JPH09116225A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH09116225A
JPH09116225A JP27232195A JP27232195A JPH09116225A JP H09116225 A JPH09116225 A JP H09116225A JP 27232195 A JP27232195 A JP 27232195A JP 27232195 A JP27232195 A JP 27232195A JP H09116225 A JPH09116225 A JP H09116225A
Authority
JP
Japan
Prior art keywords
layer
quantum well
light emitting
emitting device
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27232195A
Other languages
Japanese (ja)
Inventor
Atsuko Niwa
敦子 丹羽
So Otoshi
創 大▲歳▼
Takaro Kuroda
崇郎 黒田
Toshiaki Tanaka
俊明 田中
Akisada Watanabe
明禎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27232195A priority Critical patent/JPH09116225A/en
Publication of JPH09116225A publication Critical patent/JPH09116225A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the threshold carrier density of a gallium nitride-based compound semiconductor laser by reducing the state density of a valence band and increasing the transition probability of the band. SOLUTION: A quantum well active layer 4 having a biaxial tensile strain is grown on a substrate crystal 1 having plane orientation of (1-100)-plane, (11-20)-plane, or an equivalent plane, and a resonator is constituted in the direction perpendicular to the (0001)-direction. Therefore, the state density of the upper part of a valence band can be reduced and, at the same time, the transition probability of the band can be increased. In addition, a gallium nitride-based compound semiconductor laser can be obtained, because the threshold current density can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化ガリウム系化合
物半導体を用いた発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
GaAlN等の窒化ガリウム系化合物半導体は直接遷移
型を有するワイドギャップ半導体であり、青色から紫外
域までの発光素子を構成する材料として盛んに研究され
ている。現在、この材料を用いた発光素子としてサファ
イア基板上に構成したZnドープInGaN層を発光層
とするダブルヘテロ構造の高輝度青色LEDが知られて
いる(S. Nakamura et al., Appl. Phys. Lett., 64(199
4) 1687)。また、ZnO基板上に構成し格子歪による欠
陥を減少した窒化ガリウム系発光素子が特開平5−20
6513公報に開示されている。しかし、これまで電流
注入による窒化ガリウム系化合物半導体レーザは実現さ
れていなかった。
2. Description of the Related Art GaN, GaAlN, InGaN, In
A gallium nitride-based compound semiconductor such as GaAlN is a wide-gap semiconductor having a direct transition type, and has been actively studied as a material for forming a light emitting device in the blue to ultraviolet range. Currently, a double-heterostructure high-intensity blue LED having a Zn-doped InGaN layer formed on a sapphire substrate as a light emitting layer is known as a light emitting device using this material (S. Nakamura et al., Appl. Phys. Lett., 64 (199
4) 1687). Further, a gallium nitride-based light emitting device constructed on a ZnO substrate to reduce defects due to lattice strain is disclosed in Japanese Patent Laid-Open No. 5-20.
It is disclosed in Japanese Patent No. 6513. However, no gallium nitride-based compound semiconductor laser by current injection has been realized so far.

【0003】[0003]

【発明が解決しようとする課題】窒化ガリウム系化合物
半導体において電流注入によるレーザ発振が困難である
のは、この材料系の価電子帯の状態密度が大きく、しき
い値キャリア密度が高いことに起因する。図5にウルツ
鉱型GaNの歪の無い場合のΓ点付近の価電子帯上部の
バンド構造を示す。
Laser oscillation by current injection is difficult in gallium nitride-based compound semiconductors because the valence band density of states of this material system is large and the threshold carrier density is high. To do. FIG. 5 shows the band structure in the upper part of the valence band near the Γ point in the case of wurtzite GaN without strain.

