JP2006059936A - 積層構造体及びその製造方法、電子素子、表示装置 - Google Patents

積層構造体及びその製造方法、電子素子、表示装置 Download PDF

Info

Publication number
JP2006059936A
JP2006059936A JP2004238881A JP2004238881A JP2006059936A JP 2006059936 A JP2006059936 A JP 2006059936A JP 2004238881 A JP2004238881 A JP 2004238881A JP 2004238881 A JP2004238881 A JP 2004238881A JP 2006059936 A JP2006059936 A JP 2006059936A
Authority
JP
Japan
Prior art keywords
layer
electrode
laminated structure
wettability changing
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004238881A
Other languages
English (en)
Inventor
Hidenori Tomono
英紀 友野
Takanori Tano
隆徳 田野
Hiroshi Kondo
浩 近藤
Hitoshi Kondo
均 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004238881A priority Critical patent/JP2006059936A/ja
Publication of JP2006059936A publication Critical patent/JP2006059936A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

【課題】 微細なパターンを良好な精度で形成可能な積層構造体と、積層構造体を用いた微細で良好なパターン精度を有する電子素子及び表示装置を提供することを目的とする。
【解決手段】 積層構造体は、有機半導体層104と、有機半導体層104に接触する電極層103と、電極層103に接続される配線層102とからなる積層構造体であって、電極層103と配線層102とが異なる材料からなり、かつ、配線層102と有機半導体層104とは積層されないことで、パターニング精度が高く素子性能の安定した積層構造体を形成することができる。
【選択図】 図1

