JP2006066609A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2006066609A
JP2006066609A JP2004246840A JP2004246840A JP2006066609A JP 2006066609 A JP2006066609 A JP 2006066609A JP 2004246840 A JP2004246840 A JP 2004246840A JP 2004246840 A JP2004246840 A JP 2004246840A JP 2006066609 A JP2006066609 A JP 2006066609A
Authority
JP
Japan
Prior art keywords
region
conductivity type
semiconductor device
electrode
ohmic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004246840A
Other languages
English (en)
Inventor
Shinji Kuri
伸治 九里
Kosuke Oshima
宏介 大島
Mizue Kitada
瑞枝 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2004246840A priority Critical patent/JP2006066609A/ja
Publication of JP2006066609A publication Critical patent/JP2006066609A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】
無効面積の少ない半導体装置を提供する。
【解決手段】
細長のゲート電極45とは垂直方向に主溝25を配置し、主溝25の内部下方位置に埋込領域55を配置し、上部にオーミック領域52を配置する。ベース領域51は、オーミック領域52を介してソース電極に接続される。ソース領域61の一部にオーミック領域52を配置せずに済むので、その分、ベース領域幅を狭くすることができる。
【選択図】 図32

Description

本発明は半導体装置の技術分野にかかり、特に、埋込領域を有する半導体装置の技術分野に関する。
図35の符号101は、特願2004−095754号で出願したMOSトランジスタであり、公開されていない技術であるが、本願の関連発明である。
このMOSトランジスタ101は、n型のシリコン単結晶から成る支持基板111上に、n型のシリコン単結晶の高抵抗層112がエピタキシャル成長によって形成されている。
高抵抗層112の内部表面には、比較的高濃度のn型の低抵抗領域120が形成されており、低抵抗領域120の内部表面には、p型のベース領域151が複数形成されている。ベース領域と低抵抗領域120との間にはpn接合が形成されている。
ベース領域151は細長であり互いに平行に配置されている。
ベース領域151の表面濃度は低く、金属との接触抵抗が高いため、ベース領域151の内部表面の幅方向中央位置に、高濃度p型のオーミック領域152が配置され、また、ベース領域151の内部表面のオーミック領域152の両側又は片側位置には、n型のソース領域161が配置されている。
隣り合うベース領域151内に位置し、互いに隣接するソース領域161の間の位置の上には、ゲート絶縁膜142とゲート電極145とが配置されている。
オーミック領域152とソース領域161表面の少なくとも一部は露出されており、ソース電極164がその露出部分に接触している。従って、ソース領域161とオーミック領域152はソース電極164によって短絡されており、ベース領域151には、オーミック領域152に印加された電圧が印加される。
ゲート電極145上には絶縁膜163が配置されており、ゲート電極145とソース電極164との間は、その絶縁膜163によって絶縁されている。
支持基板111の表面にはドレイン電極166が配置されている。
ベース領域151の底面下には、p型の埋込領域155が配置されており、ソース電極164とドレイン電極166の間に、ベース領域151と低抵抗領域120との間のpn接合を逆バイアスする極性の電圧を印加すると、埋込領域155の間の領域は空乏層で満たされ、埋込領域155の底面よりも深い方向に、空乏層が均一に広がるようになっている。
そして、MOSトランジスタ101の遮断時にアバランシェ降伏が生じた場合、アバランシェ電流はオーミック領域152を通って流れる。
なお、図中、符号156はベース領域151や導電領域120が位置する活性領域を取り囲むp型のガードリング領域であり、符号153は、ガードリング領域156の上部に配置されたp型の到達支援領域である。
以上のように、ベース領域151の表面濃度が低いため、ソース電極164にオーミック接触させるためのオーミック領域152が必要となり、アバランシェ電流を高抵抗のベース領域151に横方向に流さないようにそのオーミック領域152をソース領域161の間に配置すると、順方向の動作に寄与しない部分の面積が大きくなってしまう。
下記はオーミック領域がソース領域の間に配置されている先行技術の例であるが、本願や特願2004−095754号とは異なり、埋込領域を有していない。
特開2002-76339号 特開2002-141505号
本発明は、従来技術の半導体装置では、順方向動作時に不要な面積が大きいという問題を解決しようとするものである。
