JP2006100682A - 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ - Google Patents

3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ Download PDF

Info

Publication number
JP2006100682A
JP2006100682A JP2004286804A JP2004286804A JP2006100682A JP 2006100682 A JP2006100682 A JP 2006100682A JP 2004286804 A JP2004286804 A JP 2004286804A JP 2004286804 A JP2004286804 A JP 2004286804A JP 2006100682 A JP2006100682 A JP 2006100682A
Authority
JP
Japan
Prior art keywords
gnd
terminal
signal
electrode
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004286804A
Other languages
English (en)
Inventor
Kenichi Kitazawa
賢一 北澤
Masayuki Shimizu
政行 清水
Hiroyuki Mogi
宏之 茂木
Yasushi Inoue
泰史 井上
Naoto Yokoyama
直人 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004286804A priority Critical patent/JP2006100682A/ja
Publication of JP2006100682A publication Critical patent/JP2006100682A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

【課題】
3端子型積層コンデンサの自己発熱量を、低いESLを保ちつつ、良好に低減する。
【解決手段】
信号ライン30が入出力側で連続して形成されるとともに、GNDライン32,34が信号ライン30を挟んで対峙するように分断形成される。そして、3端子型積層コンデンサの信号用端子電極26A及び26Bが信号ライン30と接続され、GND用端子電極22A及び22BがGNDライン34に接続され、他のGND用端子電極22C及び22DがGNDライン32にそれぞれ接続されるように実装される。信号に対する抵抗分は、信号ライン30の抵抗分と、コンデンサ内部の信号用内部電極の抵抗分を並列に接続した低い値となる。
【選択図】図2