【0004】因みに、Γ点は結晶内部の電子の波数ベク
トルk(図5の横軸の波数に相当)が「0」となる点で
ある。さて、ウルツ鉱型半導体では、結晶場とスピン軌
道相互作用によりΓ点のエネルギーは三つにスプリット
する。この三つのバンドをΓ点の波動関数の状態で、便
宜的に、それぞれhh(heavy hole)1、h
h2、lh(light hole)と呼ぶことにす
る。GaNの価電子帯上部の状態密度はGaAs等の一
般的なIII−V族半導体と比較して大きいため、レー
ザ発振を与えるしきい値キャリア密度が増大し、電流注
入によるレーザ発振は困難であった。またウルツ鉱型半
導体では、hh1とhh2の波動関数の性質が同じであ
るため、歪を加えてもhh1、hh2のエネルギースプ
リットはほとんど変化しない。このため、ウルツ鉱型半
導体では圧縮歪による状態密度の低減も期待できなかっ
た。
Incidentally, the point Γ is the point where the wave number vector k (corresponding to the wave number on the horizontal axis of FIG. 5) of the electrons inside the crystal becomes “0”. In a wurtzite semiconductor, the energy at the Γ point splits into three due to the crystal field and spin-orbit interaction. For convenience, hh (heavy holes) 1 and h are set for these three bands in the state of the wave function at the Γ point, respectively.
h2, lh (light hole). Since the density of states in the upper part of the valence band of GaN is higher than that of general III-V semiconductors such as GaAs, the threshold carrier density that gives laser oscillation increases, and laser oscillation by current injection is difficult. It was Further, in the wurtzite semiconductor, since the properties of the wave functions of hh1 and hh2 are the same, even if strain is applied, the energy split of hh1 and hh2 hardly changes. For this reason, in the wurtzite semiconductor, reduction in the density of states due to compressive strain could not be expected.

【0005】本発明は窒化ガリウム系化合物半導体の引
っ張り歪による価電子帯上部の状態密度の低減と光学遷
移確率の増大により、レーザ発振に必要なしきい値キャ
リア密度を低減し、電流注入による窒化ガリウム系半導
体レーザを実現することを目的とする。
The present invention reduces the threshold carrier density required for laser oscillation by reducing the density of states in the upper part of the valence band and increasing the optical transition probability due to the tensile strain of a gallium nitride-based compound semiconductor, and gallium nitride by current injection. The object is to realize a semiconductor laser.

【0006】[0006]

【課題を解決するための手段】本発明の窒化ガリウム系
半導体発光素子は、ウルツ鉱構造をもつ第一の結晶の
(1−100)面上に二軸性の引っ張り歪をもつ量子井
戸活性層を成長し、導波路を第1の結晶の[0001]
軸に垂直な方向、すなわち[11−20]方向に作製す
ることを特徴とする。また、第一の結晶の(11−2
0)面上に二軸性の引っ張り歪をもつ活性層を成長し、
導波路を[0001]軸に垂直な方向、すなわち[1−
100]方向に作製することによっても同様の効果を得
ることができる。また、上記の第一の結晶の面方位が
(1−100)あるいは(11−20)から10度以内
のずれを有する面である場合にも同様の効果を得ること
ができる。換言すれば、本発明による半導体発光素子
は、(1)活性層を構成する結晶のc軸が素子が形成さ
れる基板の表面に対して略平行であり、且つ(2)活性
層の井戸層には引っ張り歪が加えられているという構造
的な特徴を有する。
The gallium nitride based semiconductor light emitting device of the present invention is a quantum well active layer having biaxial tensile strain on the (1-100) plane of a first crystal having a wurtzite structure. Grows the waveguide to the [0001] of the first crystal.
It is characterized in that it is manufactured in a direction perpendicular to the axis, that is, in the [11-20] direction. In addition, the first crystal (11-2
0) grow an active layer with biaxial tensile strain on the plane,
The waveguide is in a direction perpendicular to the [0001] axis, that is, [1-
The same effect can be obtained by manufacturing in the [100] direction. The same effect can be obtained even when the plane orientation of the first crystal is a plane having a deviation of 10 degrees from (1-100) or (11-20). In other words, in the semiconductor light emitting device according to the present invention, (1) the c-axis of the crystal forming the active layer is substantially parallel to the surface of the substrate on which the device is formed, and (2) the well layer of the active layer. Has a structural feature that tensile strain is applied.

