JP2006100451A - 3端子積層コンデンサ及び実装構造 - Google Patents

3端子積層コンデンサ及び実装構造 Download PDF

Info

Publication number
JP2006100451A
JP2006100451A JP2004282853A JP2004282853A JP2006100451A JP 2006100451 A JP2006100451 A JP 2006100451A JP 2004282853 A JP2004282853 A JP 2004282853A JP 2004282853 A JP2004282853 A JP 2004282853A JP 2006100451 A JP2006100451 A JP 2006100451A
Authority
JP
Japan
Prior art keywords
gnd
electrode
substrate
multilayer capacitor
terminal multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004282853A
Other languages
English (en)
Inventor
Masayuki Shimizu
政行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004282853A priority Critical patent/JP2006100451A/ja
Publication of JP2006100451A publication Critical patent/JP2006100451A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

【課題】
ESLを低減して、広い周波数帯域で良好なデカップリングを実現する。
【解決手段】
積層体12の短手方向端面全体を覆うように、積層体12の側面に長手方向に沿ってGND電極14が設けられ、信号電極16,18は、積層体12の長手方向端面であって、前記GND電極14に挟まれるようにコ字状に形成される。GND電極14に接続されるGND側導体パターン20は、誘電体シート22の短手方向の端からは露出し、長手方向の端からは露出しないように形成され、短手側の端14Aが、GND電極14に接合する。前記信号電極16,18に接続される信号側導体パターン24は、誘電体シート26の長手方向の端からは中央部が露出し、短手方向の端からは露出しないように形成され、長手側の端16A,18Aが信号電極16,18にそれぞれ接合する。
【選択図】図1