Description

本発明は、有機材料を用いた積層構造体及びその製造方法に関し、特に、積層構造体及び積層構造体の製造方法によって製造される電子素子、表示装置に関する。
液晶表示装置、PDP(プラズマディスプレイパネル)、有機EL(Electro-Luminescence)ディスプレイ等のフラットパネルディスプレイは電極、MIM(Metal-Insulator-Metal)素子やTFT(薄膜トランジスタ:Thin Film Transistor)等の能動素子、あるいは発光素子など薄膜層をパターニングして構成される部位を具備している。
特に、近年その一部もしくは全部に有機材料を用いた素子が、低コスト化や大面積化容易性等の製造上のメリットや無機材料にない機能発現の可能性から注目されている。例えば特許文献1では光や熱などの物理的外部刺激によりキャリア移動度が変化する有機半導体材料を用いた電界効果型トランジスタが提案されている。
ところで、薄膜層をパターニングする方法としては、フォトリソグラフィー法が一般に使用される。その工程は以下の通りである。
(1)薄膜層を有する基板上にフォトレジスト層を塗布する(レジスト塗布)。
(2)加熱により溶剤を除去する(プリベーク)。
(3)パターンデータに従ってレーザーあるいは電子線を用いて描画されたハードマスクを通して紫外光を照射する(露光)。
(4)アルカリ溶液で露光部のレジストを除去する(現像)。
(5)加熱により未露光部(パターン部)のレジストを硬化する(ポストベーク)。
(6)エッチング液に浸漬またはエッチングガスに暴露し、レジストのない部分の薄膜層を除去する(エッチング)。
(7)アルカリ溶液または酸素ラジカルでレジストを除去する(レジスト剥離)。
各薄膜層を形成後、上記の工程を繰り返すことによって能動素子が完成するが、高価な設備と工程の長さがコストを上昇させる原因となっている。
近年、製造コストを低減するために印刷法によるパターン形成が試みられている。特許文献2ではTFTを構成する薄膜層のパターニング工程の一部を、フォトリソグラフィー法の代わりに例えば凹版オフセット印刷法で行う方法が開示されている(図14を参照)。凹部にレジスト2が入った印刷版1の上を転写体3が回転することによってレジスト2を転写体3に転写し、これを被転写層(薄膜層)5が形成された基板4上に印刷することによって被転写層(薄膜層)5上にレジストパターンが形成される。
上記オフセット印刷法では極めて高精度なものを用いてもパターン寸法精度及び位置合わせ精度を合わせたパターン誤差は±10μmで、汎用的なものでは±50μmにも及ぶため、微細なパターン形成には適さない。
非特許文献1ではナノパーティクルインクを使ったインクジェット法で幅50μm、ピッチ400μm程度の金属配線を形成する方法が記載されている。
プリンタに使用されるレベルの通常のインクジェットヘッドを用いた場合、解像度30μm、位置合わせ精度±15μm程度であるため、やはり微細なパターン形成は困難である。
非特許文献2、非特許文献3では全ての層が有機材料で構成されるTFTの電極層(20はゲート電極層、21はソース電極層、22はドレイン電極層)をインクジェット法でパターン形成する方法が記載されている(図15を参照)。ここでは疎水性の材料(ポリイミド)からなるリブ23をガラス基板24上に設けて、電極間ギャップ(チャネル長)5〜10μmのソース・ドレイン電極層21、22を形成している。なお、25は半導体層、26はポリマー絶縁体層である。
この方法は表面エネルギーを制御することによってインクに対する濡れ性をコントロールして、インクジェット法の解像度を超えたパターン形成を可能にしている点で優れているが、ポリイミドからなるリブを作製するために以下のような長い工程を必要とするためインクジェット法の利点を損なっている。
(1)ポリイミドプリカーサーを塗布し焼成する(ポリイミド膜形成)。
(2)フォトレジスト層を塗布する(レジスト塗布)。
(3)加熱により溶剤を除去する(プリベーク)。
(4)マスクを通して紫外光を照射する(露光)。
(5)アルカリ溶液で露光部のレジストを除去する(現像)。
(6)加熱により未露光部(パターン部)のレジストを硬化する(ポストベーク)。
(7)酸素プラズマによりレジストのない部分のポリイミド膜を除去する(エッチング)。
(8)溶剤でレジストを除去する(レジスト剥離)。
特許文献3では基板11上の有機分子膜12を用いて紫外線等によりその一部を分解、除去することにより親液部11aと撥液部11bとからなるパターンを形成し、導電性微粒子を含有した液体14を親液部に選択的に塗布した後、熱処理することによって導電膜パターンを形成する方法が開示されている(図16を参照)。
この方法によれば有機分子膜にフォトマスクを介して紫外光を照射するだけで親液部と撥液部とからなるパターンを形成することができるため大幅に工程を短縮することができる。
しかしながら、有機分子膜が非常に薄いこと、親液部においてはこの膜が存在せず基板が露出していることなどから有機分子膜は表面エネルギー制御以外のバルク体としての機能は有しておらず、機能性が低かった。
本発明者らは上記問題点を解決し、印刷法のような低コストかつ材料使用効率の高い方法が適用でき、簡便に微細なパターンの形成が可能であって、かつパターン形成以外に高付加価値機能を有する積層構造体及びその製造方法、それを用いて形成された作製が容易でかつ高性能な電子素子並びに表示装置を提供することを目的として、以下に示す発明を提案した。
すなわち、エネルギーの付与によって臨界表面張力が変化する材料からなる層の一部分に紫外線等のエネルギービームを照射し、濡れ性の異なる部位を設けることにより、その上に導電性材料を含有する液体を付与することで導電膜層を選択的に形成することが可能であること、及びこの材料のエネルギービーム未照射部(すなわち低表面エネルギー部)は半導体材料、特に有機半導体材料と良好な界面を形成することができることを見出すとともに、この積層構造体を用いることにより、製造プロセスが簡便であってかつ性能が高い電子素子を提供できることを提示した。
しかしながら、エネルギービーム照射部とエネルギービーム非照射部との濡れ性の違いによって導電膜層を形成する場合、付与する導電性材料を含有する液体の表面張力によっては良好なパターニングを行うことが困難となるという不具合があった。すなわち付与する導電性材料を含有する液体の表面張力が低い場合には、高表面エネルギー部と低表面エネルギー部とで濡れ性の差が小さくなり、精密なパターニングが困難になる。また、半導体層へのキャリアの注入を考えたとき、配線抵抗の低抵抗化と、半導体層と導電体層の界面でのキャリアの注入効率との両立が困難であった。すなわち、導電体層として有機系の導電材料を用いた場合、半導体層へのキャリアの注入効率は向上するが、配線抵抗は高くなってしまい、導電体層として金属系の材料を用いた場合、配線抵抗は低くなるが、半導体層へのキャリアの注入効率が低下する。配線抵抗が高くなると、素子の機能性部に印加される電圧が低下するため、素子全体に印加する電圧を高くしなければならず、実質的に素子性能が低下したことになる。
また、特許文献4および特許文献5では、ソース電極とドレイン電極の少なくとも一方が金属膜上にπ−共役系高分子膜を形成したものを用いる有機電界効果型トランジスタが開示されている(図17を参照)。この構造によれば、金属膜上にπ−共役系高分子膜を形成して電極とするので、有機半導体材料との間でキャリアの注入効率が向上してトランジスタ特性を改善することができ、また、金属膜によって配線抵抗も低くできる。
しかしながら、金属膜上にπ−共役系高分子膜を形成するとき、精密なパターニングが要求されるソース・ドレイン間(いわゆるチャネル部)に対して、図17に示されているように金属膜上を完全にπ−共役系高分子膜で被覆し、かつ、ソース・ドレイン間隔(いわゆるチャネル長)を精度良く形成することは困難である。
特開平7−86600号公報 特開2002−268585号公報 特開2002−164635号公報 特公平6−038491号公報 特公平6−038492号公報 SOCIETY FOR INFORMATION DISPLAY 2002 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPER・VolumeXXXIII,p.753〜755 SOCIETY FOR INFORMATION DISPLAY 2002 INTERNATIONAL SYMPOSIUM DIGEST OF TECHNICAL PAPER・VolumeXXXIII,p.1017〜1019 Science 290,p.2123〜2126(2000)
本発明の目的は、微細なパターンを良好な精度で形成可能な積層構造体、このような積層構造体を用いた微細で良好なパターン精度を有する電子素子、これらの製造方法、電子素子アレイおよび表示装置を提供することである。
上記目的を達成するために、請求項1記載の積層構造体は、有機半導体層と、有機半導体層に接触する電極層と、電極層に接続される配線層からなる積層構造体であって、電極層と配線層とが異なる材料からなり、かつ、配線層と有機半導体層とは積層されないことを特徴とする。
これにより、電極層のパターニング精度が向上し、素子性能の安定した積層構造体を提供することができる。
請求項2記載の発明は、請求項1記載の積層構造体であって、配線層は、電極層の少なくとも一部と積層されていることを特徴とする。
これにより、配線層と電極層との電気的接続が確実となり、その結果素子性能の安定した積層構造体を提供できる。
請求項3記載の発明は、請求項1または2記載の積層構造体であって、電極層が導電性有機材料からなることを特徴とする。
これにより、電極層が導電性有機材料からなるので、有機半導体層へのキャリアの注入が効率的に行われるため、素子性能の良好な積層構造体を提供することができる。
請求項4記載の発明は、請求項1または2記載の積層構造体であって、配線層が金属であることを特徴とする。
これにより、配線層が金属であるので、配線抵抗が低く、そのため素子性能の良好な積層構造体を提供することができる。