Description

本発明は、3端子型積層コンデンサ実装用回路基板及びそれに関連する3端子型積層コンデンサに関し、具体的には、3端子型積層コンデンサの自己発熱に対する改良に関するものである。
情報機器を中心とした近年におけるデータ処理の高速化,通信回線速度の向上に伴い、LSIなどの半導体装置は動作が高速化する傾向にある。かかる半導体装置の電源回路は、半導体装置に対して動作に必要なDC(直流)成分を供給するが、電源スイッチングやクロック動作に伴う高調波は動作を不安定にし、不要な電波として放射されることもある。そこで、電源回路には、高速動作を補うための大容量コンデンサと、高い周波数まで信号を減衰させることができる低ESLコンデンサが使用される。この低ESLコンデンサとしては、例えば、下記特許文献1に示すような入力電極,出力電極,GND(グランド)電極を有する3端子型積層コンデンサが利用される。下記特許文献2には、側面のGND電極を外周全体に一周させた構造のものが開示されている。
ところで、3端子型積層コンデンサの内部電極構造は、入力電極から出力電極に至る信号ラインが内部を貫通した構造となっており、信号は必ず内部電極を通過する。このため、部品内部の抵抗値により自己発熱するという問題があり、この発熱によって通電量が制限されてしまうという不都合がある。図17を見ながら説明すると、3端子型積層コンデンサは、同図(A)に示すようなGNDパターン900と信号パターン902を、同図(B)に示すように交互に積層し、更に上下に誘電体層904を積層した構造となっている。そして、同図(C)に示すように、信号パターン902は入力電極910,出力電極912にそれぞれ接続され、GNDパターン900はGND電極914,916にそれぞれ接続されている。
一方、基板側には、入力信号ライン920,出力信号ライン922にGNDライン924が交差して、該GNDライン924によって分割されるようにしてパターン形成されている。そして、コンデンサ側の入力電極910と入力信号ライン920,出力電極912と出力信号ライン922,GND電極914及び916とGNDライン924がそれぞれ電気的に接続される。
このような実装形態における3端子型積層コンデンサの等価回路は、図18(A)に示すようになる。すなわち、素子中心にキャパシタンスC10があり、これと入力電極910の間に抵抗R10とインダクタンスL10の直列回路が接続されており、また、出力電極912の間に抵抗R12とインダクタンスL12の直列回路が接続されている。また、素子中心とGND電極914との間に抵抗R14とインダクタンスL14の直列回路が接続されており、GND電極916との間に抵抗R16とインダクタンスL16の直列回路が接続されている。
このように、入出力信号ライン920,922間に抵抗R10,R12が存在するため、それらの抵抗成分による自己発熱が発生する。図18(B)には、従来の3端子型積層コンデンサの入出力電極間の直流抵抗値が10mΩの場合における自己発熱の計測例が示されている。同図中、横軸は直流電流値[A DC],縦軸は自己発熱量ΔT[℃]である。同図に示すように、直流電流が3Aで40℃を超える非常に大きな自己発熱が生ずる。
特開昭55−80313号公報 特開平06−244058号公報
このような通電時の自己発熱を抑制する従来技術としては、下記特許文献3に記載されているようなコンデンサ表面に導体パターンを設けるものや、下記特許文献4に記載されている内部導体パターンを並列化するものが知られている。しかしながら、いずれの方法でも限界があり、更なる発熱量の低減が求められている。
本発明は、以上の点に着目したもので、その目的は、3端子型積層コンデンサの自己発熱量を良好に低減することである。他の目的は、自己発熱量が低減されても、低いESLを保つことである。
特開平06−349678号公報 実開昭61−129329号公報
前記目的を達成するため、本発明の3端子型積層コンデンサ実装回路基板は、少なくとも一対の信号用端子電極とGND用端子電極とを有する3端子型積層コンデンサが実装された回路基板であって、該基板の表面には、前記少なくとも一対の信号用端子電極が接続される信号用導体パターンが同一ラインとして連続形成されるとともに、該信号用導体パターンを挟んで、前記GND用端子電極が接続されるGND用導体パターンが分断形成されており、前記3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において、誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な一方または両方の側面に露出する信号用電極引き出し部を有し、前記GND用内部電極は、少なくとも前記素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、前記素体の表面の長手方向の中央部には、前記信号用電極引き出し部に接続される一対の信号用端子電極が形成され、前記素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されており、前記素体表面に形成された一対の信号用端子電極のそれぞれが、前記信号用導体パターン上に配置されたことを特徴とする。
主要な形態の一つは、前記3端子型積層コンデンサが、前記信号用導体パターンの長手方向に沿って、互いに離間して複数個実装されていることを特徴とする。あるいは、前記3端子型積層コンデンサを、集積回路の周囲を囲むように複数個配置したことを特徴とする。
本発明の3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な一方または両方の側面に露出する信号用電極引き出し部を有し、前記GND用内部電極は、少なくとも前記素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、前記素体の表面の長手方向の中央部には、前記信号用電極引き出し部に接続される一対の信号用端子電極が形成され、前記素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されていることを特徴とする。
主要な形態の一つは、(1)前記GND用端子電極は、前記角柱状素体の長手方向の両端面を除く側面と、該側面に接する両主面に連続して形成されていることを特徴とする。または、(2)前記GND用内部電極は、前記角柱状素体の長手方向の一端側から他端側に亘って連続して設けられ、前記一方の端部近傍のGND用端子電極、および前記他方の端部近傍のGND用端子電極の両方に接続されることを特徴とする。あるいは、(3)前記GND用内部電極は、前記角柱状素体の長手方向中央部で2つに分割形成され、前記分割形成されたGND用内部電極の一方が前記一方の端部近傍のGND用端子電極に接続され、他方のGND用内部電極が前記他方の端部近傍のGND用端子電極に接続されていることを特徴とする。あるいは、(4)前記GND用内部電極は、それぞれ前記角柱状素体の長手方向の一端側から他端側に亘って連続して設けられ、前記一方の端部近傍のGND用端子電極、または前記他方の端部近傍のGND用端子電極のいずれか一方のみに接続されることを特徴とする。あるいは、(5)前記信号用内部電極は、それぞれ前記角柱状素体の長手方向の中央部で分割して設けられ、前記信号用内部電極はそれぞれ角柱状素体の長手方向中央部寄りの両側に信号用電極引き出し部を有し、各信号用電極引き出し部は、角柱状素体の長手方向中央部寄りの両側にそれぞれ互いに近接して分割形成された信号用端子電極に接続されることを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。
本発明によれば、ESLを低い値に保ちつつ、3端子型積層コンデンサの自己発熱量を良好に低減することができる。
以下、本発明を実施するための最良の形態を、いくつかの実施例に基づいて詳細に説明する。
最初に、図1〜図4を参照しながら、本発明の実施例1について説明する。なお、以下の説明では、図1(C)の左右方向端面をそれぞれ前方・後方の端面とし、紙面方向端面を側面として説明する。実施例1の3端子型積層コンデンサ20は、図1(A)に示す信号用内部電極10と同図(B)に示すGND用内部電極14を交互に積層している。信号用内部電極10は、セラミックスなどの誘電体シート12上に、側面方向に信号用電極引き出し部10A,10Bを有するパターン形状として形成されている。一方、GND用内部電極14は、誘電体シート16上に、GND用電極引き出し部14A,14B,14C,14Dを有するパターン形状として形成されている。