上記課題を解決するために、本発明は、主面側に第一導電型の導電層を有する基板本体と、前記主面側に配置され互いに平行に配置された複数の細長の主溝と、前記主溝内に配置された第二導電型の半導体充填物と、前記半導体充填物の上部に形成され、前記半導体充填物よりも高濃度の第二導電型のオーミック領域と、前記オーミック領域よりも下方に位置する前記半導体充填物で構成された埋込領域と、前記基板本体上に形成され、前記主溝と交差する方向に互いに平行に配置されたゲート電極と、前記ゲート電極をマスクにして表面から第二導電型の不純物が導入され、前記第二導電型の不純物が拡散されて前記導電層の内部表面に形成された第二導電型のベース領域と、前記ゲート電極をマスクにして表面から第一導電型の不純物が導入され、前記第一導電型の不純物が拡散されて前記ベース領域の内部表面に形成された第一導電型のソース拡散領域と、前記基板本体と前記ゲート電極との間に位置するゲート絶縁膜と、前記ソース拡散領域と前記オーミック領域と接触されたソース電極と、前記オーミック領域と前記ベース領域とは接触され、前記ソース電極に印加される電圧は、前記ソース拡散領域と前記オーミック領域と前記ベース領域と前記埋込領域に印加される半導体装置である。
また、本発明は、前記ベース領域を同心状に取り囲み、互いに離間して配置された複数のリング状の副溝を有し、前記各副溝内には前記半導体充填物が配置された半導体装置である。
また、本発明は、最内周の前記副溝内の前記半導体充填物とそれに隣接する前記オーミック領域とは、第二導電型の拡散領域によって接続された半導体装置である。
また、本発明は、前記導電層に電気的に接続されたドレイン電極を有する半導体装置である。
また、本発明は、前記基板本体は、裏面側に前記導電領域と接触した第一導電型のドレイン層を有し、前記ドレイン電極は前記ドレイン層と接触してして配置された半導体装置である。
また、本発明は、前記基板本体は、裏面側に第二導電型のコレクタ層を有し、前記コレクタ層にはコレクタ電極が形成された半導体装置である。
また、本発明は、前記基板本体は、裏面側に前記導電層とショットキー接合を形成するショットキー電極を有し、前記ショットキー接合は、前記ショットキー電極と前記ソース電極の間に、前記導電層と前記ベース領域との間のpn接合を逆バイアスする極性の電圧が印加されたときに、前記ショットキー接合は順バイアスされるように構成された半導体装置である。
ソース領域間にオーミック領域を露出させる必要が無いので、その分の面積が不要になる。
アバランシェ電流は埋込領域中を通って流れるので、その上部がオーミック領域に直接接続され、アバランシェ電流を収集するから破壊耐量が高い。
本発明では、p型とn型のうち、いずれか一方を第一導電型とし、他方を第二導電型として説明する。第一導電型がn型の場合、第二導電型はp型であり、それとは逆に第一導電型がp型の場合は第二導電型はn型となる。
図26(a)〜(d)は、本発明の半導体装置1の断面図であり、図32は、そのVII−VII線断面図に相当する平面図である。図26(a)〜(d)は、それぞれ図32のA−A線、B−B線、C−C線、及びD−D線断面図に相当する。
この半導体装置1の平面形状は長方形又は正方形であり、図27〜図32の平面図では、半導体装置1又はその製造途中の状態の上半分だけを示してある。残りの半分である下半分は図示しない。不図示の下半分は上半分と対称である。
図26(a)〜(d)の符号11は支持基板を示している。支持基板11は、第一導電型の半導体単結晶から成り、ドレイン層として機能する。
支持基板11上には第一導電型の半導体単結晶から成る高抵抗層12がエピタキシャル成長によって形成されている。
これらの半導体単結晶、及び後述する主溝25や副溝26内に成長される半導体単結晶はシリコンやゲルマニウム等の単一元素の単結晶の他、ガリウムヒ素等の化合物半導体も含まれる。また、半導体単結晶にはアンチモンやリンやホウ素等のn型、p型の不純物が添加されている。下記実施例では半導体単結晶はシリコン単結晶である。
高抵抗層12の表面の中央部分には、熱拡散法によって第一導電型の低抵抗領域20が形成されている。
図26(a)〜(d)の符号9は、支持基板11と高抵抗層12とから成り、低抵抗領域20の他、後述するベース領域51やソース領域61等の拡散領域や主溝25等の溝を含む本体基板を示している。
本体基板9の低抵抗領域20が形成された領域には、細長の主溝25が互いに平行に複数本形成されており、低抵抗領域20の外側には、主溝25を取り囲んで四角リング状の副溝26が複数本同心状に形成されている。
主溝25と副溝26の内部の底面上には、第二導電型の半導体単結晶又は多結晶から成る埋込領域55とガードリング領域56がそれぞれ配置されている。
埋込領域55とガードリング領域56の上部には、埋込領域55やガードリング領域56よりも高濃度の第二導電型のオーミック領域52と到達支援領域53とがそれぞれ形成されている。
オーミック領域52の平面形状は主溝25よりも幅が広い細長長方形であり、到達支援領域53の平面形状は、副溝26よりも幅が広い四角リング形状である。
主溝25と副溝26は、オーミック領域52の幅方向中央部分と到達支援領域53の幅方向中央部分にそれぞれ位置しており、従って、オーミック領域52と到達支援領域53は、主溝25と副溝26とからそれぞれ幅方向両側にはみ出している。
本体基板9の表面には、平面形状が長方形のゲート電極45が主溝25とは直角な方向に、互いに平行に複数本配置されている。ゲート電極45と本体基板9の間にはゲート絶縁膜42が配置されている。
ゲート電極45には、不純物が添加されて導電性が賦与されたポリシリコンや金属薄膜等の導電性薄膜が用いられる。ゲート絶縁膜42には、シリコン酸化物やシリコン窒化膜の他絶縁性を有する薄膜が用いられる。ここではゲート絶縁膜42にはシリコン酸化膜が用いられている。