請求項5記載の積層構造体の製造方法は、エネルギーの付与によって臨界表面張力が変化する材料からなる濡れ性変化層を形成する工程と、配線層を形成する工程と、濡れ性変化層の一部分にエネルギーを付与することによって臨界表面張力の小さい低表面エネルギー部と、より臨界表面張力の大きい高表面エネルギー部とからなる臨界表面張力を異ならせたパターンを形成する工程と、電極材料を含有する液体を前記パターンが形成された濡れ性変化層表面に付与することで、高表面エネルギー部に電極層を形成する工程と、電極層を含む濡れ性変化層上に有機半導体層を形成する工程からなることを特徴とする。
これにより、印刷法のような低コストかつ材料使用効率の高い方法で、簡便に製造できる微細な導電層パターン及び高移動度の半導体層を有する積層構造体を製造することができる。
請求項6記載の積層構造体の製造方法は、エネルギーの付与によって臨界表面張力が変化する材料からなる濡れ性変化層を形成する工程と、濡れ性変化層の一部分にエネルギーを付与することによって臨界表面張力の小さい低表面エネルギー部と、より臨界表面張力の大きい高表面エネルギー部とからなる臨界表面張力を異ならせたパターンを形成する工程と、配線材料を含有する液体をパターンが形成された濡れ性変化層表面に付与することで、高表面エネルギー部のうち有機半導体層を形成しない部分に配線層を形成する工程と、電極材料を含有する液体をパターンが形成された濡れ性変化層表面に付与することで、少なくとも高表面エネルギー部に電極層を形成する工程と、電極層を含む濡れ性変化層上に有機半導体層を形成する工程とを有することを特徴とする。これにより、配線層のパターニング精度を向上させることができる。
請求項7記載の発明は、請求項5記載の積層構造体の製造方法であって、配線層を形成する工程は、インクジェット法を用いることを特徴とする。
これにより、濡れ性変化層の表面エネルギーの影響を受けやすくすることができ、濡れ性変化層の特徴を生かした積層構造体の製造に好適で、材料使用量の少ない製造方法を提供することができる。
請求項8記載の発明は、請求項5または6のいずれか1項に記載の積層構造体の製造方法であって、臨界表面張力を変化させるエネルギー付与が、紫外線照射であることを特徴とする。
これにより、臨界表面張力を変化させるエネルギー付与が、紫外線照射であるので、層内部にダメージを与えることなく、かつ、大気中で操作可能にして、より微細な導電層のパターンを形成することができる。
請求項9記載の発明は、請求項5または6のいずれか1項に記載の積層構造体の製造方法であって、電極材料を含有する液体が、導電性高分子を分散または溶解した液体であることを特徴とする。
電極材料を含有する液体が、導電性高分子を分散または溶解した液体であるので、電極部を導電性高分子で形成することができるため、有機半導体層へのキャリアの注入が効率的に行われ、良好な素子性能の積層構造体を提供することができる。
請求項10記載の発明は、請求項9記載の積層構造体の製造方法であって、導電性高分子を分散または溶解した液体が水系であることを特徴とする。
これにより、導電性高分子を分散または溶解した液体が水系であるので、濡れ性変化層の高表面エネルギー部に対する濡れやすさと低表面エネルギー部に対する濡れやすさとの差が大きくなり、良好なパターニングを行うことができる。
請求項11記載の発明は、請求項6記載の積層構造体の製造方法であって、配線材料を含有する液体が、微小な金属微粒子を分散した液体であることを特徴とする。
これにより、配線材料を含有する液体が、微小な金属微粒子を分散した液体であるので、低抵抗の配線部を形成することができるため、素子性能の良好な積層構造体を提供することができる。
請求項12記載の発明は、請求項6記載の積層構造体の製造方法であって、配線材料を含有する液体をインクジェット方式で付与することを特徴とする。
これにより、配線材料を含有する液体を付与する手段がインクジェット方式であるので、濡れ性変化層の表面エネルギーの影響を受けやすくすることができ、濡れ性変化層の特徴を生かした積層構造体の製造に好適で、材料使用量の少ない製造方法を提供することができる。
請求項13記載の発明は、請求項5または6記載の積層構造体の製造方法であって、電極材料が含有された液体を付与する手段がインクジェット方式であることを特徴とする。
これにより、材料使用量の少ない製造方法を提供することができる。
請求項14記載の電子素子は、請求項1から13のいずれか1項に記載の積層構造体の製造方法によって製造された積層構造体を構成要素とすることを特徴とする。
これにより、省資源で低コストかつ特性に優れた電子素子を提供することができる。
請求項15記載の発明は、請求項14記載の電子素子であって、濡れ性変化層と、濡れ性変化層上に形成された有機半導体層と、有機半導体層に接して設けられた第1の電極層、第2の電極層と、第1、第2の電極層の少なくとも一方には第1、第2の電極層に接続される配線層を有し、少なくとも有機半導体層に接して設けられた絶縁体層と、絶縁体層に接して設けられた第3の電極層とを有することを特徴とする。
これにより、省資源で低コストかつ特性に優れたトランジスタ構造を有する電子素子を提供することができる。
請求項16記載の発明は、請求項14記載の電子素子であって、第3の電極層と、第3の電極層上に設けられた濡れ性変化層と、濡れ性変化層上に形成された有機半導体層と、有機半導体層に接して設けられた第1、第2の電極層と、第1、第2の電極層の少なくとも一方に該第1、第2の電極層に接続される配線層を有することを特徴とする。
これにより、省資源で低コストかつ特性に優れたトランジスタ構造を有する電子素子を提供することができる。特に、濡れ性変化層自身がゲート絶縁層を兼ねることができるため、さらに低コストなトランジスタ構造を有する電子素子を提供することができる。
請求項17記載の表示装置は、請求項14から16のいずれか1項に記載の電子素子が基板上に複数設けられた電子素子アレイを備えたことを特徴とする。
これにより、省資源で低コストかつ表示品質に優れた表示装置を提供することができる。
以上の説明から、本発明によれば、有機半導体層と、有機半導体層に接触する電極層と、電極層に接続される配線層とからなる積層構造体であって、電極層と配線層とが異なる材料からなり、かつ、配線層と有機半導体層とは積層されないことにより、電極層のパターニング精度が向上し、素子性能の安定した積層構造体を提供することができる。
図1に本発明の積層構造体を示す。基板101上に配線層102、電極層103、有機半導体層104が形成されており、電極層103と有機半導体層104とが積層されている。
また、図2に本発明の別の積層構造体を示す。配線層102と電極層103の一部が積層され、電極層103のうち、配線層と積層されていない部分が有機半導体層104と積層されており、配線層と有機半導体層とは積層されていない構造を有している。なお、図2では配線層の一部が電極層と積層されているが、配線層の全面が電極層と積層されていてもかまわない。
ここに電極層は導電性有機材料からなる。導電性有機材料を電極材料に用いることで有機半導体材料との界面でキャリアの注入効率を高くすることができる。また、導電性有機材料は水ベースの分散体とすることが可能なので、製造工程での環境への影響を小さくすることができる。
配線層は金属材料からなる。これによって、配線抵抗を低くできる。配線抵抗が高いと、配線を通して印加された電圧は配線抵抗によって分圧されるため、実際に素子の機能部にかかる電圧は低くなってしまい、実質的な素子特性が低下してしまうが、配線層に金属を使うことで配線抵抗による素子特性の低下を防ぐことができる。
図3に本発明の別の例を示す。
濡れ性変化層105は低表面エネルギー部と高表面エネルギー部を有している。高表面エネルギー部に電極層103が形成され、濡れ性変化層105の少なくとも低表面エネルギー部に接して半導体層104が設けられている。電極層103は、導電性有機材料を含有する液体を付与することによって得られる層である。電極層は後述するような濡れ性の差を利用してパターニングするので、導電性有機材料を含有する液体は表面張力の大きい水系であることが好ましい。配線層102はAg、Au、Niなどの金属微粒子を有機溶媒や水に分散した液を付与することによって得られる層であり、濡れ性変化層105の高表面エネルギー部に形成しても良いし、低表面エネルギー部に形成しても良い。
濡れ性変化層105は熱、紫外線、電子線、プラズマ等のエネルギーを与えることによって、臨界表面張力が変化する材料からなる層で、エネルギー付与前後での臨界表面張力の変化量が大きいものが好ましい。そのような場合、濡れ性変化層105の一部分に前記エネルギーを付与し、高表面エネルギー部と低表面エネルギー部からなるパターンを形成することにより、導電性有機材料を含有する液体が、高表面エネルギー部には付着しやすく(親液性)、低表面エネルギー部には付着しにくく(疎液性)なるため、パターン形状に従って導電性有機材料を含有する液体が親液性である高表面エネルギー部に選択的に付着して電極層103が形成される。
ここで固体表面に対する液体の濡れ性(付着性)について付言する。図4は固体113表面上で液滴114が接触角θで平衡状態にある時の模式図で、ヤングの式(1)が成立する。
Figure 2006059936
(ここでγSは固体の表面張力、γSLは固体と液体の界面張力、γLは液体の表面張力である。)
表面張力は表面エネルギーと実質的に同義であり、全く同じ値となる。cosθ=1の時、θ=0°となり液体は完全に濡れる。この時のγLの値はγS−γSLとなり、これをその固体の臨界表面張力γCと呼ぶ。γCは表面張力のわかっている何種類かの液体を用いて、液体の表面張力と接触角の関係をプロットし、θ=0°(cosθ=1)となる表面張力を求めることにより容易に決定できる(Zismanプロット)。γCの大きい固体表面には液体が濡れやすく(親液性)、γCの小さい固体表面には液体が濡れにくい(疎液性)。本発明においては、特に電極層を形成しない部位において、導電性高分子材料を含有する液体をはじき易くすることが重要である。濡れ性変化層105の疎液性部分の臨界表面張力が30mN/m以下であるようにすることで、例えば水の接触角を80°以上とすることができ、水ベースの溶液をはじき易くすることができる。より望ましくは臨界表面張力が25mN/m以下であるようにすると、水の接触角を90°以上とすることができ、水ベースの溶液をより確実にはじくことができる。
