JP2005522890A - Reduction of transition in nonpolar gallium nitride thin films. - Google Patents

Reduction of transition in nonpolar gallium nitride thin films. Download PDF

Info

Publication number
JP2005522890A
JP2005522890A JP2003586403A JP2003586403A JP2005522890A JP 2005522890 A JP2005522890 A JP 2005522890A JP 2003586403 A JP2003586403 A JP 2003586403A JP 2003586403 A JP2003586403 A JP 2003586403A JP 2005522890 A JP2005522890 A JP 2005522890A
Authority
JP
Japan
Prior art keywords
mask
overgrowth
transition
gallium nitride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003586403A
Other languages
Japanese (ja)
Other versions
JP5254521B2 (en
JP2005522890A5 (en
Inventor
マイケル ディー. クレイブン,
スティーブン ピー. デンバーズ,
ジェームス エス. スペック,
Original Assignee
ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア filed Critical ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア
Publication of JP2005522890A publication Critical patent/JP2005522890A/en
Publication of JP2005522890A5 publication Critical patent/JP2005522890A5/en
Application granted granted Critical
Publication of JP5254521B2 publication Critical patent/JP5254521B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth

Abstract

本発明は、半導体材料、方法、およびデバイスに関し、そしてより具体的には、非極性窒化ガリウム(GaN)薄層における転移低減に関する。本発明は、a−GaNにおけるスレッディング転移密度を、平面ヘテロエピタキシャル「シード」層の横方向過剰成長によって低減する。横方向過剰成長技術は、2つのMOCVD成長(最初のヘテロエピタキシャル成長および横方向過剰成長を構成する再成長)の間の処理工程を必要とする。第1に、薄いパターン化された誘電性マスクが、シード層に適用される。The present invention relates to semiconductor materials, methods, and devices, and more specifically to transition reduction in thin nonpolar gallium nitride (GaN) layers. The present invention reduces the threading transition density in a-GaN by lateral overgrowth of planar heteroepitaxial “seed” layers. The lateral overgrowth technique requires a processing step between two MOCVD growths (the first heteroepitaxial growth and the regrowth that constitutes the lateral overgrowth). First, a thin patterned dielectric mask is applied to the seed layer.

Description

(関連出願の引用)
本願は、米国特許法第119条第(e)項のもとで、以下の同時係属中の、同一人に譲渡された米国仮特許出願番号60/372,909(発明の名称「NON−POLAR GALLIUM NITRIDE BASED THIN FILMS AND HETEROSTRUCTURE MATERIALS」、2002年4月15日出願、Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura,およびUmesh K.Mishara、代理人文書番号30794.95−US−P1)の利益を主張する。この出願は、本明細書中に参考として援用される。
(Citation of related application)
This application is filed under 35 USC 119 (e) and is assigned to the same co-pending US Provisional Patent Application No. 60 / 372,909 (name of invention "NON-POLAR"). GALLIUM NITRIDE BASSED THIN FILMS AND HETEROSTRUCTURE MATERIALS ”, filing on April 15, 2002, Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal MarS. Claims the benefit of document number 30794.95-US-P1). This application is incorporated herein by reference.

本願は、以下の同時係属中の、同一人に譲渡された米国特許出願に関する:
出願番号−−/−−−,−−−、発明の名称「NON−POLAR(AL,B,IN,GA)N QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES」、本願と同日に出願、Michael D.Craven、Stacia Keller、Steven P. DenBaars、Tal Margalith、James S.Speck、Shuji NakamuraおよびUmesh K.Mishra、代理人文書番号30794.101−US−U1);ならびに
出願番号−−/−−−,−−−、発明の名称「NON−POLAR A−PLANE GALLIUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION」、本願と同日に出願、Michael D.CravenおよびJames S.Speck、代理人文書番号30794.100−US−U1);
これらの出願の両方が、本明細書中に参考として援用される。
This application relates to the following co-pending, commonly assigned US patent applications:
Application number ---------------------- NON-POLAR (AL, B, IN, GA) N QUANTUM WELL AND HEASTER STRUCTURE MATERIALS AND DEVICES, filed the same day as this application, Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margarith, James S. Speck, Shuji Nakamura and Umesh K. Misra, Attorney Document No. 30794.101-US-U1); and Application No.-/ ---, ----, title of invention "NON-POLAR A-PLANE GALLIUM NITRATION THIN FILM GROWN BY METALORGANIC CHAPICAL VAPOR" Filed on the same day as this application, Michael D. Craven and James S. Speck, agent document number 30794.100-US-U1);
Both of these applications are hereby incorporated by reference.

(1.発明の分野)
本発明は、半導体材料、方法、およびデバイスに関し、そしてより具体的には、非極性窒化ガリウム(GaN)薄層における転移低減に関する
(2.関連技術の説明)
(注:本願は、多数の異なる特許、出願および/または刊行物を、1つ以上の参照番号によって、本明細書全体に示されるように参照する。これらの異なる刊行物の、これらの参照番号に従った順序にしたリストは、以下の「参考文献」の表題の節に見出され得る。これらの刊行物の各々は、本明細書中に参考として援用される)。
(1. Field of the Invention)
The present invention relates to semiconductor materials, methods, and devices, and more specifically to transition reduction in thin nonpolar gallium nitride (GaN) layers (2. Description of Related Art).
(Note: This application refers to a number of different patents, applications and / or publications as indicated throughout this specification by one or more reference numbers. These reference numbers for these different publications. An ordered list according to can be found in the section entitled “References” below, each of which is incorporated herein by reference).

現在の窒化物ベースのデバイスは、極性[0001]c方向に沿って成長したヘテロ構造を用い、成長方向に対して平行な強い静電場の形成を生じる。参考文献1〜7を参照のこと。「一体型(built−in)」静電場は、c−平面(0001)窒化物構造内の表面および界面における分極不連続性に関連する一定のシート電荷により生じる。   Current nitride-based devices use heterostructures grown along the polar [0001] c direction, resulting in the formation of a strong electrostatic field parallel to the growth direction. See references 1-7. A “built-in” electrostatic field is caused by a constant sheet charge associated with polarization discontinuities at surfaces and interfaces in c-plane (0001) nitride structures.

これらの分極誘導性電場は、現在の最新技術の光電子窒化物デバイスおよび電子窒化物デバイスの性能に影響を与える。例えば、分極場は、量子井戸(QW)構造における電子およびホールの波動関数を空間的に分離し、それによって、QWベースのデバイス(例えば、レーザーダイオードおよび発光ダイオード(LED))におけるキャリアの再結合効率を減少させる。さらに、分極場は、窒化物ヘテロ構造を用いるトランジスタ構造において大きな可動シート電荷密度を誘導する。全分極における不連続性は、対応する界面または表面において一定のシート電荷の形成を生じる。   These polarization-inducing electric fields affect the performance of current state-of-the-art optoelectronic nitride devices and electron nitride devices. For example, polarization fields spatially separate electron and hole wave functions in quantum well (QW) structures, thereby recombining carriers in QW-based devices (eg, laser diodes and light emitting diodes (LEDs)). Reduce efficiency. Furthermore, the polarization field induces a large movable sheet charge density in transistor structures using nitride heterostructures. A discontinuity in total polarization results in the formation of a constant sheet charge at the corresponding interface or surface.

非極性ウルツ窒化物半導体フィルムのエピタキシャル成長は、窒化物の量子構造における分極誘導性電場の効果を排除する有望な手段を提供する。上記の関連の出願において、非極性   Epitaxial growth of nonpolar wurtz nitride semiconductor films offers a promising means to eliminate the effects of polarization-induced electric fields in nitride quantum structures. In the above related application, non-polar

Figure 2005522890
a平面GaN膜(本明細書中で、a−GaNと呼ばれる)は、金属有機化学蒸着(MOCVD)によって、
Figure 2005522890
An a-plane GaN film (referred to herein as a-GaN) is formed by metal organic chemical vapor deposition (MOCVD)

Figure 2005522890
r平面サファイア基板上で成長された。参考文献13を参照のこと。しかし、これらの膜に存在するスレッディング転移密度は、約2.6×1010cm−2であると決定されている。
Figure 2005522890
Grown on r-plane sapphire substrate. See reference 13. However, the threading transition density present in these films has been determined to be about 2.6 × 10 10 cm −2 .

非極性窒化物層の利点を十分に理解するために、エピタキシャル膜の質の改良が必要であり、特に、転移密度の低減が必要である。詳細には、これらの膜の結晶の質を改良することは、分極誘導性電場を伴わずに作動する高性能窒化物デバイスの実現に必須である。   In order to fully understand the advantages of non-polar nitride layers, it is necessary to improve the quality of the epitaxial film, and in particular to reduce the transition density. In particular, improving the crystal quality of these films is essential for the realization of high performance nitride devices that operate without polarization-induced electric fields.

種々の技術が示されているが、転移の低減は、横方向に過剰成長した極性GaN膜において広範に研究されている。参考文献8〜11を参照のこと。種々の横方向過剰成長技術により得られる低転移密度基板は、窒化物ベースのオプトエレクトロニクスの顕著な性能、もっとも注目すべきは、長寿命の持続波InGaNレーザーダイオードを直接的に担っている。参考文献12を参照のこと。   Various techniques have been shown, but the reduction of transition has been extensively studied in laterally overgrown polar GaN films. See references 8-11. Low dislocation density substrates obtained by various lateral overgrowth techniques directly bear the outstanding performance of nitride-based optoelectronics, most notably long-lived continuous wave InGaN laser diodes. See reference 12.

横方向過剰成長技術は、従来技術において周知である。例えば横方向過剰成長技術は、極性c平面(0001)GaN膜の転移低減について徹底的に研究されている。特定の過剰成長技術としては、横方向エピタキシャル過剰成長(LEO)(これはまた、エピタキシャル横方向過剰成長(ELOまたはELOG)としても公知である)、およびPENDEO(登録商標)エピタキシーが上げられる。これらのプロセスの間の差に関わらず、転移の低減は、一般的な機構、主に、マスクブロッキングおよび転移湾曲によって達成される。参考文献11および19を参照のこと。   Lateral overgrowth techniques are well known in the prior art. For example, lateral overgrowth techniques have been thoroughly studied for reducing transitions in polar c-plane (0001) GaN films. Specific overgrowth techniques include lateral epitaxial overgrowth (LEO) (also known as epitaxial lateral overgrowth (ELO or ELOG)), and PENDEO® epitaxy. Regardless of the difference between these processes, the reduction of transfer is achieved by common mechanisms, mainly mask blocking and transfer curvature. See references 11 and 19.

しかし、本発明は、GaN膜のためのこれらの方法の新規な適用である。詳細には、本発明は、a−GaNシード層を使用するLEO法を記載し、これはスレッディング転移低減を達成する。低転移密度a−GaNは、高性能分極誘導性場を含まない(Al,B,In,Ga)Nベースのデバイスのための緩衝層として使用され得る。   However, the present invention is a novel application of these methods for GaN films. Specifically, the present invention describes a LEO method that uses an a-GaN seed layer, which achieves threading transition reduction. Low transition density a-GaN can be used as a buffer layer for (Al, B, In, Ga) N based devices that do not contain high performance polarization inductive fields.

(発明の要旨)
非極性
(Summary of the Invention)
Nonpolar

Figure 2005522890
a−平面GaN薄膜の横方向エピタキシャル過剰成長は、GaN膜におけるスレッディング転移を低減する。第1に、薄いパターン化誘電性マスクが、シード層に適用される。第2に、選択的エピタキシャル再成長が実施されて、パターン化マスクを基礎として横方向過剰成長ベースが達成される。再成長の際、GaN膜は、最初に、誘電性マスク中の開口部を通って垂直方向に成長し、その後、この垂直成長方向に対して垂直の方向でこのマスクを横方向に過剰成長させる。スレッディング転移は、(1)成長中の膜に向かう垂直方向の転移の伝達をブロックするマスク、および(2)垂直から横方向への成長の移行による転移の湾曲によって、過剰成長領域において低減される。
Figure 2005522890
Lateral epitaxial overgrowth of a-plane GaN thin films reduces threading transitions in GaN films. First, a thin patterned dielectric mask is applied to the seed layer. Second, selective epitaxial regrowth is performed to achieve a lateral overgrowth base on the patterned mask. During regrowth, the GaN film is first grown vertically through the openings in the dielectric mask and then overgrown the mask laterally in a direction perpendicular to the vertical growth direction. . Threading transitions are reduced in overgrowth regions by (1) masks that block the transfer of vertical transitions to the growing film, and (2) transition curvature due to vertical to lateral growth transitions. .