図1(C)には、積層の様子が示されており、信号用内部電極10とGND用内部電極14を交互に2層積層し、更に上下を誘電体層18,19で挟んだ構成となっている。このような積層体の焼結後、図1(D)に示すように信号用端子電極26A,26Bと、GND用端子電極22A,22B,22C,22Dをそれぞれ形成する。信号用内部電極10の信号用電極引き出し部10Aは信号用端子電極26Aに接続され、信号用電極引き出し部10Bは信号用端子電極26Bに接続される。また、GND用内部電極14のGND用電極引き出し部14A,14B,14C,14Dは、GND用端子電極22A,22B,22C,22Dにそれぞれ接続される。
具体例を挙げると、原材料にチタン酸バリウム系誘電体材料を用い、この配合原料をボールミルで湿式混合し、粉砕した後乾燥し、空気中において1100℃で2時間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機によって粉砕し、粒径が1μm以下の原料粉末を得る。この原料粉末に、ポリビニルブチラール系バインダ及びエタノールなどの有機溶剤を加え、ボールミルによって湿式混合し、セラミックスラリを調製した後、セラミックスラリをドクターブレード法によってシート成形し、厚み2〜3μmの矩形のグリーンシートを得た。次に、このセラミックグリーンシート上に、Niを主体とする導電ペーストで図1(A),図1(B)に示す内部電極パターンを印刷し、信号用内部電極10,およびGND用内部電極14を構成するための導電ペースト層を形成した。導電ペースト層が形成されたセラミックグリーンシートを、図1(C)に示すように信号用内部電極10とGND用内部電極14とが交互となるように複数枚積層し、積層体を得た。得られた積層体の角取りを行った後、外部電極ペーストを用いて、外部電極22A〜22D、並びに26A,26Bを形成する。続いて、酸素分圧が10−9〜10−12MPaのH−N−空気ガスからなる還元性雰囲気中において1300℃で2時間焼成し、セラミック焼結体を得て、必要により前記外部電極上にメッキ層を形成して、図1(D)に示す3端子型積層コンデンサ20の完成品に至る。
ところで、本実施例では、基板側には、図2に示すように、信号ライン30が入出力側で連続して形成されるとともに、GNDライン32,34が信号ライン30を挟んで対峙するように分断形成される。そして、これらのライン上に、図1(D)に示した3端子型積層コンデンサ20がハンダなどによって実装される。すなわち、信号用端子電極26A及び26Bが信号ライン30と接続され、GND用端子電極22A及び22BがGNDライン34に接続され、GND用端子電極22C及び22DがGNDライン32に接続されるように実装される。
図3には、信号ライン方向に見た接続構造が示されている。本実施例では、同図(A-1)に示すように、信号ライン30が入出力側で連続している。このため、信号電流は、矢印FAで示す方向に主として流れる。抵抗分について等価回路を示すと、同図(A-2)に示すように、信号ライン30の抵抗分RAと、コンデンサ内部の信号用内部電極10の抵抗分RBを並列に接続したものとなる。従って、入出力間の等価抵抗RTは、1/RT=1/RA+1/RBとなる。例えば、RA=1mΩ,RB=10mΩの場合、RT≒1mΩとなる。なお、抵抗値測定に使用した信号ラインは、銅箔の長さ0.8mm×幅0.4mm×厚み35umであり、銅の比抵抗を1.72×10‐8[Ωm]として抵抗値を計算している。このように、本実施例によれば、部品内部からの発熱はほぼゼロに等しい。
一方、従来の3端子型積層コンデンサの場合は、同図(B-1)に示すように、信号ライン920,922が入出力間で分断されており、信号電流は矢印FBで示すようにコンデンサ内部を流れる。従って、抵抗分の等価回路を示すと、同図(B-2)に示すように、コンデンサ内部の信号用導体パターンのみの抵抗となる。従って、仮に内部導体パターンの抵抗値が10mΩであると、これが入出力間の抵抗値となる。
両者を比較すれば明らかなように、従来と比較して本実施例は大幅に入出力間の抵抗値が低減されている。図3(C)には、直流電流を流したときの自己発熱量の計測例が示されている。グラフG30は本実施例の発熱量,グラフG32は従来構造の発熱量,グラフG34は信号ライン30のみによる発熱量を示す。これらのグラフから明らかなように、本実施例の発熱量は、信号ライン30のみの発熱量にほぼ匹敵しており、従来構造のものと比較して大幅に低減されている。
次に、本実施例におけるESL低減効果について説明する。本実施例では、ESLの値を以下の数式1を用いて求めた。なお、式中、ESLはEquivalent Series Inductanceの略で等価直列インダクタンス、ωは位相角で、ω=2πf(fは周波数)である。S21はSパラメータを測定したときの通過特性を表し、1側から2側に電力を入れたときにどれだけ通過するかという量を表し、ここでは信号用ラインGND用ラインとの間に並列に実装した際の信号減衰量を示す。Zは特性インピーダンスであり、通常測定器は入出力が50Ωで設計されているのでZ=50Ωとする。ESLについて実際の周波数特性を考慮する場合には、本数式で示す場合が多く、高い周波数でESLの比較を行う場合に有効な計算方法である。一般的に3端子型積層コンデンサでは、構造的にインダクタンスLが2つのGND方向に並列に接続されるため、全体でL/2となるとともに、GNDを2分割して両側面に引き出すことで、電流の向きが逆方向となり、磁界相殺される。これらの効果を合わせて、従来の2端子コンデンサと比較してESLは約10〜25%に低減される。本考案においてはGNDを4分割して両サイドに引き出しているため、より一層のESL低減効果を期待できる。
Figure 2006100682
図4(A)〜(C)には、本実施例,従来の3端子構造,2端子構造の各場合の等価回路が示されている。まず、本実施例の場合は、同図(A)に示すように、信号用端子電極26Aと26Bの間にコンデンサCABが並列に接続されており、これからGND用端子電極22A〜22Dに向けて、抵抗RGAとインダクタンスLAの直列回路,抵抗RGBとインダクタンスLBの直列回路,抵抗RGCとインダクタンスLCの直列回路,抵抗RGDとインダクタンスLDの直列回路が、それぞれ接続された等価回路となる。一方、従来の3端子構造の場合は、上述したとおりであり、同図(B)に示すとおりである。更に、2端子構造のコンデンサの場合は、同図(C)に示すように、入出力電極920,922とGND電極924の間に、コンデンサC100,抵抗R100,インダクタンスL100の直列回路が接続された等価回路となる。これらの等価回路に示すように、本実施例においては、GNDは4つの方向に分割して引き出されており、従来の3端子構造より一層のESL低減効果を得ることができる。
図4(D)には、本実施例の3端子型コンデンサと2端子型コンデンサの減衰特性の計測例が示されている。同図中、横軸は周波数[MHz],縦軸は減衰量(通過特性)[dB]である。また、グラフG40は本実施例の3端子型の場合であり、グラフG42は2端子型の場合である。これらのグラフから明らかなように、本実施例の3端子型のほうが良好な減衰特性が得られている。
更に、本実施例では、図4(E),(F)に本実施例と従来構造の内部導体パターンと外部電極の関係を各々示すように、外部端子の信号側とGND側の間隔Laが従来構造の間隔Lbよりも狭い。このため、GNDに至る電流経路が短くなり、これによって信号電極とGND電極間を最短の距離として高周波電流を流すため、ESLが低下する効果も期待できる。
以上のように、本実施例によれば、次のような効果がある。
(1)入出力間の抵抗値が大幅に低減されるようになり、自己発熱量が良好に低減される。
(2)4つの方向に分割してGND接続されているので、ESLは低い値に保持される。
次に、図5を参照しながら、本発明の実施例2について説明する。なお、上述した実施例1と同一または対応する構成要素には、同一の符号を用いることとする(以下の実施例についても同様)。本実施例の3端子型積層コンデンサ50では、図5(B)及び(C)に示すように、GND用内部電極54は、誘電体シート52上に、6つのGND用電極引き出し部54A〜54Fを有するパターン形状として設けられている。該GND用電極引き出し部のうち、54A,54B,54D,54Eの4つは、3端子型積層コンデンサ50の長手方向の両端近傍の側面に露出しており、他の2つのGND用電極引き出し部54C及び54Fは、3端子型積層コンデンサ50の長手方向の端面にそれぞれ露出されている。そして、図5(D)に示すように、各GND用電極引き出し部54A〜54Fは、それぞれ、GND用端子電極56A〜56Fに接続されている。本実施例においては、信号用内部電極10,信号用電極引き出し部10A及び10B,信号用端子電極26A及び26Bは、いずれも先の実施例1と同様である。本実施例によれば、6つの方向に分割してGND接続することにより、上述した実施例1よりも、ESLの値を更に低く保持することができる。