Description

本発明は、3端子積層コンデンサ及びその実装構造に関し、更に具体的には、3端子積層コンデンサのESL(実効直列インダクタンス)の低減に関するものである。
情報機器を中心とした近年におけるデータ処理の高速化,通信回線速度の向上に伴い、LSIなどの半導体装置は動作が高速化する傾向にある。かかる半導体装置の電源回路は、半導体装置に対して動作に必要なDC(直流)成分を供給するが、電源スイッチングやクロック動作に伴う高調波は動作を不安定にし、不要な電波として放射されることもある。そこで、電源回路には、高速動作を補うための大容量コンデンサと、広帯域でのデカップリング,すなわち低い周波数から高い周波数まで信号を減衰させることができる低ESLコンデンサが使用される。
ところで、積層コンデンサとしては、まず、図8(A)に示すような構造のものがある。これは、セラミックなどの誘電体シートに電極を形成して積層した積層体900の長手方向両端に電極902,904を形成したもので、一方を信号電極,他方をGND(グランド)電極として使用する。同図(B),(C)に示すコンデンサは、下記特許文献1に示すもので、円形の支持板910上に積層チップコンデンサ912を放射状に複数配置し、全体を貫通型コンデンサとして使用するものである。同図(D)に示すコンデンサは、下記特許文献2に示すもので、誘電体シートの積層体920の長手方向両端に信号電極922,924を形成し、側面にGND電極926を形成した3端子型のコンデンサである。いずれも、信号電極に対してGNDに流れ込む電流が対称になるように部品を実装するか、あるいは電極構造を改良することで、ESLを減らし、デカップリング性能が向上するように工夫される。例えば、前記図8(D)の例では、同図(E)に示すように、マイクロストリップ構造の基板930に設けられたビアホール932によって、GND電極926が基板裏面側のGND導体パターン(図示せず)に接続されている。
実開昭56−84338号公報 特開2001−15885公報
ところで、上述した背景技術におけるESL値を、1.6(L)×0.8(W)×0.8(T)mm形状を例として計測すると、図9(A)になる。図中、グラフGAは前記図8(A)の通常2端子の場合,グラフGBは前記図8(B)の貫通型実装4個の場合,グラフGCは前記図8(D)の3端子の場合である。図9(A)のグラフから、ESLは、通常2端子>3端子>貫通型(多端子)となる。このように、信号ラインからGNDに至る配線数が多いほど、ESLは低くなるが、それでも数十pHのESLは存在し、一桁の数pHになることはない。
これは、部品自体が持つインダクタンスに加えて、実装する基板のインダクタンス,すなわちGNDインダクタンスが存在するためである。図9(B)には、実装時の等価回路が示されている。同図において、信号電極950,952間に直列接続されているインダクタンスLA,LB,LCは、電源配線を表す。また、これらの間に、部品本来のキャパシタンスCA,CBが並列接続されている。GNDインダクタンスLP,LQは、前記キャパシタンスCA,CBとGNDとの間に直接に接続されるようになる。上述した図8(E)のような、マイクロストリップ構造の基板930の裏面のGND導体パターンにビアホール932によって接続される場合は、ESLの大半が基板930のGNDインダクタンスとなる。
一方、広帯域のデカップリングを実現する方法として、単体の異種容量コンデンサを複数組み合わせる方法がある。例えば、図10(A)に示すように、100pF,1000pF,0.1μFの各容量のコンデンサCX,CY,CZを、基板960の導体パターン962,964上に実装する。得たい理想的なデカップリング特性は、図10(B)に示すグラフGPである。これに対し、0.1μFのコンデンサCZのみの場合は、グラフGQとなる。これに1000pFのコンデンサCYを加え、CY+CZとしたときの特性は、グラフGRとなる。これに100pFのコンデンサCXを加え、CX+CY+CZとしたときの特性は、グラフGSとなる。
これらのグラフを参照すれば明らかなように、複数のコンデンサを組み合わせても、ESLはさほど低下せず、共振周波数付近で減衰量がわずかに増えるのみである。
以上のように、広帯域で良好なデカップリングを実現するためには、上述した従来の実装方法や、単体部品の単純な組み合わせでは限界がある。
本発明は、以上の点に着目したもので、ESLを低減して、広い周波数帯域で良好なデカップリングを実現できる3端子コンデンサ及び実装構造を提供することを、その目的とするものである。
前記目的を達成するため、本発明は、積層体表面に、入力電極,出力電極,GND電極を有する3端子積層コンデンサであって、前記入力電極及び出力電極は、それぞれ前記積層体の対向する長手方向端面に形成され、前記GND電極は、前記積層体の長手方向に沿って、該積層体の短手方向の両端面に形成されていることを特徴とする。
主要な形態の一つは、前記GND電極は、前記積層体の長手方向端面に回りこんで形成されており、前記入力電極及び出力電極は、前記長手方向端面において、前記GND電極に挟まれるように形成されていることを特徴とする。他の形態は、前記積層体の長手方向端面におけるGND電極と、前記入力電極及び出力電極との間隔は、実装用基板の信号用パターンとGND用パターンとの間隔と略同一であることを特徴とする。更に他の形態は、基板実装面及び該基板実装面と対向する面において、前記積層体の短手方向の両端面に形成されたGND電極同士が接続するように、前記GND電極を形成したことを特徴とする。
他の発明は、前記3端子積層コンデンサを基板に実装するための実装構造であって、前記基板としてコプレーナ型基板を使用するとともに、該基板の信号用パターンとGND用パターンを有する面に、前記3端子積層コンデンサを実装したことを特徴とする。主要な形態の一つは、前記コンプレーナ型基板は、前記3端子積層コンデンサの実装面と対向する面にもGND用パターンが形成されており、これら対向する両面のGND用パターンを接続するための接続手段を有することを特徴とする。他の形態は、前記接続手段が、ビアホール又はスルーホールであることを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。
本発明によれば、GND電極を積層体の長手方向に沿って形成することで、GND電極の面積が増大してインダクタンスが減少する。更に、前記積層体の短手方向端面に形成されたGND電極間を接続することにより、GND面積が増大し、一層ESL(実効直列インダクタンス)の低減を図ることができる。また、実装基板としてコプレーナ型基板を使用することで、基板側のインダクタンスも低減される。このため、全体として、従来の3端子コンデンサ構造やマイクロストリップラインを用いた実装基板の組み合わせよりもESLが大幅に低減され、広い周波数帯域で良好なデカップリングを実現できる。