ゲート電極45とゲート電極45の間の位置であって、オーミック領域52を除く低抵抗領域20の内部表面には、低抵抗領域20よりも浅い第二導電型のベース領域51が配置されている。ベース領域51の一部は、横方向拡散により、ゲート電極45の真下に潜り込んでいる。
ベース領域51の内部表面のゲート電極45に接する位置には、ベース領域51よりも浅い第一導電型のソース領域61が形成されている。このソース領域61の外周はベース領域51の外周の内側に位置しており、従って、第一導電型のソース領域61は、低抵抗領域20や高抵抗層12等のベース領域51の外側の第一導電型の領域とは接触していない。
また、ソース領域61の一辺はゲート電極45の真下に潜り込んでいる。ゲート電極45の幅方向中央部分の真下には低抵抗領域20が位置しており、従って、ベース領域51のゲート電極45の真下に潜り込んだ部分は、ゲート電極45の真下に潜り込んだソース領域51と、ゲート電極45の真下に位置する低抵抗領域20によって挟まれている。その部分のベース領域51はチャネル領域と呼ばれている。
図26(a)〜(d)の符号65は、ソース領域61とオーミック領域52の表面に配置されたソース電極である。ソース電極65とソース領域61の間の接合とソース電極65とオーミック領域52の間の接合はオーミックである。
ベース領域51の表面濃度は低く、ソース電極65と接触しても接触抵抗が高いが、オーミック領域52がベース領域51に接触しており、オーミック領域52がソース電極65に接続されているから、ベース領域51にはソース電極65に印加される電圧が印加される。
同図(a)〜(d)の符号66は、支持基板11の表面に配置されたドレイン電極を示しており、支持基板11とオーミック接触している。
本発明の半導体装置1の動作を説明すると、第一導電型がn型、第二導電型がp型の場合、ソース電極65を接地電位に起き、ドレイン電極66に正電圧を印加した状態で、ゲート電極45にしきい値電圧以上の正電圧を印加するとチャネル領域の内部表面のごく薄い領域の極性が反転し、第一導電型の反転層が形成される。ソース領域61と低抵抗領域20は、その反転層で接続され、電流が流れる。
それとは異なり、ゲート電極45に印加する電圧がしきい値電圧よりも小さい場合、反転層は形成されず、電流は流れない。
ソース電極65が接地電位に接続され、ドレイン電極66に正電圧が印加された状態では、ベース領域51と低抵抗領域20の間(又はベース領域51と高抵抗層12の間)とで形成されるpn接合は逆バイアスされており、第一導電型の方では低抵抗領域20や高抵抗層12の中に空乏層が広がり、第二導電型の方では埋込領域55の中に空乏層が広がる。
最内周のガードリング領域56の幅方向の中央よりも内側の領域を活性領域と呼ぶと、活性領域内に位置する各埋込領域55は、オーミック領域52やベース領域51によって互いに接続されており、ソース電極65によって同じ電圧が印加される。
本実施例では最内周のガードリング領域56とその上部の到達支援領域53は、第二導電型の補助拡散領域54によってベース領域51に接続されており、最内周のカードリング領域56とその上部の到達支援領域53には、埋込領域55と同じ電圧が印加される。
活性領域の内部であって、埋込領域55の底面よりも上部でオーミック領域52の底面までの深さの範囲内にある第一導電型の領域の不純物総量と、埋込領域55の第二導電型の領域の不純物総量とは略等しくされており、従って、pn接合に印加される電圧が大きくなり、活性領域内の埋込領域55の底面よりも上部でオーミック領域52の底面までの深さの範囲内にある第一導電型の領域が空乏層で満たされる電圧が印加されるときは同じ深さの範囲内にある第二導電型の領域も同時に空乏層で満たされるようになっている。
ここで、最内周のガードリング領域56の幅方向の中央から、最外周のガードリング領域56の幅方向の中央の間のリング状の領域を耐圧領域と呼ぶと、耐圧領域内部でも、ガードリング領域56の底部よりも上で到達支援領域53の底面よりも下の部分では、第一導電型の領域と第二導電型の領域の不純物総量は等しくされている。
最内周のガードリング領域56の上部に位置する到達支援領域53から横方向に広がった空乏層が、一つ外側の到達支援領域53に到達すると、その到達支援領域53や、その下部のガードリング領域56からも更に外周方向に空乏層が広がる。そして、更に印加電圧が大きくなると、更に一つ外側の到達支援領域53に到達する。
このように、電圧が大きくなると空乏層は内側から外側に向けて広がり、内側から外側の到達支援領域53に順次到達する。そして耐圧領域内のガードリング領域56の底面よりも上部の部分で第一導電型の領域が空乏層で満たされる電圧が印加されるとき、同じ部分の第二導電型のガードリング領域56も空乏層で満たされる。
埋込領域55とガードリング領域56とは同じ深さであり、活性領域内と耐圧領域内で、埋込領域55やガードリング領域56の底面よりも上の部分でオーミック領域52や到達支援領域53の底面よりも下の部分が空乏層で満たされる。
より大きな電圧が印加されると、空乏層は埋込領域55やガードリング領域56の底面よりも深い方向に均一に広がる。
本発明の半導体装置1では、活性領域内を空乏層で満たすための埋込領域55の上部にオーミック領域52が配置されており、ベース領域51内部のソース領域61の間の位置にオーミック領域52を形成する必要がない。従って、ソース領域61を分離しなくて良いため、ソース領域61間の距離が要らない。
上記のような構造の半導体装置1の製造工程を説明する。
図1〜図25の(a)〜(d)は、それぞれ図26の(a)〜(d)に対応する位置の断面図であり、(a)〜(c)は活性領域、(d)は耐圧領域の断面図である。