ここで、図面が参照される。図面において、類似の参照番号は、全体にわたって、対応する部品を表す。   Reference is now made to the drawings. In the drawings, like reference numerals generally indicate corresponding parts.

(発明の詳細な説明)
以下の好ましい実施形態の説明において、添付の図面に対して参照がなされる。この図面は、本明細書の一部を形成し、そしてこの図面において、例として、本発明が実施され得る特定の実施形態が説明され得る。本発明の範囲から逸脱することなく、他の実施形態が利用され得、そして構造的変化がなされ得ることが、理解されるべきである。
(Detailed description of the invention)
In the following description of the preferred embodiments, reference is made to the accompanying drawings. The drawings form part of the present specification and by way of example specific embodiments in which the invention may be practiced may be described. It should be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.

(概説)
本発明は、a−GaNにおけるスレッディング転移密度を、平面ヘテロエピタキシャル「シード」層の横方向過剰成長によって低減する。横方向過剰成長技術は、2つのMOCVD成長(最初のヘテロエピタキシャル成長および横方向過剰成長を構成する再成長)の間の処理工程を必要とする。第1に、薄いパターン化された誘電性マスクが、シード層に適用される。再成長の際、GaNは、最初に、この誘電性マスク中の開口部を通って垂直に成長し、その後、この垂直成長方向に対して垂直の方向で、このマスクを横方向に過剰成長させる。適切なマスクおよび再成長条件を用いて、転移密度が、このマスク中の開口部を通って垂直に成長した領域と比較して、横方向過剰成長領域において低減される。転移は、(1)成長中の膜に向かう垂直方向の転移の伝達をブロックするマスク、および(2)垂直から横方向への成長の移行による転移の湾曲によって、過剰成長領域において低減される。
(Outline)
The present invention reduces the threading transition density in a-GaN by lateral overgrowth of planar heteroepitaxial “seed” layers. The lateral overgrowth technique requires a processing step between two MOCVD growths (first heteroepitaxial growth and regrowth that constitutes lateral overgrowth). First, a thin patterned dielectric mask is applied to the seed layer. During regrowth, GaN first grows perpendicularly through the openings in the dielectric mask and then overgrows the mask laterally in a direction perpendicular to the vertical growth direction. . With an appropriate mask and regrowth conditions, the transition density is reduced in the lateral overgrowth region compared to the region grown vertically through the openings in the mask. The transition is reduced in the overgrowth region by (1) a mask that blocks the transmission of the vertical transition towards the growing film, and (2) the curvature of the transition due to the growth transition from vertical to lateral.

(プロセス工程)
図1は、本発明の好ましい実施形態に従う、平面ヘテロエピタキシャル「シード」層の横方向過剰成長によるa−GaNにおけるスレッディング転移密度を低減するための工程を示すフローチャートである。
(Process process)
FIG. 1 is a flow chart illustrating steps for reducing threading transition density in a-GaN due to lateral overgrowth of planar heteroepitaxial “seed” layers, in accordance with a preferred embodiment of the present invention.

ブロック100は、同時係属中の、同一人に譲渡された米国仮特許出願番号60/372,909(発明の名称「NON−POLAR GALLIUM NITRIDE BASED THIN FILMS AND HETEROSTRUCTURE MATERIALS」、2002年4月15日出願、Michael D.Craven,Stacia Keller,Steven P.DenBaars,Tal Margalith,James S.Speck,Shuji Nakamura,およびUmesh K.Mishara、代理人文書番号30794.95−US−U1)、ならびに同時係属中の、同一人に譲渡された米国特許出願番号−−/−−−,−−−、発明の名称「NON−POLAR A−PLANE GALLIUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION」、本願と同日に出願、Michael D.CravenおよびJames S.Speck、代理人文書番号30794.100−US−U1)(これらの出願の両方は、本明細書中で参考として援用される)に記載されるように、MOCVDによって、   Block 100 is a co-pending U.S. Provisional Patent Application No. 60 / 372,909 (invention name "NON-POLAR GALLIUM NITRIDE BASIC THIN FILMS AND HETEROSTUCTURE MATERIALS", filed April 15, 2002. , Michael D. Craven, Stacia Keller, Steven P. DenBaars, Tal Margarith, James S. Speck, Shuji Nakamura, and Umesh K. Mishara, attorney document number 30794. US patent application number assigned to the same person ------, ---, title of invention "NON-POLAR A-PLANE GALL" “IUM NITRIDE THIN FILMS GROWN BY METALORGANIC CHEMICAL VAPOR DEPOSITION”, filed on the same day as this application, Michael D. Craven and James S. Speck, attorney document number 30794.100-US-U1) (both of these applications are incorporated herein by reference) by MOCVD,

Figure 2005522890
r平面サファイア基板上における、非極性
Figure 2005522890
Nonpolarity on r-plane sapphire substrate

Figure 2005522890
a平面GaN薄膜の成長を表す。ヘテロエピタキシャル成長した非極性
Figure 2005522890
It represents the growth of a planar GaN thin film. Heteroepitaxial nonpolarity

Figure 2005522890
a平面GaN薄膜は、本発明の横方向過剰成長のための「シード層」を含む。
Figure 2005522890
The a-plane GaN thin film includes the “seed layer” for lateral overgrowth of the present invention.

ブロック102は、非極性   Block 102 is non-polar

Figure 2005522890
a平面GaNフィルム上に、プラズマ増強化学的蒸着堆積(PECVD)を介して誘電性再成長マスク(dielectric regrowth mask)を堆積させる工程を示す。好ましい実施形態において、このマスクは、200ナノメートル(nm)のSiOから構成されるが、これに限定されない。
Figure 2005522890
FIG. 4 shows a process of depositing a dielectric regrowth mask on a planar GaN film via plasma enhanced chemical vapor deposition (PECVD). FIG. In a preferred embodiment, the mask is constituted of SiO 2 of 200 nanometers (nm), but is not limited thereto.

ブロック104は、堆積されたマスクをパターン化する工程を表し、ここで、このパターンは、従来の光リソグラフィー技術および緩衝化されたフッ化水素酸を用いる湿式エッチングを使用してSiOに移される。好ましくは、堆積されたマスクは、種々の結晶学的方向で配向された長く、狭いストライプ開口部によりパターン化される。 Block 104 represents the step of patterning the deposited mask, where this pattern is transferred to SiO 2 using conventional photolithographic techniques and wet etching with buffered hydrofluoric acid. . Preferably, the deposited mask is patterned with long, narrow stripe openings oriented in various crystallographic directions.

マスクをパターン化した後、ブロック106は、溶媒を使用してサンプルを洗浄する工程を表す。   After patterning the mask, block 106 represents the step of cleaning the sample using a solvent.

ブロック108は、選択的エピタキシャル再成長を実施して、パターン化されたマスクに基づく横方向過剰成長を達成する工程を表し、ここで、窒化ガリウムは、初期はマスクにおける開口部を通って垂直に成長し、その後、垂直な成長方向に対して垂直な方向でマスクを横方向に過剰成長させる。転位密度は、マスクにおける開口部を通って垂直に成長する領域と比較して、垂直に過剰成長した領域において減少される。さらに成長フィルムへの垂直方向での転位の広がりをブロックするマスクによって、および、垂直から横方向への成長の移行による転位の屈曲によって、転位は過剰成長領域において減少される。   Block 108 represents the step of performing selective epitaxial regrowth to achieve lateral overgrowth based on the patterned mask, where the gallium nitride is initially perpendicular through the openings in the mask. The mask is then overgrown laterally in a direction perpendicular to the vertical growth direction. The dislocation density is reduced in vertically overgrown regions compared to regions that grow vertically through openings in the mask. In addition, dislocations are reduced in the overgrowth region by masks that block the dislocation spread in the vertical direction to the growth film and by bending of the dislocations due to the growth transition from vertical to lateral direction.

好ましくは、ブロック108は、サファイア基板上でのヘテロエピタキシャル成長に使用される条件と同じ反応器条件(すなわち、約1100℃成長温度。約1300V/III速度、および約0.1気圧(atm)成長圧力)を使用するが、改変された条件が使用され得る。   Preferably, block 108 is the same reactor conditions as those used for heteroepitaxial growth on the sapphire substrate (ie, about 1100 ° C. growth temperature, about 1300 V / III rate, and about 0.1 atmosphere (atm) growth pressure. ), But modified conditions may be used.

ブロック110は、得られる横方向過剰成長を表し、ここで、この横方向過剰成長は、基礎となるマスクパターンによって決定されるように、ストライプを形成した横方向に過剰成長したGaNを含む。過剰成長ストライプ形態学は、マスクストライプの結晶学的配向に依存する。例えば、   Block 110 represents the resulting lateral overgrowth, where the lateral overgrowth includes laterally overgrown GaN with stripes as determined by the underlying mask pattern. Overgrowth stripe morphology depends on the crystallographic orientation of the mask stripe. For example,

Figure 2005522890
に対して整列されたストライプは、矩形の断面を有し、そして、過剰成長領域においてかなりの転位の減少を示す。
Figure 2005522890
The stripes aligned with respect to have a rectangular cross-section and show significant dislocation reduction in the overgrown region.

この方法を使用して製造され得る可能なデバイスとしては、レーザーダイオード(LD)、発光ダイオード(LED)、共鳴空洞LED(RC−LED)、垂直空洞表面発光レーザー(VCSEL)、高電子移動度トランジスタ(HEMT)、ヘテロ接合双極トランジスタ(HBT)、ヘテロ接合場効果トランジスタ(HFET)、ならびにUV光検出器および近UV光検出器が挙げられる。   Possible devices that can be fabricated using this method include laser diodes (LDs), light emitting diodes (LEDs), resonant cavity LEDs (RC-LEDs), vertical cavity surface emitting lasers (VCSELs), high electron mobility transistors (HEMT), heterojunction bipolar transistor (HBT), heterojunction field effect transistor (HFET), and UV and near UV photodetectors.

(実験結果)
横方向エピタキシャル過剰成長が、非極性
(Experimental result)
Lateral epitaxial overgrowth is nonpolar

Figure 2005522890
a平面GaNフィルムの螺旋転位(threading dislocation)密度を首尾良く減少させたという実験結果が、見出された。この節では、形態学および欠損減少の結晶学的ストライプ配向に対する依存性を報告する。
Figure 2005522890
Experimental results have been found that have successfully reduced the threading dislocation density of a-plane GaN films. In this section, we report the dependence of morphology and defect reduction on crystallographic stripe orientation.

[0001]および   [0001] and

Figure 2005522890
に沿って整列されたストライプは、最も好ましいa平面GaN LEOストライプ配向であり、良く整えられた(well−behaved)対称的な形態学を保有する。マスクブロッキングを介する螺旋転位減少を、最適な矩形断面を有する
Figure 2005522890
The stripes aligned along are the most preferred a-plane GaN LEO stripe orientation and possess a well-behaved symmetrical morphology. Spiral dislocation reduction through mask blocking, with optimal rectangular cross section

Figure 2005522890
ストライプに対する透過電子顕微鏡(TEM)によって観察した。カソードルミネセンス(CL)研究は、ウィンドウ領域と比較して過剰成長領域に対して増加した発光を示した。これらのストライプの横方向過剰成長の程度は、垂直c平面サイドウォールの反体の極性に起因して非対称的であった。逆に、螺旋転位は、同時に存在する曲がったかつ垂直な
Figure 2005522890
Observation was performed by transmission electron microscope (TEM) on the stripe. Cathodoluminescence (CL) studies showed increased luminescence for the overgrown region compared to the window region. The extent of lateral overgrowth of these stripes was asymmetric due to the polarity of the vertical c-plane sidewall reciprocal. Conversely, screw dislocations are curved and vertical that exist simultaneously

Figure 2005522890
面を保有する[0001]ストライプの対称的な過剰成長領域に広がった。
Figure 2005522890
It spreads over a symmetrical overgrowth region of [0001] stripes holding the plane.