以下、本発明を実施するための最良の形態を、いくつかの実施例に基づいて詳細に説明する。
最初に、図1〜図3を参照しながら、本発明の実施例1について説明する。図1には、本実施例にかかる3端子積層コンデンサ10の電極構造が示されている。同図(A)に外観を示すように、積層体12の短手方向端面全体を覆うようにGND電極14がそれぞれ設けられている。すなわち、GND電極14は、積層体12の側面に、長手方向に沿って対称に設けられている。一方、信号電極16,18は、積層体12の長手方向端面であって、前記GND電極14に挟まれるように、コ字状に形成されている。
同図(B),(C)には、積層体12を構成する誘電体シート及び導体パターンの一例が示されている。まず(B)は、前記GND電極14に接続されるGND側導体パターン20で、セラミックなどによる誘電体シート22の短手方向の端からは露出するように、長手方向の端からは露出しないように、形成されている。GND側導体パターン20の短手側の端14AがGND電極14に接合する。同図(C)は、前記信号電極16,18に接続される信号側導体パターン24で、誘電体シート26の長手方向の端からは中央部が露出するように、短手方向の端からは露出しないように、形成されている。信号側導体パターン24の長手側の端16A,18Aが信号電極16,18にそれぞれ接合する。
図1(D)は、本実施例の他の例で、3端子積層コンデンサ10´は、積層体12の表裏両面,すなわち、基板実装面及び該基板実装面と対向する面において、GND電極14´によって、前記積層体12の両側面のGND電極14同士が接続された構造となっている。他の構造は、前記例と基本的には同様である。
具体例を挙げると、原材料にチタン酸バリウム系誘電体材料を用い、この配合原料をボールミルで湿式混合し、粉砕した後乾燥し、空気中において1100℃で2時間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機によって粉砕し、粒径が1μm以下の原料粉末を得る。この原料粉末に、ポリビニルブチラール系バインダ及びエタノールなどの有機溶剤を加え、ボールミルによって湿式混合し、セラミックスラリを調製した後、セラミックスラリをドクターブレード法によってシート成形し、厚み2〜3μmの矩形のグリーンシートを得た。次に、このセラミックグリーンシート上に、Niを主体とする導電ペーストを印刷し、内部電極を構成するための導電ペースト層を形成した。導電ペースト層が形成されたセラミックグリーンシートを、図1(B),(C)に示すパターンが交互となるように複数枚積層し、積層体を得た。得られた積層体の角取りを行った後、電極ペーストを用いて、電極14〜18を形成する。続いて、酸素分圧が10−9〜1012MPaのH−N−空気ガスからなる還元性雰囲気中において1300℃で2時間焼成し、セラミック焼結体を得て完成品に至る。
図2(A-1)〜(A-4)は、本実施例にかかる3端子積層コンデンサの寸法例を示し、同図(B-1)〜(B-3)は、従来の3端子積層コンデンサの寸法例を示す。同図中、「G」はGND電極を表し、「S」は信号電極を表す。また、図中の数値の単位は[mm]である。両者を比較すると、GND電極の幅が約4倍,信号電極の幅が半分以下となっている。このように、本実施例では、GND電極14の幅が広くなっている。
図3には、本実施例と上述した従来例のコンデンサの等価回路が示されている。まず、通常の2端子コンデンサの等価回路は、同図(B)に示すように、信号電極M10,M12に対して、抵抗R10,キャパシタンスC10,インダクタンスL10の直列回路が接続された構成となる。次に、3端子コンデンサの場合は、同図(C)に示すように、信号電極M20,M22に対して、抵抗R20,キャパシタンスC20の直列回路に、インダクタンスL20,L22の並列回路を接続した構成となる。対称に設けられたGND電極に流れる電流の方向は逆ベクトルとなる。すなわち、図中に黒丸で示すように、インダクタンスL20,L22を流れる電流の方向が逆となり、磁界が相殺されてインダクタンスが低減されるようになる。
これに対し、本実施例では、GND電極14が幅広となっている。このため、同図(A)に示すように、信号電極M30,M32に対して、抵抗R30,キャパシタンスC30の直列回路に、インダクタンスL30,L32の並列回路を複数接続した構成となる。従って、全体としてインダクタンスの値が大幅に低減されるようになる。
以上のように、本実施例によれば、GND電極を、積層体の短手方向端面に幅広に形成することとしたので、ESLが大幅に低減されるようになり、広い周波数帯域で良好なデカップリングを実現することができる。また、GND電極が積層体の長手方向端面に回りこんで形成され、入力電極および出力電極がGND電極に挟まれるように形成することにより、長手方向端面で入力電極および出力電極とGND電極が並んで形成されるので、信号線とGNDとの距離が短くなって、よりインダクタンスを下げることができる。更に、図1(D)に示す例のように、基板実装面と該実装面に対向する面の両面において、前記積層体12の側面のGND電極14同士を接続することにより、GND面積が増大し、ESLの一層の低減を図ることが可能となる。
次に、図4を参照しながら、本発明の実施例2について説明する。本実施例のコプレーナ基板の導体パターンは、図4(A)及び(B)に示すようになる。なお、(B)は(A)の#4B−#4B線に沿って矢印方向に見た断面である。これらの図のように、基板200は、表裏に部品を実装するGNDパターンが形成されたコプレーナ型となっている。基板ベース201の裏面にはGNDパターン202が形成されており、表面の両側にもGNDパターン204が形成されている。これらのGNDパターン204は、基板ベース201の中央で接合されてH字状に形成されており、これらGNDパターン204と適宜のギャップを挟んで信号用パターン206が形成されている。GNDパターン202,204は、多数のビアホール208によって表裏で接続されている。上述した実施例1の3端子積層コンデンサ10又は10´は、例えば点線で示すように、基板200上に実装される。なお、前記3端子積層コンデンサ10(又は10´)の長手方向端面におけるGND電極14と、前記信号電極16,18との間隔は、前記基板200のGNDパターン204と信号用パターン206との間隔と略同一となるように予め設定されている。
一方、従来のマイクロストリップライン型基板の導体パターンは、図4(C)及び(D)に示すようになる。なお、(D)は(C)の#4D−#4D線に沿って矢印方向に見た断面である。これらの図のように、基板220は、部品を実装するGNDパターン222が基板ベース221の裏面にのみ形成されており、表面には、コンデンサ用のGNDパターン224を挟んで信号用パターン226が形成されている。GNDパターン222,224は、ビアホール228によって表裏で接続されている。上述した従来の電極構造の3端子積層コンデンサは、例えば点線で示すように、基板220上に実装される。