図1(a)〜(d)を参照し、第一導電型の支持基板11表面には、支持基板11よりも低濃度の第一導電型の高抵抗層12がエピタキシャル成長法によって形成されており、高抵抗層12の表面に一次絶縁膜を形成し、フォトリソグラフ工程とエッチング工程によってその一次絶縁膜をパターニングし、活性領域となる部分よりも内側の領域に開口を形成する。以下も絶縁膜等の薄膜のパターニングはフォトリソグラフ工程とエッチング工程によって行われる。
図1(a)の符号13は一次絶縁膜を示しており、符号15は開口を示している。開口15の底面には高抵抗層12表面を露出している。
支持基板11と高抵抗層12は、ここではシリコン単結晶であり、絶縁膜13は、熱酸化法によって形成したシリコン酸化膜によって構成されている。
次に、図2(a)〜(d)に示すように、露出した高抵抗層12の表面に一次絶縁膜13よりも薄い一次緩衝膜18を形成し、高抵抗層12の表面上から第一導電型の不純物を照射すると、不純物は一次緩衝膜18を透過し、一次緩衝膜18の真下位置の高抵抗層12の内部表面に導入され、その位置に薄い第一導電型の高濃度層17が形成される。
不純物は一次絶縁膜13を透過せず、一次絶縁膜13の真下位置には高濃度層17は形成されない。ここでは熱酸化法により、シリコン酸化膜から成る一次緩衝膜18を用いた。
次に、熱酸化処理をすると、高濃度層17中の不純物は拡散され、図3(a)〜(d)に示すように、活性領域内に第一導電型の低抵抗領域20が形成される。
この熱酸化処理により、高抵抗層12の表面にはシリコン酸化膜から成る絶縁膜が形成される。
図3(a)〜(d)の符号21は、一次絶縁膜13や一次緩衝膜18と一体になった二次絶縁膜を示している。
次に、二次絶縁膜21をパターニングし、図4(a)〜(d)に示すように、活性領域内に位置する複数の細長開口22と、耐圧領域内に位置し、細長開口22を同心状に取り囲む複数のリング開口23を形成する。
図27は、図4(a)〜(d)のI−I線切断面図である。リング開口23の幅と細長開口22の幅は等しい。
リング開口23は長方形であり、細長開口22は、リング開口23の平行な二辺に対して平行に配置されている。一例として、細長開口22の同士の距離とリング開口23の同士の距離と、リング開口23とそれに隣接する細長開口22の辺との間の距離とは互いに等しく、細長開口22の両端とリング開口23との間の距離は、それらの距離の半分にされる。
次に、二次絶縁膜21をマスクとし、ドライエッチングによって高抵抗層12や低抵抗領域20を構成するシリコン単結晶をエッチングすると、図5(a)〜(d)に示すように、細長開口22とリング開口23の真下位置に、細長の主溝25とリング形状の副溝26とが形成される。図28は、図5(a)〜(d)のII−II線切断面図である。
主溝22と副溝26の深さは同じであり、底面は低抵抗領域20の底面よりも深く、支持基板11よりも浅いところに位置している。
主溝25と副溝26の底面や側面には高抵抗層12や低抵抗領域20を構成する半導体単結晶(ここではシリコン単結晶)が露出している。主溝25と副溝26の底面と側面以外の部分は、半導体単結晶は露出していない。
その状態でCVD法によって露出した半導体単結晶の表面に第二導電型の半導体単結晶又は半導体多結晶を成長させると、図6(a)〜(d)に示すように、主溝25と副溝26の内部に、それらの第二導電型の半導体単結晶又は半導体多結晶から成る直線状充填物28とリング状充填物29がそれぞれ形成される。ここでは、各充填物28、29は、エピタキシャル成長された第二導電型のシリコン単結晶によって構成されている。充填物28、29の濃度はベース領域51の表面濃度よりも低い。
図29は、図6(a)〜(d)のIII−III線切断面図である。
結晶成長の直後は、各充填物28、29の上部は二次絶縁膜21表面よりも高く盛り上がっているため、直線状充填物28とリング状充填物29の上部をエッチングによって除去し、図7(a)〜(d)に示すように、高抵抗層12や低抵抗領域20を構成する半導体単結晶の表面高さと略一致させる。
次に、図8(a)〜(d)に示すように、細長開口22又はリング開口23の底面に露出する直線状充填物28とリング状充填物29の上端部の表面に、二次絶縁膜21よりも薄い二次緩衝膜30を形成し、二次緩衝膜30上から第二導電型の不純物を照射すると、その不純物は二次緩衝膜30を透過し、直線状充填物28とリング状充填物29の上端部の内部表面に導入され、第二導電型の高濃度不純物領域31が形成される。ここでは熱酸化処理によって形成されるシリコン酸化膜を二次緩衝膜30として用いた。
照射された不純物は二次絶縁膜21を透過できず、二次絶縁膜21の底面下には導入されない。
次に、二次絶縁膜21や二次緩衝膜30を除去し、図9(a)〜(d)に示すように、低抵抗領域20の表面や高抵抗層12の表面を含む半導体単結晶の表面と、高濃度不純物領域31が形成されている充填物28、29の表面を露出さる。ここでは二次絶縁膜21と二次緩衝膜30はシリコン酸化膜であり、一緒に除去される。
次に、図10(a)〜(d)に示すように、露出した半導体単結晶及び各充填物28、29表面に薄い三次緩衝膜33を形成し、図11(a)〜(d)に示すように、その表面にパターニングしたレジスト膜35を配置する。
このレジスト膜35は、最内周のリング状充填物29の内周の縁部分の上の位置に開口36を有しており、レジスト膜35上から第二導電型の不純物を照射すると、開口36の底面に位置する三次緩衝膜33を透過し、開口36の真下位置に導入され、第二導電型の高濃度不純物領域37が形成される。不純物はレジスト膜35を透過できず、レジスト膜35の真下位置には導入されない。