ストライプの形態学をJEOL 6300TM場放射走査電子顕微鏡(FE−SEM)を使用し、5kVで操作して観察した。横方向過剰成長の微小構造を、JEOL 2000FXTM透過電子顕微鏡(FE−SEM)を使用し200kVで操作して、断面において研究した。カソードルミネセンス(CL)画像を、室温でJEOL 6300TM FE−SEMに装着されたGatan MonoCLTMを使用して得、そして横方向過剰成長ストライプからのルミネセンスの空間マップを提供した。 Stripe morphology was observed using a JEOL 6300 TM field emission scanning electron microscope (FE-SEM) operating at 5 kV. Lateral overgrowth microstructures were studied in cross-section using a JEOL 2000FX transmission electron microscope (FE-SEM) operating at 200 kV. Cathodoluminescence (CL) images were obtained using a Gatan MonoCL attached to a JEOL 6300 FE-SEM at room temperature and provided a spatial map of luminescence from lateral overgrowth stripes.

横方向に過剰成長したc平面GaNについて示されるように、マスクストライプ開口部の結晶学的配向は、これゆえに、横方向過剰成長の特徴を形成する面を記載する。参考文献14を参照のこと。横方向に過剰成長したa−GaNの配向依存性を調査するために、SiOマスクを「ワゴンホイール」設計を形成する矩形マスク開口部(ウィンドウ)の任意のアレイによりパターン化した。ワゴンホイールパターンを作製するウィンドウは、5μm幅および5°間隔で配向し、その結果、結晶学的マスク配向の範囲は、単一のMOCVD成長を実行することで分析し得た。この実験設計は、線形マスク開口部から横方向に過剰成長したc−平面GaNの初期調査に使用した設計と類似する。参考文献14および15を参照のこと。 As shown for laterally overgrown c-plane GaN, the crystallographic orientation of the mask stripe opening thus describes the plane that forms the lateral overgrowth feature. See reference 14. To investigate the overgrown a-GaN orientation dependence in the horizontal direction, and patterned by any of the array of the rectangular mask opening to form the a SiO 2 mask "wagon wheel" design (window). The windows that make up the wagon wheel pattern were oriented with 5 μm width and 5 ° spacing so that the range of crystallographic mask orientation could be analyzed by performing a single MOCVD growth. This experimental design is similar to the design used for the initial investigation of c-plane GaN overgrown laterally from the linear mask opening. See references 14 and 15.

図2は、a−GaN LEOワゴンホイールパターンの半分を示す平面図操作電子顕微鏡(SEM)画像モンタージュである。この角度は、0°がGaN c−軸[0001]に対応するワゴンホイールパターンへの参照を容易にするように含まれる。(c−GaN表面に対して)a−GaN表面の減少した対称性は、図2に示されるストライプ配向依存性において明らかである。この図は、単一のワゴンホイールパターンの180°図である。主に、この平面図SEM画像は、横方向過剰成長が、全ての可能なストライプ配向に対して生じたことを示す。より近くで検査する際に、3つのストライプ配向は、切子面にされたサイドウォールを伴うことなく均一の形態学を有し:[0001]に対して平行、GaN c−軸から45°離れている、およびGaN c−軸に対して垂直方向(   FIG. 2 is a top view manipulated electron microscope (SEM) image montage showing half of the a-GaN LEO wagon wheel pattern. This angle is included to facilitate reference to a wagon wheel pattern where 0 ° corresponds to the GaN c-axis [0001]. The reduced symmetry of the a-GaN surface (relative to the c-GaN surface) is evident in the stripe orientation dependence shown in FIG. This figure is a 180 ° view of a single wagon wheel pattern. Mainly, this top view SEM image shows that lateral overgrowth has occurred for all possible stripe orientations. When examined closer, the three stripe orientations have a uniform morphology without the faceted sidewalls: parallel to [0001], 45 ° away from the GaN c-axis And perpendicular to the GaN c-axis (

Figure 2005522890
方向に対して平行)。c−軸から45°離れて配向したストライプは、
Figure 2005522890
Parallel to the direction). A stripe oriented 45 ° away from the c-axis is

Figure 2005522890
ストライプとして指標とされる。なぜなら、この結晶学的方向は、c−軸との角度を46.8°にするためである。図2は、[0001]から
Figure 2005522890
It is used as an index as a stripe. This is because this crystallographic direction makes the angle with the c-axis 46.8 °. 2 starts from [0001]

Figure 2005522890
まで変化したストライプ配向のように、ストライプ幅が、最大幅がc−軸から70°離れて整列したストライプに達するまで増加したことを示す。この最大に達した後に、ストライプ幅は、
Figure 2005522890
As the stripe orientation has changed to, the stripe width has increased until the maximum width reaches a stripe aligned 70 ° away from the c-axis. After reaching this maximum, the stripe width is

Figure 2005522890
に達するまで減少した。特定の結晶学的指標付けは、c−GaNと比較して、このフィルム/基板系の減少した対称性に起因して、この説明全体を通して一致して使用されることに留意のこと。
Figure 2005522890
Decrease until reached. Note that specific crystallographic indexing is used consistently throughout this description due to the reduced symmetry of this film / substrate system compared to c-GaN.

a−GaN LEO形態学に対するストライプ配向の効果を明確に観察するために、さらなる斜視図が必要である。図3(a)、(b)および(c)は、それぞれ[0001]、   In order to clearly observe the effect of stripe orientation on a-GaN LEO morphology, further perspective views are needed. 3 (a), (b) and (c) are [0001],

Figure 2005522890
に対して平行に配向した3つのストライプの曲がった図による一連のSEM画像である。ここで、これらの画像は、図2における0°、45°、および90°の配向標識に対応する(そして、55μmに相当するスケールバーを有する)。
Figure 2005522890
FIG. 3 is a series of SEM images with a bent view of three stripes oriented parallel to the. Here, these images correspond to the orientation labels of 0 °, 45 °, and 90 ° in FIG. 2 (and have scale bars corresponding to 55 μm).

使用される成長条件について、[0001]および   For the growth conditions used, [0001] and

Figure 2005522890
のストライプは、曲がったサイドウォールおよび垂直なサイドウォールの種々の組み合わせを有した。特に、対称的な形態学を[0001]ストライプについて観察し、一方、
Figure 2005522890
The stripes had various combinations of curved and vertical sidewalls. In particular, symmetric morphology is observed for [0001] stripes, while

Figure 2005522890
ストライプは、1つの微小切子面垂直
Figure 2005522890
The stripe is perpendicular to one microfacet

Figure 2005522890
サイドウォールおよび1つの曲がった
Figure 2005522890
Side wall and one bent

Figure 2005522890
サイドウォールを有する非対称的な形態学を有した。[0001]ストライプは、
Figure 2005522890
Has an asymmetric morphology with sidewalls. [0001] The stripe

Figure 2005522890
平面の同じ結晶学的ファミリーからの同時に存在する垂直面および曲がった面を有した。逆に、
Figure 2005522890
It had vertical and curved surfaces that existed simultaneously from the same crystallographic family of planes. vice versa,

Figure 2005522890
ストライプは、垂直な(0001)基礎平面サイドウォールを有する矩形断面を有した。全体的に、[0001]配向および
Figure 2005522890
The stripe had a rectangular cross section with a vertical (0001) foundation plane sidewall. Overall, the [0001] orientation and

Figure 2005522890
ストライプ配向は、均一で対称的な形態学を生じた。
Figure 2005522890
The stripe orientation resulted in a uniform and symmetric morphology.

図4(a)、(b)および(c)は、   4 (a), (b) and (c)

Figure 2005522890
ストライプの断面TEM画像であり、ここで、図4(a)は、非対称的な過剰成長領域における螺旋転位減少を示す。図4(a)において破線四角によって規定されるマスク縁部領域の拡大図が、図4(b)
Figure 2005522890
FIG. 4A is a cross-sectional TEM image of a stripe, where FIG. An enlarged view of the mask edge region defined by the broken-line square in FIG. 4A is shown in FIG.

Figure 2005522890
ストライプおよび図4(c)
Figure 2005522890
Stripe and Figure 4 (c)

Figure 2005522890
ストライプについて示される。この転位線は、ウィンドウ領域から[0001]に沿って整列したストライプに対する過剰成長領域へ屈曲し、この間、転位屈曲は、
Figure 2005522890
Shown for stripes. This dislocation line bends from the window region to the overgrowth region for stripes aligned along [0001], during which the dislocation bend is

Figure 2005522890
ストライプについては観察されない。図4(a)、(b)および(c)は、種々の回折条件での明瞭場画像である:図4(a)g=
Figure 2005522890
No stripes are observed. 4 (a), 4 (b) and 4 (c) are clear field images under various diffraction conditions: FIG. 4 (a) g =

Figure 2005522890
、図4(b)g=0006、および図4(c)g=
Figure 2005522890
4 (b) g = 0006 and FIG. 4 (c) g =

Figure 2005522890
。画像化されたストライプは、平行なストライプパターン(および、ワゴンホイールパターンではない)からのもであるが、類似の形態学をマスクストライプパターンに関わらず観察した。
Figure 2005522890
. The imaged stripes were from a parallel stripe pattern (and not a wagon wheel pattern), but similar morphology was observed regardless of the mask stripe pattern.

螺旋転移(threading dislocation:TD)の減少は、図4(a)に断面TEM画像に示されるように、   The decrease in threading dislocation (TD), as shown in the cross-sectional TEM image in FIG.

Figure 2005522890
に沿って整列したLEOストライプについて観察された。転移が、図4(b)に示されるよに、横方向の過剰成長の方向へ屈曲することが観察されないので、マスクブロッキングは、主な転移減少機構である。
Figure 2005522890
Was observed for LEO stripes aligned along. Mask blocking is the main dislocation reduction mechanism because the transition is not observed to bend in the direction of lateral overgrowth, as shown in FIG. 4 (b).

Figure 2005522890
ストライプと異なり、図4(c)は、転移が[0001]に沿って整列するストライプの過剰成長領域へと広がったことを示す。この転移屈曲の正確な起源は、未だ未知であるが、[0001]ストライプ方向について曲げられた面の安定性は、重要な役割を果す。
Figure 2005522890
Unlike the stripe, FIG. 4 (c) shows that the transition has spread to the overgrowth region of the stripe aligned along [0001]. The exact origin of this transition bend is not yet known, but the stability of the surface bent in the [0001] stripe direction plays an important role.

TD減少に加えて、図4(a)は、   In addition to the decrease in TD, FIG.

Figure 2005522890
ストライプに対する横方向過剰成長速度における非対称を明らかにする。極性のc平面サイドウォールの存在は、この非対称を説明する。ストライプ方向に対して垂直な極性軸で、1つのサイドウォールは、+c平面またはGa−面であり、一方、反対のサイドウォールは、−c平面またはN−面である。予期されるように、Ga−面サイドウォールは、成長条件に依存して約10倍N−面サイドウォールよりも速く成長する。rサファイア上のa−GaNの極性は、収束性ビーム電子回折測定を使用して以前に測定されたことが記載される。参考文献13を参照のこと。極性は、
Figure 2005522890
Reveal asymmetry in lateral overgrowth rate for stripes. The presence of polar c-plane sidewalls explains this asymmetry. With a polar axis perpendicular to the stripe direction, one sidewall is the + c plane or Ga-plane, while the opposite sidewall is the -c plane or N-plane. As expected, Ga-plane sidewalls grow about 10 times faster than N-plane sidewalls depending on growth conditions. It is described that the polarity of a-GaN on r-sapphire was previously measured using convergent beam electron diffraction measurements. See reference 13. Polarity is

Figure 2005522890
ストライプの横方向過剰成長にこのような有意な効果を有するので、図2および3において観察される非対称な形態学が、構造の低い対称性に関連し得る。
Figure 2005522890
Since having such a significant effect on the lateral overgrowth of the stripes, the asymmetric morphology observed in FIGS. 2 and 3 may be related to the low symmetry of the structure.