【0007】例えばウルツ鉱型GaNに2%の二軸性引
っ張り歪を加えた場合のΓ点付近の価電子帯上部のバン
ド構造は図6のようになる。図5と比較すると、引っ張
り歪を印加することによりz軌道からなるlhバンドが
上側にシフトしc軸すなわち[0001]軸に平行な方
向の価電子帯上部の状態密度が大幅に低減することがわ
かる。即ち、c軸に平行な方向の波数(横軸)に対する
エネルギ(縦軸)の変化が急となり、状態密度が低減し
ている。したがって、量子井戸活性層を[0001]軸
に垂直な方向、すなわち(1−100)面あるいは(1
1−20)面、またはこれと等価な面上に構成し、引っ
張り歪を印加した構造とすることにより価電子帯の状態
密度を低減することができる。
For example, when the wurtzite GaN is subjected to a biaxial tensile strain of 2%, the band structure above the valence band near the Γ point is as shown in FIG. As compared with FIG. 5, by applying tensile strain, the lh band consisting of the z orbit shifts to the upper side, and the state density in the upper part of the valence band in the direction parallel to the c axis, that is, the [0001] axis is significantly reduced. Recognize. That is, the energy (vertical axis) changes sharply with respect to the wave number (horizontal axis) in the direction parallel to the c-axis, and the state density is reduced. Therefore, the quantum well active layer is formed in a direction perpendicular to the [0001] axis, that is, in the (1-100) plane or (1
It is possible to reduce the density of states of the valence band by adopting a structure in which the tensile strain is applied by forming the 1-20) plane or a plane equivalent thereto.

【0008】また、(1−100)面あるいは(11−
20)面上に量子井戸を形成すると量子井戸面内の異方
性により光学遷移確率は偏光方向依存性をもつ。例え
ば、面方位が(1−100)である量子井戸のΓ点にお
ける遷移行列要素の偏光依存性は、(0001)面に構
成した無歪の量子井戸の場合と比較すると表1のように
なる。表1は、GaN量子井戸におけるバンド端での光
学行列要素の計算結果を示す。
Also, the (1-100) plane or the (11-
20) When a quantum well is formed on a plane, the optical transition probability has a polarization direction dependency due to anisotropy in the plane of the quantum well. For example, the polarization dependence of the transition matrix element at the Γ point of the quantum well having the plane orientation of (1-100) is as shown in Table 1 as compared with the case of the undistorted quantum well configured in the (0001) plane. . Table 1 shows the calculation result of the optical matrix element at the band edge in the GaN quantum well.

【0009】[0009]

【表1】 [Table 1]

【0010】表1より、(1−100)面上の引っ張り
歪量子井戸では導波路を[0001]と垂直な方向、す
なわち[11−20]方向に形成すれば、遷移確率を2倍
程度大きくできることがわかる(表中のエネルギ値は光
学遷移の生じ易さを示し、大きいほど遷移確率は高
い)。これにより、利得が増大し、発振に必要なしきい
値キャリア密度が低減され、窒化ガリウム系半導体レー
ザを実現できる。
From Table 1, in the tensile strained quantum well on the (1-100) plane, if the waveguide is formed in the direction perpendicular to [0001], that is, in the [11-20] direction, the transition probability is approximately doubled. It can be seen that the energy value in the table indicates the likelihood of optical transition, and the larger the energy value, the higher the transition probability. As a result, the gain is increased, the threshold carrier density required for oscillation is reduced, and a gallium nitride based semiconductor laser can be realized.

【0011】[0011]

【発明の実施の形態】本発明の第一の実施例を図1を用
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to FIG.

