JP2006060113A5 - - Google Patents

Download PDF

Info

Publication number
JP2006060113A5
JP2006060113A5 JP2004242035A JP2004242035A JP2006060113A5 JP 2006060113 A5 JP2006060113 A5 JP 2006060113A5 JP 2004242035 A JP2004242035 A JP 2004242035A JP 2004242035 A JP2004242035 A JP 2004242035A JP 2006060113 A5 JP2006060113 A5 JP 2006060113A5
Authority
JP
Japan
Prior art keywords
layer
wettability changing
laminated structure
wettability
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004242035A
Other languages
English (en)
Other versions
JP2006060113A (ja
JP4678574B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2004242035A priority Critical patent/JP4678574B2/ja
Priority claimed from JP2004242035A external-priority patent/JP4678574B2/ja
Publication of JP2006060113A publication Critical patent/JP2006060113A/ja
Publication of JP2006060113A5 publication Critical patent/JP2006060113A5/ja
Application granted granted Critical
Publication of JP4678574B2 publication Critical patent/JP4678574B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示方法
本発明は、TFT(薄膜トランジスタ:Thin Film Transistor)等に好適な積層構造体、積層構造体を用いたTFT等の電子素子、これらの製造方法、電子素子アレイ及び表示装置に関する。
液晶表示装置、PDP(プラズマディスプレイパネル)、有機EL(Electro-luminescence)ディスプレイ等のフラットパネルディスプレイは電極、MIM(Metal-Insulator-Metal)素子やTFT等の能動素子或いは発光素子など薄膜層をパターニングして構成される部位を具備している。
特に、近年その一部若しくは全部に有機材料を用いた素子が、低コスト化や大面積化容易性等の製造上のメリットや無機材料にない機能発現の可能性から注目されている。例えば、特許文献1によれば、光や熱などの物理的外部刺激によりキャリア移動度が変化する有機半導体材料を用いた電界効果型トランジスタが提案されている。
ところで、薄膜層をパターニングする方法としては、フォトリソグラフィー法が一般に使用される。その工程は以下の通りである。
(1) 薄膜層を有する基板上にフォトレジスト層を塗布する(レジスト塗布)
(2) 加熱により溶剤を除去する(プリベーク)
(3) パターンデータに従ってレーザー或いは電子線を用いて描画されたハードマスクを通して紫外光を照射する(露光)
(4) アルカリ溶液で露光部のレジストを除去する(現像)
(5) 加熱により未露光部(パターン部)のレジストを硬化する(ポストベーク)
(6) エッチング液に浸漬又はエッチングガスに暴露し、レジストのない部分の薄膜層を除去する(エッチング)
(7) アルカリ溶液又は酸素ラジカルでレジストを除去する(レジスト剥離)
各薄膜層を形成後、上記の工程を繰返すことによって能動素子が完成するが、高価な設備と工程の長さがコストを上昇させる原因となっている。
近年、製造コストを低減するために印刷法によるパターン形成が試みられている。特許文献2では、TFTを構成する薄膜層のパターニング工程の一部を、フォトリソグラフィー法の代わりに例えば凹版オフセット印刷法で行う方法が開示されている。この方法を示す図13を参照すれば、凹部にレジスト102が入った印刷版101の上を転写体103が回転することによってレジスト102を転写体103に転写し、これを被転写層(薄膜層)105が形成された基板104上に印刷することによって被転写層(薄膜層)105上にレジストパターンが形成されるようにしたものである。
非特許文献1によれば、ナノパーティクルインクを使ったインクジェット法で幅50μm、ピッチ400μm程度の金属配線を形成する方法が記載されている。
非特許文献2によれば、図14に示すように、全ての層が有機材料で構成されるTFTの電極層(110はゲート電極層、111はソース電極層、112はドレイン電極層)をインクジェット法でパターン形成する方法が記載されている。ここでは、疎水性の材料(ポリイミド)からなるリブ113をガラス基板114上に設けて、電極間ギャップ(チャネル長)が5〜10μmのソース・ドレイン電極層111,112を形成している。なお、115は半導体層、116はポリマー絶縁体層である。
特許文献3によれば、図15に示すように、基板121上の有機分子膜122を用いて紫外線等によりその一部を分解、除去することにより親液部121aと撥液部121bとからなるパターンを形成し、導電性微粒子を含有した液体123を親液部121aに選択的に塗布した後、熱処理することによって導電膜パターンを形成する方法が開示されている。
この方法によれば、有機分子膜122にフォトマスクを介して紫外光を照射するだけで親液部121aと撥液部121bとからなるパターンを形成することができるため大幅に工程を短縮することができる。
特開平7−86600号公報 特開2002−268585公報 特開2002−164635公報 SOCIETY FOR INFORMATION DISPLAY 2002 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPER・VolumeXXXIII,p.753〜755 SOCIETY FOR INFORMATION DISPLAY 2002 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPER・VolumeXXXIII,p.1017〜1019 SIENCE VOL 290,p.2123〜2126(2000)
ところが、特許文献1のようなオフセット印刷法では、極めて高精度なものを用いてもパターン寸法精度及び位置合わせ精度を合わせたパターン誤差は±10μmで、汎用的なものでは±50μmにも及ぶため、微細なパターン形成には適さない。
また、非特許文献1では、プリンタに使用されるレベルの通常のインクジェットヘッドを用いた場合、解像度30μm、位置合わせ精度±15μm程度であるため、やはり微細なパターン形成は困難である。
非特許文献2では、表面エネルギーを制御することによってインクに対する濡れ性をコントロールして、インクジェット法の解像度を超えたパターン形成を可能にしている点で優れているが、ポリイミドからなるリブを作製するために以下のような長い工程
ポリイミドプリカーサーを塗布し焼成する(ポリイミド膜形成)
フォトレジスト層を塗布する(レジスト塗布)
加熱により溶剤を除去する(プリベーク)
マスクを通して紫外光を照射する(露光)
アルカリ溶液で露光部のレジストを除去する(現像)
加熱により未露光部(パターン部)
のレジストを硬化する(ポストベーク)
酸素プラズマによりレジストのない部分のポリイミド膜を除去する(エッチング)
溶剤でレジストを除去する(レジスト剥離)
を必要とするためインクジェット法の利点を損なっている。
また、特許文献3の場合、有機分子膜122が非常に薄いこと、親液部121aにおいてはこの膜が存在せず基板121が露出していることなどから有機分子膜122は表面エネルギー制御以外のバルク体としての機能は有しておらず、機能性が低いものである。
本発明の目的は、印刷法のような低コストかつ材料使用効率の高い方法が適用でき、簡便に微細なパターンの形成が可能であって、かつ、パターン形成以外に高付加価値機能を有し、より高移動度の半導体層を有する積層構造体を廉価に提供し、さらには、このような積層構造体を用いた作製が容易でかつ高性能な電子素子、これらの製造方法、電子素子アレイ及び表示装置を提供することである。
請求項1記載の発明の積層構造体は、少なくとも臨界表面張力の異なる部位を有する濡れ性変化層と、前記臨界表面張力の異なる部位のうち高表面エネルギー部のみに形成される導電層とを有する積層構造体であって、前記濡れ性変化層は、少なくともメチレン基を含み、側鎖に疎水性基を有する材料を含有する層である。