極性GaNに対する横方向過剰成長の非対称性のさらなる証拠は、[0001]、   Further evidence of lateral overgrowth asymmetry for polar GaN is [0001],

Figure 2005522890
および
Figure 2005522890
and

Figure 2005522890
のLEOストライプの平面多色CL画像によって提供された。図5(a)、(b)および(c)は、[0001]、
Figure 2005522890
Provided by a planar multicolor CL image of the LEO stripes. 5 (a), (b) and (c) are [0001],

Figure 2005522890
および
Figure 2005522890
and

Figure 2005522890
に対して平行に配向されたストライプの平面多色CL画像であり、一方、図5(d)は、図5(a)、(b)および(c)に対して結晶学的方向を図示する。CL画像は、図3(a)、(b)および(c)におけるSEMによって画像化されたストライプに直接的に対応して、図5(a)〜(c)に示した(そして、55μmを示すスケールバーを有する)。各ストライプ方向内での斑点領域は、SiOマスクにおけるウィンドウを規定し、TDは、LEOストライプの上面に妨げられずに延びる。このCL特徴は、極性GaN LEOストライプに観察された。参考文献16〜18を参照のこと。斑点領域は、[0001]ストライプの全体の幅を横切って伸び、これは、このストライプの方向に対して横方向過剰成長領域への転移屈曲のTEM観察に対応する。図5(a)〜(c)に示される[0001]ストライプは、わずかな横方向過剰成長を有するにもかかわらず、同様の条件下で成長した幅広いストライプのCL測定は、図4(c)において観察される転移屈曲を確立した。
Figure 2005522890
FIG. 5 (d) illustrates the crystallographic directions for FIGS. 5 (a), (b) and (c). . CL images are shown in FIGS. 5 (a)-(c), directly corresponding to the stripes imaged by SEM in FIGS. 3 (a), (b) and (c) (and 55 μm). With scale bar shown). The speckled area within each stripe direction defines a window in the SiO 2 mask and the TD extends unimpeded by the top surface of the LEO stripe. This CL feature was observed in polar GaN LEO stripes. See references 16-18. The speckled region extends across the entire width of the [0001] stripe, which corresponds to a TEM observation of the transition bend to the lateral overgrowth region with respect to the direction of the stripe. Although the [0001] stripes shown in FIGS. 5 (a)-(c) have slight lateral overgrowth, CL measurements of a wide stripe grown under similar conditions are shown in FIG. 4 (c). Established the metastasis bend observed in.

Figure 2005522890
ストライプの過剰成長領域からの均一なルミネセンスは、これらの領域が相対的にTDを含まないことを確認する。
Figure 2005522890
The uniform luminescence from the overgrown areas of the stripe confirms that these areas are relatively free of TD.

Figure 2005522890
ストライプの横方向過剰成長速度に対する極性の効果がまた、明らかに観察される。
Figure 2005522890
The effect of polarity on the lateral overgrowth rate of the stripe is also clearly observed.

要約すると、非極性   In summary, nonpolar

Figure 2005522890
a平面GaNフィルムのLEOは、証明され、そしてTD密度の減少が達成された。低対称性のa−GaN表面は、結晶学的ストライプ整列に依存したLEOストライプ形態学を示した。2つの主な方向([0001]および
Figure 2005522890
The a-plane GaN film LEO was proven and a reduction in TD density was achieved. The low symmetric a-GaN surface showed LEO stripe morphology depending on crystallographic stripe alignment. Two main directions ([0001] and

Figure 2005522890
)は、均一な対称性ストライプ形態学を有することが観察され;
Figure 2005522890
) Is observed to have a uniform symmetric stripe morphology;

Figure 2005522890
ストライプは、垂直なサイドウォールを有し、一方、[0001]ストライプは、同時に存在する垂直なサイドウォールおよび曲がったサイドウォールを有した。転移減少は、
Figure 2005522890
The stripes had vertical sidewalls, while the [0001] stripes had coexisting vertical and bent sidewalls. Metastasis reduction is

Figure 2005522890
ストライプ中で達成され、一方、転移は、[0001]ストライプの横方向過剰成長領域へと広がった。[0001]と
Figure 2005522890
While achieved in the stripes, the transition spread into the lateral overgrowth region of the [0001] stripes. [0001] and

Figure 2005522890
との間の方向(非対称性のストライプ形態学)が、観察された。非極性の横方向成長方向を有する[0001]ストライプを除いて、全てのストライプは、非対称性の横方向成長速度を示した。継続中の研究は、非極性GaN LEOの独特な構造的特性の調査を続ける。
Figure 2005522890
A direction between (asymmetric stripe morphology) was observed. All stripes exhibited asymmetric lateral growth rates, with the exception of [0001] stripes having a non-polar lateral growth direction. Ongoing research continues to explore the unique structural properties of nonpolar GaN LEO.

(参考文献)
以下の参考文献が、本明細書中に参考として援用される:
(References)
The following references are hereby incorporated by reference:

Figure 2005522890
Figure 2005522890

Figure 2005522890
Figure 2005522890

Figure 2005522890
(結論)
これは、発明の好ましい実施形態の説明を結論付ける。以下は、本発明を達成するための、いくつかの代替の実施形態を記載する。
Figure 2005522890
(Conclusion)
This concludes the description of the preferred embodiment of the invention. The following describes some alternative embodiments for accomplishing the present invention.

横方向過剰成長技術の重大な局面は、誘電性のマスク特異性およびMOCVD再成長条件である。種々の誘電性材料、堆積技術およびパターン化方法を使用して、横方向過剰成長に有効なマスクを組みたて得る。さらに、マスクパターンの方向、設計および寸法を改変することは、後の横方向過剰成長の特性を最終的に決定する。転移減少を達成し、そしてマスクを完全に過剰成長するために横方向過剰成長の十分な制御は、必要であり、その結果、平面フィルムは再形成される。横方向過剰成長の特定の詳細(横方向〜垂直の成長速度比およびサイドウォール面の安定性を含む)は、MOCVD再成長条件によって制御される。MOCVD成長条件は、反応器に依存性であり、そして特定の反応器設計の間で変動し得る。成長温度、成長圧力、V/III比、前駆体フロー、および原料のような条件における基礎的なバリエーションが、本発明の可能な改変である。   Critical aspects of lateral overgrowth technology are dielectric mask specificity and MOCVD regrowth conditions. A variety of dielectric materials, deposition techniques and patterning methods can be used to assemble a mask that is effective for lateral overgrowth. Furthermore, altering the direction, design and dimensions of the mask pattern ultimately determines the characteristics of subsequent lateral overgrowth. Sufficient control of lateral overgrowth is necessary to achieve transfer reduction and complete overgrowth of the mask, so that the planar film is reformed. Specific details of lateral overgrowth (including lateral to vertical growth rate ratio and sidewall surface stability) are controlled by MOCVD regrowth conditions. MOCVD growth conditions are reactor dependent and can vary between specific reactor designs. Fundamental variations in conditions such as growth temperature, growth pressure, V / III ratio, precursor flow, and feed are possible modifications of the invention.

さらに、転移減少はまた、代替の過剰成長方法を使用して達成され得る。例えば、片持ちばりエピタキシー、二重横方向エピタキシャル過剰成長(double lateral epitaxial overgrowth:二重LEO)およびSiNナノマスキング技術は、横方向エピタキシャル過剰成長に対する代替として使用され得る。   Furthermore, metastasis reduction can also be achieved using alternative overgrowth methods. For example, cantilever epitaxy, double lateral epitaxial overgrowth (Double LEO) and SiN nanomasking techniques can be used as an alternative to lateral epitaxial overgrowth.

さらに、非極性のa平面GaN薄膜が、本明細書中に記載されるが、同じ技術が、非極性のm平面GaN薄膜に対して適用可能である。さらに、非極性のInN薄膜、AlN薄膜、およびAlInGaN薄膜が、GaN薄膜の代わりに使用され得る。   Furthermore, although non-polar a-plane GaN thin films are described herein, the same technique is applicable to non-polar m-plane GaN thin films. Furthermore, non-polar InN thin films, AlN thin films, and AlInGaN thin films can be used instead of GaN thin films.

最後に、サファイア基板以外の基板が、非極性GaN成長のために使用され得る。これらの基板としては、炭化ケイ素、窒化ガリウム、ケイ素、酸化亜鉛、窒化ホウ素、アルミン酸リチウム、ニオブ酸リチウム、ゲルマニウム、窒化アルミニウム、および没食子酸リチウムが挙げられる。   Finally, substrates other than sapphire substrates can be used for nonpolar GaN growth. These substrates include silicon carbide, gallium nitride, silicon, zinc oxide, boron nitride, lithium aluminate, lithium niobate, germanium, aluminum nitride, and lithium gallate.

要約すると、本発明は、螺旋転移減少を生じる非極性   In summary, the present invention is non-polar, resulting in reduced helical transitions.

Figure 2005522890
a平面GaNシード層の横方向エピタキシャル過剰成長を記載する。第1に、薄いパターン化した誘電性マスクが、シード層に適用される。第2に、選択的なエピタキシャル再成長が行われ、パターン化マスクの横方向過剰成長が達成される。再成長の際に、GaNフィルムは、垂直な成長方向に対して垂直な方向においてマスクを横方向過剰成長する前に、最初に誘電性マスクの開口部を通って垂直に成長する。螺旋転移は、(1)成長フィルムに対して垂直な転移の広がりをブロックするマスクおよび(2)垂直から横方向までの成長の移行による転移の屈曲によって過剰成長領域を減少する。
Figure 2005522890
A lateral epitaxial overgrowth of the a-plane GaN seed layer is described. First, a thin patterned dielectric mask is applied to the seed layer. Second, selective epitaxial regrowth is performed to achieve lateral overgrowth of the patterned mask. During regrowth, the GaN film first grows vertically through the openings in the dielectric mask before lateral overgrowth of the mask in a direction perpendicular to the vertical growth direction. The spiral transition reduces the overgrowth region by (1) a mask that blocks the spread of the transition perpendicular to the growth film and (2) the bending of the transition due to the growth transition from vertical to lateral.

本発明の1つ以上の実施形態の上記説明は、例示および説明の目的で提供された。排他的であることも、本発明を開示された正確な形態に限定することも、意図されない。多くの改変およびバリエーションが、上記教示を考慮して、可能である。本発明の範囲は、この詳細な説明によって限定されるのではなく、本明細書に添付された特許請求の範囲によって限定されることが、意図される。   The foregoing description of one or more embodiments of the invention has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in view of the above teachings. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.

図1は、本発明の好ましい実施形態に従う、平面ヘテロエピタキシャル「シード」層の横方向過剰成長によるa−GaNにおけるスレッディング転移密度を低減するための工程を示すフローチャートである。 図2は、a−GaN LEOワゴンホイールパターンの半分を示す平面走査電子顕微鏡(SEM)画像写真である。 図3(a)、(b)および(c)は、それぞれ、

Figure 2005522890
に対して平行に配向された3つのストライプの傾けられた図を含む一連のSEM画像である。
図4(a)、(b)および(c)は、
Figure 2005522890
ストライプの断面TEM画像である。
図5(a)、(b)および(c)は、
Figure 2005522890
に対して平行に配向されたストライプの平面多色CL画像であり、一方、図5(d)は、図5(a)、(b)および(c)の結晶学的配向を示す。 FIG. 1 is a flow chart illustrating steps for reducing threading transition density in a-GaN due to lateral overgrowth of planar heteroepitaxial “seed” layers, in accordance with a preferred embodiment of the present invention. FIG. 2 is a scanning electron microscope (SEM) image photograph showing half of the a-GaN LEO wagon wheel pattern. 3 (a), (b) and (c) are respectively shown in FIG.
Figure 2005522890
Is a series of SEM images including a tilted view of three stripes oriented parallel to.
4 (a), (b) and (c)
Figure 2005522890
It is a cross-sectional TEM image of a stripe.
5 (a), (b) and (c)
Figure 2005522890
FIG. 5 (d) shows the crystallographic orientation of FIGS. 5 (a), (b) and (c).