両者を比較すると、マイクロストリップライン構造の場合、基板裏面側のGNDパターン222に他の部品が実装されるため、上述したようにビアホール228による基板厚み分のインダクタンスが影響する。これに対し、本実施例のコプレーナ構造では、3端子積層コンデンサ10のGND電極14と基板側のGNDパターン204が直接接続され、このGNDパターン204上に他の部品が実装される。このため、コンデンサとGNDまでの距離が実質「0」となり、GNDインダクタンスの影響をほぼなくすことが可能となる。
次に、図5〜図6を参照しながら本発明の実施例3について説明する。上述した実施例は、3端子積層コンデンサを集中定数として扱ったものであるが、本実施例は分布定数として扱ったものである。例えば周波数が1[GHz]の場合、自由空間中の交流信号の波長λは、λ[m]=f[Hz]/V[m/s](Vは光速)で求められ、約33[cm]である。誘電体中では誘電率によって波長短縮が起きるため、仮にコンデンサの誘電率εrを3000とすると、波長λbは、λb=λ/√(εr)から、約0.6[cm]となる。つまりノイズ成分や高調波成分の周波数が1[GHz]の場合、λb/4となる0.15[cm]以上の長さに渡って存在するコンデンサは分布定数回路として扱われる。図5(A)にはその様子が示されており、同図(A)は自由空間中の波長λの波形,同図(B)は誘電体中の波長λbの波形である。
分布定数回路は、物理的な長さの関数を持った電気回路であり、ある範囲内にL,C,Rの各要素がまんべんなく存在する。一般には、L,C,Rの各素子の直列回路で表現されるコンデンサも、長さをもっているとL,C,Rの素子が物理的に存在することになる。このような長さを持つことを利用して、広帯域で減衰するフィルタ効果を得ることができる。
図6には、その一例が示されている。まず、同図(A-1)は、上述した実施例1の3端子積層コンデンサ10単体を、前記実施例2に示したコプレーナ型基板200に実装した場合を示したものである。これを分布定数の等価回路で示すと、同図(A-2)のようになる。一方、従来の3端子積層コンデンサ300を同図(B-1)のようにコプレーナ型基板200上に複数並列に分布実装すると、等価回路は同図(B-2)のようになる。これらを比較すると、本実施例の3端子積層コンデンサ10は、分布定数回路的に見ると、複数並列実装と同様に考えることができ、広帯域で減衰するフィルタ効果も得ることができる。
次に、図7を参照しながら実施例4について説明する。この実施例は、具体的な実装の例である。まず、同図(A)に示す例は、主基板260上に電源262とLSI263が設けられており、それらの間に平行に設けられた信号ライン266,GNDライン268,270上に、適宜の間隔をおいて上述した3端子積層コンデンサ264を設けた例である。効果的に高周波成分を除去するためには、3端子積層コンデンサ264を電源262やLSI263の近傍に配置するようにする。同図(B)の例は、半導体パッケージ内での実装例で、サブ基板280上の中心にLSI282が設けられており、該LSI282を囲むように本発明の3端子積層コンデンサ284が設けられている。同図(C)の例も、同様の例で、サブ基板290上のLSI292の周囲に本発明の3端子積層コンデンサ294が設けられている。これらの実施例は、特に高速動作しながら緻密な電源制御を行う必要がある場合に好適であり、LSI周辺をコンデンサで囲むことで、サブ基板では難しいコンデンサ容量の供給と低ESL化,広帯域なデカップリングが可能となる。
なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例に示した具体的な形状や寸法は一例であり、同様の作用を奏するように変形してよい。
(2)前記実施例は、本発明の3端子積層コンデンサを主としてデカップリングに使用した場合を説明したが、他の用途に用いることを妨げるものではない。
(3)本発明は、ESLの低減による広帯域なデカップリングを主用途としているが、同様の目的で、GHz帯域における高周波部品構造,例えば、特定の周波数を通過させるフィルタ,あるいは、特定の周波数成分を通過させないフィルタ等にも応用可能である。
(4)前記実施例で示した材料は一例であり、コンデンサ材料に限定されるものではなく、バリスタ等の材料を用いるようにしても同様の効果が得られる。
本発明によれば、3端子積層コンデンサのGND電極面積が増加し、等価的なインダクタンス成分が減少するので、電源回路のデカップリングコンデンサや、GHz帯域における高周波部品構造としての用途に好適である。
本発明の実施例1の3端子積層コンデンサを示す図である。 前記実施例1の3端子積層コンデンサの寸法例を従来技術と比較して示す図である。 前記実施例1の等価回路を従来技術と比較して示す図である。 本発明の実施例2の実装基板を従来技術と比較して示す図である。 自由空間中と誘電体中における電圧波長の様子を比較して示す図である。 本発明の3端子積層コンデンサと並列接続したフィルタの実装の様子と等価回路を比較して示す図である。 本発明の3端子積層コンデンサの実装例を示す図である。 従来のコンデンサの例を示す図である。 前記図8の各コンデンサのESLを比較して示すとともに、3端子積層コンデンサの等価回路を示す図である。 異種容量のコンデンサによるデカップリングの様子を示す図である。
符号の説明
10,10´:3端子積層コンデンサ
12:積層体
14,14´:GND電極
14A:端
16,18:信号電極
16A,18A:端
20:GND側導体パターン
22:誘電体シート
24:信号側導体パターン
26:誘電体シート
200:基板
201:基板ベース
202,204:GNDパターン
206:信号用パターン
208:ビアホール
220:基板
221:基板ベース
222,224:GNDパターン
226:信号用パターン
228:ビアホール
260:主基板
262:電源
263:LSI
264:3端子積層コンデンサ
266:信号ライン
268,270:GNDライン
280:サブ基板
282:LSI
284:3端子積層コンデンサ
290:サブ基板
292:LSI
294:3端子積層コンデンサ
300:3端子積層コンデンサ
900:積層体
902,904:電極
910:支持板
912:積層チップコンデンサ
920:積層体
922,924:信号電極
926:GND電極
930:基板
932:ビアホール
950,952:信号電極
960:基板
962,964:導体パターン
C10〜C30,CA,CB,CX,CY,CZ:コンデンサ
L10〜L20,L22,L30,L32,LA,LB,LC,LP,LQ:インダクタンス
M10,M12,M20,M22,M30,M32:信号電極
R10,R20,R30:抵抗