濡れ性変化層には側鎖に疎水性基を有する高分子材料を用いるのが望ましい。具体的には図5の概念図に示すように、ポリイミドや(メタ)アクリレート等の骨格を有する主鎖Lに直接あるいは結合基(図示せず)を介して疎水性基を有する側鎖Rが結合しているものを挙げることができる。
疎水性基としては、末端構造が−CF2CH3、−CF2CF3、−CF(CF32、−C(CF3)3、−CF2H、−CFH2等である基が挙げられる。分子鎖同士を配向しやすくするためには炭素鎖長の長い基が好ましく、炭素数4以上のものがより好ましい。さらには、アルキル基の水素原子の2個以上がフッ素原子に置換されたポリフルオロアルキル基(以下、「Rf基」と記す。)が好ましく、特に炭素数4〜20のRf基が好ましく、とりわけ、炭素数6〜12のRf基が好ましい。Rf基は直鎖構造であっても分岐構造であってもよいが、直鎖構造の方が好ましい。さらに、疎水性基は、アルキル基の水素原子の実質的に全てがフッ素原子に置換されたパーフルオロアルキル基が好ましい。パーフルオロアルキル基は−Cn2n+1(ただし、nは4〜16の整数)で表わされる基が好ましく、特に、nが6〜12の整数である場合の該基が好ましい。パーフルオロアルキル基は直鎖構造であっても分岐構造であってもよく、直鎖構造が好ましい。
上記材料については特開平3−178478号公報等に詳しく記載されて周知であり、加熱状態で液体又は固体と接触させたときに親液性となり、空気中で加熱すると疎液性となる性質を有する。即ち、(接触媒体の選択と)熱エネルギーの付与によって臨界表面張力を変化させることができる。
さらに、疎水性基としては、フッ素原子を含まない−CH2CH3、−CH(CH3)2、−C(CH3)3等の末端構造を有する基を挙げることができる。この場合にも、分子鎖同士を配向しやすくするためには炭素鎖長の長い基が好ましく、炭素数4以上のものがより好ましい。疎水性基は直鎖構造であっても分岐構造であってもよいが、直鎖構造の方が好ましい。上記アルキル基はハロゲン原子、シアノ基、フェニル基、ヒドロキシル基、カルボキシル基又は炭素数1〜12の直鎖、分岐鎖もしくは環状のアルキル基やアルコキシ基で置換されたフェニル基を含有していてもよい。Rの結合部位が多いほど表面エネルギーが低く(臨界表面張力が小さく)、疎液性となると考えられる。紫外線照射等によって、結合の一部が切断される、或いは、配向状態が変化するために臨界表面張力が増加し、親液性になるものと推察される。
これ以外にも疎水性基としては、−SiR3で表すことができるオルガノシリコン基を上げることができる。ここでRはシロキサン結合を含む有機基である。
上記に述べた疎水性基において、特にメチレン基を有する疎水性基は、C−Hの結合エネルギー(338kJ/mol)がフッ素系材料のC−F結合(552kJ/mol)やシリコーン系材料のSi−C結合(451kJ/mol)に比較し小さい。そのため紫外線照射等のエネルギー付与によって結合の一部を容易に切断することが可能である。
本発明で用いられる側鎖に疎水性基を有するポリイミドの疎水性基は、例えば以下の式(1)から(5)で示される化学式の何れかを持つことができる。
Figure 2006059936
ここで、Xは−CH2−または−CH2CH2−であり、A1は1,4−シクロヘキシレン、1,4−フェニレンまたは1〜4個のフッ素で置換された1,4−フェニレンであり、A2、A3およびA4はそれぞれ独立して単結合、1,4−シクロヘキシレン、1,4−フェニレンまたは1〜4個のフッ素で置換された1,4−フェニレンであり、B1、B2、B3はそれぞれ独立して単結合または−CH2CH2−であり、B4は炭素数1〜10までのアルキレンであり、R3、R4、R5、R6、およびR7はそれぞれ独立して炭素数が1〜10までのアルキルであり、pは1以上の整数である。
Figure 2006059936
式(2)において、T、UおよびVはそれぞれ独立してベンゼン環またはシクロヘキサン環であり、これらの環上の任意のHは炭素数1〜3のアルキル、炭素数1〜3のフッ素置換アルキル、F、ClまたはCNで置換されていてもよく、mおよびnはそれぞれ独立して0〜2の整数であり、hは0〜5の整数であり、RはH、F、Cl、CNまたは1価の有機基であり、mが2の場合の2個のUまたはnが2の場合の2個のVはそれぞれ同じでも異なっていても良い。
Figure 2006059936
式(3)において、連結基ZはCH2、CFH、CF2、CH2CH2またはCF2Oであり、環Yは1,4−シクロへキシレンまたは1〜4個のHがFまたはCH3で置き換えられてもよい1,4−フェニレンであり、A1〜A3はそれぞれ独立して単結合、1,4−シクロへキシレンまたは1〜4個のHがFまたはCH3で置き換えられてもよい1,4−フェニレンであり、B1〜B3はそれぞれ独立して単結合、炭素数1〜4のアルキレン、酸素原子、炭素数1〜3のオキシアルキレンまたは炭素数1〜3のアルキレンオキシであり、RはH、任意のCH2がCF2で置き換えられてもよい炭素数1〜10のアルキル、または1個のCH2がCF2で置き換えられてもよい炭素数1〜9のアルコキシもしくはアルコキシアルキルであり、ベンゼン環に対するアミノ基の結合位置は任意の位置である。但し、ZがCH2である場合には、B1〜B3のすべてが同時に炭素数1〜4のアルキレンであることはなく、ZがCH2CH2であって、環Yが1,4−フェニレンである場合には、A1およびA2がともに単結合であることはなく、またZがCF2Oである場合には、環Yが1,4−シクロへキシレンであることはない。
Figure 2006059936
式4において、R2は水素原子または炭素数1〜12のアルキル基であり、Z1はCH2基であり、mは0〜2であり、環Aはベンゼン環またはシクロヘキサン環であり、lは0または1であり、各Y1は独立に酸素原子またはCH2基であり、各n1は独立に0または1である。
Figure 2006059936
式5において、各Y2は独立に酸素原子またはCH2基であり、R3、R4は独立に水素原子、炭素数1〜12のアルキル基またはパーフルオロアルキル基であり、少なくとも一方は炭素数3以上のアルキル基、またはパーフルオロアルキル基であり、各n2は独立に0または1である。
疎水性基を有する側鎖Rが表面に配列している他の効果として、それに接している半導体層6との界面特性を良好なものとすることができる。半導体層6が有機半導体からなる場合、その効果がより顕著である。界面特性が良好であるとは、(1)半導体が結晶質である場合には結晶粒が大きくなり、移動度が増大する、(2)半導体が非晶質(高分子)である場合には、界面準位密度が減少し、移動度が増大する、(3)半導体が高分子であり、長鎖アルキル基等の側鎖を有する場合には、その配向が規制されることによりπ共役主鎖の分子軸を概ね一方向に配列させることができ、移動度が増大する、等の現象が出現することを指す。
本実施の形態における濡れ性変化層2の厚さは30nm〜3μmが好ましく、50nm〜1μmがさらに好ましい。これより薄い場合にはバルク体としての特性(絶縁性、ガスバリア性、防湿性等)が損なわれ、これより厚い場合には表面形状が悪化するため好ましくない。
導電性有機材料を含有する液体を濡れ性変化層表面に付与する方法として、スピンコート法、ディップコート法、スクリーン印刷法、オフセット印刷法、インクジェット法等の各種塗布法を用いることができるが、濡れ性変化層の表面エネルギーの影響を受けやすくし、また、材料使用量を低減するためには、より小さな液滴を供給できるインクジェット法が特に好ましい。また、配線材料を含有する液体を濡れ性変化層表面に付与する方法についても材料使用量の低減の観点から、また、濡れ性変化層表面に高表面エネルギー部と低表面エネルギー部とが形成されている場合には、表面エネルギーの影響を受けやすくするという観点から、特にインクジェット方が好ましい。前述のようにプリンタに使用されるレベルの通常のヘッドを用いた場合、インクジェット法の解像度は30μm、位置合わせ精度は±15μm程度であるが、表面エネルギーの差を利用することによりそれよりも微細なパターンを形成することが可能となる。
有機半導体層104としては、ペンタセン、アントラセン、テトラセン、フタロシアニン等の有機低分子、ポリアセチレン系導電性高分子、ポリパラフェニレン及びその誘導体、ポリフェニレンビニレン及びその誘導体等のポリフェニレン系導電性高分子、ポリピロール及びその誘導体、ポリチオフェン及びその誘導体、ポリフラン及びその誘導体等の複素環系導電性高分子、ポリアニリン及びその誘導体等のイオン性導電性高分子等の有機半導体を用いることができるが、上述のように有機半導体を用いた場合に、濡れ性変化層による特性向上の効果がより顕著に現れる。
前記濡れ性変化層の一部にエネルギーを付与する方法として、(1)大気中で操作できる、(2)高い解像度が得られる、(3)層内部へのダメージが少ない等の点から紫外線照射を用いるのが好ましい。
図6に本発明の積層構造体作製プロセスの一例を示す。
まずガラスやポリカーボネート、ポリアクリレート、ポリエーテルスルフォン等のプラスチック、シリコンウェハ、金属等からなる基板101の上に濡れ性変化層105を形成する(a)。濡れ性変化層105は紫外線の照射によって臨界表面張力が増加し、低表面エネルギー(疎液性)から高表面エネルギー(親液性)へ変化する材料からなる。その好ましい構造については前述した通りであるが、本発明者らの実験によれば、主鎖がポリイミド骨格よりなり側鎖に長鎖アルキル基を有するものが、特に紫外線照射による濡れ性変化が大きかった。このような構造を有するポリマーまたはその前駆体を有機溶媒等に溶解または分散した溶液をスピンコート法、ディップコート法、ワイヤーバーコート法、キャスト法等で基板101上に塗布し、加熱することにより、濡れ性変化層105が形成される。上記溶液の具体例として、液晶表示デバイス用の垂直配向剤(日産化学製SE-1211、JSR製JALS-2021等)が挙げられる。