請求項2記載の発明は、請求項1記載の積層構造体において、前記臨界表面張力の異なる部位のうち低表面エネルギー部には、半導体層が形成される。
本発明者らは、エネルギーの付与によって臨界表面張力が変化する材料を含む濡れ性変化層の一部分に紫外線等のエネルギーを付与し、濡れ性の異なる部位(臨界表面張力の異なる部位)を設けることにより、その上に導電層を選択的に形成することが可能であること、及び、このような材料のエネルギー未付与部(即ち、低表面エネルギー部)は半導体材料、特に有機半導体材料と良好な界面を形成することができることを見出すとともに、このように構成される積層構造体を用いることにより、製造プロセスが簡便であってかつ性能が高い電子素子を提供できることを確認したものである。従って、本発明によれば、印刷法のような低コストかつ材料使用効率の高い方法で、簡便に製造できる微細な導電層パターン及び高移動度の半導体層を有する積層構造体を提供することができる。この際、濡れ性変化層を側鎖に疎水性基を有する高分子材料により形成することにより、より高移動度の半導体層を有する積層構造体を提供することができる。加えて、濡れ性変化層を側鎖に疎水性基を有するメチレン基を含む高分子材料により形成することにより、エネルギーの付与によって臨界表面張力が変化する濡れ性変化層を確実に提供することが可能となる。
請求項3記載の発明は、請求項1記載の積層構造体において、前記側鎖に疎水性基を有する材料は、可溶性ポリイミドを含む高分子材料を含有することを特徴とする。
従って、電気絶縁性に優れているポリイミドを用い、かつ、そのポリイミドが疎水性基を有しているので、電気絶縁性が高く、かつ、微細な導電層パターンを形成可能な積層構造体を提供することが可能となる。
また、より低温でかつ印刷法により簡便に成膜することが可能となり、低コストで微細な導電層パターンを形成可能な積層構造体を提供することが可能となる。
請求項4記載の発明は、請求項1ないし3の何れか一記載の積層構造体において、臨界表面張力を変化させるエネルギーの付与が紫外線照射である。
従って、紫外線照射を利用することにより、層内部にダメージを与えることなく、かつ、大気中で操作可能にして、より微細な導電層のパターンを形成することができる。
請求項5記載の発明の電子素子は、請求項1ないし4の何れか一記載の積層構造体を構成要素として有する。
従って、省資源で低コストかつ特性に優れた電子素子を提供することができる。
請求項6記載の発明の電子素子アレイは、請求項5記載の電子素子が基板上に複数個配設されている。
従って、省資源で低コストかつ高性能な電子素子アレイを提供することができる。
請求項7記載の発明の表示装置は、請求項6記載の電子素子アレイを備える。
従って、省資源で低コストかつ表示品質に優れた表示装置を提供することができる。
請求項1記載の発明の積層構造体によれば、エネルギーの付与によって臨界表面張力が変化する材料を含む濡れ性変化層の一部分に紫外線等のエネルギーを付与し、濡れ性の異なる部位(臨界表面張力の異なる部位)を設けることにより、その上に導電層を選択的に形成することが可能であることを見出し、エネルギーの付与によって臨界表面張力が変化する材料を含み、より臨界表面張力の大きな高表面エネルギー部とより臨界表面張力の小さな低表面エネルギー部との少なくとも臨界表面張力の異なる2つの部位を有する濡れ性変化層と、この濡れ性変化層に対して前記高表面エネルギー部の部位に形成された導電層と、により構成したので、印刷法のような低コストかつ材料使用効率の高い方法で、簡便に製造できる微細な導電層パターンを有する積層構造体を提供することができる。加えて、濡れ性変化層を側鎖に疎水性基を有するメチレン基を含む高分子材料により形成することにより、エネルギーの付与によって臨界表面張力が変化する濡れ性変化層を確実かつ廉価に提供することが可能となる。
請求項2記載の発明の積層構造体によれば、請求項1記載の積層構造体において、上記のような材料のエネルギー未付与部(即ち、低表面エネルギー部)は半導体材料、特に有機半導体材料と良好な界面を形成することができることを見出し、濡れ性変化層に対して少なくとも前記低表面エネルギー部の部位に接して設けられた半導体層が形成されるため、高移動度の半導体層を有する積層構造体を提供することができる。この際、濡れ性変化層を側鎖に疎水性基を有する高分子材料により形成することにより、より高移動度の半導体層を有する積層構造体を提供することができる。
請求項3記載の発明によれば、請求項1記載の積層構造体において、前記側鎖に疎水性基を有する材料は、さらにポリイミドを含む高分子材料からなるので、電気絶縁性に優れているポリイミドを用い、かつ、そのポリイミドが疎水性基を有しているため、電気絶縁性が高く、かつ、微細な導電層パターンを形成可能な積層構造体を提供することが可能となる。
さらに請求項3記載の発明によれば、請求項1記載の積層構造体において、前記ポリイミドを含む高分子材料は、可溶性ポリイミドを含む高分子材料からなるので、低温でかつ印刷法を用いた成膜が可能となり、微細な導電層パターンを形成可能な積層構造体を低コストで提供することが可能となる。
請求項4記載の発明によれば、請求項1ないし3の何れか一記載の積層構造体において、臨界表面張力を変化させるエネルギーの付与に紫外線照射を利用することにより、層内部にダメージを与えることなく、かつ、大気中で操作可能にして、より微細な導電層のパターンを形成することができる。
請求項5記載の発明の電子素子によれば、請求項1ないし4の何れか一記載の積層構造体を構成要素として有するので、省資源で低コストかつ特性に優れた電子素子を提供することができる。
請求項6記載の発明の電子素子アレイによれば、請求項5記載の電子素子が基板上に複数個配設されているので、省資源で低コストかつ高性能な電子素子アレイを提供することができる。
請求項7記載の発明の表示装置によれば、請求項6記載の電子素子アレイを備えるので、省資源で低コストかつ表示品質に優れた表示装置を提供することができる。
本発明の一実施の形態を図1ないし図12並びに図16ないし図22に基づいて説明する。
[積層構造体]
まず、本実施の形態の積層構造体について説明する。図1は、本実施の形態の積層構造体1の原理的構成例を示す断面模式図である。本実施の形態の積層構造体1は、例えば基板(図示せず)上に形成された濡れ性変化層2をベースとして構成されている。ここに、濡れ性変化層2は、エネルギーの付与によって臨界表面張力が変化する材料からなる層であって、本実施の形態では、少なくとも臨界表面張力の異なる2つの部位として、より臨界表面張力の大きな高表面エネルギー部3と、より臨界表面張力の小さな低表面エネルギー部4とを有している。ここに、図示例の2つの高表面エネルギー部3間は、例えば、1〜5μm程度の微小ギャップに設定されている。そして、濡れ性変化層2に対して高表面エネルギー部3の部位には各々導電層5が形成され、かつ、濡れ性変化層2に対して少なくとも低表面エネルギー部4に接するようにして半導体層6が設けられている。
ここで、濡れ性変化層2は、単一の材料からなっていても良いし、2種類以上の材料から構成されていても良い。2種類以上の材料から構成する場合には、具体的には、電気絶縁性のより大きな材料に濡れ性変化のより大きな材料を混合することにより、電気絶縁性に優れ、かつ、濡れ性変化にも優れた濡れ性変化層2を提供することが可能となる。
また、濡れ性変化は大きいが成膜性に問題がある材料を用いることが可能となるため選択できる材料が多くなる。具体的には、一方の材料の濡れ性変化はより大きいが凝集力が強いため成膜することが困難な材料である場合に、この材料を成膜性の良いもう一方の材料と混合することで、上記濡れ性変化層を容易に作製することが可能となる。
本実施の形態の濡れ性変化層2の断面模式図を図16に示す。例えば、第二の材料72よりも電気絶縁性に優れた第一の材料71から構成される層上に、第一の材料71よりも濡れ性変化に優れた第二の材料72からなる層が明確に分離され積層された構造となっている。
このような構造は、第一の材料71からなる層を作製した後に第二の材料72からなる層を順次積層して作製することが可能である。作製方法としては、真空蒸着などの真空プロセスを用いることも可能であるし、溶剤を用いた塗布プロセスを使用することも可能である。
また、第一の材料71と第二の材料72を混合した溶液を基板に塗布、乾燥することにより、作製することも可能である。これは第二の材料72の極性が相対的に小さい場合、相対的に分子量の小さい場合などでは、乾燥時に溶媒が蒸発するまでの間に第二の材料72が表面側に移行し層を形成する。なお、塗布プロセスを用いた場合は、図17の断面模式図に示すように、第一の材料71からなる層と第二の材料72からなる層は、界面によって明確に分離されない場合が多い。
本実施の形態において、相対的に電気絶縁性に優れた第一の材料71と相対的に濡れ性変化の大きい第二の材料72の組成割合である第一/第二は、重量比で50/50〜99/1である。第二の材料72の重量比が増加するにつれ濡れ性変化層2の電気絶縁性が低くなり電子素子の絶縁層としては不向きとなる。一方で第一の材料71の重量比が増すと濡れ性変化が小さくなるため、導電層のパターニングが良好でなくなる。それゆえ、両者の混合比は望ましくは60/40〜95/5、更に望ましくは70/30〜90/10である。