Claims (7)

  1. 積層体表面に、入力電極,出力電極,GND電極を有する3端子積層コンデンサであって、
    前記入力電極及び出力電極は、それぞれ前記積層体の対向する長手方向端面に形成され、前記GND電極は、前記積層体の長手方向に沿って、該積層体の短手方向の両端面に形成されていることを特徴とする3端子積層コンデンサ。
  2. 前記GND電極は、前記積層体の長手方向端面に回りこんで形成されており、前記入力電極及び出力電極は、前記長手方向端面において、前記GND電極に挟まれるように形成されていることを特徴とする請求項1記載の3端子積層コンデンサ。
  3. 前記積層体の長手方向端面におけるGND電極と、前記入力電極及び出力電極との間隔は、実装用基板の信号用パターンとGND用パターンとの間隔と略同一であることを特徴とする請求項2記載の3端子積層コンデンサ。
  4. 基板実装面及び該基板実装面と対向する面において、前記積層体の短手方向の両端面に形成されたGND電極同士が接続するように、前記GND電極を形成したことを特徴とする請求項1〜3のいずれかに記載の3端子積層コンデンサ。
  5. 請求項1〜4のいずれかに記載の3端子積層コンデンサを基板に実装するための実装構造であって、
    前記基板としてコプレーナ型基板を使用するとともに、該基板の信号用パターンとGND用パターンを有する面に、前記3端子積層コンデンサを実装したことを特徴とする実装構造。
  6. 前記コンプレーナ型基板は、前記3端子積層コンデンサの実装面と対向する面にもGND用パターンが形成されており、これら対向する両面のGND用パターンを接続するための接続手段を有することを特徴とする請求項5記載の実装構造。
  7. 前記接続手段が、ビアホール又はスルーホールであることを特徴とする請求項6記載の実装構造。