次に金属微粒子を分散した液体をインクジェット法によって供給し、配線層102を形成する(b)。
次に濡れ性変化層105の表面にマスク106を通して紫外線を照射する(c)。
これにより低表面エネルギー部と高表面エネルギー部からなるパターンが形成される。紫外線としては100nmから300nmの比較的短い波長の光が含まれるのが望ましい。
次に上記パターンが形成された濡れ性変化層105の上に導電性有機材料を含有する液体を例えばインクジェット法によって供給すると、高表面エネルギー部のみに電極層103が形成される(d)。
最後に低分子有機半導体を蒸着するか、高分子有機半導体またはその前駆体を溶解した溶液を塗布し、加熱することにより、有機半導体層104が形成される(e)。
上述したような構造の積層構造体を構成要素の一部とする、ダイオード、トランジスタ、光電変換素子、熱電変換素子等の電子素子を形成することができる。図7に本実施の形態における電子素子の一例を示す。この電子素子110は電界効果型トランジスタ構成のTFTの例を示している。
まず、基板101及び濡れ性変化層105は上述した場合と同様である。濡れ性変化層105には低表面エネルギー部と高表面エネルギー部とからなるパターンが形成され、その上に金属微粒子を分散した液体を付与することにより配線層102a、102bを形成し、さらに導電性有機材料を含有する液体を付与することにより高表面エネルギー部に一対の電極層103a、103bとが形成されている。あるいは配線層102a、102bは濡れ性変化層105に低表面エネルギー部と高表面エネルギー部とからなるパターンが形成される前に濡れ性変化層105上に形成されていてもよい。配線層を形成するための金属微粒子を分散した液体としては、Ag、Au、Ni等の金属微粒子を有機溶媒や水に分散したものを用いることができる。また電極層を形成するための導電性有機材料を含有する液体としては、ドープドPANI(ポリアニリン)やPEDOT(ポリエチレンジオキシチオフェン)にPSS(ポリスチレンスルホン酸)をドープした導電性高分子の水溶液等を用いることができる。電極層103a、103b間のギャップ精度が本素子の性能を左右するが、本実施の形態では、低表面エネルギー部と高表面エネルギー部とからなるパターンを高精度に形成することができるため、液体付与手段の精度に依らず電極層103a、103bのパターン精度を確保することができる。
その上に有機半導体層104が形成される。
これらが当該電子素子110において、積層構造体を構成要素として含む部分となる。
さらにその上に絶縁体層111が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。絶縁体層111としては、無機絶縁体及び有機絶縁体が使用可能であるが、有機半導体層104にダメージを与えない形成方法を採用する必要がある。例えば、高温や高速イオン、活性ラジカル、有機半導体が可溶な溶媒等の使用を伴うものは避けるのが望ましい。そのような観点からは蒸着法によるSiO2、水に可溶なPVA(ポリビニルアルコール)、アルコールに可溶なPVP(ポリビニルフェノール)、フッ素系溶媒に可溶なパーフルオロポリマー等が好適に使用できる。
最後に、絶縁体層111上に電極層112が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。電極層112としては、各種の導電性薄膜が使用でき、全面に成膜した後に通常のフォトリソグラフィー法やマイクロコンタクトプリンティング法でパターニングしてもよいし、導電性材料を含有する液体をインクジェット法等で供給して直接描画してもよい。
図7から明らかなように、この電子素子110はTFT(薄膜トランジスタ)として機能する。即ち、電極層103a、103bはソース電極S及びドレイン電極D、絶縁体層111はゲート絶縁膜、電極層112はゲート電極Gである。電極層103a、103b間のギャップはチャネル長に相当する。
図8に本実施の形態における電子素子120の他の例を示す。本実施の形態の電子素子120は、ガラスやポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチック、シリコンウェハ、金属等からなる基板101上に、まず、電極層121が蒸着法、CVD法、スピンコート法、ディップコート法、キャスト法等により形成される。電極層121としては、各種の導電性薄膜が使用でき、全面に成膜した後に通常のフォトリソグラフィー法やマイクロコンタクトプリンティング法でパターニングしてもよいし、導電性材料を含有する液体をインクジェット法等で供給して直接描画してもよい。
その上に上述と同様の濡れ性変化層105を形成する。この濡れ性変化層105はゲート絶縁膜を兼ねるので、高絶縁性であることが望ましい。もっとも、上層を濡れ性変化層、下層を濡れ性変化機能はないがより絶縁性の高い絶縁体層とする2層構造であってもよい。上記と同様に濡れ性変化層105に低表面エネルギー部と高表面エネルギー部とからなるパターンが形成され、その上に金属微粒子を含有した液体を付与することにより配線層102a、102bを形成し(あるいは、濡れ性変化層105上に金属微粒子を含有した液体を付与することによって配線層102a、102bを形成した後、濡れ性変化層105に低表面エネルギー部と高表面エネルギー部とからなるパターンを形成し)、さらに導電性有機材料を含有する液体を付与することにより高表面エネルギー部に一対の電極層103a、103bとが形成される。
最後に、上述と同様の半導体層104が形成される。
図9から明らかなように、この電子素子120はTFT(薄膜トランジスタ)として機能する。即ち、電極層121はゲート電極G、濡れ性変化層105はゲート絶縁膜、電極層103a、103bはソース電極S及びドレイン電極Dである。電極層103a、103b間のギャップはチャネル長に相当する。濡れ性変化層105がゲート絶縁膜を兼ねるため、図7に示した構成例に比して、工程が簡略化される。
なお、図8において、電極層121を形成する前に基板101上に、濡れ性変化層105とは別の第2の濡れ性変化層(図示せず)を設け、電極層121のパターニングに利用してもよい。
図9に本実施の形態の電子素子アレイの一例を示し、(a)は断面図、(b)は電極等の配置関係を示す平面図である。ここでは、図8に示したタイプの電子素子120を利用した例を示している。
基板101上にゲート電極となる電極層121、ゲート絶縁膜を兼ねる濡れ性変化層105、ソース電極となる電極層103a、ドレイン電極となる電極層103b、ソース電極に接続する配線層102aおよびドレイン電極に接続する電極層102bを、図8に示した場合と同様の方法でそれぞれ2次元アレイ状にパターンニングして複数個形成する。
なお、各TFT(電子素子120)毎のゲート電極121は走査信号用のドライバーICにより駆動させるためバスラインに接続され、同様に、各TFT(電子素子120)毎のソース電極103aも配線層102aを介してデータ信号用のドライバーにより駆動させるためバスラインに接続される。
次に、有機半導体層104を、例えばマイクロコンタクトプリンティング法でチャネル領域を含む島状に形成することで、電子素子(TFT)アレイ130が完成する。なお、マイクロコンタクトプリンティング法はフォトリソグラフィーでパターン形成したマスターを用いてPDMS(ポリジメチルシロキサン)のスタンプを作製し、その凸部に半導体材料を含有する液体を付着させ、基板に転写する方法である。有機半導体層104がチャネル領域を含む島状に形成されているので隣接する素子部分への電流リークは発生しない。
なお、図9ではドレイン電極102bに接続する配線層103bを設けた様子を示しているが、図9の例のようにドレイン電極からの配線の引出しが短い場合には、配線抵抗の影響は小さいので、配線層103bの部分を導電性高分子材料で形成してもよい。
図10の断面図に上述したような電子素子アレイ130を利用した本実施の形態の表示装置140の一例を示す。
上述したような電子素子(TFT)アレイ130を構成する基板101と透明導電膜141を有する第2の基板142との間に表示素子143が設けられ、TFT(電子素子)120によって画素電極を兼ねる配線層102b上の表示素子がスイッチングされる。第2の基板142としては、ガラスやポリエステル、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン等のプラスチックを用いることができる。表示素子143としては液晶、電気泳動、有機EL等の方式を用いることができる。
表示素子143として液晶を用いた液晶表示素子は電界駆動であることから消費電力が小さく、また駆動電圧が低いことからTFTの駆動周波数を高くすることができ、大容量表示に適している。液晶表示素子の表示方式として、TN、STN、ゲスト・ホスト型、高分子分散液晶(Polymer-dispersed Liquid Crystal=PDLC)等が挙げられるが、反射型で明るい白色表示が得られる点ではPDLCが好ましい。
電気泳動表示素子は第1の色(例えば白色)を呈する粒子を第2の色を呈する着色分散媒中に分散した分散液からなるもので、第1の色を呈する粒子は着色分散媒中で帯電することにより、電界の作用で分散媒中における存在位置を変えることができ、それによって呈する色が変化する。この表示方式によれば明るく、視野角の広い表示ができ、また表示メモリー性があるため特に消費電力の観点から好ましく使用される。