なお、図17の断面模式図に示すように、第一の材料71からなる層と第二の材料72からなる層は界面によって明確に分離されていなくてもよい。また、図17或いは図18に示すように、膜厚方向に対して所定の濃度分布で第一及び第二の材料71,72が混在していてもよい。
2種類以上の材料から濡れ性変化層2が構成されている場合は、2層以上の積層構造からなっていても構わないし、層構造を持たずに膜厚方向に対して所定の濃度分布で材料が混在していてもよい。
基板と接していない側の濡れ性変化層表面2aは、図19の平面模式図に示すように、第二の材料72が均一に分散した表面からなっていることが望ましい。しかしながら、微細なパターニングが可能であるならば、図20の平面模式図に示すように第二の材料72が均一に分散した中に第一の材料71が分散している状態、図21の平面模式図に示されるように層分離を起こし、いわゆる海島構造になっていても構わない。なお、海島構造は、光学顕微鏡や顕微赤外或いはラマン分光法等を用いて観察することが可能であるが、特に、島構造が径5μm程度であれば、顕微赤外分光法により材料成分を特定することも可能である。
ここで、導電層5は、望ましくは導電性材料を含有する液体を加熱、紫外線照射等によって固化することによって得られる層である。なお、導電性材料を含有する液体とは、
1 導電性材料を溶媒に溶解したもの、
2 導電性材料の前駆体若しくは前駆体を溶媒に溶解したもの、
3 導電性材料粒子を溶媒に分散したもの、
4 導電性材料の前駆体粒子を溶媒に分散したもの、
等を言う。より具体的には、Ag,Au,Ni等の金属微粒子を有機溶媒や水に分散したものやドープドPANI(ポリアニリン)やPEDOT(ポリエチレンジオキシチオフェン)にPSS(ポリスチレンスルホン酸)をドープした導電性高分子の水溶液等を例示することができる。
濡れ性変化層2は、前述したように、熱、紫外線、電子線、プラズマ等のエネルギーを与えることによって、臨界表面張力が変化する材料からなる層で、エネルギー付与前後での臨界表面張力の変化量が大きいものが好ましい。このような材料の場合、濡れ性変化層2の一部分にエネルギーを付与し、高表面エネルギー部3と低表面エネルギー部4とからなる臨界表面張力の異なるパターンを形成することにより、導電性材料を含有する液体が、高表面エネルギー部3には付着しやすく(親液性)、低表面エネルギー部4には付着しにくく(疎液性)なるため、パターン形状に従って導電性材料を含有する液体が親液性である高表面エネルギー部3に選択的に付着し、それを固化することにより導電層5が形成される。
ここで、固体表面に対する液体の濡れ性(付着性)について付言する。図2は固体11表面上で液滴12が接触角θで平衡状態にある時の模式図で、ヤングの式(1)が成立する。
γS =γSL +γL cosθ …………(1)
ここで、γS は固体11の表面張力、γSL は固体11と液体(液滴12)の界面張力、γL は液体(液滴12)の表面張力である。
表面張力は表面エネルギーと実質的に同義であり、全く同じ値となる。cosθ=1の時、θ=0°となり、液体(液滴12)は完全に濡れる。この時のγL の値はγS −γSLとなり、これをその固体11の臨界表面張力γc と呼ぶ。γc は表面張力の判っている何種類かの液体を用いて、液体(液滴12)の表面張力と接触角の関係をプロットし、θ=0°(cosθ=1)となる表面張力を求めることにより容易に決定できる(Zismanプロット)。γc の大きい固体11表面には液体(液滴12)が濡れやすく(親液性)、γc の小さい固体11表面には液体(液滴12)が濡れにくい(疎液性)。
ここに、接触角θの測定は液滴法で行うのが簡便である。液滴法には、
(a) 読取顕微鏡を液滴12に向け、顕微鏡内のカーソル線を液滴12の接点に合わせて角度を読取る接線法、
(b) 十字のカーソルを液滴12の頂点に合わせ、一端を液滴12と固体11試料の接する点に合わせた時のカーソル線の角度を2倍することにより求めるθ/2法、
(c) モニター画面に液滴12を映し出し、円周上の1点(できれば頂点)と液滴12と固体11試料の接点(2点)をクリックしてコンピュータで処理する3点クリック法、
がある。(a)→(b)→(c)の順に精度が高くなる。
図3は、後述(実施例1)の材料(焼成後に後述の化8並びに化9の化学式で表されるポリイミド構造体)を濡れ性変化層2に用い、紫外線未照射部と紫外線照射部とのZismanプロットを行ったものである。図から紫外線未照射部の臨界表面張力γc は約24mN/m、紫外線照射部の臨界表面張力γc’ は約45mN/mであり、その差Δγc は約21mN/mであることが判る。
高表面エネルギー部3と低表面エネルギー部4とのパターン形状に従って導電性材料を含有する液体が親液性である高表面エネルギー部3にのみ確実に付着するためには、表面エネルギー差が大きいこと、言い換えれば、臨界表面張力の差Δγc が大きいことが必要である。
表1はガラス基板上に種々の材料からなる濡れ性変化層2を形成し、エネルギー付与部と未付与部とのΔγc 並びにPEDOT/PSS(水溶液系導電性高分子)の選択付着性を評価したものである。選択付着性はエネルギー付与部と未付与部とからなるパターンの境界を含むエリアにPEDOT/PSS水溶液を滴下し、余分の溶液を除去した後に未付与部に対するPEDOT/PSSの付着(パターン不良)の有無を観察した。なお、表1中、A:マルカリンカーM(丸善化学)、B:RN−1024(日産化学)、C:AG−7000(旭硝子)D:焼成後に後述の化8並びに化9の化学式で表されるポリイミド構造体である。
Figure 2006060113
表1より濡れ性変化層2の、低表面エネルギー部4の臨界表面張力と高表面エネルギー部3の臨界表面張力との差(Δγc )は10mN/m以上であることが望ましく、15mN/m以上であることがさらに望ましいことが判る。
ところで、本実施の形態の特徴的な積層構造体1においては、半導体層6は濡れ性変化層2の低表面エネルギー部4に接するため、その部位の物性が半導体層6の特性に影響を与えると考えられる。図4は後述(実施例2)の構造の電子素子(TFT)を濡れ性変化層(ゲート絶縁膜)2の材料を変えて作製し、その移動度を濡れ性変化層2(エネルギー未付与)の臨界表面張力γc に対してプロットしたものである。図4中、Aは焼成後に後述の化8並びに化9の化学式で表されるポリイミド構造体、Bはポリビニルフェノール、Cは有機シリカ、Dは熱酸化膜、Eはポリイミド、FはSiO (スパッタ膜)である。ただし、ソース電極5aとドレイン電極5bとはAu蒸着膜をリフトオフすることにより形成した。図4より移動度はγc が40mN/mを超えると急激に減少することが判る。この結果から濡れ性変化層の、低表面エネルギー部の臨界表面張力(γc )は40mN/m以下であることが望ましい。
なお、臨界表面張力(γc )が20mN/mより小さいと、ほとんどの溶媒をはじいてしまうため、半導体層6を塗布によって形成する場合には、臨界表面張力(γc )は20mN/m以上であることが望ましい。
また、濡れ性変化層2には側鎖に疎水性基を有する高分子材料を用いるのが望ましい。具体的には、図5の概念図に示すように、ポリイミドや(メタ)アクリレート等の骨格を有する主鎖Lに直接或いは結合基(図示せず)を介して疎水性基を有する側鎖Rが結合しているものを挙げることができる。
疎水性基としては、末端構造が−CF2 CH3 、−CF2 CF3 、−CF(CF3 )2 、−C(CF3 )3 、−CF2 H、−CFH2 等である基が挙げられる。分子鎖同士を配向しやすくするためには炭素鎖長の長い基が好ましく、炭素数4以上のものがより好ましい。さらには、アルキル基の水素原子の2個以上がフッ素原子に置換されたポリフルオロアルキル基(以下、「Rf基」と記す。)が好ましく、特に炭素数4〜20のRf基が好ましく、とりわけ、炭素数6〜12のRf基が好ましい。Rf基は直鎖構造であっても分岐構造であってもよいが、直鎖構造の方が好ましい。さらに、疎水性基は、アルキル基の水素原子の実質的に全てがフッ素原子に置換されたパーフルオロアルキル基が好ましい。パーフルオロアルキル基はCn2n+1 −(ただし、nは4〜16の整数)で表わされる基が好ましく、特に、nが6〜12の整数である場合の該基が好ましい。パーフルオロアルキル基は直鎖構造であっても分岐構造であってもよく、直鎖構造が好ましい。
上記材料については特開平3−178478号公報等に詳しく記載されて周知であり、加熱状態で液体又は固体と接触させたときに親液性となり、空気中で加熱すると疎液性となる性質を有する。即ち、(接触媒体の選択と)熱エネルギーの付与によって臨界表面張力を変化させることができる。
さらに、疎水性基としては、フッ素原子を含まない−CH2 CH3 、−CH(CH3 )2 、−C(CH3 )3 等の末端構造を有する基を挙げることができる。この場合にも、分子鎖同士を配向しやすくするためには炭素鎖長の長い基が好ましく、炭素数4以上のものがより好ましい。疎水性基は直鎖構造であっても分岐構造であってもよいが、直鎖構造の方が好ましい。上記アルキル基はハロゲン原子、シアノ基、フェニル基、ヒドロキシル基、カルボキシル基又は炭素数1〜12の直鎖、分岐鎖もしくは環状のアルキル基やアルコキシ基で置換されたフェニル基を含有していてもよい。Rの結合部位が多いほど表面エネルギーが低く(臨界表面張力が小さく)、疎液性となると考えられる。紫外線照射等によって、結合の一部が切断される、或いは、配向状態が変化するために臨界表面張力が増加し、親液性になるものと推察される。