【0012】図示のように、この多重量子井戸レーザ
は、(1−100)面n型ZnO基板1上に、基板1と
格子整合するInGaNバッファ層2、Siをドープし
たn−InGaAlN層3、アンドープ多重量子井戸か
らなる活性層4、Mgをドープしたp−InGaAlN
層5が順次積層されて構成される。これらの各層はガス
ソース分子線成長法によりエピタキシャル成長される。
バッファ層2、n−InGaAlN層3、p−InGa
AlN層5の膜厚はそれぞれ、2μm、0.15μm、
0.15μmである。アンドープ多重量子井戸活性層4
は、拡大して示したように、In0.2Ga0.6Al0.2
障壁層(膜厚8nm)6とIn0.1Ga0.9N井戸層(膜
厚4nm)7が交互に積層形成された二重量子井戸構造
を有する。ここで井戸層7の組成比は、ZnOの格子定
数をaとしたとき、これからの格子定数のずれΔa/a
が−1.8%となるように設定されており、二軸性の引
っ張り歪が印加されている。以上のようにして得られた
ウエハーの基板1の裏面にn側In電極8、p型InG
aAlN層5にAl電極9を蒸着したのち、(11−2
0)面でへき開し[11−20]方向(図1の活性層4
の側面側)に長さ約800μmの共振器を形成し半導体
レーザを作製する。本半導体レーザは室温においてしき
い値電流約50mAで連続発振した。発振波長は約42
0nmであった。
As shown in the figure, this multi-quantum well laser comprises an (1-100) plane n-type ZnO substrate 1, an InGaN buffer layer 2 lattice-matched with the substrate 1, an Si-doped n-InGaAlN layer 3, Active layer 4 consisting of undoped multiple quantum wells, Mg-doped p-InGaAlN
The layers 5 are sequentially laminated and configured. Each of these layers is epitaxially grown by the gas source molecular beam growth method.
Buffer layer 2, n-InGaAlN layer 3, p-InGa
The film thickness of the AlN layer 5 is 2 μm, 0.15 μm,
0.15 μm. Undoped multiple quantum well active layer 4
Is, as shown enlarged, In 0.2 Ga 0.6 Al 0.2 N
It has a double quantum well structure in which barrier layers (film thickness 8 nm) 6 and In 0.1 Ga 0.9 N well layers (film thickness 4 nm) 7 are alternately laminated. Here, the composition ratio of the well layer 7 is a deviation Δa / a of the lattice constant from this when the lattice constant of ZnO is a.
Is set to be -1.8%, and biaxial tensile strain is applied. The n-side In electrode 8 and the p-type InG are formed on the back surface of the substrate 1 of the wafer obtained as described above.
After depositing the Al electrode 9 on the aAlN layer 5, (11-2
Cleavage at the (0) plane [11-20] direction (active layer 4 in FIG.
A resonator having a length of about 800 μm is formed on the side surface of the semiconductor laser to manufacture a semiconductor laser. This semiconductor laser continuously oscillated at room temperature with a threshold current of about 50 mA. Oscillation wavelength is about 42
It was 0 nm.

【0013】本実施例において、ZnO基板の面方位を
(11−20)面とし、共振器を[1−100]方向に
形成した半導体レーザを同様に作製したところ、しきい
値電流、発振波長はほぼ同等のものが得られた。また、
本実施例において、ZnO基板の面方位を(1−10
0)面から[0001]方向に10度傾斜した面とし、
共振器を[11−20]方向に形成した半導体レーザを
同様に作製したところ、しきい値電流、発振波長はほぼ
同等のものが得られた。
In the present embodiment, a semiconductor laser having the (11-20) plane as the plane orientation of the ZnO substrate and the resonator formed in the [1-100] direction was similarly prepared. Are almost equivalent. Also,
In the present embodiment, the plane orientation of the ZnO substrate is set to (1-10
0) plane and a plane inclined by 10 degrees in the [0001] direction,
When a semiconductor laser having a resonator formed in the [11-20] direction was manufactured in the same manner, the threshold current and the oscillation wavelength were almost the same.