次に、図6を参照しながら、本発明の実施例3について説明する。本実施例の3端子型積層コンデンサ70では、図6(A)〜(C)に示すように、誘電体シート72上に形成された信号用内部電極74に、4つの信号用電極引き出し部74A〜74Dが設けられている。これら信号用電極引き出し部74A〜74Dの端部は、3端子型積層コンデンサ70の長手方向の中央部の両側面にそれぞれ2つずつ露出されており、図6(D)に示すように、一方の側面に引き出された信号用電極引き出し部74A及び74Bは、幅広の信号用端子電極76Aの両側にそれぞれ接続され、他方の側面に引き出された信号用電極引き出し部74C及び74Dは、幅広の信号用端子電極76Bの両側にそれぞれ接続されている。GND用内部電極14,GND用電極引き出し部14A〜14D,GND用端子電極22A〜22Dは、先の実施例1と同様である。このような構成とすることにより、信号用端子電極から信号用電極引き出し部,信号用内部電極,GND用内部電極,GND用電極引き出し部を経て、GND用端子電極に至る電流経路の長さが上述した実施例1よりも更に短くなり、ESLを一層低い値にすることができる。
図7は、本実施例3の変形例を示す図である。実施例3において、信号用内部電極74の分割形成された信号用電極引き出し部74A−74B間、および、74C−74D間を、図7に示すように、連結一体化して幅広の信号用電極引き出し部74E,74Fとすることができる。この場合には、信号用電極引き出し部の断面積が増加するため、更に発熱量を低減することができる。
次に、図8を参照しながら、本発明の実施例4について説明する。本実施例の3端子型積層コンデンサ80は、上述した実施例2のGND用内部電極54と、上述した実施例3の信号用内部電極74を交互に積層した構造となっている。具体的には、図8(A)〜(C)に示すように、GND用内部電極54に、6つのGND用電極引き出し部54A〜54Fが設けられており、そのうち4つのGND用電極引き出し部54A,54B,54D,54Eの各端部が3端子型積層コンデンサ80の長手方向の両端近傍の側面に露出しており、残りの2つのGND用電極引き出し部54C及び54Fが、前記3端子型積層コンデンサ80の長手方向の端面に露出している。すなわち、あわせて6箇所にそれぞれ1つずつ露出されており、図8(D)に示すように、各GND用電極引き出し部54A〜54Fは、それぞれ、GND用端子電極56A〜56Fに接続されている。また、信号用内部電極74には、4つの信号用電極引き出し部74A〜74Dが設けられ、それらの端部が3端子型積層コンデンサ80の長手方向の中央部の両側面にそれぞれ2つずつ露出されている。そして、図8(D)に示すように、一方の側面に引き出された信号用電極引き出し部74A及び74Bは、幅広の信号用端子電極76Aの両側にそれぞれ接続され、他方の側面に引き出された信号用電極引き出し部74C及び74Dは、幅広の信号用端子電極76Bの両側にそれぞれ接続されている。このような構成とすることにより、信号用端子電極から信号用電極引き出し部,信号用内部電極,GND用内部電極,GND用電極引き出し部を経て、GND用端子電極に至る電流経路の長さが、上述した実施例2よりもさらに短くなり、前記実施例2のように6つに分割してGNDを接続した場合の効果に加え、ESLを一層低い値にすることができる。
図9は、本実施例4の変形例を示す図である。上述した実施例3と同様に、本実施例4においても、信号用内部電極74の分割形成された信号用電極引き出し部74A−74B間,74C−74D間を、図9に示すように、連結一体化して幅広の信号用電極引き出し部74E,74Fとすることができる。この場合にも、上述した通り、信号用電極引き出し部の断面積が増加するため、更に発熱量を低減することができる。
次に、図10(A)〜(D)を参照しながら、本発明の実施例5について説明する。実施例5の3端子型積層コンデンサ100は、GND用内部電極が前記角柱状素体の長手方向中央部で2つに分割形成され、前記分割形成された一方のGND用内部電極102の電極引き出し部102A,102Bが、一方の端部近傍のGND用端子電極22A,22Bに接続され、他方のGND用内部電極104のGND用電極引き出し部104A,104Bが前記他方の端部近傍のGND用端子電極22C,22Dに接続されていることを特徴とする。この実施例では、GND用内部電極が、3端子型積層コンデンサ100の素体の内部で信号用端子電極と対向するとともに、積層コンデンサ素体の長手方向の中央部で2分割されているので、3端子型積層コンデンサが回路基板の信号ライン及びこれを挟んで分断形成されているGNDライン上に、中心から積層コンデンサ素体の長手方向に多少位置ずれして実装された場合であっても、信号用端子電極26から信号用内部電極10を介してGNDライン32,34に至る電流経路が左右対称となり、バラツキなく安定したノイズ除去効果が得られる。
次に、図11(A)〜(D)を参照しながら、本発明の実施例6について説明する。GND用内部電極が角柱状積層体コンデンサ素体の長手方向の一端側から他端側に亘って、連続して設けられたことは先の実施例1と同様であるが、実施例6では、GND用内部電極が、一方の端部近傍のGND用電極引き出し部112A,112Bをそれぞれ有するGND用内部電極112と、他方の端部近傍のGND用電極引き出し部114A,114Bをそれぞれ有するGND用内部電極114とを有し、前記一方の端部近傍のGND用電極引き出し部112A,112Bは、一方の端部近傍のGND用端子電極22A、22Bにそれぞれ接続され、前記他方の端部近傍のGND用電極引き出し部114A,114Bは、他方の端部近傍のGND用端子電極22C、22Dにそれぞれ接続されることを特徴とする。この実施例では、3端子型積層セラミックコンデンサ110の素体の内部で信号用内部電極10にそれぞれ対向するGND用内部電極112,114とで、流れる電流の向きが逆転するので、磁界が相殺される。
次に、図12を参照しながら、本発明の実施例7について説明する。本実施例の3端子型積層コンデンサ90では、図12(B)〜(C)に示すように、GND用内部電極14に、4つのGND用電極引き出し部14A〜14Dが設けられ、これらの各端部が、3端子型積層コンデンサ90の長手方向の両端近傍の両側面にそれぞれ露出されている。そして、図12(D)に示すように、各GND用電極引き出し部14A〜14Dは、それぞれ、GND用端子電極22A〜22Dに接続されている。また、本実施例では、図12(A)及び(C)に示すように、2つの信号用内部電極94,96が分割形成されており、各信号用内部電極94及び96は、それぞれ2つの信号用電極引き出し部94A及び94Bと、96A及び96Bを有している。前記信号用電極引き出し部は、角柱状の3端子型積層コンデンサ90の長手方向と平行な両側面の中央部にそれぞれ一対設けられた信号用端子電極98A〜98Dに接続される。具体的には、信号用電極引き出し部94Aは信号用端子電極98Aに接続され、信号用電極引き出し部94Bは信号用端子電極98Bに接続され、信号用電極引き出し部96Aは信号用端子電極98Cに接続され、信号用電極引き出し部96Bは信号用端子電極98Dに接続されるという具合である。本実施例は、実装回路基板上に信号ラインが2本平行して設けられ、さらにその両側にGNDラインが設けられている場合に適する。より具体的には、互いに異なる電圧の電源ラインが2本、GNDラインに挟まれる形で形成されているような場合に好適であり、発熱防止、並びにESLの低減に特に効果を発揮する。
次に、図13〜図15を参照しながら本発明の実施例8について説明する。上述した実施例は、3端子型積層コンデンサや信号ラインなどを集中定数として扱ったものであるが、本実施例は分布定数として扱ったものである。例えば周波数が1[GHz]の場合、自由空間中の交流信号の波長λは、λ[m]=f[Hz]/V[m/s](Vは光速)で求められ、約33[cm]である。誘電体中では誘電率によって波長短縮が起きるため、仮にコンデンサの誘電率εrを3000とすると、波長λbは、λb=λ/√(εr)から、約0.6[cm]となる。つまりノイズ成分や高調波成分の周波数が1[GHz]の場合、λb/4となる0.15[cm]以上の長さに渡って存在するコンデンサは分布定数回路として扱われる。図13(A)にはその様子が示されており、同図(A)は自由空間中の波長λの波形,同図(B)は誘電体中の波長λbの波形である。