これ以外にも疎水性基としては、−SiR3 で表すことができるオルガノシリコン基を挙げることができる。ここでRはシロキサン結合を含む有機基である。
上記に述べた疎水性基において、特にメチレン基を有する疎水性基は、C−Hの結合エネルギー(338kJ/mol)がフッ素系材料のC−F結合(552kJ/mol)やシリコーン系材料のSi−C結合(451kJ/mol)に比較し小さい。そのため紫外線照射等のエネルギー付与によって結合の一部を容易に切断することが可能である。
濡れ性変化層2上に半導体層を形成することを考慮すると、側鎖に疎水性基を有する高分子材料は、ポリイミドを含むことが望ましい。ポリイミドは耐溶剤性並びに耐熱性に優れているため、濡れ性変化層2上に半導体層を形成する際に、溶媒や焼成による温度変化によって、膨潤したりクラックが入ったりするといったことがない。
また、濡れ性変化層2を2種類以上の材料から構成する場合においては、耐熱性、耐溶剤性、親和性を考慮すると、側鎖に疎水性基を有する高分子材料以外の材料もポリイミドからなることが望ましい。
本実施の形態で用いられる側鎖に疎水性基を有するポリイミドの疎水性基は、例えば以下の化1〜化5の化学式で示される構造の何れかを持つことができる。
Figure 2006060113
化1の化学式において、Xは−CH2 −又はCH2 CH2 −であり、A1 は1,4−シクロヘキシレン、1,4−フェニレン又は1〜4個のフッ素で置換された1,4−フェニレンであり、A2 、A3 及びA4 は各々独立して単結合、1,4−シクロヘキシレン、1,4−フェニレン又は1〜4個のフッ素で置換された1,4−フェニレンであり、B1 、B2 、B3 は各々独立して単結合又はCH2 CH2 −であり、 4 は炭素数1〜10までのアルキレンであり、R3 、R4 、R5 、R6 、及びR7 は各々独立して炭素数が1〜10までのアルキルであり、pは1以上の整数である。
Figure 2006060113
化2の化学式において、T、U及びVは各々独立してベンゼン環又はシクロヘキサン環であり、これらの環上の任意のHは炭素数1〜3のアルキル、炭素数1〜3のフッ素置換アルキル、F、Cl又はCNで置換されていてもよく、m及びnは各々独立して0〜2の整数であり、hは0〜5の整数であり、RはH、F、Cl、CN又は1価の有機基であり、mが2の場合の2個のU又はnが2の場合の2個のVは各々同じでも異なっていても良い。
Figure 2006060113
化3の化学式において、連結基ZはCH2 、CFH、CF 、CH2 CH2 又はCFOであり、環Yは1,4−シクロへキシレン又は1〜4個のHがF又はCH で置き換えられてもよい1,4−フェニレンであり、A 〜A3 は各々独立して単結合、1,4−シクロへキシレン又は1〜4個のHがF又はCH で置き換えられてもよい1,4−フェニレンであり、B 〜B は各々独立して単結合、炭素数1〜4のアルキレン、酸素原子、炭素数1〜3のオキシアルキレン又は炭素数1〜3のアルキレンオキシであり、RはH、任意のCH2 がCF で置き換えられてもよい炭素数1〜10のアルキル、又は1個のCH2 がCF で置き換えられてもよい炭素数1〜9のアルコキシもしくはアルコキシアルキルであり、ベンゼン環に対するアミノ基の結合位置は任意の位置である。但し、ZがCH2 である場合には、B 〜B の全てが同時に炭素数1〜4のアルキレンであることはなく、ZがCH2 CH2 であって、環Yが1,4−フェニレンである場合には、A 及びA2 がともに単結合であることはなく、また、ZがCF Oである場合には、環Yが1,4−シクロへキシレンであることはない。
Figure 2006060113
化4の化学式において、R2は水素原子又は炭素数1〜12のアルキル基であり、Z1はCH2 基であり、mは0〜2であり、環Aはベンゼン環又はシクロヘキサン環であり、lは0又は1であり、各Y1 は独立に酸素原子又はCH2 基であり、各n1 は独立に0又は1である。
Figure 2006060113
化5の化学式において、各Y2 は独立に酸素原子又はCH2 基であり、R3、R4は独立に水素原子、炭素数1〜12のアルキル基又はパーフルオロアルキル基であり、少なくとも一方は炭素数3以上のアルキル基、又はパーフルオロアルキル基であり、各n2 は独立に0又は1である。
これらの材料についての詳細は、特開2002−162630公報、特開2003−96034公報、特開2003−267982公報、特開2004−86184公報等に詳しく記載されている。また、これら疎水性基の主鎖骨格を構成するテトラカルボン酸二無水物については、脂肪族系、脂環式、芳香族系など種々の材料を用いることが可能である。具体的には、ピロメリット酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物などである。この他特開平11−193345号公報、特開平11−193346号公報、特開平11−193347号公報等に詳しく記載されている材料についても用いることが可能である。
上述したように、上記化1〜化5に示す化学式の疎水性基を含むポリイミドは単独で用いても良いし、他の材料と混合し用いても良い。ただし、混合して用いる場合は、耐熱性、耐溶剤性、親和性を考慮すると、混合する材料もポリイミドであることが望ましい。
また、上記化1〜化5の化学式で示されない疎水性基を含むポリイミドを用いることもできる。
具体的には、特許第3097702号公報に記載されている直鎖状アルキル鎖を有する芳香族ジアミン残基を含んだポリイミドである。
なお、より低温で成膜プロセスが行えることを考慮すると、側鎖に疎水性基を有する高分子材料は、可溶性ポリイミドを含むことが望ましい。ここで可溶性ポリイミドとは、溶剤に可溶なポリイミドのことである。原料の酸二無水物とジアミンを反応させて得られるポリアミック酸を予め溶液中で化学的イミド化処理することで得られる。ポリイミド骨格が剛直な構造を有していると溶媒に溶解しにくい。そこでポリイミドの結晶性を乱し溶媒和を受けやすくするため、嵩高い脂環式シクロカルボン酸二水物が一般には用いられる。
ポリイミドがどのような酸無水物から構成されているかは、ポリイミド薄膜の赤外吸収スペクトルによる特性基振動の解析や紫外−可視吸収スペクトルの測定により推察される。嵩高い脂環式シクロカルボン酸二水物骨格を有するポリイミド薄膜では、その吸収端波長は300nm以下となる。詳細については、今井淑夫、横田力男編著、日本ポリイミド研究会編者「最新ポリイミド〜基礎と応用〜」、株式会社エヌ・ティ・エス発行、2002年や、「次世代のためのエレクトロニクス・電子材料に向けた新しいポリイミドの開発と高機能付与技術」、株式会社技術情報協会発行、2003年に記述がある。
ポリイミドが溶媒に溶解しているため、溶媒を蒸発せしめる温度即ち200℃以下の低温で成膜が可能となる。また、ポリイミド薄膜中に未反応のポリアミック酸や副反応生成物の酸無水物がポリイミド中に残るといったことがなく、これら不純物によりポリイミド膜の電気特性が不良となるといった問題が生じにくい。
可溶性ポリイミドはいかなる溶媒にも可溶性を示すわけではなく、特定の例えばγ−ブチルラクトン、N−メチルピロリドン、N,N−ジメチルアセトアミド等の極性の高い溶媒にのみ可溶性を示す。それゆえ、濡れ性変化層2上に半導体層を形成する際に、トルエン、キシレン、アセトン、イソプロピルアルコール等の極性の低い溶媒を用いれば、可溶性ポリイミドを含んだ薄膜が溶媒に侵食されることはない。
また、濡れ性変化層2を2種類以上の材料から構成する場合においては、側鎖に疎水性基を有する可溶性ポリイミド以外の材料も、可溶性材料からなることが望ましい。これにより低温で成膜が可能となる。さらには、可溶性ポリイミドと良好な相溶性を示す材料であることが望ましい。これにより溶剤下で相分離が生じにくく、成膜プロセスに最適である。
可溶性材料は有機物である必要はなく、有機物と無機物との化合物などを用いることが可能である。これらの例としては、ポリビニルフェノールなどのフェノール樹脂、メラミン樹脂、アセチル化処理などを施したプルランなどの多糖類、シルセスキオキサンなどが挙げられる。
また、側鎖に疎水性基を有する可溶性ポリイミド以外の材料も可溶性ポリイミドからなると、耐熱性、耐溶剤性、親和性の点で好適である。
本実施の形態で用いられる側鎖に疎水性基を有する可溶性ポリイミドの疎水性基は、例えば以下の化6の化学式で示される構造を有することができる。
Figure 2006060113
式中、R1 は炭素数1〜12のアルキル基、炭素数1〜12のハロアルキル基又はハロゲン原子であり、X、Yは互いに独立に下記化7の化学式中の(a)〜(d)で表わされる2価の結合基であり、aは1〜5の整数である。
Figure 2006060113