【0014】次に本発明第二の実施例を図2を用いて説
明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0015】図示のように、(1−100)面n型Zn
O基板1上に成長したIn1-xGaxNの組成xが0.8
から0.5まで連続的に変化するInGaN組成傾斜層
11上に、組成傾斜層11に格子整合するIn0.5Ga
0.5Nバッファ層12、Siをドープしたn−InGa
AlN層13、アンドープ多重量子井戸からなる活性層
14、Mgをドープしたp−InGaAlN層15が順
次積層されて構成される。これらの各層はガスソース分
子線成長法によりエピタキシャル成長される。バッファ
層12、n−InGaAlN層13、p−InGaAl
N層15の膜厚はそれぞれ、2μm、0.15μm、
0.15μmである。アンドープ多重量子井戸活性層1
4は、拡大して示したように、In0.35Ga0.5Al
0.15N障壁層(膜厚5nm)16とIn0.2Ga0.8N井
戸層(膜厚3nm)17が交互に積層形成された二重量
子井戸構造を有する。ここで井戸層17の組成比は、I
0.5Ga0.5Nバッファ層の格子定数をaとしたとき、
これからの格子定数のずれΔa/aが−2.0%となる
ように設定されており、二軸性の引っ張り歪が印加され
ている。以上のようにして得られたウエハーの基板1の
裏面にn側In電極8、p型InGaAlN層5にAl
電極9を蒸着したのち、(11−20)面でへき開し
[11−20]方向に長さ約800μmの共振器を形成
し半導体レーザを作製する。本半導体レーザは室温にお
いてしきい値電流約60mAで連続発振した。発振波長
は約450nmであった。
As shown, (1-100) plane n-type Zn
The composition x of In1-xGaxN grown on the O substrate 1 is 0.8.
On the InGaN composition gradient layer 11 that continuously changes from 0.5 to 0.5, In 0.5 Ga lattice-matched to the composition gradient layer 11
0.5 N buffer layer 12, Si-doped n-InGa
An AlN layer 13, an active layer 14 composed of undoped multiple quantum wells, and a Mg-doped p-InGaAlN layer 15 are sequentially stacked. Each of these layers is epitaxially grown by the gas source molecular beam growth method. Buffer layer 12, n-InGaAlN layer 13, p-InGaAl
The thickness of the N layer 15 is 2 μm, 0.15 μm,
0.15 μm. Undoped multiple quantum well active layer 1
4 is In 0.35 Ga 0.5 Al, as shown enlarged.
It has a double quantum well structure in which 0.15 N barrier layers (film thickness 5 nm) 16 and In 0.2 Ga 0.8 N well layers (film thickness 3 nm) 17 are alternately laminated. Here, the composition ratio of the well layer 17 is I
When the lattice constant of the n 0.5 Ga 0.5 N buffer layer is a,
The deviation Δa / a of the lattice constant from this is set to −2.0%, and biaxial tensile strain is applied. The n-side In electrode 8 is formed on the back surface of the substrate 1 of the wafer obtained as described above, and the Al is formed on the p-type InGaAlN layer 5.
After vapor deposition of the electrode 9, the (11-20) plane is cleaved to form a resonator having a length of about 800 μm in the [11-20] direction, and a semiconductor laser is manufactured. This semiconductor laser continuously oscillated at room temperature with a threshold current of about 60 mA. The oscillation wavelength was about 450 nm.

【0016】上記の実施例では量子井戸層としてInG
aN、基板としてZnOを用いたが、本発明の発光素子
に使用される構成はこれに限定されず、例えば図3〜図
4に示す構成とすることができる。
In the above embodiment, InG is used as the quantum well layer.
Although aN and ZnO are used as the substrate, the structure used in the light emitting device of the present invention is not limited to this, and the structures shown in FIGS.