分布定数回路は、物理的な長さの関数を持った電気回路であり、ある範囲内にL,C,Rの各要素がまんべんなく存在する。一般には、L,C,Rの各素子の直列回路で表現されるコンデンサも、長さをもっているとL,C,Rの素子が物理的に存在することになる。このような長さを持つことを利用して、広帯域で減衰するフィルタ効果を得ることができる。
図14には、その一例が示されている。まず、同図(A-1)は、コンデンサ単体の場合の実装の様子を示し、信号ライン202を挟んでGNDライン204,206が平行に形成されている。3端子型積層コンデンサ200は、上述した実施例と同様に実装される。これを分布定数の等価回路で示すと、同図(A-2)のようになる。次に、3端子型積層コンデンサ200を同図(B-1)のように複数並列に分布実装すると、等価回路は同図(B-2)のようになる。これらのうち、並列のキャパシタンス及びインダクタンスを比較すると、C200<C202,L200>L202となる。このため、全体として、広帯域で減衰するフィルタ効果を得ることができる。
図15には、かかる3端子型積層コンデンサを複数利用した場合のフィルタ効果の具体例が示されている。同図(A)は、3端子型積層コンデンサ200を間隔なし(=0mm)で基板上に実装した場合であり、同図(B)は間隔=1mmで実装した場合である。使用した3端子型積層コンデンサ200は、容量1[uF],寸法が2.0mm×0.85mm×1.25mmである。減衰量を測定した結果、同図(C)に示すような結果が得られた。同図中、横軸は周波数[MHz],縦軸は減衰量[dB]であり、グラフG11Aは間隔なしの場合,グラフG11Bは間隔1mmの場合である。これらのグラフから、同じ個数のコンデンサを使用する場合でも、部品間隔を空けることによって更に大きな減衰量が得られることが分かる。
次に、図16を参照しながら実施例9について説明する。この実施例は、具体的な実装の例である。まず、同図(A)に示す例は、主基板260上に電源262とLSI263が設けられており、それらの間に平行に設けられた信号ライン266,GNDライン268,270上に、適宜の間隔をおいて3端子型積層コンデンサ264を複数設けた例である。効果的に高周波成分を除去するためには、3端子型積層コンデンサ264を電源262やLSI263の近傍に配置するようにする。同図(B)の例は、半導体パッケージ内での実装例で、サブ基板280上の中心にLSI282が設けられており、該LSI282を囲むように本発明の3端子型積層コンデンサ284が設けられている。同図(C)の例も、同様の例で、サブ基板290上のLSI292の周囲に本発明の3端子型積層コンデンサ294が設けられている。これらの実施例は、特に高速動作しながら緻密な電源制御を行う必要がある場合に好適であり、LSI周辺をコンデンサで囲むことで、サブ基板では難しいコンデンサ容量の供給と低ESL化,広帯域なデカップリングが可能となる。
ここで、上述した実施例についての効果についてまとめる。
(1)従来の3端子型積層コンデンサでは、柱状積層コンデンサ素体の長手方向の両端面および長手方向と平行な両側面にそれぞれ端子電極を有するため、従来の2端子型の端子電極形成設備のほかに、両側面に端子電極を形成するための特別なプロセス及び電極形成設備を必要とする。これに対し、実施例1,3,5〜7では、GND用端子電極及び信号用端子電極が積層コンデンサの長手方向の端面を除く両側面に設けられているので、例えば、アレイタイプの端子電極形成設備を用ることができ、両側面に複数の端子電極を少ない工数で一括で形成できるというメリットを有する。
(2)また、従来の3端子型積層コンデンサ実装回路基板では、コンデンサを実装する実装回路基板のGNDライン及び信号ラインが、通常の2端子コンデンサを実装する場合のライン形状と異なり、GNDラインと信号ラインとが交差する箇所を有する特別なラインパターンを作らなければならず、3端子型積層コンデンサの取り付け箇所の移動や増設が困難であった。これに対し、上述した実施例の3端子型積層コンデンサ実装回路基板では、GNDラインと信号ラインとが交差する箇所など、特別なラインパターンを必要としないため、3端子型積層コンデンサの取り付け箇所の移動や増設を容易に行うことができる。
(3)上述した実施例3、4においては、信号用電極引き出し部を一つの信号用内部電極に対し複数箇所形成することにより信号ラインに大きな電流を流す場合や、信号ラインの抵抗値を下げて消費電力を小さくするために幅広の信号ラインを採用した実装回路基板においては、信号用端子電極の幅をGND用端子電極の幅に比べて幅広とすることができる。これにより、信号用端子電極、信号用電極引き出し部,信号用内部電極,GND用内部電極,GND用電極引き出し部,GND用端子電極に至る電流経路を短くして、ESLを低い値にすることができる。
(4)また、本発明の実施例1,3,5〜7に記載の3端子型積層コンデンサでは、実装回路基板に実装した際に、半田フィレットが、信号ラインの長手方向に沿って形成されるだけなので、特別なランドを必要としない。このため、周囲に他の実装部品が搭載されている場合でも、これらの部品を避けて、信号ラインに並行したわずかな隙間に実装することが可能となる。
なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した材料,寸法は一例であり、必要に応じて適宜変更してよい。
(2)前記実施例に示した信号用電極引き出し部,GND用電極引き出し部,信号用端子電極,GND用端子電極の形状も一例であり、同様の効果を奏するように適宜変更可能である。
(3)信号用内部電極とGND用内部電極の積層数も一例であり、必要に応じて適宜増減してよい。
(4)前記実施例に示した製造手順や製造条件は一例であり、何ら前記実施例に限定されるものではない。
(5)上述した実施例9に示す3端子型積層コンデンサの実装例も一例であり、同様の効果を奏するように適宜配置を変更してよい。
本発明によれば、低いESL値を保ったまま自己発熱量が低減されるので、集積回路の電源回路などに好適である。
本発明の実施例1の3端子型積層コンデンサを示す図である。 前記実施例1の3端子型積層コンデンサの実装の様子を示す図である。 前記実施例1の信号ラインに沿った構造,等価回路,発熱特性を示す図である。 前記実施例1におけるESL低減の様子を示す図である。 本発明の実施例2の3端子型積層コンデンサを示す図である。 本発明の実施例3の3端子型積層コンデンサを示す図である。 前記実施例3の変形例を示す図である。 本発明の実施例4の3端子型積層コンデンサを示す図である。 前記実施例4の変形例を示す図である。 本発明の実施例5の3端子型積層コンデンサを示す図である。 本発明の実施例6の3端子型積層コンデンサを示す図である。 本発明の実施例7の3端子型積層コンデンサを示す図である。 本発明の実施例8における波長変化の様子を示す説明図である。 前記実施例8における実装の様子と分布定数回路の等価回路を示す図である。 前記実施例8の実装の様子と減衰特性を示す図である。 本発明の実施例9を示す図である。 従来の3端子型積層コンデンサの導体パターン,積層状態,実装の様子を示す図である。 前記従来例の等価回路と発熱特性を示す図である。
符号の説明
10:信号用内部電極
10A,10B:信号用電極引き出し部
12:誘電体シート
14:GND用内部電極
14A〜14D:GND用電極引き出し部
16:誘電体シート
18,19:誘電体層
20:3端子型積層コンデンサ
22A〜22D:GND用端子電極
26A,26B:信号用端子電極
30:信号ライン
32,34:GNDライン
50:3端子型積層コンデンサ
52:誘電体シート
54:GND用内部電極
54A〜54F:GND用電極引き出し部
56A〜56F:GND用端子電極
70,70A:3端子型積層コンデンサ
72:誘電体シート
74:信号用内部電極
74A〜74D:信号用電極引き出し部
76A,76B:信号用端子電極
80,80A:3端子型積層コンデンサ
90:3端子型積層コンデンサ
92:誘電体シート
94,96:信号用内部電極
94A,94B,96A,96B:信号用電極引き出し部
98A〜98D:信号用端子電極
100:3端子型積層コンデンサ
102,104:GND用内部電極
102A,102B,104A,104B:GND用電極引き出し部
110:3端子型積層コンデンサ
112,114:GND用内部電極
112A,112B,114A,114B:GND用電極引き出し部
200:3端子型積層コンデンサ
202:信号ライン
204,206:GNDライン
260:主基板
262:電源
263:LSI
264:3端子型積層コンデンサ
266:信号ライン
268,270:GNDライン
280:サブ基板
282:LSI
284:3端子型積層コンデンサ
290:サブ基板
292:LSI
294:3端子型積層コンデンサ