Claims (12)

非極性のa平面窒化ガリウム薄膜において、螺旋転移密度を減少する方法であって、以下の工程
(a)非極性a平面窒化ガリウム薄膜上に誘電性再成長マスク堆積する工程;
(b)堆積された該マスクをパターン化する工程;および
(c)選択的な再成長を行い、該パターン化マスクに基づく過剰成長を達成する工程、
を包含する、方法。
A method for reducing the helical transition density in a nonpolar a-plane gallium nitride thin film, comprising the following steps: (a) depositing a dielectric regrowth mask on the nonpolar a-plane gallium nitride thin film;
(B) patterning the deposited mask; and (c) performing selective regrowth to achieve overgrowth based on the patterned mask;
Including the method.
前記非極性a平面窒化ガリウム薄膜がシード層を含む、請求項1に記載の方法。 The method of claim 1, wherein the non-polar a-plane gallium nitride thin film includes a seed layer. 前記堆積する工程が、プラズマ増強化学蒸着(PECVD)によって、前記非極性a平面窒化ガリウム薄膜上に誘電性再成長マスクを堆積する工程を包含する、請求項1に記載の方法。 The method of claim 1, wherein the depositing comprises depositing a dielectric regrowth mask on the non-polar a-plane gallium nitride thin film by plasma enhanced chemical vapor deposition (PECVD). 前記堆積されたマスクが、種々の結晶学的方向に方向付けられた長く狭いストライプの開口部でパターン化される、請求項1に記載の方法。 The method of claim 1, wherein the deposited mask is patterned with openings of long narrow stripes oriented in various crystallographic directions. 前記過剰成長が、横方向過剰成長した、ストライプを形成した窒化ガリウムを含む、請求項1に記載の方法。 The method of claim 1, wherein the overgrowth comprises laterally overgrown striped gallium nitride. 前記行う工程は、前記窒化ガリウムの選択的な再成長を行い、パターン化マスクに基づく過剰成長を達成する工程を包含し、そして前記窒化ガリウムが、垂直な成長方向に対して垂直な方向でマスク中で横方向過剰成長する前に、該マスク中の開口部を通って垂直に初めに成長する、請求項1に記載の方法。 The step of performing includes selective regrowth of the gallium nitride to achieve overgrowth based on a patterned mask, and the gallium nitride mask in a direction perpendicular to the vertical growth direction. The method of claim 1, wherein the first growth is vertical through the openings in the mask before lateral overgrowth therein. 前記横方向過剰成長領域が、前記マスク中の開口部を通って垂直に成長する領域と比較して、減少した転移密度を含む、請求項6に記載の方法。 The method of claim 6, wherein the lateral overgrowth region includes a reduced dislocation density as compared to a region that grows vertically through an opening in the mask. 前記転移が、成長フィルムへの垂直方向の転移の広がりをブッロクするマスクによって過剰成長領域が減少される、請求項7に記載の方法。 8. The method of claim 7, wherein the transition is reduced by a mask that blocks the spread of the vertical transition to the growth film. 前記転移が、垂直な成長から横方向成長までの移行を介して転移の屈曲によって過剰成長領域が減少される、請求項7に記載の方法。 The method of claim 7, wherein the transition is reduced in overgrowth by bending of the transition through a transition from vertical growth to lateral growth. 前記過剰成長が、横方向エピタキシャルな過剰成長を使用して行われる、請求項1に記載の方法。 The method of claim 1, wherein the overgrowth is performed using lateral epitaxial overgrowth. 前記過剰成長が、以下:片持ちばりエピタキシー、二重横方向エピタキシャル過剰成長(double lateral epitaxial overgrowth:二重LEO)およびSiNナノマスキングからなる群から選択される方法を使用して行われる、請求項1に記載の方法。 The overgrowth is performed using a method selected from the group consisting of: cantilever epitaxy, double lateral epitaxial overgrowth (Double LEO) and SiN nanomasking. The method according to 1. 請求項1に記載の方法を使用して作製されたデバイス。 A device made using the method of claim 1.
JP2003586403A 2002-04-15 2003-04-15 Reduction of dislocations in nonpolar gallium nitride thin films. Expired - Lifetime JP5254521B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37290902P 2002-04-15 2002-04-15
US60/372,909 2002-04-15
PCT/US2003/011177 WO2003089696A1 (en) 2002-04-15 2003-04-15 Dislocation reduction in non-polar gallium nitride thin films

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009181100A Division JP2009295994A (en) 2002-04-15 2009-08-03 Dislocation reduction in non-polar gallium nitride thin film

Publications (3)

Publication Number Publication Date
JP2005522890A true JP2005522890A (en) 2005-07-28
JP2005522890A5 JP2005522890A5 (en) 2009-09-17
JP5254521B2 JP5254521B2 (en) 2013-08-07

Family

ID=29250928

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2003586403A Expired - Lifetime JP5254521B2 (en) 2002-04-15 2003-04-15 Reduction of dislocations in nonpolar gallium nitride thin films.
JP2003586401A Pending JP2005522888A (en) 2002-04-15 2003-04-15 Nonpolar (Al, B, In, Ga) N quantum wells and heterostructure materials and devices
JP2003586402A Expired - Lifetime JP5046475B2 (en) 2002-04-15 2003-04-15 Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
JP2009181101A Pending JP2009260386A (en) 2002-04-15 2009-08-03 NON-POLAR a-PLANE GALLIUM NITRIDE THIN FILM GROWN BY METAL ORGANIC CHEMICAL VAPOR DEPOSITION
JP2009181100A Withdrawn JP2009295994A (en) 2002-04-15 2009-08-03 Dislocation reduction in non-polar gallium nitride thin film
JP2010044770A Withdrawn JP2010135845A (en) 2002-04-15 2010-03-01 NON-POLAR (A1, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2010250340A Withdrawn JP2011040789A (en) 2002-04-15 2010-11-08 Nonpolar (al, b, in, ga) n quantum well, heterostructure material, and device
JP2013213604A Pending JP2014060408A (en) 2002-04-15 2013-10-11 Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
JP2014133816A Withdrawn JP2014195125A (en) 2002-04-15 2014-06-30 NON-POLAR (Al, B, In, Ga) N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2014224170A Withdrawn JP2015061818A (en) 2002-04-15 2014-11-04 Dislocation reduction in non-polar gallium nitride thin film
JP2016148176A Withdrawn JP2017011278A (en) 2002-04-15 2016-07-28 NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2017249085A Pending JP2018064122A (en) 2002-04-15 2017-12-26 NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE

Family Applications After (11)

Application Number Title Priority Date Filing Date
JP2003586401A Pending JP2005522888A (en) 2002-04-15 2003-04-15 Nonpolar (Al, B, In, Ga) N quantum wells and heterostructure materials and devices
JP2003586402A Expired - Lifetime JP5046475B2 (en) 2002-04-15 2003-04-15 Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
JP2009181101A Pending JP2009260386A (en) 2002-04-15 2009-08-03 NON-POLAR a-PLANE GALLIUM NITRIDE THIN FILM GROWN BY METAL ORGANIC CHEMICAL VAPOR DEPOSITION
JP2009181100A Withdrawn JP2009295994A (en) 2002-04-15 2009-08-03 Dislocation reduction in non-polar gallium nitride thin film
JP2010044770A Withdrawn JP2010135845A (en) 2002-04-15 2010-03-01 NON-POLAR (A1, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2010250340A Withdrawn JP2011040789A (en) 2002-04-15 2010-11-08 Nonpolar (al, b, in, ga) n quantum well, heterostructure material, and device
JP2013213604A Pending JP2014060408A (en) 2002-04-15 2013-10-11 Non-polar a-plane gallium nitride thin films grown by metalorganic chemical vapor deposition
JP2014133816A Withdrawn JP2014195125A (en) 2002-04-15 2014-06-30 NON-POLAR (Al, B, In, Ga) N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2014224170A Withdrawn JP2015061818A (en) 2002-04-15 2014-11-04 Dislocation reduction in non-polar gallium nitride thin film
JP2016148176A Withdrawn JP2017011278A (en) 2002-04-15 2016-07-28 NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
JP2017249085A Pending JP2018064122A (en) 2002-04-15 2017-12-26 NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE

Country Status (6)

Country Link
US (7) US20030198837A1 (en)
EP (6) EP2316989A3 (en)
JP (12) JP5254521B2 (en)
KR (7) KR101288489B1 (en)
AU (3) AU2003223563A1 (en)
WO (3) WO2003089695A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179857A (en) * 2004-11-29 2006-07-06 Sony Corp Forming method of grounding layer consisting of garium nitride-based compound semiconductor, and manufacturing method of garium nitride-based semiconductor light emitting device
JP2009018972A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2009018971A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2010222174A (en) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor structure
WO2016136547A1 (en) * 2015-02-23 2016-09-01 三菱化学株式会社 C-plane gan substrate