次に、レジスト膜35と三次緩衝膜33とを除去し、図12(a)〜(d)に示すように、高抵抗層12や低抵抗領域20等の半導体単結晶の表面と、直線状、リング状の各充填物28、29の上端部表面を露出させた後、図13(a)〜(d)に示すように、それらの表面に三次絶縁膜41を形成する。ここでは熱酸化法によって形成されるシリコン酸化膜を三次絶縁膜41に用いた。
次に、三次絶縁膜41のパターニングにより、図14(a)〜(d)に示すように、活性領域の外周から一定距離以上内側に位置する部分を除去し、その位置に開口42を形成する。
この状態では、開口42の底面で、低抵抗領域20の表面と、直線状充填物28の上端部の高濃度不純物領域31の表面が露出している。他方、開口42よりも外側にあるリング状充填物29の上端部の高濃度不純物領域31や、リング状充填物29の間に位置する部分は露出していない。
そして、図15(a)〜(d)に示すように、低抵抗領域20の表面などの開口42の底面下の露出部分にゲート絶縁膜42を形成する。ゲート絶縁膜42は、ここでは、熱酸化法によって形成したシリコン酸化膜である。
次に、図16(a)〜(d)に示すように、ゲート絶縁膜42や三次絶縁膜41の表面に導電性薄膜44を形成する。ここでは、導電性薄膜44は低抵抗のポリシリコン薄膜である。
次に、導電性薄膜44をパターニングし、図17(a)〜(d)に示すように、活性領域内に、導電性薄膜44の残部から成るゲート電極45を形成する。
図30は、図17のIV−IV線切断面図であり、二点差線はゲート電極45の位置を示している。ゲート電極45は細長であり、主溝25と垂直方向に、主溝25と重なり合うように配置されている。
次に、耐圧領域と、活性領域の外周付近の部分をレジスト膜で覆い、第二導電型の不純物を照射すると、ゲート絶縁膜42が露出する部分で、照射された不純物がゲート絶縁膜42を透過し、図18(a)〜(d)に示すように、第二導電型の高濃度不純物領域47が形成される。図18(d)の符号39はレジスト膜を示している。
そしてレジスト膜39を除去した後、熱処理すると、第二導電型の高濃度不純物領域31、37、47が拡散され、図19(a)〜(d)に示すように、低抵抗領域20と高抵抗層12の内部表面に位置するベース領域51と、主溝25の上部に位置するオーミック領域52と、副溝26の上部に位置する到達支援領域53と、最内周の副溝26の上部の到達支援領域53と、ベース領域51とに接触した補助拡散領域54とが形成される。
オーミック領域52や到達支援領域53の表面濃度の方が直線状充填物28やリング状充填物29の濃度や、ベース領域51の表面濃度よりも高い。図19(a)〜(d)の符号55は、直線状充填物28のオーミック領域52よりも下方部分から成る埋込領域を示しており、符号56は、リング状充填物29の到達支援領域53よりも下方部分から成るガードリング領域を示している。
最内周のガードリング領域56は、補助拡散領域54によってベース領域51と電気的に接続されており、最内周のガードリング領域56はベース領域51と同電位になるように構成されている。
図31は、図19のV−V線切断面図である。
第二導電型の不純物の横方向拡散により、ベース領域51の縁は、ゲート電極45の真下位置まで進入しており、その部分では、ゲート電極45の真下位置で、ゲート絶縁膜42とベース領域51とが接触している。
ただし、横方向拡散による進入距離は短く、ゲート電極45の一辺から進入したベース領域51の縁と、それに平行な他の一辺から進入したベース領域51の縁とは接触せず、ベース領域51の縁間では、低抵抗領域20がゲート絶縁膜42と接触している。
オーミック領域52の平面形状は主溝25よりも幅広の直線状であり、到達支援領域53はリング溝26よりも幅広のリング形状である。
次に、図20(a)〜(d)に示すように、ベース領域51の外周付近と耐圧領域とオーミック領域52上にレジスト膜58を配置し、ベース領域51のうち、オーミック領域52の間に位置し、ゲート電極45に隣接する部分の上にはレジスト膜58を配置せず、第一導電型の不純物を照射すると、ゲート電極45とレジスト膜58とがマスクとなり、第一導電型の不純物はゲート絶縁膜42の露出部分を透過し、ベース領域51の内部表面に部分的に第一導電型の高濃度不純物領域59が形成される。
レジスト膜58を除去した後、熱処理を行い、高濃度不純物領域59中の第一導電型の不純物を拡散させると、図21(a)〜(d)に示すように、オーミック領域52の間の位置のベース領域51の内部表面に、第一導電型のソース領域61が形成される。
ソース領域61の深さはベース領域51よりも浅く、ソース領域61は、ベース領域51とオーミック領域52とで形成される第二導電型の領域内に位置し、低抵抗領域20や高抵抗層12には接触しないようになっている。
図32は、図21(a)〜(d)のVI−VI線切断面図である。
不純物の横方向拡散により、ソース領域61の縁はゲート電極45の真下位置まで進入している。ゲート電極45の真下位置に進入したベース領域51の縁とソース領域61の縁とで挟まれたベース領域51の部分は、上述したようにチャネル領域と呼ばれている。
次に、図22(a)〜(d)に示すように、ゲート電極45やゲート絶縁膜42の表面に層間絶縁膜63を形成する。ここでは層間絶縁膜63に、CVD法によって形成したSiO2膜を用いたが、窒化膜等の他の絶縁膜であってもよい。
この層間絶縁膜63とゲート絶縁膜42をパターニングし、図23(a)〜(d)に示すように、ソース領域61の一部表面とオーミック領域52の一部表面を露出させる。また、図示はされていないが、各ゲート電極45の一部も露出させる。