【0017】図3に示した半導体レーザは、n型ZnO
基板1の(1−100)面上に、基板1と格子整合する
InGaNバッファ層2が成長され、このバッファ層2
上にn−InGaAlN層3、アンドープ単一量子井戸
活性層21、p−InGaAlNクラッド層5が順次積
層されて構成されている。これらの各層はガスソース分
子線成長法によりエピタキシャル成長される。ここで量
子井戸活性層21は、拡大して示したように、GaN
0.95As0.05井戸層(膜厚5nm)22がIn0.2Ga
0.6Al0.2N障壁層(膜厚10nm)23にはさまれた
単一量子井戸構造を有する。ここで井戸層22の組成比
は、ZnOの格子定数をaとしたとき、これからの格子
定数のずれΔa/aが−1.8%となるように設定され
ており、二軸性の引っ張り歪が印加されている。以上の
ようにして得られたウエハーの基板1の裏面にn側In
電極8、p型InGaAlN層5にAl電極9を蒸着し
たのち、(11−20)面でへき開し[11−20]方
向に長さ約800μmの共振器を形成し半導体レーザを
作製する。本半導体レーザは室温においてしきい値電流
約50mAで連続発振した。発振波長は約450nmで
あった。
The semiconductor laser shown in FIG. 3 is an n-type ZnO.
On the (1-100) plane of the substrate 1, an InGaN buffer layer 2 lattice-matched with the substrate 1 is grown.
An n-InGaAlN layer 3, an undoped single quantum well active layer 21, and a p-InGaAlN clad layer 5 are sequentially stacked on top of this. Each of these layers is epitaxially grown by the gas source molecular beam growth method. Here, the quantum well active layer 21 is formed of GaN as shown in an enlarged manner.
0.95 As 0.05 Well layer (film thickness 5 nm) 22 is In 0.2 Ga
It has a single quantum well structure sandwiched by 0.6 Al 0.2 N barrier layers (film thickness 10 nm) 23. Here, the composition ratio of the well layer 22 is set so that the deviation Δa / a of the lattice constant from ZnO is −1.8% when the lattice constant of ZnO is a, and the biaxial tensile strain. Is being applied. On the back surface of the substrate 1 of the wafer obtained as described above, n-side In
An Al electrode 9 is vapor-deposited on the electrode 8 and the p-type InGaAlN layer 5, and then cleaved at the (11-20) plane to form a resonator having a length of about 800 μm in the [11-20] direction, and a semiconductor laser is manufactured. This semiconductor laser continuously oscillated at room temperature with a threshold current of about 50 mA. The oscillation wavelength was about 450 nm.

【0018】図4に示した半導体レーザは、サファイア
基板31の(1−100)面上に、InGaNバッファ
層2が成長され、このバッファ層2上にn−InGaA
lN層3、アンドープ多重量子井戸活性層4、p−In
GaAlNクラッド層5が順次積層されて構成されてい
る。これらの各層は有機金属気相成長法によりエピタキ
シャル成長される。ここで量子井戸活性層4は、拡大し
て示したように、In0.2Ga0.6Al0.2N障壁層(膜
厚8nm)6とIn0.1Ga0.9N井戸層(膜厚4nm)
7が交互に2周期積層形成された多重量子井戸構造を有
する。ここで井戸層7の組成比は、InGaNバッファ
層の格子定数をaとしたとき、これからの格子定数のず
れΔa/aが−1.8%となるように設定されており、
二軸性の引っ張り歪が印加されている。以上のようにし
て得られたウエハーのp−InGaAlNクラッド層5
と量子井戸活性層4の一部をエッチングにより取り除
き、n−InGaAlNクラッド層3を露出させ、p−
クラッド層とn−クラッド層にAl電極9を蒸着したの
ち、(11−20)面でへき開し[11−20]方向に
長さ約800μmの共振器を形成し半導体レーザを作製
する。本半導体レーザは室温においてしきい値電流約7
0mAで連続発振した。発振波長は約420nmであっ
た。
In the semiconductor laser shown in FIG. 4, the InGaN buffer layer 2 is grown on the (1-100) plane of the sapphire substrate 31, and the n-InGaA layer is grown on the buffer layer 2.
1N layer 3, undoped multiple quantum well active layer 4, p-In
The GaAlN clad layer 5 is sequentially laminated. Each of these layers is epitaxially grown by a metal organic chemical vapor deposition method. Here, the quantum well active layer 4 has In 0.2 Ga 0.6 Al 0.2 N barrier layer 6 (thickness 8 nm) 6 and In 0.1 Ga 0.9 N well layer (thickness 4 nm), as shown enlarged.
7 has a multiple quantum well structure in which two periods are alternately laminated. Here, the composition ratio of the well layer 7 is set so that the deviation Δa / a of the lattice constant from this is −1.8% when the lattice constant of the InGaN buffer layer is a.
Biaxial tensile strain is applied. The p-InGaAlN cladding layer 5 of the wafer obtained as described above
And part of the quantum well active layer 4 are removed by etching to expose the n-InGaAlN cladding layer 3 and p-
After the Al electrode 9 is vapor-deposited on the clad layer and the n-clad layer, it is cleaved at the (11-20) plane to form a resonator having a length of about 800 μm in the [11-20] direction to manufacture a semiconductor laser. This semiconductor laser has a threshold current of about 7 at room temperature.
It oscillated continuously at 0 mA. The oscillation wavelength was about 420 nm.