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361341B2 (en) * 2001-05-25 2008-04-22 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to trail receptors
JP4932121B2 (en) * 2002-03-26 2012-05-16 日本電気株式会社 Method for manufacturing group III-V nitride semiconductor substrate
US8809867B2 (en) * 2002-04-15 2014-08-19 The Regents Of The University Of California Dislocation reduction in non-polar III-nitride thin films
AU2003223563A1 (en) * 2002-04-15 2003-11-03 The Regents Of The University Of California NON-POLAR (A1,B,In,Ga) QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
WO2004061909A1 (en) 2002-12-16 2004-07-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US6900067B2 (en) * 2002-12-11 2005-05-31 Lumileds Lighting U.S., Llc Growth of III-nitride films on mismatched substrates without conventional low temperature nucleation layers
US7427555B2 (en) * 2002-12-16 2008-09-23 The Regents Of The University Of California Growth of planar, non-polar gallium nitride by hydride vapor phase epitaxy
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7033858B2 (en) * 2003-03-18 2006-04-25 Crystal Photonics, Incorporated Method for making Group III nitride devices and devices produced thereby
US20060276043A1 (en) * 2003-03-21 2006-12-07 Johnson Mark A L Method and systems for single- or multi-period edge definition lithography
CN1894771B (en) * 2003-04-15 2012-07-04 加利福尼亚大学董事会 Non-polarity (Al, B, Inc, Ga) N Quantum pit
US7323256B2 (en) * 2003-11-13 2008-01-29 Cree, Inc. Large area, uniformly low dislocation density GaN substrate and process for making the same
US7198970B2 (en) * 2004-01-23 2007-04-03 The United States Of America As Represented By The Secretary Of The Navy Technique for perfecting the active regions of wide bandgap semiconductor nitride devices
US7115908B2 (en) * 2004-01-30 2006-10-03 Philips Lumileds Lighting Company, Llc III-nitride light emitting device with reduced polarization fields
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
US7408201B2 (en) * 2004-03-19 2008-08-05 Philips Lumileds Lighting Company, Llc Polarized semiconductor light emitting device
KR100718188B1 (en) * 2004-05-07 2007-05-15 삼성코닝 주식회사 Non-polar single crystalline a-plane nitride semiconductor wafer and preparation thereof
KR20070013320A (en) * 2004-05-10 2007-01-30 더 리전트 오브 더 유니버시티 오브 캘리포니아 Fabrication of nonpolar indium gallium nitride thin films, heterostructures, and devices by metalorganic chemical vapor deposition
US7504274B2 (en) * 2004-05-10 2009-03-17 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
US7956360B2 (en) * 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
US9011598B2 (en) * 2004-06-03 2015-04-21 Soitec Method for making a composite substrate and composite substrate according to the method
US20080163814A1 (en) * 2006-12-12 2008-07-10 The Regents Of The University Of California CRYSTAL GROWTH OF M-PLANE AND SEMIPOLAR PLANES OF (Al, In, Ga, B)N ON VARIOUS SUBSTRATES
US8227820B2 (en) * 2005-02-09 2012-07-24 The Regents Of The University Of California Semiconductor light-emitting device
US20060073621A1 (en) * 2004-10-01 2006-04-06 Palo Alto Research Center Incorporated Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer
TWI453813B (en) * 2005-03-10 2014-09-21 Univ California Technique for the growth of planar semi-polar gallium nitride
KR100593936B1 (en) * 2005-03-25 2006-06-30 삼성전기주식회사 Method of growing non-polar a-plane gallium nitride
EP1885918B1 (en) * 2005-05-11 2017-01-25 North Carolina State University Methods of preparing controlled polarity group iii-nitride films
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US20070267722A1 (en) * 2006-05-17 2007-11-22 Amberwave Systems Corporation Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
EP2595177A3 (en) * 2005-05-17 2013-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication
JP2006324465A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
TWI377602B (en) * 2005-05-31 2012-11-21 Japan Science & Tech Agency Growth of planar non-polar {1-100} m-plane gallium nitride with metalorganic chemical vapor deposition (mocvd)
TW200703463A (en) * 2005-05-31 2007-01-16 Univ California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
JP5743127B2 (en) * 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method and apparatus for growth and fabrication of semipolar (Ga, Al, In, B) N thin films, heterostructures and devices
WO2007009035A2 (en) * 2005-07-13 2007-01-18 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
KR101329388B1 (en) * 2005-07-26 2013-11-14 앰버웨이브 시스템즈 코포레이션 Solutions for integrated circuit integration of alternative active area materials
US7638842B2 (en) * 2005-09-07 2009-12-29 Amberwave Systems Corporation Lattice-mismatched semiconductor structures on insulators
US20070054467A1 (en) * 2005-09-07 2007-03-08 Amberwave Systems Corporation Methods for integrating lattice-mismatched semiconductor structure on insulators
JP2007080855A (en) * 2005-09-09 2007-03-29 Matsushita Electric Ind Co Ltd Field effect transistor
CN100344006C (en) * 2005-10-13 2007-10-17 南京大学 Method for developing structure of LED device of InGaN/GaN quantum trap in M faces
EP1788619A3 (en) * 2005-11-18 2009-09-09 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
JP4807081B2 (en) * 2006-01-16 2011-11-02 ソニー株式会社 Method for forming underlayer made of GaN-based compound semiconductor, and method for manufacturing GaN-based semiconductor light-emitting device
US7691658B2 (en) 2006-01-20 2010-04-06 The Regents Of The University Of California Method for improved growth of semipolar (Al,In,Ga,B)N
US20120161287A1 (en) * 2006-01-20 2012-06-28 Japan Science And Technology Agency METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
RU2315135C2 (en) 2006-02-06 2008-01-20 Владимир Семенович Абрамов Method of growing nonpolar epitaxial heterostructures based on group iii element nitrides
EP2009148A4 (en) * 2006-03-20 2011-05-25 Kanagawa Kagaku Gijutsu Akad Group iii-v nitride layer and method for producing the same
JP4888857B2 (en) * 2006-03-20 2012-02-29 国立大学法人徳島大学 Group III nitride semiconductor thin film and group III nitride semiconductor light emitting device
WO2007112066A2 (en) 2006-03-24 2007-10-04 Amberwave Systems Corporation Lattice-mismatched semiconductor structures and related methods for device fabrication
KR100809209B1 (en) * 2006-04-25 2008-02-29 삼성전기주식회사 METHOD OF GROWING NON-POLAR m-PLANE NITRIDE SEMICONDUCTOR
KR20090018106A (en) 2006-05-09 2009-02-19 더 리전츠 오브 더 유니버시티 오브 캘리포니아 In-situ defect reduction techniques for nonpolar and semipolar (al, ga, in)n
CN100373548C (en) * 2006-06-13 2008-03-05 中国科学院上海光学精密机械研究所 Method for generating nopolar GaN thick film on lithium aluminate chip
CN100403567C (en) * 2006-07-26 2008-07-16 武汉华灿光电有限公司 Method for avoiding or reducing V-defect of blue-green light LED material
US8173551B2 (en) 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US20080070355A1 (en) * 2006-09-18 2008-03-20 Amberwave Systems Corporation Aspect ratio trapping for mixed signal applications
US7799592B2 (en) * 2006-09-27 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Tri-gate field-effect transistors formed by aspect ratio trapping
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
US20080187018A1 (en) * 2006-10-19 2008-08-07 Amberwave Systems Corporation Distributed feedback lasers formed via aspect ratio trapping
US7589360B2 (en) * 2006-11-08 2009-09-15 General Electric Company Group III nitride semiconductor devices and methods of making
ATE541074T1 (en) 2006-11-14 2012-01-15 Univ Osaka METHOD FOR PRODUCING A GAN CRYSTAL AND DEVICE FOR PRODUCING A GAN CRYSTAL
EP2087507A4 (en) * 2006-11-15 2010-07-07 Univ California Method for heteroepitaxial growth of high-quality n-face gan, inn, and ain and their alloys by metal organic chemical vapor deposition
US8193020B2 (en) * 2006-11-15 2012-06-05 The Regents Of The University Of California Method for heteroepitaxial growth of high-quality N-face GaN, InN, and AlN and their alloys by metal organic chemical vapor deposition
JP2010512661A (en) * 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Growth of high performance nonpolar group III nitride optical devices by metal organic chemical vapor deposition (MOCVD)
KR100843474B1 (en) 2006-12-21 2008-07-03 삼성전기주식회사 Growth method of iii group nitride single crystal and iii group nitride crystal produced by using the same
GB0702560D0 (en) * 2007-02-09 2007-03-21 Univ Bath Production of Semiconductor devices
WO2008100502A1 (en) * 2007-02-12 2008-08-21 The Regents Of The University Of California Al(x)ga(1-x)n-cladding-free nonpolar iii-nitride based laser diodes and light emitting diodes
WO2008124154A2 (en) 2007-04-09 2008-10-16 Amberwave Systems Corporation Photovoltaics on silicon
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
KR101488545B1 (en) * 2007-05-17 2015-02-02 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing semiconductor crystal of nitride of element belonging to group-iii, semiconductor substrate formed of nitride of element belonging to group-iii, and semiconductor light emission device
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
JP4825747B2 (en) * 2007-07-13 2011-11-30 日本碍子株式会社 Method for producing nonpolar plane group III nitride single crystal
US8574968B2 (en) * 2007-07-26 2013-11-05 Soitec Epitaxial methods and templates grown by the methods
JP2010536181A (en) * 2007-08-08 2010-11-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Planar nonpolar M-plane III-nitride thin films grown on miscut substrates
JP2010536182A (en) * 2007-08-08 2010-11-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar III-nitride light emitting diodes with long wavelength radiation
JP4869179B2 (en) * 2007-08-10 2012-02-08 三洋電機株式会社 Semiconductor substrate and manufacturing method thereof
JP2010538495A (en) 2007-09-07 2010-12-09 アンバーウェーブ・システムズ・コーポレーション Multi-junction solar cell
JP2010539732A (en) * 2007-09-19 2010-12-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for increasing the area of nonpolar and semipolar nitride substrates
US7670933B1 (en) 2007-10-03 2010-03-02 Sandia Corporation Nanowire-templated lateral epitaxial growth of non-polar group III nitrides
KR100998008B1 (en) * 2007-12-17 2010-12-03 삼성엘이디 주식회사 Fabrication method of substrate for forming device and fabrication method of nirtride semiconductor laser diode
KR101510377B1 (en) * 2008-01-21 2015-04-06 엘지이노텍 주식회사 Method for manufacturing nitride semiconductor and light emitting device having vertical structure
WO2009097611A1 (en) 2008-02-01 2009-08-06 The Regents Of The University Of California Enhancement of optical polarization of nitride light-emitting diodes by wafer off-axis cut
KR20100134577A (en) * 2008-03-03 2010-12-23 미쓰비시 가가꾸 가부시키가이샤 Nitride semiconductor crystal and manufacturing method thereof
US8178896B2 (en) * 2008-03-05 2012-05-15 Panasonic Corporation Light emitting element
US9048169B2 (en) * 2008-05-23 2015-06-02 Soitec Formation of substantially pit free indium gallium nitride
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
CN100565804C (en) * 2008-07-04 2009-12-02 中国科学院上海微系统与信息技术研究所 SiO in the HVPE method growing gallium nitride film 2Nanometer mask and method
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8673074B2 (en) 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
US7915178B2 (en) * 2008-07-30 2011-03-29 North Carolina State University Passivation of aluminum nitride substrates
WO2010023516A1 (en) * 2008-08-28 2010-03-04 S.O.I.Tec Silicon On Insulator Technologies Uv absorption based monitor and control of chloride gas stream
US20100072515A1 (en) 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
KR101216541B1 (en) 2008-09-19 2012-12-31 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Formation of devices by epitaxial layer overgrowth
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
KR100988478B1 (en) 2008-11-12 2010-10-18 전자부품연구원 Fabricating method for the non or semi polar III-nitride epi layers and the same
TWI380368B (en) * 2009-02-04 2012-12-21 Univ Nat Chiao Tung Manufacture method of a multilayer structure having non-polar a-plane {11-20} iii-nitride layer
TWI398908B (en) * 2009-02-27 2013-06-11 Lextar Electronics Corp Method for forming semiconductor layer
EP2415083B1 (en) 2009-04-02 2017-06-21 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US20120021549A1 (en) * 2009-04-03 2012-01-26 Panasonic Corporation Method for growing crystals of nitride semiconductor, and process for manufacture of semiconductor device
TWI362772B (en) * 2009-05-07 2012-04-21 Lextar Electronics Corp Fabrication method of light emitting diode
US20100309943A1 (en) * 2009-06-05 2010-12-09 The Regents Of The University Of California LONG WAVELENGTH NONPOLAR AND SEMIPOLAR (Al,Ga,In)N BASED LASER DIODES
US8629065B2 (en) * 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
KR101135950B1 (en) * 2009-11-23 2012-04-18 전자부품연구원 A semiconductor and a fabrication method thereof
WO2011115950A1 (en) * 2010-03-15 2011-09-22 The Regents Of The University Of California Ammonothermally grown group-iii nitride crystal
TWI414087B (en) * 2010-08-16 2013-11-01 Univ Nat Sun Yat Sen Method for growing a nonpolar gan layer on a sapphire substrate and a led structure thereof
CN102146585A (en) * 2011-01-04 2011-08-10 武汉华炬光电有限公司 Non-polar surface GaN epitaxial wafer and preparation method of non-polar surface GaN epitaxial wafer
US20130025531A1 (en) * 2011-07-25 2013-01-31 Capano Michael A Methods for modifying crystallographic symmetry on the surface of a silicon wafer
EP2701183A4 (en) 2011-08-09 2014-07-30 Panasonic Corp Structure for growth of nitride semiconductor layer, stacked structure, nitride-based semiconductor element, light source, and manufacturing method for same
JP5416754B2 (en) * 2011-11-15 2014-02-12 フューチャー ライト リミテッド ライアビリティ カンパニー Semiconductor substrate and manufacturing method thereof
US10435812B2 (en) 2012-02-17 2019-10-08 Yale University Heterogeneous material integration through guided lateral growth
US20150255547A1 (en) * 2012-03-29 2015-09-10 Agency For Science, Technology And Research III-Nitride High Electron Mobility Transistor Structures and Methods for Fabrication of Same
WO2013158645A1 (en) 2012-04-16 2013-10-24 Sensor Electronic Technology, Inc. Non-uniform multiple quantum well structure
WO2014054284A1 (en) 2012-10-05 2014-04-10 パナソニック株式会社 Nitride semiconductor structure, laminate structure, and nitride semiconductor light-emitting element
KR101998339B1 (en) * 2012-11-16 2019-07-09 삼성전자주식회사 Method for controlling growth crystallographic plane of metal oxide semiconductor and metal oxide semiconductor structure having controlled growth crystallographic plane
CN103178171B (en) * 2013-02-28 2015-08-05 溧阳市宏达电机有限公司 A kind of high brightness LED
CN103215647A (en) * 2013-03-27 2013-07-24 上海萃智科技发展有限公司 Non-polar a-side GaN film growth method
KR102140789B1 (en) 2014-02-17 2020-08-03 삼성전자주식회사 Evaluating apparatus for quality of crystal, and Apparatus and method for manufacturing semiconductor light emitting device which include the same
KR101591677B1 (en) 2014-09-26 2016-02-18 광주과학기술원 Method for growing nitride-based semiconductor with high quality
US9668573B2 (en) 2014-11-05 2017-06-06 Larry A. Salani Wine bottle rack-building kit, packaging, and method
US11322652B2 (en) * 2015-12-14 2022-05-03 Ostendo Technologies, Inc. Methods for producing composite GaN nanocolumns and light emitting structures made from the methods
US9608160B1 (en) 2016-02-05 2017-03-28 International Business Machines Corporation Polarization free gallium nitride-based photonic devices on nanopatterned silicon
TWI583831B (en) * 2016-05-31 2017-05-21 國立中山大學 Fabrication of m-plane gallium nitride
JP2019531245A (en) 2016-08-12 2019-10-31 イェール ユニバーシティーYale University Semipolar and nonpolar GaN without stacking faults grown on heterogeneous substrates by eliminating nitrogen polar facets during growth
WO2018217973A1 (en) * 2017-05-26 2018-11-29 Yale University Nitrogen-polar and semipolar gan layers and devices formed on sapphire with a high-temperature a1n buffer
CN109425442B (en) * 2017-08-22 2020-07-24 北京自动化控制设备研究所 Simple calibration method for internal temperature of atomic gas chamber
US10892159B2 (en) 2017-11-20 2021-01-12 Saphlux, Inc. Semipolar or nonpolar group III-nitride substrates
US10373825B1 (en) * 2018-05-29 2019-08-06 Industry-University Cooperation Foundation Hanyang University Method for manufacturing gallium nitride substrate using core-shell nanoparticle
US11949039B2 (en) 2018-11-05 2024-04-02 King Abdullah University Of Science And Technology Optoelectronic semiconductor device with nanorod array
WO2020171147A1 (en) * 2019-02-22 2020-08-27 三菱ケミカル株式会社 Gan crystal and substrate
CN110061104B (en) * 2019-02-28 2020-08-14 华灿光电(苏州)有限公司 Method for manufacturing gallium nitride-based light emitting diode epitaxial wafer
CN110129765B (en) * 2019-05-23 2021-04-02 广东省半导体产业技术研究院 Nitride semiconductor material and preparation method thereof
CN110517949B (en) * 2019-07-29 2021-05-11 太原理工大学 By using SiO2Method for preparing nonpolar a-plane GaN epitaxial layer as substrate
CN114784123A (en) * 2022-03-18 2022-07-22 华南理工大学 Nonpolar a-surface GaN-based ultraviolet photoelectric detector and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033233A (en) * 1989-05-30 1991-01-09 Nippon Telegr & Teleph Corp <Ntt> Growth method for compound semiconductor single crystal thin film
JPH11191657A (en) * 1997-04-11 1999-07-13 Nichia Chem Ind Ltd Growing method of nitride semiconductor and nitride semiconductor device
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
JP2002505519A (en) * 1998-02-27 2002-02-19 ノース・キャロライナ・ステイト・ユニヴァーシティ Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
JP2003124573A (en) * 2001-10-12 2003-04-25 Sumitomo Electric Ind Ltd Method for fabricating semiconductor light emitting element, method for fabricating semiconductor element, method for fabricating element, method for growing nitride iii-v compound semiconductor layer, method for growing semiconductor layer, and method for growing layer