この材料についての詳細は、例えば特開平9−272740号公報に記載されている。
また、前述の化1〜化5の化学式で示される材料からなるポリイミドを、適当な化学処理によって溶媒可溶とすることも可能である。これらの材料を可溶性ポリイミドとする方法については、国際公開WO01/000732公報に記載されている。
なお、上記では、側鎖基を有する残基を与えるジアミン化合物の例を挙げたが、テトラカルボン酸類が側鎖基を有する残基を与えることも可能である。
疎水性基を有する側鎖Rが表面に配列している他の効果として、それに接している半導体層6との界面特性を良好なものとすることができる。半導体層6が有機半導体からなる場合、その効果がより顕著である。界面特性が良好であるとは、a.半導体が結晶質である場合には結晶粒が大きくなり、移動度が増大する、b.半導体が非晶質(高分子)である場合には、界面準位密度が減少し、移動度が増大する、c.半導体が高分子であり、長鎖アルキル基等の側鎖を有する場合には、その配向が規制されることによりπ共役主鎖の分子軸を概ね一方向に配列させることができ、移動度が増大する、等の現象が出現することを指す。
本実施の形態における濡れ性変化層2の厚さは30nm〜3μmが好ましく、50nm〜1μmがさらに好ましい。これより薄い場合にはバルク体としての特性(絶縁性、ガスバリア性、防湿性等)が損なわれ、これより厚い場合には表面形状が悪化するため好ましくない。
導電性材料を含有する液体を濡れ性変化層2表面に付与する方法として、スピンコート法、ディップコート法、スクリーン印刷法、オフセット印刷法、インクジェット法等の各種塗布法を用いることができるが、濡れ性変化層の表面エネルギーの影響を受けやすくするためには、より小さな液滴を供給できるインクジェット法が特に好ましい。前述のようにプリンタに使用されるレベルの通常のヘッドを用いた場合、インクジェット法の解像度は30μm、位置合わせ精度は±15μm程度であるが、濡れ性変化層2における表面エネルギーの差を利用することにより、それよりも微細なパターンを形成することが可能となる。
半導体層6としては、CdSe,CdTe,Si等の無機半導体やペンタセン、アントラセン、テトラセン、フタロシアニン等の有機低分子、ポリアセチレン系導電性高分子、ポリパラフェニレン及びその誘導体、ポリフェニレンビニレン及びその誘導体等のポリフェニレン系導電性高分子、ポリピロール及びその誘導体、ポリチオフェン及びその誘導体、ポリフラン及びその誘導体等の複素環系導電性高分子、ポリアニリン及びその誘導体等のイオン性導電性高分子等の有機半導体を用いることができるが、上述のように有機半導体を用いた場合に、濡れ性変化層2による特性向上の効果がより顕著に現れる。
また、濡れ性変化層2の一部にエネルギーを付与する方法として、a.大気中で操作できる、b.高い解像度が得られる、c.層内部へのダメージが少ない等の点から紫外線照射を用いるのが好ましい。
[積層構造体の製造方法]
図6に本実施の形態の積層構造体1の作製プロセスの一例を示す。
まず、図6(a)に示すように、ガラスやポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチック、シリコンウェハ、金属等からなる基板7上に濡れ性変化層2を形成する。濡れ性変化層2は紫外線の照射によって臨界表面張力が増加し、低表面エネルギー(疎液性)から高表面エネルギー(親液性)へ変化する材料からなる。その好ましい構造については前述した通りであるが、本発明者らの実験によれば、主鎖がポリイミド骨格よりなり側鎖に長鎖アルキル基を有するものが、特に紫外線照射による濡れ性変化が大きかったものである。このような構造を有するポリマー又はその前駆体を有機溶媒等に溶解又は分散した溶液をスピンコート法、ディップコート法、ワイヤーバーコート法、キャスト法等で基板7上に塗布し、加熱することにより、濡れ性変化層2が形成される。
次に、図6(b)に示すように、濡れ性変化層2の表面にマスク8を通して紫外線を照射する。これにより低表面エネルギー部4と高表面エネルギー部3とからなるパターンが形成される。紫外線としては100nmから300nmの比較的短い波長の光が含まれるのが望ましい。
次に、図6(c)に示すように、上記パターンが形成された濡れ性変化層2上に導電性材料を含有する液体を例えばインクジェット法によって供給すると、高表面エネルギー部3のみに導電層5が形成される。
最後に、図6(d)に示すように、低分子半導体を蒸着するか、高分子半導体又はその前駆体を溶解した溶液をスピンコート法、ディップコート法、ワイヤーバーコート法、キャスト法等で塗布し、加熱することにより、半導体層6が形成される。
[電子素子]
上述したような構造の積層構造体1を構成要素の一部とする、ダイオード、トランジスタ、光電変換素子、熱電変換素子等の電子素子を形成することができる。
図7に本実施の形態における電子素子の一例を示す。この電子素子31は電界効果型トランジスタ構成のTFTの例を示している。
まず、基板7及び濡れ性変化層2は上述した場合と同様である。濡れ性変化層2には低表面エネルギー部4と高表面エネルギー部3とからなるパターンが形成され、その上に導電性材料を含有する液体を付与することにより高表面エネルギー部3に導電層として一対の電極層5a,5bが形成されている。導電性材料を含有する液体としては、Ag,Au,Ni等の金属微粒子を有機溶媒や水に分散したものやドープドPANI(ポリアニリン)やPEDOT(ポリエチレンジオキシチオフェン)にPSS(ポリスチレンスルホン酸)をドープした導電性高分子の水溶液等を用いることができる。電極層5a,5b間のギャップ精度が本素子の性能を左右するが、本実施の形態では、低表面エネルギー部4と高表面エネルギー部3とからなるパターンを高精度に形成することができるため、液体付与手段の精度に依らず電極層5a,5bのパターン精度を確保することができる。
その上に半導体層6が蒸着法、スピンコート法、ディップコート法、キャスト法等により形成される。半導体層6としては、前述のように有機半導体が特に好ましい。
これらが当該電子素子31において、積層構造体1を構成要素として含む部分となる。
さらにその上に絶縁体層32が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。絶縁体層32としては、無機絶縁体及び有機絶縁体が使用可能であるが、半導体層6が有機半導体である場合には、特にその層にダメージを与えない形成方法を採用する必要がある。例えば、高温や高速イオン、活性ラジカル、有機半導体が可溶な溶媒等の使用を伴うものは避けるのが望ましい。そのような観点からは蒸着法によるSiO 、水に可溶なPVA(ポリビニルアルコール)、アルコールに可溶なPVP(ポリビニルフェノール)、フッ素系溶媒に可溶なパーフルオロポリマー等が好適に使用できる。
最後に、絶縁体層32上に電極層33が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。電極層33としては、各種の導電性薄膜が使用でき、全面に成膜した後に通常のフォトリソグラフィー法やマイクロコンタクトプリンティング法でパターニングしてもよいし、導電性材料を含有する液体をインクジェット法等で供給して直接描画してもよい。
図7から明らかなように、この電子素子31はTFT(薄膜トランジスタ)として機能する。即ち、電極層5a,5bはソース電極S及びドレイン電極D、絶縁体層32はゲート絶縁膜、電極層33はゲート電極Gである。電極層5a,5b間のギャップはチャネル長に相当する。
本実施の形態では、濡れ性変化層2の表面エネルギー制御によってパターンを形成するため、従来技術で説明したように疎液性(撥液性)膜のある部分とない部分を形成するものと違い、濡れ性変化層2自体に別の機能を持たせることが可能である。例えば、図7に示す例では基板7の表面を濡れ性変化層2で覆っているので、基板7がプラスチックのようにガスや水分を透過しやすいものであっても濡れ性変化層2がバリア層として機能し、当該電子素子31へ影響を低減させることができる。
なお、図7では半導体層6が基板全面(素子全面)に形成されているが、少なくともチャネル領域を含む島状にパターニングしてもよい。その方法として、マスク蒸着法やスクリーン印刷法、インクジェット法、マイクロコンタクトプリンティング法等を用いることができる。
図8に本実施の形態における電子素子41の他例を示す。本実施の形態の電子素子41は、ガラスやポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチック、シリコンウェハ、金属等からなる基板7上に、まず、電極層42が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。電極層42としては、各種の導電性薄膜が使用でき、全面に成膜した後に通常のフォトリソグラフィー法やマイクロコンタクトプリンティング法でパターニングしてもよいし、導電性材料を含有する液体をインクジェット法等で供給して直接描画してもよい。