Claims (9)

  1. 少なくとも一対の信号用端子電極とGND用端子電極とを有する3端子型積層コンデンサが実装された回路基板であって、
    該基板の表面には、前記少なくとも一対の信号用端子電極が接続される信号用導体パターンが同一ラインとして連続形成されるとともに、該信号用導体パターンを挟んで、前記GND用端子電極が接続されるGND用導体パターンが分断形成されており、
    前記3端子型積層コンデンサは、角柱状の積層コンデンサ素体の内部において、誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、
    前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な一方または両方の側面に露出する信号用電極引き出し部を有し、
    前記GND用内部電極は、少なくとも前記素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、
    前記素体の表面の長手方向の中央部には、前記信号用電極引き出し部に接続される一対の信号用端子電極が形成され、
    前記素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されており、
    前記素体表面に形成された一対の信号用端子電極のそれぞれが、前記信号用導体パターン上に配置されたことを特徴とする3端子型積層コンデンサ実装回路基板。
  2. 前記3端子型積層コンデンサが、前記信号用導体パターンの長手方向に沿って、互いに離間して複数個実装されていることを特徴とする請求項1記載の3端子型積層コンデンサ実装回路基板。
  3. 前記3端子型積層コンデンサを、集積回路の周囲を囲むように複数個配置したことを特徴とする請求項1記載の3端子型積層コンデンサ実装回路基板。
  4. 角柱状の積層コンデンサ素体の内部において誘電体層を挟んで信号用内部電極とGND用内部電極とが少なくとも積層方向で重なるように形成され、
    前記信号用内部電極は、前記角柱状の素体の長手方向の中央部において該素体の長手方向と平行な一方または両方の側面に露出する信号用電極引き出し部を有し、
    前記GND用内部電極は、少なくとも前記素体の長手方向の中央部を除く側面に露出するGND用電極引き出し部を有し、
    前記素体の表面の長手方向の中央部には、前記信号用電極引き出し部に接続される一対の信号用端子電極が形成され、
    前記素体の表面の長手方向と平行な側面の一方の端部近傍及び他方の端部の近傍にはそれぞれ、前記GND用電極引き出し部に接続されるGND用端子電極が形成されていることを特徴とする3端子型積層コンデンサ。
  5. 前記GND用端子電極は、前記角柱状素体の長手方向の両端面を除く側面と、該側面に接する両主面に連続して形成されていることを特徴とする請求項4記載の3端子型積層コンデンサ。
  6. 前記GND用内部電極は、前記角柱状素体の長手方向の一端側から他端側に亘って連続して設けられ、前記一方の端部近傍のGND用端子電極、および前記他方の端部近傍のGND用端子電極の両方に接続されることを特徴とする請求項4記載の3端子型積層コンデンサ。
  7. 前記GND用内部電極は、前記角柱状素体の長手方向中央部で2つに分割形成され、前記分割形成されたGND用内部電極の一方が前記一方の端部近傍のGND用端子電極に接続され、他方のGND用内部電極が前記他方の端部近傍のGND用端子電極に接続されていることを特徴とする請求項4記載の3端子型積層コンデンサ。
  8. 前記GND用内部電極は、それぞれ前記角柱状素体の長手方向の一端側から他端側に亘って連続して設けられ、前記一方の端部近傍のGND用端子電極、または、前記他方の端部近傍のGND用端子電極のいずれか一方のみに接続されることを特徴とする請求項4記載の3端子型積層コンデンサ。
  9. 前記信号用内部電極は前記角柱状素体の長手方向中央部で2つに分割形成され、前記信号用内部電極にはそれぞれ角柱状素体の長手方向中央部寄りの両側にそれぞれ一対の信号用電極引き出し部が設けられ、前記角柱状素体の長手方向中央部寄りの両側にはそれぞれ一対の信号用端子電極が設けられ、前記一方の信号用内部電極の電極引き出し部が、前記角柱状素体の長手方向中央部寄りの両側にそれぞれ互いに近接して分割形成された一対の信号用端子電極の一方に接続され、前記他方の信号用内部電極の電極引き出し部が、前記角柱状素体の長手方向中央部寄りの両側にそれぞれ互いに近接して分割形成された一対の信号用端子電極の他方に接続されていることを特徴とする請求項4記載の3端子型積層コンデンサ。