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US372909A (en) 1887-11-08 Method of making dress-forms
US5290393A (en) * 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5633192A (en) * 1991-03-18 1997-05-27 Boston University Method for epitaxially growing gallium nitride layers
US5306662A (en) * 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
JP2540791B2 (en) * 1991-11-08 1996-10-09 日亜化学工業株式会社 A method for manufacturing a p-type gallium nitride-based compound semiconductor.
US5432808A (en) * 1993-03-15 1995-07-11 Kabushiki Kaisha Toshiba Compound semicondutor light-emitting device
US6958093B2 (en) * 1994-01-27 2005-10-25 Cree, Inc. Free-standing (Al, Ga, In)N and parting method for forming same
US6440823B1 (en) * 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US5974069A (en) * 1994-09-16 1999-10-26 Rohm Co., Ltd Semiconductor laser and manufacturing method thereof
US5777350A (en) * 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
JP3599896B2 (en) * 1995-05-19 2004-12-08 三洋電機株式会社 Semiconductor laser device and method for manufacturing semiconductor laser device
JP2839077B2 (en) * 1995-06-15 1998-12-16 日本電気株式会社 Gallium nitride based compound semiconductor light emitting device
JPH09116225A (en) * 1995-10-20 1997-05-02 Hitachi Ltd Semiconductor light emitting device
JP3816176B2 (en) * 1996-02-23 2006-08-30 富士通株式会社 Semiconductor light emitting device and optical semiconductor device
US6072197A (en) * 1996-02-23 2000-06-06 Fujitsu Limited Semiconductor light emitting device with an active layer made of semiconductor having uniaxial anisotropy
US5923950A (en) * 1996-06-14 1999-07-13 Matsushita Electric Industrial Co., Inc. Method of manufacturing a semiconductor light-emitting device
US5784187A (en) * 1996-07-23 1998-07-21 Lucent Technologies Inc. Wafer level integration of an optical modulator and III-V photodetector
US6177292B1 (en) * 1996-12-05 2001-01-23 Lg Electronics Inc. Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate
JP3488587B2 (en) * 1997-01-09 2004-01-19 株式会社東芝 Boost circuit and IC card having the same
JP3139445B2 (en) * 1997-03-13 2001-02-26 日本電気株式会社 GaN-based semiconductor growth method and GaN-based semiconductor film
CA2258080C (en) * 1997-04-11 2007-06-05 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JPH10335637A (en) * 1997-05-30 1998-12-18 Sony Corp Hetero-junction field effect transistor
JP3496512B2 (en) * 1997-06-30 2004-02-16 日亜化学工業株式会社 Nitride semiconductor device
JP3813740B2 (en) 1997-07-11 2006-08-23 Tdk株式会社 Substrates for electronic devices
JPH11340580A (en) 1997-07-30 1999-12-10 Fujitsu Ltd Semiconductor laser, semiconductor light-emitting element and its manufacture
US5926726A (en) * 1997-09-12 1999-07-20 Sdl, Inc. In-situ acceptor activation in group III-v nitride compound semiconductors
US6849472B2 (en) * 1997-09-30 2005-02-01 Lumileds Lighting U.S., Llc Nitride semiconductor device with reduced polarization fields
JP3955367B2 (en) * 1997-09-30 2007-08-08 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Optical semiconductor device and manufacturing method thereof
US6201262B1 (en) * 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
US6051849A (en) 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JP3988245B2 (en) * 1998-03-12 2007-10-10 ソニー株式会社 Nitride III-V compound semiconductor growth method and semiconductor device manufacturing method
JPH11346002A (en) * 1998-04-01 1999-12-14 Matsushita Electric Ind Co Ltd Manufacture of p-type gallium nitride based compound semiconductor
US6086673A (en) * 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
JP3995790B2 (en) * 1998-04-10 2007-10-24 シャープ株式会社 Crystal manufacturing method
US6294440B1 (en) * 1998-04-10 2001-09-25 Sharp Kabushiki Kaisha Semiconductor substrate, light-emitting device, and method for producing the same
JPH11297631A (en) 1998-04-14 1999-10-29 Matsushita Electron Corp Method for growing nitride system compound semiconductor
US6180270B1 (en) 1998-04-24 2001-01-30 The United States Of America As Represented By The Secretary Of The Army Low defect density gallium nitride epilayer and method of preparing the same
US6064078A (en) * 1998-05-22 2000-05-16 Xerox Corporation Formation of group III-V nitride films on sapphire substrates with reduced dislocation densities
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
TW417315B (en) * 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP2000058917A (en) * 1998-08-07 2000-02-25 Pioneer Electron Corp Iii-group nitride semiconductor light-emitting device and its manufacture
US6271104B1 (en) * 1998-08-10 2001-08-07 Mp Technologies Fabrication of defect free III-nitride materials
JP2000068609A (en) 1998-08-24 2000-03-03 Ricoh Co Ltd Semiconductor substrate and semiconductor laser
US6608330B1 (en) * 1998-09-21 2003-08-19 Nichia Corporation Light emitting device
JP3592553B2 (en) * 1998-10-15 2004-11-24 株式会社東芝 Gallium nitride based semiconductor device
WO2000033388A1 (en) * 1998-11-24 2000-06-08 Massachusetts Institute Of Technology METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES
JP4304750B2 (en) 1998-12-08 2009-07-29 日亜化学工業株式会社 Nitride semiconductor growth method and nitride semiconductor device
JP3794530B2 (en) * 1998-12-24 2006-07-05 日亜化学工業株式会社 Nitride semiconductor laser device
JP2000216497A (en) * 1999-01-22 2000-08-04 Sanyo Electric Co Ltd Semiconductor element and its manufacture
JP4097343B2 (en) 1999-01-26 2008-06-11 日亜化学工業株式会社 Manufacturing method of nitride semiconductor laser device
US6177057B1 (en) * 1999-02-09 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Process for preparing bulk cubic gallium nitride
JP3754226B2 (en) * 1999-03-25 2006-03-08 三洋電機株式会社 Semiconductor light emitting device
JP3375064B2 (en) * 1999-04-02 2003-02-10 日亜化学工業株式会社 Method for growing nitride semiconductor
JP3587081B2 (en) * 1999-05-10 2004-11-10 豊田合成株式会社 Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device
JP2001007394A (en) 1999-06-18 2001-01-12 Ricoh Co Ltd Semiconductor substrate, manufacture thereof and semiconductor light emitting element
JP4329166B2 (en) 1999-06-23 2009-09-09 昭和電工株式会社 Group III nitride semiconductor optical device
JP2001010898A (en) 1999-06-24 2001-01-16 Nec Corp Crystal substrate and its production
JP3857467B2 (en) * 1999-07-05 2006-12-13 独立行政法人科学技術振興機構 Gallium nitride compound semiconductor and manufacturing method thereof
US6265089B1 (en) * 1999-07-15 2001-07-24 The United States Of America As Represented By The Secretary Of The Navy Electronic devices grown on off-axis sapphire substrate
US6268621B1 (en) * 1999-08-03 2001-07-31 International Business Machines Corporation Vertical channel field effect transistor
US6590336B1 (en) * 1999-08-31 2003-07-08 Murata Manufacturing Co., Ltd. Light emitting device having a polar plane piezoelectric film and manufacture thereof
JP4424840B2 (en) * 1999-09-08 2010-03-03 シャープ株式会社 III-N compound semiconductor device
US6455877B1 (en) * 1999-09-08 2002-09-24 Sharp Kabushiki Kaisha III-N compound semiconductor device
US6398867B1 (en) * 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
US6812053B1 (en) 1999-10-14 2004-11-02 Cree, Inc. Single step pendeo- and lateral epitaxial overgrowth of Group III-nitride epitaxial layers with Group III-nitride buffer layer and resulting structures
JP2001119066A (en) * 1999-10-18 2001-04-27 Matsushita Electric Ind Co Ltd Method of producing gallium nitride compound semiconductor
JP2001160656A (en) 1999-12-01 2001-06-12 Sharp Corp Nitride compound semiconductor device
US6515313B1 (en) * 1999-12-02 2003-02-04 Cree Lighting Company High efficiency light emitters with reduced polarization-induced charges
KR100388011B1 (en) * 2000-01-17 2003-06-18 삼성전기주식회사 SAW Filter by GaN single crystal thin film and A Method for Manufacturing It
US6566231B2 (en) * 2000-02-24 2003-05-20 Matsushita Electric Industrial Co., Ltd. Method of manufacturing high performance semiconductor device with reduced lattice defects in the active region
US6596079B1 (en) * 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP3557441B2 (en) 2000-03-13 2004-08-25 日本電信電話株式会社 Nitride semiconductor substrate and method of manufacturing the same
US6447604B1 (en) * 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
JP3946427B2 (en) 2000-03-29 2007-07-18 株式会社東芝 Epitaxial growth substrate manufacturing method and semiconductor device manufacturing method using this epitaxial growth substrate
JP2001298215A (en) * 2000-04-14 2001-10-26 Nichia Chem Ind Ltd Light-emitting element
US6534332B2 (en) * 2000-04-21 2003-03-18 The Regents Of The University Of California Method of growing GaN films with a low density of structural defects using an interlayer
KR20010103998A (en) * 2000-05-12 2001-11-24 이계안 Curren leakage preventy system and method for hybrid electric vehicle
JP2001326385A (en) * 2000-05-16 2001-11-22 Sony Corp Method of manufacturing semiconductor light-emitting element
GB2363518A (en) * 2000-06-17 2001-12-19 Sharp Kk A method of growing a nitride layer on a GaN substrate
US6680959B2 (en) * 2000-07-18 2004-01-20 Rohm Co., Ltd. Semiconductor light emitting device and semiconductor laser
JP4556300B2 (en) * 2000-07-18 2010-10-06 ソニー株式会社 Crystal growth method
US6610144B2 (en) * 2000-07-21 2003-08-26 The Regents Of The University Of California Method to reduce the dislocation density in group III-nitride films
JP4327339B2 (en) * 2000-07-28 2009-09-09 独立行政法人物質・材料研究機構 Semiconductor layer forming substrate and semiconductor device using the same
WO2002013245A1 (en) * 2000-08-04 2002-02-14 The Regents Of The University Of California Method of controlling stress in gallium nitride films deposited on substrates
US6586819B2 (en) * 2000-08-14 2003-07-01 Nippon Telegraph And Telephone Corporation Sapphire substrate, semiconductor device, electronic component, and crystal growing method
JP2002076521A (en) 2000-08-30 2002-03-15 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor light emitting element
JP4154558B2 (en) * 2000-09-01 2008-09-24 日本電気株式会社 Semiconductor device
JP4416297B2 (en) * 2000-09-08 2010-02-17 シャープ株式会社 Nitride semiconductor light emitting element, and light emitting device and optical pickup device using the same
JP2002094113A (en) * 2000-09-19 2002-03-29 Sharp Corp Method for fabricating iii-v nitride-based semiconductor light emitting device
JP2002100838A (en) * 2000-09-21 2002-04-05 Sharp Corp Nitride semiconductor light-emitting element and optical device
EP1335434A4 (en) 2000-09-21 2008-10-15 Sharp Kk Nitride semiconductor light emitting element and optical device containing it
JP2002111134A (en) * 2000-09-29 2002-04-12 Toshiba Corp Semiconductor laser device
US6649287B2 (en) * 2000-12-14 2003-11-18 Nitronex Corporation Gallium nitride materials and methods
US6635901B2 (en) 2000-12-15 2003-10-21 Nobuhiko Sawaki Semiconductor device including an InGaAIN layer
US6599362B2 (en) * 2001-01-03 2003-07-29 Sandia Corporation Cantilever epitaxial process
US6576932B2 (en) * 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
TW554388B (en) * 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6773504B2 (en) * 2001-04-12 2004-08-10 Sumitomo Electric Industries, Ltd. Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate
US7252712B2 (en) * 2001-06-06 2007-08-07 Ammono Sp. Z O.O. Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride
US6627551B2 (en) * 2001-06-06 2003-09-30 United Microelectronics Corp. Method for avoiding microscratch in interlevel dielectric layer chemical mechanical polishing process
US6488767B1 (en) * 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
JP4055503B2 (en) * 2001-07-24 2008-03-05 日亜化学工業株式会社 Semiconductor light emitting device
US6977953B2 (en) * 2001-07-27 2005-12-20 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device and method of fabricating the same
JP4111696B2 (en) * 2001-08-08 2008-07-02 三洋電機株式会社 Nitride semiconductor laser device
JP2003060298A (en) * 2001-08-08 2003-02-28 Nichia Chem Ind Ltd Semiconductor light-emitting device and method of manufacturing the same
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
CA2464083C (en) 2001-10-26 2011-08-02 Ammono Sp. Z O.O. Substrate for epitaxy
US7057211B2 (en) * 2001-10-26 2006-06-06 Ammono Sp. Zo.O Nitride semiconductor laser device and manufacturing method thereof
US6617261B2 (en) * 2001-12-18 2003-09-09 Xerox Corporation Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates
US6969426B1 (en) * 2002-02-26 2005-11-29 Bliss David F Forming improved metal nitrides
US7063741B2 (en) * 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
WO2004061909A1 (en) 2002-12-16 2004-07-22 The Regents Of The University Of California Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
US7208393B2 (en) * 2002-04-15 2007-04-24 The Regents Of The University Of California Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
AU2003223563A1 (en) * 2002-04-15 2003-11-03 The Regents Of The University Of California NON-POLAR (A1,B,In,Ga) QUANTUM WELL AND HETEROSTRUCTURE MATERIALS AND DEVICES
US20060138431A1 (en) * 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
SG130935A1 (en) * 2002-06-26 2007-04-26 Agency Science Tech & Res Method of cleaving gan/sapphire for forming laser mirror facets
JP4201541B2 (en) 2002-07-19 2008-12-24 豊田合成株式会社 Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device manufacturing method
US7119359B2 (en) * 2002-12-05 2006-10-10 Research Foundation Of The City University Of New York Photodetectors and optically pumped emitters based on III-nitride multiple-quantum-well structures
US6876009B2 (en) * 2002-12-09 2005-04-05 Nichia Corporation Nitride semiconductor device and a process of manufacturing the same
US7186302B2 (en) * 2002-12-16 2007-03-06 The Regents Of The University Of California Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
US7098487B2 (en) * 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
CN1894771B (en) 2003-04-15 2012-07-04 加利福尼亚大学董事会 Non-polarity (Al, B, Inc, Ga) N Quantum pit
US6886375B2 (en) * 2003-06-27 2005-05-03 Paul J. Amo Handcuff restraint mechanism and method of use
US7170095B2 (en) * 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7303632B2 (en) * 2004-05-26 2007-12-04 Cree, Inc. Vapor assisted growth of gallium nitride
JP4883931B2 (en) * 2005-04-26 2012-02-22 京セラ株式会社 Manufacturing method of semiconductor laminated substrate
TW200610150A (en) * 2004-08-30 2006-03-16 Kyocera Corp Sapphire baseplate, epitaxial substrate and semiconductor device
JP5113330B2 (en) * 2005-11-30 2013-01-09 ローム株式会社 Gallium nitride semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033233A (en) * 1989-05-30 1991-01-09 Nippon Telegr & Teleph Corp <Ntt> Growth method for compound semiconductor single crystal thin film
JPH11191657A (en) * 1997-04-11 1999-07-13 Nichia Chem Ind Ltd Growing method of nitride semiconductor and nitride semiconductor device
JP2002505519A (en) * 1998-02-27 2002-02-19 ノース・キャロライナ・ステイト・ユニヴァーシティ Method for producing gallium nitride semiconductor layer by lateral overgrowth through mask and gallium nitride semiconductor structure produced thereby
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
JP2003124573A (en) * 2001-10-12 2003-04-25 Sumitomo Electric Ind Ltd Method for fabricating semiconductor light emitting element, method for fabricating semiconductor element, method for fabricating element, method for growing nitride iii-v compound semiconductor layer, method for growing semiconductor layer, and method for growing layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179857A (en) * 2004-11-29 2006-07-06 Sony Corp Forming method of grounding layer consisting of garium nitride-based compound semiconductor, and manufacturing method of garium nitride-based semiconductor light emitting device
JP2009018972A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2009018971A (en) * 2007-07-13 2009-01-29 Ngk Insulators Ltd Method for producing nonpolar group-iii nitride
JP2010222174A (en) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> Nitride semiconductor structure
WO2016136547A1 (en) * 2015-02-23 2016-09-01 三菱化学株式会社 C-plane gan substrate
KR20170118089A (en) * 2015-02-23 2017-10-24 미쯔비시 케미컬 주식회사 C-plane gan substrate
JPWO2016136547A1 (en) * 2015-02-23 2017-12-07 三菱ケミカル株式会社 C-plane GaN substrate
US10224201B2 (en) 2015-02-23 2019-03-05 Mitsubishi Chemical Corporation C-plane GaN substrate
KR102467949B1 (en) 2015-02-23 2022-11-16 미쯔비시 케미컬 주식회사 C-PLANE GaN SUBSTRATE