その上に上述と同様の濡れ性変化層2を形成する。この濡れ性変化層2はゲート絶縁膜を兼ねるので、高絶縁性であることが望ましい。もっとも、上層を濡れ性変化層、下層を濡れ性変化機能はないがより絶縁性の高い絶縁体層とする2層構造であってもよい。上記と同様に濡れ性変化層2に低表面エネルギー部4と高表面エネルギー部3とからなるパターンが形成され、その上に導電性材料を含有する液体を付与することにより高表面エネルギー部3に導電層として一対の電極層5a,5bが形成される。
最後に、上述と同様の半導体層6が全面(又は少なくともチャネル領域を含む島状)に形成される。
図8から明らかなように、この電子素子41はTFT(薄膜トランジスタ)として機能する。即ち、電極層42はゲート電極G、濡れ性変化層2はゲート絶縁膜、電極層5a,5bはソース電極S及びドレイン電極Dである。電極層5a,5b間のギャップはチャネル長に相当する。濡れ性変化層2がゲート絶縁膜を兼ねるため、図7に示した構成例に比して、工程が簡略化される。
なお、図8において、電極層42を形成する前に基板7上に、濡れ性変化層2とは別の第2の濡れ性変化層(図示せず)を設け、電極層42のパターニングに利用してもよい。
[電子素子アレイ]
図9に本実施の形態の電子素子アレイの一例を示し、(a)は断面図、(b)は電極等の配置関係を示す平面図である。ここでは、図8に示したタイプの電子素子41を利用した例を示している。
基板7上にゲート電極となる電極層42、ゲート絶縁膜を兼ねる濡れ性変化層2、ソース電極となる電極層5a及びドレイン電極となる電極層5bを、図8に示した場合と同様の方法で2次元アレイ状にパターンニングして複数個形成する。
なお、各TFT(電子素子41)毎のゲート電極42は走査信号用のドライバーICにより駆動させるためバスラインに接続され、同様に、各TFT(電子素子41)毎のソース電極5aもデータ信号用のドライバーにより駆動させるためバスラインに接続される。
次に、半導体層6を、例えばマイクロコンタクトプリンティング法でチャネル領域を含む島状に形成することで、電子素子(TFT)アレイ51が完成する。なお、マイクロコンタクトプリンティング法はフォトリソグラフィーでパターン形成したマスターを用いてPDMS(ポリジメチルシロキサン)のスタンプを作製し、その凸部に半導体材料を含有する液体を付着させ、基板に転写する方法である。半導体層7がチャネル領域を含む島状に形成されているので隣接する素子部分への電流リークは発生しない。
なお、図9には示していないが、酸素や水分、放射線などにより電子素子(TFT)41の特性が劣化することを防ぐために、電子素子(TFT)41はパッシベーション膜に覆われていることが望ましい。
パッシベーション膜には、例えば、窒化アルミニウム、窒化シリコン、窒化酸化シリコン、などを用いることができる。これらはCVD法、イオンプレーティング法などにより成膜される。
[表示装置]
図10の断面図に上述したような電子素子アレイ51を利用した本実施の形態の表示装置61の一例を示す。
上述したような電子素子(TFT)アレイ51を構成する基板7と透明導電膜62を有する第2の基板63との間に表示素子64が設けられ、TFT(電子素子)41によって画素電極を兼ねるドレイン電極5b上の表示素子がスイッチングされる。第2の基板63としては、ガラスやポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチックを用いることができる。表示素子64としては液晶、電気泳動、有機EL等の方式を用いることができる。
表示素子64として液晶を用いた液晶表示素子は電界駆動であることから消費電力が小さく、また駆動電圧が低いことからTFTの駆動周波数を高くすることができ、大容量表示に適している。液晶表示素子の表示方式として、TN、STN、ゲスト・ホスト型、高分子分散液晶(Polymer-dispersed Liquid Crystal=PDLC)等が挙げられるが、反射型で明るい白色表示が得られる点ではPDLCが好ましい。
なお、電子素子(TFT)アレイ51上に表示素子64が積層される反射型液晶素子等においては、図22に示すように電子素子(TFT)アレイ51上に層間絶縁膜81を設け、コンタクトホール82を通じて層間絶縁膜81上に設けた画素電極83が、電子素子(TFT)41のドレイン電極5bと接続される。
電気泳動表示素子は第1の色(例えば白色)を呈する粒子を第2の色を呈する着色分散媒中に分散した分散液からなるもので、第1の色を呈する粒子は着色分散媒中で帯電することにより、電界の作用で分散媒中における存在位置を変えることができ、それによって呈する色が変化する。この表示方式によれば明るく、視野角の広い表示ができ、また表示メモリー性があるため特に消費電力の観点から好ましく使用される。
上記分散液を高分子膜で包んだマイクロカプセルとすることにより、表示動作が安定化するとともに、表示装置の製造が容易になる。マイクロカプセルはコアセルベーション法、In−Situ重合法、界面重合法、等公知の方法で作製することができる。白色粒子としては、酸化チタンが特に好適に用いられ、必要に応じて表面処理或いは他の材料との複合化等が施される。分散媒としては、ベンゼン、トルエン、キシレン、ナフテン系炭化水素等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ケロシン、パラフィン系炭化水素等の脂肪族炭化水素類、トリクロロエチレン、テトラクロロエチレン、トリクロロフルオロエチレン、臭化エチル等のハロゲン化炭(化水)素類、含フッ素エーテル化合物、含フッ素エステル化合物、シリコーンオイル等の抵抗率の高い有機溶媒を使用するのが好ましい。分散媒を着色するためには所望の吸収特性を有するアントラキノン類やアゾ化合物類等の油溶性染料が用いられる。分散液中には分散安定化のために界面活性剤等を添加してもよい。
有機EL素子は自発光型であるため鮮やかなフルカラー表示を行うことができる。また、EL層は非常に薄い有機薄膜であるので、柔軟性に富み、特にフレキシブルな基板上に形成するのに適している。
上述したような実施の形態を具体化した実施例について、比較例とともに、以下に説明する。
[実施例1]
本実施例は電子素子の作製に関するものである。ここでは、図7に示したような構造の電子素子(TFT)31を作製した。
まず、ガラス基板7上に濡れ性変化層2として、焼成後に化8,化9の化学式で表される構造体となる前駆体を溶解した混合溶液を、スピンコート法にて塗布し280℃で焼成した。
Figure 2006060113
Figure 2006060113
このような濡れ性変化層2の特性を評価するために別途以下の実験を行った。
(1) UVランプを用い、250nmの光の強度が5mW/cm となるように光源と基板との距離を調整し、照射時間を変化させることにより(250nmの波長に対する)照射量を変え、水に対する接触角の変化を観測した。図11は紫外線照射量と水に対する接触角の関係を示したものである。未照射時には接触角が90°を超え疎水性(撥水性)であるが、照射量10J/cm 以上では20°程度に低下し親水性に変化している。この変化を誘起するのに有効な光の波長に合わせた光源を用いることによって照射量をさらに小さくすることが可能であると考えられる。
(2) 上記紫外線を9J/cm 照射した場合と未照射の場合において、表面エネルギーの異なる数種類の液体の接触角を測定した。図3は液体の表面張力と接触角の関係を示したものである。図3から臨界表面張力は未照射の場合に約24mN/m、紫外線照射した場合に約45mN/mであることが判る。
次に、開口幅が40μm、開口部間のスペースが5μmのパターンを施したマスクを濡れ性変化層2に圧着し、上記紫外線を9J/cm 照射した。
次に、インクジェット法を用いて、導電性高分子であるPEDOT/PPSの水溶液を濡れ性変化層2上に供給し、乾燥させてソース電極層5a及びドレイン電極層5bを形成した。
続いて、高分子半導体であるポリ−3−ヘキシルチオフェンをクロロホルムに溶解した溶液をスピンコート法にて塗布し、乾燥させて半導体層6を形成し、さらにPVPをn−ブタノールに溶解した溶液をスピンコート法にて塗布し、乾燥させてゲート絶縁体層32を形成した。
最後に、インクジェット法を用いて、PEDOT/PPSからなるゲート電極層33を形成した。
このように作製されたTFT(電子素子31)の移動度は1.1×10−3 cm /Vs,On/Off比は120であり、ソース電極層5a及びドレイン電極層5bを、Auの蒸着膜をリフトオフすることにより形成した場合と比べて遜色はなかったものである。
[比較例1]
濡れ性変化層2を設けないでガラス基板7上に、Auの蒸着膜をリフトオフによりパターニングし、ソース電極層5a及びドレイン電極層5bを形成した。
次に、高分子半導体であるポリ−3−ヘキシルチオフェンをクロロホルムに溶解した溶液をスピンコート法にて塗布し、乾燥させて半導体層6を形成し、さらにPVPをn−ブタノールに溶解した溶液をスピンコート法にて塗布し、乾燥させてゲート絶縁体層32を形成した。
最後に、インクジェット法を用いて、PEDOT/PPSからなるゲート電極層33を形成した。
このように作製されたTFTの移動度は1.5×10−4 cm /Vs、On/Off比は80であり、実施例1に比べ特性が劣っていた。濡れ性変化層2がない場合にはポリ−3−ヘキシルチオフェンのアルキル鎖の配向を規制する力が作用しないため、π共役主鎖の分子軸を揃えることができず、移動度が小さくなったものと考えられる。