JP2004286804A 2004-09-30 2004-09-30 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ Pending JP2006100682A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004286804A JP2006100682A (ja) 2004-09-30 2004-09-30 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286804A JP2006100682A (ja) 2004-09-30 2004-09-30 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ

Publications (1)

Publication Number Publication Date
JP2006100682A true JP2006100682A (ja) 2006-04-13

Family

ID=36240174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286804A Pending JP2006100682A (ja) 2004-09-30 2004-09-30 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ

Country Status (1)

Country Link
JP (1) JP2006100682A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044376A1 (fr) * 2006-10-06 2008-04-17 Sanyo Electric Co., Ltd. Dispositif électrique
JP2008193055A (ja) * 2007-02-05 2008-08-21 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
KR101025999B1 (ko) * 2008-12-12 2011-03-30 삼성전기주식회사 회로기판 장치 및 집적회로 장치
JP2011097091A (ja) * 2007-02-05 2011-05-12 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
WO2013164952A1 (ja) * 2012-05-02 2013-11-07 株式会社村田製作所 電子部品
JP2014220520A (ja) * 2011-08-26 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ
JP2015023287A (ja) * 2013-07-17 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ及びその実装基板
US20150114705A1 (en) * 2013-10-29 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
JP2016149425A (ja) * 2015-02-12 2016-08-18 Tdk株式会社 積層貫通コンデンサ
KR20170094488A (ko) 2016-02-09 2017-08-18 가부시키가이샤 무라타 세이사쿠쇼 전자부품
JP2018093164A (ja) * 2016-12-02 2018-06-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板
US10593473B2 (en) 2013-07-17 2020-03-17 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
JP2020145460A (ja) * 2014-01-13 2020-09-10 アップル インコーポレイテッドApple Inc. 多層コンデンサの音響ノイズキャンセル
JP2020198358A (ja) * 2019-05-31 2020-12-10 株式会社村田製作所 電子部品の製造方法および導電性ペースト塗布装置
WO2023238453A1 (ja) * 2022-06-08 2023-12-14 株式会社村田製作所 積層セラミックコンデンサ
WO2023243186A1 (ja) * 2022-06-17 2023-12-21 株式会社村田製作所 3端子型積層セラミックコンデンサ

