業株式会社 ラマン散乱による簡易センシング法
JPWO2017221981A1 (ja) * 2016-06-21 2019-04-11 日産化学株式会社 ラマン散乱による簡易センシング法

Similar Documents

Publication Publication Date Title
JP4640797B2 (ja) 生体分子相互作用測定装置及び測定方法
JP2005512079A (ja) 微量成分の検出および測定のための装置および方法
US10184888B2 (en) Device and method for determining a refractive index
US7843571B2 (en) Sensing system
JP6342445B2 (ja) 光学計測デバイス及びその方法
US11474039B2 (en) Chemical sensing device using fluorescent sensing material
CN101294900B (zh) 高精细度腔表面等离子体共振传感装置
JP2006125860A (ja) 表面プラズモンセンサ及び表面プラズモン測定装置
JP3961405B2 (ja) 表面プラズモン共鳴センサおよび屈折率変化測定方法
JP2003139694A (ja) 測定プレート
JP2005321244A (ja) 光学的測定装置
US6741352B2 (en) Sensor utilizing attenuated total reflection
JP2013088138A (ja) 屈折率測定装置および濃度測定装置並びにその方法
JP2007101241A (ja) センシング装置
JP2007127666A (ja) 生体スペクトル測定装置。
JP2009243886A (ja) 光分析装置
JP2006125919A (ja) 分光分析装置及び分光分析方法
JP7041922B2 (ja) 光分析装置
JP2008008631A (ja) センサ、センシング装置、及びセンシング方法
JP2006112807A (ja) 表面プラズモンセンサー
JP5373478B2 (ja) 化学物質センサ
JP2006292562A (ja) 表面プラズモンセンサ
JP2004053551A (ja) 屈折率測定方法及びこれに用いられる光導波路型sprセンサ
JP2008191053A (ja) Sprセンサ装置およびsprセンサヘッド
JP2002257722A (ja) 全反射減衰を利用したセンサー

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323