次に、図24(a)〜(d)に示すように、層間絶縁膜63表面やソース領域61の表面等に金属薄膜64を形成する。この金属薄膜64はソース領域61の露出部分と、オーミック領域52の露出部分と、ゲート電極45の露出部分とに接触している。金属薄膜64はアルミニウム薄膜等の金属薄膜であり、スパッタリング法や蒸着法等によって形成される。
次に、金属薄膜64をパターニングし、耐圧領域上の金属薄膜64を除去すると共に、活性領域上の金属薄膜64を二分し、ソース領域61の露出部分とオーミック領域52の露出部分の両方に接触したソース電極と、ゲート電極45の露出部分に接続されたゲート配線膜とを形成する。図25(a)〜(d)の符号65はソース電極を示している。ゲート電極45とその上に位置するソース電極65の間には層間絶縁膜63が位置しており、ゲート電極45とソース電極65とは電気的に絶縁されている。
次に、ソース電極65やゲート配線膜のボンディングパッドとなる表面を除き、ソース電極65とゲート電極とが位置する側の表面を保護膜で覆った後、裏面にドレイン電極を形成すると、図26に示すような本発明の半導体装置1が得られる。図26の符号66はドレイン電極であり、保護膜は図示を省略してある。
ソース電極65は、ソース領域61とオーミック領域52にオーミック接続されており、ドレイン電極66は支持基板11にオーミック接続されている。
上記実施形態の半導体装置1はMOSFETであったが、本発明の半導体装置はこれに限られるものではなく、例えば、pn接合型のIGBT(Insulated gate bipolar transistor)やショットキー接合型のIGBTも含まれる。
図33(a)〜(d)の符号2は、本発明の半導体装置のうちのpn接合型のIGBTを示しており、それぞれ図26(a)〜(d)に対応する位置の断面図である。
第一例の半導体装置1の支持基板11は第一導電型であったが、この第二例の半導体装置2の支持基板72は第二導電型の半導体単結晶であり、他の構成は第一例の半導体装置1と同じである。
この支持基板72は第一導電型の高抵抗層12とpn接合を形成しており、半導体装置2が導通するときに、そのpn接合が順バイアスされ、支持基板72から高抵抗層12内に少数キャリアが注入され、高抵抗層12の導通抵抗が低下するようになっている。従って、この第二導電型の支持基板72は、コレクタ層として機能する。
図33(a)〜(d)の符号67は第二導電型の支持基板72とオーミック接合を形成するコレクタ電極である。
次に図34(a)〜(d)の符号3は、本発明の第三例の半導体装置を示している。第三例の半導体装置3は、ショットキーバリア型のIGBTである。
この半導体装置3では、研磨工程等によって第一例の半導体装置1の支持基板11が除去され、支持基板11よりも低濃度の高抵抗層12が露出され、その表面にショットキー電極68が形成されている。
ショットキー電極68の少なくとも高抵抗層12と接触する部分は、高抵抗層12とショットキー接合を形成する材料であり、例えばクロム等である。他の構造は、第一例の半導体装置1と同じである。
ショットキー接合の極性は、高抵抗層12とベース領域51の間のpn接合が逆バイアスされるときに順バイアスされる極性であり、従って、各電極45、65、68に半導体装置3が導通する極性の電圧が印加されるとショットキー接合は順バイアスされ、ショットキー電極68から高抵抗層12の内部に少数キャリアが注入され、高抵抗層12の導通抵抗が低減される。
なお、支持基板11が低濃度であり、ショットキー電極68とショットキー接合を形成できる場合、支持基板11表面にショットキー電極68を形成することもできる。この場合も導通抵抗を小さくするために支持基板11を研磨して厚みを薄くするとよい。
上記半導体装置1〜3では、導通抵抗を小さくするための低抵抗領域20が設けられており、ドレインやコレクタ等として機能する導電層が高抵抗層12と低抵抗領域20とで構成されていたが、本発明の半導体装置には、低抵抗領域20は必ずしも必要ではなく、低抵抗領域20を有していない場合は、高抵抗層12が導電層となる。
(a)〜(d):本発明の半導体装置の製造工程図を説明するための図(1) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(2) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(3) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(4) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(5) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(6) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(7) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(8) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(9) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(10) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(11) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(12) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(13) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(14) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(15) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(16) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(17) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(18) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(19) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(20) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(21) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(22) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(23) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(24) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(25) (a)〜(d):本発明の半導体装置の製造工程図を説明するための図(26) 本発明の一例の半導体装置の拡散構造を示す平面図であり、図4(a)〜(d)のI−I線切断面図である 本発明の一例の半導体装置の拡散構造を示す平面図であり、図5(a)〜(d)のII−II線切断面図である 本発明の一例の半導体装置の拡散構造を示す平面図であり、図6(a)〜(d)のIII−III線切断面図である 本発明の一例の半導体装置の拡散構造を示す平面図であり、図17(a)〜(d)のIV−IV線切断面図である 本発明の一例の半導体装置の拡散構造を示す平面図であり、図19(a)〜(d)のV−V線切断面図である 本発明の一例の半導体装置の拡散構造を示す平面図であり、図21(a)〜(d)のVI−VI線切断面図である (a)〜(d):本発明がpn接合型IGBTの場合の断面図 (a)〜(d):本発明がショットキーバリア型IGBTの場合の断面図 本発明の関連技術である半導体装置を説明するための図
符号の説明
25……主溝
26……副溝
28、29……半導体充填物
42……ゲート絶縁膜
45……ゲート電極
51……ベース領域
52……オーミック領域
55……埋込領域
61……ソース領域
64……ソース電極
66……ドレイン電極
67……コレクタ電極
68……ショットキー電極

Claims (7)

  1. 主面側に第一導電型の導電層を有する基板本体と、
    前記主面側に配置され互いに平行に配置された複数の細長の主溝と、
    前記主溝内に配置された第二導電型の半導体充填物と、
    前記半導体充填物の上部に形成され、前記半導体充填物よりも高濃度の第二導電型のオーミック領域と、
    前記オーミック領域よりも下方に位置する前記半導体充填物で構成された埋込領域と、
    前記基板本体上に形成され、前記主溝と交差する方向に互いに平行に配置されたゲート電極と、
    前記ゲート電極をマスクにして表面から第二導電型の不純物が導入され、前記第二導電型の不純物が拡散されて前記導電層の内部表面に形成された第二導電型のベース領域と、
    前記ゲート電極をマスクにして表面から第一導電型の不純物が導入され、前記第一導電型の不純物が拡散されて前記ベース領域の内部表面に形成された第一導電型のソース拡散領域と、
    前記基板本体と前記ゲート電極との間に位置するゲート絶縁膜と、
    前記ソース拡散領域と前記オーミック領域と接触されたソース電極と、
    前記オーミック領域と前記ベース領域とは接触され、前記ソース電極に印加される電圧は、前記ソース拡散領域と前記オーミック領域と前記ベース領域と前記埋込領域に印加される半導体装置。
  2. 前記ベース領域を同心状に取り囲み、互いに離間して配置された複数のリング状の副溝を有し、
    前記各副溝内には前記半導体充填物が配置された請求項1記載の半導体装置。
  3. 最内周の前記副溝内の前記半導体充填物とそれに隣接する前記オーミック領域とは、第二導電型の拡散領域によって接続された請求項1又は請求項2のいずれか1項記載の半導体装置。
  4. 前記導電層に電気的に接続されたドレイン電極を有する請求項1乃至請求項3のいずれか1項記載の半導体装置。
  5. 前記基板本体は、裏面側に前記導電領域と接触した第一導電型のドレイン層を有し、前記ドレイン電極は前記ドレイン層と接触してして配置された請求項4記載の半導体装置。
  6. 前記基板本体は、裏面側に第二導電型のコレクタ層を有し、前記コレクタ層にはコレクタ電極が形成された請求項1乃至請求項3のいずれか1項記載の半導体装置。
  7. 前記基板本体は、裏面側に前記導電層とショットキー接合を形成するショットキー電極を有し、
    前記ショットキー接合は、前記ショットキー電極と前記ソース電極の間に、前記導電層と前記ベース領域との間のpn接合を逆バイアスする極性の電圧が印加されたときに、前記ショットキー接合は順バイアスされるように構成された請求項1乃至請求項3のいずれか1項記載の半導体装置。