【0019】なお、本発明は、実施例に示したレーザ構
造に限らず、さまざまな半導体レーザ、例えば分布帰還
型レーザ、ブラッグ反射型レーザ、波長可変レーザ、外
部共振器付きレーザにも適用できる。
The present invention is not limited to the laser structures shown in the embodiments, but can be applied to various semiconductor lasers such as distributed feedback lasers, Bragg reflection lasers, wavelength tunable lasers, and lasers with an external resonator.

【0020】[0020]

【発明の効果】以上のように、本発明の窒化ガリウム系
化合物半導体発光素子は、面方位が(1−100)面、
あるいは(11−20)面である基体結晶上に二軸性の
引っ張り歪をもつ量子井戸活性層を成長し、導波路を
[0001]方向に垂直な方向に作製しているので、価
電子帯上部の状態密度を小さく、かつ、遷移確率を増大
できる。これにより、利得が増大し、しきい値電流密度
を低減できるため、窒化ガリウム系化合物半導体レーザ
を実現できる。
As described above, the gallium nitride-based compound semiconductor light emitting device of the present invention has a plane orientation of (1-100) plane,
Alternatively, since a quantum well active layer having biaxial tensile strain is grown on a (11-20) plane substrate crystal and a waveguide is formed in a direction perpendicular to the [0001] direction, the valence band It is possible to reduce the density of states in the upper portion and increase the transition probability. As a result, the gain is increased and the threshold current density can be reduced, so that a gallium nitride-based compound semiconductor laser can be realized.

【0021】[0021]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の半導体レーザの構成図。FIG. 1 is a configuration diagram of a semiconductor laser according to an embodiment of the present invention.

【図2】本発明実施例の半導体レーザの構成図。FIG. 2 is a configuration diagram of a semiconductor laser according to an embodiment of the present invention.

【図3】本発明実施例の半導体レーザの構成図。FIG. 3 is a configuration diagram of a semiconductor laser according to an embodiment of the present invention.

【図4】本発明実施例の半導体レーザの構成図。FIG. 4 is a configuration diagram of a semiconductor laser according to an embodiment of the present invention.

【図5】歪の無い場合のウルツ鉱型GaNの価電子帯上
部のエネルギー分散を示す図。。
FIG. 5 is a diagram showing energy dispersion in the upper part of the valence band of wurtzite GaN in the absence of strain. .

【図6】2%二軸性引っ張り歪を印加した場合のウルツ
鉱型GaNの価電子帯上部のエネルギー分散を示す図。
FIG. 6 is a diagram showing energy dispersion in the upper part of the valence band of wurtzite GaN when a 2% biaxial tensile strain is applied.