Also Published As

Publication number Publication date
US9039834B2 (en) 2015-05-26
EP2316989A2 (en) 2011-05-04
EP2154270A2 (en) 2010-02-17
EP2336397A2 (en) 2011-06-22
EP1495169B1 (en) 2012-10-10
EP1495167A1 (en) 2005-01-12
EP1495168A1 (en) 2005-01-12
JP2017011278A (en) 2017-01-12
JP2009260386A (en) 2009-11-05
JP2015061818A (en) 2015-04-02
KR20050006162A (en) 2005-01-15
KR101317469B1 (en) 2013-10-11
WO2003089694A1 (en) 2003-10-30
EP2154270A3 (en) 2013-07-24
US20110204329A1 (en) 2011-08-25
JP5254521B2 (en) 2013-08-07
KR101167590B1 (en) 2012-07-27
US20120205623A1 (en) 2012-08-16
EP1495168B1 (en) 2014-06-11
KR20050000511A (en) 2005-01-05
JP2005522888A (en) 2005-07-28
EP2316989A3 (en) 2014-12-03
US20110229639A1 (en) 2011-09-22
JP2009295994A (en) 2009-12-17
US20030198837A1 (en) 2003-10-23
KR100992960B1 (en) 2010-11-09
US20030230235A1 (en) 2003-12-18
JP2005522889A (en) 2005-07-28
JP2014195125A (en) 2014-10-09
JP2011040789A (en) 2011-02-24
KR20110132639A (en) 2011-12-08
KR20120080246A (en) 2012-07-16
US8188458B2 (en) 2012-05-29
KR101363377B1 (en) 2014-02-14
JP2014060408A (en) 2014-04-03
US20050040385A1 (en) 2005-02-24
EP1495169A1 (en) 2005-01-12
US7982208B2 (en) 2011-07-19
AU2003230876A1 (en) 2003-11-03
AU2003228497A1 (en) 2003-11-03
EP2336397A3 (en) 2014-11-26
KR20110069133A (en) 2011-06-22
WO2003089696A1 (en) 2003-10-30
JP2018064122A (en) 2018-04-19
US6900070B2 (en) 2005-05-31
KR20100102242A (en) 2010-09-20
JP5046475B2 (en) 2012-10-10
KR101288489B1 (en) 2013-07-26
US20060278865A1 (en) 2006-12-14
KR20040102097A (en) 2004-12-03
JP2010135845A (en) 2010-06-17
AU2003223563A1 (en) 2003-11-03
WO2003089695A1 (en) 2003-10-30
US7091514B2 (en) 2006-08-15

Similar Documents

Publication Publication Date Title
JP5254521B2 (en) Reduction of dislocations in nonpolar gallium nitride thin films.
JP4486506B2 (en) Growth of nonpolar gallium nitride with low dislocation density by hydride vapor deposition method
KR101332391B1 (en) Growth of planar reduced dislocation density m-plane gallium nitride by hydride vapor phase epitaxy
US6545300B2 (en) Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates, and gallium nitride semiconductor structures fabricated thereby
US8212287B2 (en) Nitride semiconductor structure and method of making same
US8405128B2 (en) Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
US20120068184A1 (en) Dislocation reduction in non-polar iii-nitride thin films
Haffouz et al. Mask-less epitaxial lateral overgrown MOVPE GaN layers on Si (111) substrates

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090707

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20090803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101101

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110916

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121023

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5254521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term