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023069B2 (ja) * 2006-10-06 2012-09-12 三洋電機株式会社 電気素子
JPWO2008044376A1 (ja) * 2006-10-06 2010-02-04 三洋電機株式会社 電気素子
WO2008044376A1 (fr) * 2006-10-06 2008-04-17 Sanyo Electric Co., Ltd. Dispositif électrique
US8098478B2 (en) 2006-10-06 2012-01-17 Sanyo Electric Co., Ltd. Electric element
JP2008193055A (ja) * 2007-02-05 2008-08-21 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
US7920370B2 (en) 2007-02-05 2011-04-05 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor
JP2011097091A (ja) * 2007-02-05 2011-05-12 Samsung Electro-Mechanics Co Ltd 積層型チップキャパシタ
US7990677B2 (en) 2007-02-05 2011-08-02 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor
US8149565B2 (en) 2008-12-12 2012-04-03 Samsung Electro-Mechanics Co., Ltd. Circuit board device and integrated circuit device
KR101025999B1 (ko) * 2008-12-12 2011-03-30 삼성전기주식회사 회로기판 장치 및 집적회로 장치
JP2014220520A (ja) * 2011-08-26 2014-11-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ
CN104254895B (zh) * 2012-05-02 2018-05-04 株式会社村田制作所 电子元器件
WO2013164952A1 (ja) * 2012-05-02 2013-11-07 株式会社村田製作所 電子部品
CN104254895A (zh) * 2012-05-02 2014-12-31 株式会社村田制作所 电子元器件
JPWO2013164952A1 (ja) * 2012-05-02 2015-12-24 株式会社村田製作所 電子部品
US10192671B2 (en) 2012-05-02 2019-01-29 Murata Manufacturing Co., Ltd. Electronic component
JP2015023287A (ja) * 2013-07-17 2015-02-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミックキャパシタ及びその実装基板
US10593473B2 (en) 2013-07-17 2020-03-17 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
US9396879B2 (en) * 2013-10-29 2016-07-19 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
US20150114705A1 (en) * 2013-10-29 2015-04-30 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
US9583267B2 (en) 2013-10-29 2017-02-28 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
JP7050113B2 (ja) 2014-01-13 2022-04-07 アップル インコーポレイテッド 多層コンデンサの音響ノイズキャンセル
JP2020145460A (ja) * 2014-01-13 2020-09-10 アップル インコーポレイテッドApple Inc. 多層コンデンサの音響ノイズキャンセル
JP2016149425A (ja) * 2015-02-12 2016-08-18 Tdk株式会社 積層貫通コンデンサ
US10504652B2 (en) 2016-02-09 2019-12-10 Murata Manufacturing Co., Ltd. Electronic component
KR20170094488A (ko) 2016-02-09 2017-08-18 가부시키가이샤 무라타 세이사쿠쇼 전자부품
US10347430B2 (en) 2016-12-02 2019-07-09 Samsung EIectro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board having the same
US10707021B2 (en) 2016-12-02 2020-07-07 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board having the same
JP2018093164A (ja) * 2016-12-02 2018-06-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層セラミック電子部品及びその実装基板
JP2020198358A (ja) * 2019-05-31 2020-12-10 株式会社村田製作所 電子部品の製造方法および導電性ペースト塗布装置
JP7238607B2 (ja) 2019-05-31 2023-03-14 株式会社村田製作所 電子部品の製造方法および導電性ペースト塗布装置
WO2023238453A1 (ja) * 2022-06-08 2023-12-14 株式会社村田製作所 積層セラミックコンデンサ
WO2023243186A1 (ja) * 2022-06-17 2023-12-21 株式会社村田製作所 3端子型積層セラミックコンデンサ

Similar Documents

Publication Publication Date Title
JP4108650B2 (ja) 積層コンデンサ
JP2006100682A (ja) 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ
US7420796B2 (en) Multilayer capacitor
US8077444B2 (en) Multilayer capacitor
US10062501B2 (en) ESD protection device and common mode choke coil with built-in ESD protection device
JP4637674B2 (ja) 積層コンデンサ
JP2004311877A (ja) 静電気対策部品
JP2009194096A (ja) 部品内蔵基板、及びそれを用いた部品パッケージ
JP2000208361A (ja) 積層コンデンサ
JP2006100708A (ja) 3端子型積層コンデンサ実装回路基板および3端子型積層コンデンサ
JP2006013383A (ja) 積層コンデンサ
KR20140143340A (ko) 적층 세라믹 커패시터 및 그 실장 기판
JP2021022588A (ja) コンデンサ素子
JPWO2007063704A1 (ja) 積層コンデンサおよびその実装構造
JP2006100451A (ja) 3端子積層コンデンサ及び実装構造
US9147513B2 (en) Series inductor array implemented as a single winding and filter including the same
JP2004296940A (ja) 積層コンデンサ
JP2008192808A (ja) 積層型電子部品の実装構造
JP2005260137A (ja) 静電気対策部品
JP2000223348A (ja) 積層セラミックコンデンサ
JP2006013380A (ja) 積層コンデンサ
JP2001044074A (ja) 積層セラミックコンデンサ
JP3511569B2 (ja) 積層コンデンサ
JP4761904B2 (ja) 積層コンデンサ
US11316492B2 (en) Balun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407