JP2004246840A 2004-08-26 2004-08-26 半導体装置 Pending JP2006066609A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246840A JP2006066609A (ja) 2004-08-26 2004-08-26 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246840A JP2006066609A (ja) 2004-08-26 2004-08-26 半導体装置

Publications (1)

Publication Number Publication Date
JP2006066609A true JP2006066609A (ja) 2006-03-09

Family

ID=36112814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246840A Pending JP2006066609A (ja) 2004-08-26 2004-08-26 半導体装置

Country Status (1)

Country Link
JP (1) JP2006066609A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111129A (ja) * 2014-12-04 2016-06-20 ローム株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125979A (ja) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ
JP2003142688A (ja) * 2001-11-05 2003-05-16 Denso Corp 半導体装置
JP2004006595A (ja) * 2002-04-09 2004-01-08 Shindengen Electric Mfg Co Ltd ダイオード素子とトランジスタ素子
JP2005268679A (ja) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125979A (ja) * 1987-11-11 1989-05-18 Mitsubishi Electric Corp 絶縁ゲート型バイポーラトランジスタ
JP2003142688A (ja) * 2001-11-05 2003-05-16 Denso Corp 半導体装置
JP2004006595A (ja) * 2002-04-09 2004-01-08 Shindengen Electric Mfg Co Ltd ダイオード素子とトランジスタ素子
JP2005268679A (ja) * 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111129A (ja) * 2014-12-04 2016-06-20 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
JP4892172B2 (ja) 半導体装置およびその製造方法
US7649223B2 (en) Semiconductor device having superjunction structure and method for manufacturing the same
US7135718B2 (en) Diode device and transistor device
US20060063335A1 (en) Semiconductor device
WO2007069571A1 (ja) トレンチ構造半導体装置
JP2004128293A (ja) 半導体装置
JP7290973B2 (ja) 半導体装置
JP3914852B2 (ja) ダイオード素子とトランジスタ素子
JP3689420B1 (ja) 半導体装置
JP5134746B2 (ja) 電界効果トランジスタの製造方法
US6563169B1 (en) Semiconductor device with high withstand voltage and a drain layer having a highly conductive region connectable to a diffused source layer by an inverted layer
US7282764B2 (en) Semiconductor device
JP2007511913A (ja) 改良された安全動作領域機能を有するigbtカソードのデザイン
JP4095492B2 (ja) 半導体装置
WO2006082618A1 (ja) 半導体装置およびその製造方法
JP4406535B2 (ja) ショットキーダイオード付きトランジスタ
JP4133565B2 (ja) トランジスタとその製造方法、及びダイオード
JP2009176884A (ja) 半導体装置
JP4929559B2 (ja) 半導体素子
JP2006066609A (ja) 半導体装置
JP2007109712A (ja) トランジスタ、ダイオード
JP3689419B1 (ja) 半導体装置、半導体装置の製造方法
JP4133548B2 (ja) 半導体装置
JP2002141505A (ja) 電界効果トランジスタ
JP4632797B2 (ja) 半導体装置、半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Effective date: 20100225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207