[実施例2]
本実施例は電子素子の作製に関するものである。ここでは、図8に示したような構造の電子素子(TFT)41を作製した。
まず、ガラス基板7上に膜厚60nmのAlを真空蒸着し、フォトリソエッチングにより40μmの幅に加工し、ゲート電極42を形成した。
次に、ゲート絶縁膜を兼ねる濡れ性変化層2を実施例1と同様にして作製し、開口幅が40μm、開口部間のスペースが5μmのパターンを施したマスクを濡れ性変化層2に圧着し、実施例1と同様にして紫外線を9J/cm 照射した。
続いて、インクジェット法を用いて、導電性高分子であるPEDOT/PPSの水溶液を濡れ性変化層2上に供給し、乾燥させてソース電極層5a及びドレイン電極層5bを形成した。
最後に、下記化学式に示すようなスキームより合成した有機半導体なる重合体1をトルエンに溶解した溶液をスピンコート法にて塗布し、乾燥させて半導体層6を形成した。
Figure 2006060113
この重合体1の製造例について補足説明する。100ml四つ口フラスコに、ジアルデヒド0.852g(2.70mmol)及びジホスホネート1.525g(2.70mmol)を入れ、窒素置換してテトラヒドロフラン75mlを加えた。この溶液にカリウムt−ブトキシドの1.0moldm−3 テトラヒドロフラン溶液6.75ml(6.75mmol)を滴下し、室温で2時間撹拌した後、ベンジルホスホネート及びベンズアルデヒドを順次加え、さらに2時間撹拌した。酢酸およそ1mlを加えて反応を終了し、溶液を水洗した。溶媒を減圧留去した後、テトラヒドロフラン及びメタノールを用いて再沈殿による精製を行い、重合体1.07gを得た。収率73%(7.93%)、N;2.33%(2.45%)。
示差走査熱量測定から求めたガラス転移温度は117℃であった。GPCにより測定したポリスチレン換算の数平均分子量は8500、重量平均分子量は20000であった。
このように作製されたTFT(電子素子41)の移動度は2.5×10−3 cm /Vs、On/Off比は1350であり、ソース電極層5a及びドレイン電極層5bを、Auの蒸着膜をリフトオフすることにより形成した場合と比べて遜色はなかったものである。
[比較例2]
低抵抗Si基板上にゲート絶縁膜として熱酸化膜を形成し、Auの蒸着膜をリフトオフによりパターニングし、ソース電極層5a及びドレイン電極層5bを形成したこと以外は実施例5と同様にして作製した。
このように作製されたTFTの移動度は9.8×10−5 cm /Vs、On/Off比は1050であり、実施例4に比べ特性が劣っていた。ゲート絶縁膜表面が親水性であるために、局所分極により界面準位密度が増加し、移動度が小さくなったものと考えられる。
[実施例3]
焼成後に、化11〜化14の化学式で表される構造体となる前駆体と、前述の化9の化学式で表される構造体となる前駆体とを混合した溶液を、実施例1と同様の成膜条件でガラス基板上に塗布し成膜した。
Figure 2006060113
Figure 2006060113
Figure 2006060113

Figure 2006060113
次に、実施例1と同様に紫外線を9J/cm 照射した前後において、表面エネルギーの異なる数種類の液体の接触角を測定し、実施例1と同様にして臨界表面張力を求めた。結果を表2に示す。
Figure 2006060113
表2から臨界表面張力は、未照射の場合には18〜28mN/m程度、紫外線照射した場合には41〜44mN/m程度であることが分かる。このことから、何れの材料も濡れ性変化層を構成する材料として用いることが可能なことが分かる。
[実施例4]
実施例2で作製したゲート電極42上に、実施例3で用いた混合溶液を、実施例1と同様の成膜条件で塗布成膜し、電子素子41の濡れ性変化層2を作製した。次に、実施例2と同様の条件でパターニングを行い、インクジェット法によりソース及びドレイン電極を作製した。続いて、有機半導体材料に化14の化学式で表される重合体1を用いてスピンコート法により半導体層を形成した。
このように作製された図8に示す構造のTFTの移動度とOn/Off比の結果を表3に示す。
Figure 2006060113
主鎖の構成単位が小さく、膜内での側鎖密度が同等の化11,化12で示す化学式、主鎖の構成単位が大きく膜内での側鎖密度が化11,化12で示す化学式よりも小さい化13で示す化学式、化13で示す化学式とは側鎖の長さが異なる化14で示す化学式において、何れのポリイミド材料を用いても、同じ有機半導体を用いた実施例2と同等の結果が得られた。
[実施例5]
化15の化学式で表されるポリイミドを溶解した溶液を、スピンコート法にてガラス基板上に塗布し180℃で加熱乾燥した。
Figure 2006060113
次に実施例1と同様に紫外線を9J/cm 照射した前後において、表面エネルギーの異なる数種類の液体の接触角を測定し、実施例1と同様にして臨界表面張力を求めたところ、未照射の場合は27mN/m、紫外線照射した場合には約43mN/mであった。このことから、この可溶性ポリイミドは濡れ性変化層を構成する材料として用いることが可能なことが分かる。
[実施例6]
実施例2で作製したゲート電極42上に、実施例5で用いた可溶性ポリイミド溶液を、実施例5と同様の成膜条件で成膜し、電子素子41の濡れ性変化層2を作製した。次に、実施例2と同様の条件でパターニングを行い、インクジェット法によりソース及びドレイン電極を作製した。続いて、有機半導体材料に化14の化学式で表される重合体1を用いてスピンコート法により半導体層を形成した。
このように作製された電子素子41のTFTの移動度は1.5×10−3 cm /Vs、On/Off比は1100であり、低温で成膜可能な可溶性ポリイミド材料を用いても、ポリイミド前駆体を焼成し成膜した実施例4と比べて遜色はなかったものである。
[実施例7]
本実施例は図9に示すような電子素子アレイ51の作製に関するものである。
まず、ゲート電極42及びゲート絶縁膜を兼ねる濡れ性変化層2は実施例2と同様にして作製した。ソース電極層5a及びドレイン電極層5bは導電性高分子であるPEDOT/PSSの水溶液を用い、実施例2と同様にして形成した。
最後に上記重合体1をトルエンに溶解した溶液を用いて、マイクロコンタクトプリンティング法で半導体層6を島状に形成した。
以上の工程により、基板7上に32×32個(素子間ピッチ500μm)のTFT(電子素子41)を2次元アレイ状に有する電子素子アレイ51を作製した。これらの複数のTFT(電子素子41)の平均的な特性は移動度が1.5×10−3 cm /Vs、On/Off比が970であった。
[実施例8]
本実施例は図12に示すような電子素子アレイ51を用いた表示装置61の作製に関するものである。
まず、酸化チタン粒子65とオイルブルーで着色したアイソパー66を内包するマイクロカプセル67を表示素子64としてPVA水溶液に混合して、ITOからなる透明電極62を形成したポリカーボネート基板63上に塗布して、マイクロカプセル67とPVAバインダー68からなる層を形成した。この基板と、実施例7で作製したTFTアレイ(電子素子アレイ51)が形成された基板7とを接着した。
ゲート電極42に繋がるバスラインに走査信号用のドライバーICを、ソース電極5aに繋がるバスラインにデータ信号用のドライバーICを各々接続した。0.5秒毎に画面切替えを行ったところ、良好な静止画表示を行うことができた。
本発明の一実施の形態の積層構造体の原理的構成例を示す断面模式図である。 固体表面に対する液体の濡れ性を説明するための、固体表面上で液滴が接触角θで平衡状態にある時の様子を示す模式図である。 焼成後に化8並びに化9の化学式で表されるポリイミド構造体を濡れ性変化層に用いた場合の、紫外線未照射部と紫外線照射部とのZismanプロットを行った結果を示す表面張力−接触角特性図である。 電子素子(TFT)に関して濡れ性変化層の材料を変えて作製した場合の結果を示す臨界表面張力−移動度特性図である。 側鎖に疎水性基を有する高分子材料例を示す概念図である。 積層構造体の作製プロセスの一例を工程順に示す断面図である。 電子素子の一例を示す断面模式図である。 電子素子の他例を示す断面模式図である。 電子素子アレイの一例を示し、(a)は断面図、(b)は電極等の配置関係の平面図である。 表示装置の一例を示す断面図である。 紫外線照射量と水に対する接触角の関係を示す特性図である。 表示装置の他例を示す断面図である。 特許文献2の凹版オフセット印刷法を工程順に示す断面図である。 非特許文献2のTFT構成例を示す断面図である。 特許文献3の導電膜パターン形成方法を工程順に示す断面図である。 濡れ性変化層の構成例を示す断面模式図である。 濡れ性変化層の他の構成例を示す断面模式図である。 濡れ性変化層の別の構成例を示す断面模式図である。 濡れ性変化層表面の構成例を示す平面模式図である。 濡れ性変化層表面の他の構成例を示す平面模式図である。 濡れ性変化層表面の別の構成例を示す平面模式図である。 表示装置の別例を示す断面図である。
符号の説明
1 積層構造体
2 濡れ性変化層