JP2004282853A 2004-09-28 2004-09-28 3端子積層コンデンサ及び実装構造 Withdrawn JP2006100451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282853A JP2006100451A (ja) 2004-09-28 2004-09-28 3端子積層コンデンサ及び実装構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282853A JP2006100451A (ja) 2004-09-28 2004-09-28 3端子積層コンデンサ及び実装構造

Publications (1)

Publication Number Publication Date
JP2006100451A true JP2006100451A (ja) 2006-04-13

Family

ID=36239989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282853A Withdrawn JP2006100451A (ja) 2004-09-28 2004-09-28 3端子積層コンデンサ及び実装構造

Country Status (1)

Country Link
JP (1) JP2006100451A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143075A1 (ja) * 2007-05-21 2008-11-27 Sanyo Electric Co., Ltd. 電気素子およびその製造方法
JP2009218363A (ja) * 2008-03-10 2009-09-24 Tdk Corp 貫通型積層コンデンサ
JP2009283490A (ja) * 2008-05-19 2009-12-03 Tdk Corp コンデンサモジュール及びコンデンサの実装構造
WO2010053038A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 実装型電子回路モジュール
US8184444B2 (en) 2008-08-08 2012-05-22 Samsung Electro-Mechanics Co., Ltd Electrode pad for mounting electronic component and structure for mounting electronic component
US8228662B2 (en) * 2007-08-02 2012-07-24 Tdk Corporation Feedthrough capacitor with signal internal electrode layers and ground internal electrode layers alternately arranged
JP2013120894A (ja) * 2011-12-08 2013-06-17 Tdk Corp 電子部品の実装構造
JP2014036170A (ja) * 2012-08-10 2014-02-24 Murata Mfg Co Ltd 実装基板のランド構造および実装基板の振動音低減方法
JP5459567B2 (ja) * 2011-03-29 2014-04-02 株式会社村田製作所 電子部品
JP2016076657A (ja) * 2014-10-08 2016-05-12 イビデン株式会社 電子部品及び電子部品内蔵配線板及びその製造方法
US9374901B2 (en) 2012-08-10 2016-06-21 Murata Manufacturing Co., Ltd. Monolithic capacitor mounting structure and monolithic capacitor
US9455086B2 (en) 2012-07-26 2016-09-27 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
US10064281B2 (en) 2015-12-22 2018-08-28 Murata Manufacturing Co., Ltd. Capacitor and capacitor-containing board
US10699847B2 (en) 2016-11-23 2020-06-30 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having multilayer capacitor mounted thereon