上記分散液を高分子膜で包んだマイクロカプセルとすることにより、表示動作が安定化するとともに、表示装置の製造が容易になる。マイクロカプセルはコアセルベーション法、In−Situ重合法、界面重合法、等公知の方法で作製することができる。白色粒子としては、酸化チタンが特に好適に用いられ、必要に応じて表面処理或いは他の材料との複合化等が施される。分散媒としては、ベンゼン、トルエン、キシレン、ナフテン系炭化水素等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ケロシン、パラフィン系炭化水素等の脂肪族炭化水素類、トリクロロエチレン、テトラクロロエチレン、トリクロロフルオロエチレン、臭化エチル等のハロゲン化炭(化水)素類、含フッ素エーテル化合物、含フッ素エステル化合物、シリコーンオイル等の抵抗率の高い有機溶媒を使用するのが好ましい。分散媒を着色するためには所望の吸収特性を有するアントラキノン類やアゾ化合物類等の油溶性染料が用いられる。分散液中には分散安定化のために界面活性剤等を添加してもよい。
有機EL素子は自発光型であるため鮮やかなフルカラー表示を行うことができる。また、EL層は非常に薄い有機薄膜であるので、柔軟性に富み、特にフレキシブルな基板上に形成するのに適している。
上述したような実施の形態を具体化した実施例について、比較例とともに、以下に説明する。
[実施例1]
本実施例は電子素子の作製に関するものである。ここでは、図7に示したような構造の電子素子(TFT)110を作製した。
まず、ガラス基板101上に濡れ性変化層105として、式(6)および式(7)で表される構造体となる前駆体を溶解した混合溶液を、スピンコート法にて塗布し、280℃で焼成した。
Figure 2006059936
Figure 2006059936
この濡れ性変化層105の紫外線照射量と水に対する接触角の関係を図11に示す。未照射時には接触角が90°を超え疎水性(撥水性)であるが、照射量10J/cm2以上では20°程度に低下し親水性に変化している。この変化を誘起するのに有効な光の波長に合わせた光源を用いることによって照射量をさらに小さくすることが可能であると考えられる。
また、図12は液体の表面張力と接触角の関係を示したものである。図12から臨界表面張力は未照射の場合に約24mN/m、紫外線照射した場合に約45mN/mであることが判る。
次に、開口幅が40μm、開口部間のスペースが5μmのパターンを施したマスクを濡れ性変化層105に圧着し、上記紫外線を9J/cm2照射した。
次に、インクジェット法を用いて、Agをテトラデカンに分散した液体を濡れ性変化層105上に供給し、乾燥させて配線層102aおよび102bを形成した。さらにインクジェット法を用いて、導電性高分子であるPEDOT/PSSの水溶液を濡れ性変化層105上に供給し、乾燥させてソース電極層103a及びドレイン電極層103bを形成した。
続いて、高分子半導体であるポリ−3−ヘキシルチオフェンをクロロホルムに溶解した溶液をスピンコート法にて塗布し、乾燥させて有機半導体層104を形成し、さらにPVPをn−ブタノールに溶解した溶液をスピンコート法にて塗布し、乾燥させてゲート絶縁体層111を形成した。
最後に、インクジェット法を用いて、PEDOT/PSSからなるゲート電極層112を形成した。
このように作製されたTFT(電子素子110)の移動度は2.0×10-3cm2/Vs,On/Off比は200であり、ソース電極層103a、ドレイン電極層103bおよび配線層102a、102bを、Auの蒸着膜をリフトオフすることにより形成した場合と比べて遜色はなかったものである。
[比較例1]
実施例1において、配線層102aおよび102bも電極層103a、103bと同じ導電性高分子であるPEDOT/PSSの水溶液を使って形成した。その他は実施例1と同じである。
このように作成されたTFTの移動度は1.0×10-3cm2/Vs、On/Off比は100であり、実施例1に比べて特性が劣っていた。これは、配線抵抗が高いため、On電流が大きくならず、その結果、移動度とOn/Off比が小さくなったものと考えられる。
[実施例2]
本実施例は電子素子の作製に関するものである。ここでは、図8に示したような構造の電子素子(TFT)120を作製した。
まず、ガラス基板101上に膜厚60nmのAlを真空蒸着し、フォトリソエッチングにより40μmの幅に加工し、ゲート電極121を形成した。
次に、ゲート絶縁膜を兼ねる濡れ性変化層105を実施例1と同様にして作製し、開口幅が40μm、開口部間のスペースが5μmのパターンを施したマスクを濡れ性変化層105に圧着し、実施例1と同様にして紫外線を9J/cm2照射した。
続いて、インクジェット法を用いて、Agをテトラデカンに分散した液体を濡れ性変化層105上に供給し、乾燥させて配線層102aおよび102bを形成した。さらにインクジェット法を用いて、導電性高分子であるPEDOT/PSSの水溶液を濡れ性変化層105上に供給し、乾燥させてソース電極層103a及びドレイン電極層103bを形成した。
最後に、下記化学式に示すようなスキームより合成した有機半導体なる重合体1をトルエンに溶解した溶液をスピンコート法にて塗布し、乾燥させて有機半導体層104を形成した。
Figure 2006059936
この重合体1の製造例について補足説明する。100ml四つ口フラスコに、ジアルデヒド0.852g(2.70mmol)及びジホスホネート1.525g(2.70mmol)を入れ、窒素置換してテトラヒドロフラン75mlを加えた。この溶液にカリウムt−ブトキシドの1.0moldm-3テトラヒドロフラン溶液6.75ml(6.75mmol)を滴下し、室温で2時間撹拌した後、ベンジルホスホネート及びベンズアルデヒドを順次加え、さらに2時間撹拌した。酢酸およそ1mlを加えて反応を終了し、溶液を水洗した。溶媒を減圧留去した後、テトラヒドロフラン及びメタノールを用いて再沈殿による精製を行い、重合体1.07gを得た。収率73%(7.93%)、N;2.33%(2.45%)。
示差走査熱量測定から求めたガラス転移温度は117℃であった。GPCにより測定したポリスチレン換算の数平均分子量は8500、重量平均分子量は20000であった。
このように作製されたTFT(電子素子120)の移動度は8.5×10-4cm2/Vs、On/Off比は550であり、ソース電極層103a、ドレイン電極層103bおよび配線層102a、102bを、Auの蒸着膜をリフトオフすることにより形成した場合と比べて遜色はなかったものである。
[比較例2]
実施例2において、配線層102aおよび102bを電極層103a、103bと同じ導電性高分子であるPEDOT/PSSの水溶液を用いて形成した。それ以外は実施例2と同じである。
このように作製されたTFTの移動度は7.5×10-4cm2/Vs、On/Off比は450であり、実施例2と比較して特性が劣っていた。これは、配線抵抗が高いため、On電流が大きくならず、その結果、移動度とOn/Off比が小さくなったものと考えられる。
[実施例3]
本実施例は図9に示すような電子素子アレイ130の作製に関するものである。
まず、ゲート電極121及びゲート絶縁膜を兼ねる濡れ性変化層105は実施例2と同様にして作製した。配線層102aおよび102bはAgの金属微粒子をテトラデカンに分散した液体を用いて、またソース電極層103a及びドレイン電極層103bは導電性高分子であるPANIの水溶液を用い、実施例2と同様にして形成した。
最後に上記重合体1をトルエンに溶解した溶液を用いて、マイクロコンタクトプリンティング法で有機半導体層104を島状に形成した。
以上の工程により、基板7上に32×32個(素子間ピッチ500μm)のTFT(電子素子41)を2次元アレイ状に有する電子素子アレイ130を作製した。これらの複数のTFT(電子素子120)の平均的な特性は移動度が6.5×10-4cm2/Vs、On/Off比が340であった。
[実施例4]
本実施例は図13に示すような電子素子アレイ130を用いた表示装置140の作製に関するものである。
まず、酸化チタン粒子145とオイルブルーで着色したアイソパー146を内包するマイクロカプセル144を表示素子143としてPVA水溶液に混合して、ITOからなる透明電極141を形成したポリカーボネート基板142上に塗布して、マイクロカプセル144とPVAバインダー147からなる層を形成した。この基板と、実施例3で作製したTFTアレイ(電子素子アレイ130)が形成された基板101とを接着した。
ゲート電極121に繋がるバスラインに走査信号用のドライバーICを、ソース電極103aに繋がる配線層102a(バスライン)にデータ信号用のドライバーICを各々接続した。0.5秒毎に画面切替えを行ったところ、良好な静止画表示を行うことができた。
[比較例3]
実施例4において、ソース電極103aおよびドレイン電極103bに接続する配線層102aおよび102bを、ソース、ドレイン電極と同じ導電性高分子PANIで形成した。それ以外は実施例4と同じである。
このように作製された表示装置を動作させたところ、画像を正しく表示することができなかった。これは、配線部の電気抵抗が高いため、画素に印加される電圧が低下したことが原因と考えられる。
本発明の実施形態における積層構造体の構成を示した図である。 本発明の実施形態における積層構造体の構成を示した図である。 本発明の実施形態における積層構造体の構成を示した図である。 本発明の実施形態における固体表面上で液滴が平衡状態であることを示した図である。 本発明の実施形態における濡れ性変化層の概念図である。 本発明の実施形態における積層構造体の製造過程を示した図である。 本発明の実施形態における電子素子の構成を示した図である。 本発明の実施形態における電子素子の構成を示した図である。 本発明の実施形態における電子素子アレイの構成を示した図である。 本発明の実施形態における電子素子アレイの断面を示した図である。 本発明の実施形態における濡れ性変化層の紫外線照射量と水に対する接触角の関係を示した図である。 本発明の実施形態における液体の表面張力と接触角の関係を示した図である。 本発明の実施形態における電子素子アレイを用いた表示装置の構成を示した図である。 従来の凹版オフセット印刷法の概略図である。 従来の電極層をインクジェット法でパターン形成する方法を示した図である。 従来の自己組織化膜がパターニングされた状態を示した図である。 従来のFET素子の断面図である。
符号の説明
101 基板
102 配線層
103 電極層
104 有機半導体層