3 高表面エネルギー部
4 低表面エネルギー部
5 導電層
5a,5b 一対の電極層
6 半導体層
31 電子素子
32 絶縁体層
33 電極層
41 電子素子
42 電極層
51 電子素子アレイ

Claims (7)

  1. 少なくとも臨界表面張力の異なる部位を有する濡れ性変化層と、
    前記臨界表面張力の異なる部位のうち高表面エネルギー部のみに形成される導電層とを有する積層構造体であって、
    前記濡れ性変化層は、少なくともメチレン基を含み、側鎖に疎水性基を有する材料を含有する層であることを特徴とする積層構造体。
  2. 前記臨界表面張力の異なる部位のうち低表面エネルギー部には、半導体層が形成されることを特徴とする請求項1に記載の積層構造体。
  3. 前記側鎖に疎水性基を有する材料は、可溶性ポリイミドを含む高分子材料を含有することを特徴とする請求項1記載の積層構造体。
  4. 臨界表面張力を変化させるエネルギーの付与が紫外線照射であることを特徴とする請求項1ないし3の何れか一記載の積層構造体。
  5. 請求項1ないし4の何れか一記載の積層構造体を構成要素として有することを特徴とする電子素子。
  6. 請求項5記載の電子素子が基板上に複数個配設されたことを特徴とする電子素子アレイ。
  7. 請求項6記載の電子素子アレイを備えたことを特徴とする表示装置。
JP2004242035A 2004-08-23 2004-08-23 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置 Expired - Fee Related JP4678574B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242035A JP4678574B2 (ja) 2004-08-23 2004-08-23 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242035A JP4678574B2 (ja) 2004-08-23 2004-08-23 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置

Publications (3)

Publication Number Publication Date
JP2006060113A JP2006060113A (ja) 2006-03-02
JP2006060113A5 true JP2006060113A5 (ja) 2007-10-04
JP4678574B2 JP4678574B2 (ja) 2011-04-27

Family

ID=36107310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242035A Expired - Fee Related JP4678574B2 (ja) 2004-08-23 2004-08-23 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置

Country Status (1)

Country Link
JP (1) JP4678574B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181441B2 (ja) * 2006-08-04 2013-04-10 株式会社リコー 有機トランジスタ及びその製造方法
JP5168845B2 (ja) * 2006-08-07 2013-03-27 株式会社リコー 積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示装置
JP2008066567A (ja) * 2006-09-08 2008-03-21 Ricoh Co Ltd 配線パターンとこれを用いた電子素子、有機半導体素子、積層配線パターンおよび積層配線基板
JP5121264B2 (ja) * 2007-03-14 2013-01-16 株式会社リコー 積層構造体及びその製造方法
KR101282534B1 (ko) 2007-07-18 2013-07-04 가부시키가이샤 리코 적층 구조체, 전자 소자, 및 표시 장치
JP5211729B2 (ja) 2008-02-07 2013-06-12 株式会社リコー 積層構造体及びその製造方法
WO2009113549A1 (ja) * 2008-03-10 2009-09-17 日産化学工業株式会社 画像形成用下層膜組成物
GB2462845B (en) * 2008-08-21 2011-07-27 Cambridge Display Tech Ltd Organic electronic devices and methods of making the same using solution processing techniques
KR101674645B1 (ko) * 2008-10-23 2016-11-09 닛산 가가쿠 고교 가부시키 가이샤 화상형성용 하층막
JP5532669B2 (ja) * 2009-04-30 2014-06-25 大日本印刷株式会社 有機半導体素子、およびその製造方法
JP5598410B2 (ja) * 2011-04-11 2014-10-01 大日本印刷株式会社 有機半導体素子の製造方法および有機半導体素子
JP6248506B2 (ja) * 2013-09-25 2017-12-20 Jnc株式会社 硬化膜形成用組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003076004A (ja) * 2001-09-04 2003-03-14 Fuji Photo Film Co Ltd パターン形成方法
JP2003059940A (ja) * 2001-08-08 2003-02-28 Fuji Photo Film Co Ltd ミクロファブリケーション用基板、その製造方法および像状薄膜形成方法
JP4362275B2 (ja) * 2002-10-25 2009-11-11 Nec液晶テクノロジー株式会社 薄膜トランジスタの製造方法
JP4629997B2 (ja) * 2003-06-02 2011-02-09 株式会社リコー 薄膜トランジスタ及び薄膜トランジスタアレイ
JP4969041B2 (ja) * 2004-01-26 2012-07-04 株式会社半導体エネルギー研究所 表示装置の作製方法

Similar Documents

Publication Publication Date Title
JP4629997B2 (ja) 薄膜トランジスタ及び薄膜トランジスタアレイ
US8049211B2 (en) Laminate structure and its manufacturing method, including wettability variable layer of material of variable critical surface tension
JP5168845B2 (ja) 積層構造体、積層構造体を用いた電子素子、これらの製造方法、電子素子アレイ及び表示装置
EP1898478B1 (en) Wiring pattern, electronic device, organic semiconductor device, layered wiring pattern, and layered wiring substrate using the wiring pattern
JP2007150246A (ja) 有機トランジスタ及び表示装置
JP5211729B2 (ja) 積層構造体及びその製造方法
JP4678574B2 (ja) 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置
JP2006060113A5 (ja)
JP2006261507A (ja) 有機薄膜トランジスタおよびそれを備えた表示装置。
JP2006021491A (ja) 積層構造体、積層構造体を用いた光学素子、表示素子、演算素子及びこれらの製造方法
JP2006261535A (ja) 積層構造体、積層構造体を用いた電子素子、電子素子を用いた電子素子アレイ、積層構造体の製造方法および電子素子の製造方法
JP2010199285A (ja) 配線基板の製造方法、電子素子および表示装置
JP2006060079A (ja) 半導体層のパターン形成方法及び電子素子、電子素子アレイ、表示装置
JP4906934B2 (ja) 電子素子、電子素子アレイ及び表示装置
JP4907873B2 (ja) 電子素子の製造方法
JP5412765B2 (ja) 積層構造体、多層配線基板、アクティブマトリックス基板、画像表示装置及び積層構造体の製造方法
JP4707345B2 (ja) 配線の修正方法
JP2011173429A (ja) 積層構造体
JP2012064662A (ja) 薄膜トランジスタの製造方法および薄膜トランジスタ
JP2006059936A (ja) 積層構造体及びその製造方法、電子素子、表示装置