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143075A1 (ja) * 2007-05-21 2008-11-27 Sanyo Electric Co., Ltd. 電気素子およびその製造方法
US8228662B2 (en) * 2007-08-02 2012-07-24 Tdk Corporation Feedthrough capacitor with signal internal electrode layers and ground internal electrode layers alternately arranged
JP2009218363A (ja) * 2008-03-10 2009-09-24 Tdk Corp 貫通型積層コンデンサ
JP2009283490A (ja) * 2008-05-19 2009-12-03 Tdk Corp コンデンサモジュール及びコンデンサの実装構造
US8184444B2 (en) 2008-08-08 2012-05-22 Samsung Electro-Mechanics Co., Ltd Electrode pad for mounting electronic component and structure for mounting electronic component
US8503188B2 (en) 2008-11-04 2013-08-06 Murata Manufacturing Co., Ltd. Mountable electronic circuit module
JP4985852B2 (ja) * 2008-11-04 2012-07-25 株式会社村田製作所 実装型電子回路モジュール
WO2010053038A1 (ja) * 2008-11-04 2010-05-14 株式会社村田製作所 実装型電子回路モジュール
JP5459567B2 (ja) * 2011-03-29 2014-04-02 株式会社村田製作所 電子部品
JPWO2012132726A1 (ja) * 2011-03-29 2014-07-24 株式会社村田製作所 電子部品
JP2013120894A (ja) * 2011-12-08 2013-06-17 Tdk Corp 電子部品の実装構造
US9455086B2 (en) 2012-07-26 2016-09-27 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component
JP2014036170A (ja) * 2012-08-10 2014-02-24 Murata Mfg Co Ltd 実装基板のランド構造および実装基板の振動音低減方法
US9374901B2 (en) 2012-08-10 2016-06-21 Murata Manufacturing Co., Ltd. Monolithic capacitor mounting structure and monolithic capacitor
JP2016076657A (ja) * 2014-10-08 2016-05-12 イビデン株式会社 電子部品及び電子部品内蔵配線板及びその製造方法
US10064281B2 (en) 2015-12-22 2018-08-28 Murata Manufacturing Co., Ltd. Capacitor and capacitor-containing board
US10699847B2 (en) 2016-11-23 2020-06-30 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having multilayer capacitor mounted thereon

Similar Documents

Publication Publication Date Title
US20130050899A1 (en) Multilayer ceramic capacitor
JP2006100451A (ja) 3端子積層コンデンサ及び実装構造
US9843299B2 (en) Multilayer electronic component
KR20150073917A (ko) 적층 세라믹 커패시터 및 그 실장 기판
JP2001118746A (ja) 積層コンデンサ、配線基板および高周波回路
KR102004781B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
JP2016219606A (ja) 複合電子部品
KR20140126081A (ko) 적층 세라믹 커패시터 및 그 실장 기판
CN104112592B (zh) 多层陶瓷电容器及其安装板
JP4911036B2 (ja) 積層コンデンサおよびその実装構造
JP2001185441A (ja) 積層コンデンサ、配線基板、デカップリング回路および高周波回路
JP2006100682A (ja) 3端子型積層コンデンサ実装回路基板及び3端子型積層コンデンサ
JP2006100708A (ja) 3端子型積層コンデンサ実装回路基板および3端子型積層コンデンサ
KR102004780B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
KR20150007480A (ko) 적층 세라믹 커패시터 및 그 실장 기판
KR20160052108A (ko) 적층 칩 전자부품 및 그 실장 기판
US6911880B2 (en) Transmission line type noise filter with small size and simple structure, having excellent noise removing characteristic over wide band including high frequency band
US7671704B2 (en) LC resonant circuit
KR20150069891A (ko) 적층 세라믹 커패시터 및 그 실장 기판
US7035080B1 (en) Combined multilayer and single-layer capacitor for wirebonding
KR20150047383A (ko) 복합 전자부품 및 그 실장 기판
US6836195B2 (en) Transmission line type noise filter with small size and simple structure, having excellent noise removing characteristic over wide band including high frequency band
KR20160052111A (ko) 적층 칩 전자부품 및 그 실장 기판
KR100660652B1 (ko) Mmic형 전자기 노이즈 필터 및 이를 포함한 고주파집적회로소자
JPH0653046A (ja) ノイズフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090529