Claims (17)

  1. 有機半導体層と、前記有機半導体層に接触する電極層と、前記電極層に接続される配線層からなる積層構造体であって、
    前記電極層と前記配線層とが異なる材料からなり、
    かつ、配線層と前記有機半導体層とは積層されないことを特徴とする積層構造体。
  2. 前記配線層は、前記電極層の少なくとも一部と積層されていることを特徴とする請求項1記載の積層構造体。
  3. 前記電極層が導電性有機材料からなることを特徴とする請求項1または2記載の積層構造体。
  4. 前記配線層が金属であることを特徴とする請求項1または2記載の積層構造体。
  5. エネルギーの付与によって臨界表面張力が変化する材料からなる濡れ性変化層を形成する工程と、
    配線層を形成する工程と、
    前記濡れ性変化層の一部分にエネルギーを付与することによって臨界表面張力の小さい低表面エネルギー部と、より臨界表面張力の大きい高表面エネルギー部とからなる臨界表面張力を異ならせたパターンを形成する工程と、
    電極材料を含有する液体を前記パターンが形成された濡れ性変化層表面に付与することで、高表面エネルギー部に電極層を形成する工程と、
    電極層を含む濡れ性変化層上に有機半導体層を形成する工程とからなることを特徴とする積層構造体の製造方法。
  6. エネルギーの付与によって臨界表面張力が変化する材料からなる濡れ性変化層を形成する工程と、
    前記濡れ性変化層の一部分にエネルギーを付与することによって臨界表面張力の小さい低表面エネルギー部と、より臨界表面張力の大きい高表面エネルギー部とからなる臨界表面張力を異ならせたパターンを形成する工程と、
    配線材料を含有する液体を前記パターンが形成された濡れ性変化層表面に付与することで、高表面エネルギー部のうち有機半導体層を形成しない部分に配線層を形成する工程と、
    電極材料を含有する液体を前記パターンが形成された濡れ性変化層表面に付与することで、少なくとも高表面エネルギー部に電極層を形成する工程と、
    電極層を含む濡れ性変化層上に有機半導体層を形成する工程とを有することを特徴とする積層構造体の製造方法。
  7. 前記配線層を形成する工程は、インクジェット法を用いることを特徴とする請求項5記載の積層構造体の製造方法。
  8. 臨界表面張力を変化させるエネルギー付与が、紫外線照射であることを特徴とする請求項5または6記載の積層構造体の製造方法。
  9. 前記電極材料を含有する液体が、導電性高分子を分散または溶解した液体であることを特徴とする請求項5または6記載の積層構造体の製造方法。
  10. 前記導電性高分子を分散または溶解した液体が水系であることを特徴とする請求項9記載の積層構造体の製造方法。
  11. 前記配線材料を含有する液体が、微小な金属微粒子を分散した液体であることを特徴とする請求項6記載の積層構造体の製造方法。
  12. 前記配線材料を含有する液体をインクジェット方式で付与することを特徴とする請求項6記載の積層構造体の製造方法。
  13. 前記電極材料が含有された液体を付与する手段がインクジェット方式であることを特徴とする請求項5または6記載の積層構造体の製造方法。
  14. 請求項1から13のいずれか1項に記載の積層構造体の製造方法によって製造された積層構造体を構成要素とすることを特徴とする電子素子。
  15. 濡れ性変化層と、前記濡れ性変化層上に形成された有機半導体層と、
    前記有機半導体層に接して設けられた第1の電極層、第2の電極層と、
    前記第1、第2の電極層の少なくとも一方には前記第1、第2の電極層に接続される配線層を有し、
    少なくとも前記有機半導体層に接して設けられた絶縁体層と、
    前記絶縁体層に接して設けられた第3の電極層とを有することを特徴とする請求項14記載の電子素子。
  16. 前記第3の電極層と、前記第3の電極層上に設けられた前記濡れ性変化層と、
    前記濡れ性変化層上に形成された前記有機半導体層と、
    前記有機半導体層に接して設けられた前記第1、第2の電極層と、
    前記第1、第2の電極層の少なくとも一方に該第1、第2の電極層に接続される前記配線層を有することを特徴とする請求項14記載の電子素子。
  17. 請求項14から16のいずれか1項に記載の電子素子が基板上に複数設けられた電子素子アレイを備えたことを特徴とする表示装置。
JP2004238881A 2004-08-18 2004-08-18 積層構造体及びその製造方法、電子素子、表示装置 Pending JP2006059936A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238881A JP2006059936A (ja) 2004-08-18 2004-08-18 積層構造体及びその製造方法、電子素子、表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238881A JP2006059936A (ja) 2004-08-18 2004-08-18 積層構造体及びその製造方法、電子素子、表示装置

Publications (1)

Publication Number Publication Date
JP2006059936A true JP2006059936A (ja) 2006-03-02

Family

ID=36107169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238881A Pending JP2006059936A (ja) 2004-08-18 2004-08-18 積層構造体及びその製造方法、電子素子、表示装置

Country Status (1)

Country Link
JP (1) JP2006059936A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060116A (ja) * 2004-08-23 2006-03-02 Konica Minolta Holdings Inc 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314472A (ja) * 1986-07-04 1988-01-21 Mitsubishi Electric Corp 電界効果型トランジスタ
JP2003076004A (ja) * 2001-09-04 2003-03-14 Fuji Photo Film Co Ltd パターン形成方法
JP2003258256A (ja) * 2002-02-27 2003-09-12 Konica Corp 有機tft装置及びその製造方法
JP2004152958A (ja) * 2002-10-30 2004-05-27 Pioneer Electronic Corp 有機半導体装置
JP2006013433A (ja) * 2004-05-24 2006-01-12 Toppan Printing Co Ltd 薄膜トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314472A (ja) * 1986-07-04 1988-01-21 Mitsubishi Electric Corp 電界効果型トランジスタ
JP2003076004A (ja) * 2001-09-04 2003-03-14 Fuji Photo Film Co Ltd パターン形成方法
JP2003258256A (ja) * 2002-02-27 2003-09-12 Konica Corp 有機tft装置及びその製造方法
JP2004152958A (ja) * 2002-10-30 2004-05-27 Pioneer Electronic Corp 有機半導体装置
JP2006013433A (ja) * 2004-05-24 2006-01-12 Toppan Printing Co Ltd 薄膜トランジスタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060116A (ja) * 2004-08-23 2006-03-02 Konica Minolta Holdings Inc 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子

Similar Documents

Publication Publication Date Title
JP4629997B2 (ja) 薄膜トランジスタ及び薄膜トランジスタアレイ
US7807496B2 (en) Field effect transistor and its manufacturing method
US8188465B2 (en) Method of manufacturing semiconductor device, semiconductor device, display device, and electronic instrument
JP4996846B2 (ja) 電界効果トランジスタ及びその製造方法
JP5036219B2 (ja) 有機薄膜トランジスタを有する半導体装置の製造方法
US20080036698A1 (en) Display
JP2007150246A (ja) 有機トランジスタ及び表示装置
WO2005024956A1 (ja) 電極基板、薄膜トランジスタ、表示装置、及びその製造方法
JP2008277469A (ja) 感光性sam膜の露光方法および半導体装置の製造方法
JP4678574B2 (ja) 積層構造体、積層構造体を用いた電子素子、電子素子アレイ及び表示装置
US7999253B2 (en) Organic transistor and active matrix display
JP2006060113A5 (ja)
JPWO2005098927A1 (ja) Tftシートおよびその製造方法
JP4695360B2 (ja) 電子素子の製造方法
JP2006261535A (ja) 積層構造体、積層構造体を用いた電子素子、電子素子を用いた電子素子アレイ、積層構造体の製造方法および電子素子の製造方法
JP4906934B2 (ja) 電子素子、電子素子アレイ及び表示装置
JP5729540B2 (ja) 電界効果型トランジスタ及びその製造方法
JP5481893B2 (ja) 有機トランジスタアクティブ基板、有機トランジスタアクティブ基板の製造方法および有機トランジスタアクティブ基板を用いた電気泳動ディスプレイ
JP2006060079A (ja) 半導体層のパターン形成方法及び電子素子、電子素子アレイ、表示装置
JP2005223049A (ja) 半導体装置、半導体装置の製造方法、および表示装置
JP2006059936A (ja) 積層構造体及びその製造方法、電子素子、表示装置
JP4479163B2 (ja) 薄膜トランジスタ及び薄膜トランジスタの作製方法
JP5103735B2 (ja) 有機半導体層用組成物、薄膜トランジスタの製造方法、アクティブマトリクス装置の製造方法、電気光学装置の製造方法および電子機器の製造方法
JP4691545B2 (ja) 半導体装置の製造方法
JP4707345B2 (ja) 配線の修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129