【符号の説明】[Explanation of symbols]

1…(1−100)面n型ZnO基板、2…InGaN
バッファ層、3…n−InGaAlN層、4…アンドー
プ多重量子井戸活性層、5…p−InGaAlN層、6
…In0.2Ga0.6Al0.2N障壁層、7…In0.1Ga
0.9N井戸層、8…In電極、9…Al電極、11…I
nGaN組成傾斜層、12…In0.5Ga0.5Nバッファ
層、13…n−InGaAlN層、14…アンドープ多
重量子井戸活性層、15…p−InGaAlN層、16
…In0.35Ga0.5Al0.15N障壁層、17…In0.2
0.8N井戸層、21…アンドープ単一量子井戸活性
層、22…GaN0.95As0.05井戸層、23…In0.2
Ga0.6Al0.2N障壁層、31…サファイア基板。
1 ... (1-100) plane n-type ZnO substrate, 2 ... InGaN
Buffer layer, 3 ... n-InGaAlN layer, 4 ... Undoped multiple quantum well active layer, 5 ... p-InGaAlN layer, 6
... In 0.2 Ga 0.6 Al 0.2 N barrier layer, 7 ... In 0.1 Ga
0.9 N well layer, 8 ... In electrode, 9 ... Al electrode, 11 ... I
nGaN composition gradient layer, 12 ... In 0.5 Ga 0.5 N buffer layer, 13 ... n-InGaAlN layer, 14 ... Undoped multiple quantum well active layer, 15 ... p-InGaAlN layer, 16
... In 0.35 Ga 0.5 Al 0.15 N barrier layer, 17 ... In 0.2 G
a 0.8 N well layer, 21 ... Undoped single quantum well active layer, 22 ... GaN 0.95 As 0.05 well layer, 23 ... In 0.2
Ga 0.6 Al 0.2 N barrier layer, 31 ... Sapphire substrate.

フロントページの続き (72)発明者 田中 俊明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 渡辺 明禎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Toshiaki Tanaka 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Akinada Watanabe 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Research Center Co., Ltd. In-house

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも化合物半導体で構成され、ウル
ツ鉱構造をもつ第一の結晶上に、第一導電型及び第二導
電型の二層のクラッド層と、上記クラッド層に挟まれた
量子井戸活性層をエピタキシャル成長してなる半導体発
光素子であって、上記量子井戸活性層が(1−100)
面から10度以内のずれを有する面、あるいはこれと等
価な面上に形成されており、上記量子井戸活性層の井戸
層が、二軸性応力の無い状態での格子定数が上記第一の
結晶の格子定数より小さい材料で構成されていることを
特徴とする半導体発光素子。
1. A first crystal composed of at least a compound semiconductor and having a wurtzite structure, a two-layer clad layer of a first conductivity type and a second conductivity type, and a quantum well sandwiched between the clad layers. A semiconductor light emitting device having an active layer epitaxially grown, wherein the quantum well active layer is (1-100)
The quantum well active layer is formed on a surface having a deviation of 10 degrees or less from the surface, or a surface equivalent thereto, and the well layer of the quantum well active layer has a lattice constant in the state without biaxial stress as described above. A semiconductor light emitting device, characterized in that it is made of a material smaller than the lattice constant of the crystal.
【請求項2】少なくとも化合物半導体で構成され、ウル
ツ鉱構造をもつ第一の結晶上に、第一導電型及び第二導
電型の二層のクラッド層と、上記クラッド層に挟まれた
量子井戸活性層をエピタキシャル成長してなる半導体発
光素子であって、上記量子井戸活性層が(11−20)
面から10度以内のずれを有する面、あるいはこれと等
価な面上に形成されており、上記量子井戸活性層の井戸
層が、二軸性応力の無い状態での格子定数が上記第一の
結晶の格子定数より小さい材料で構成されていることを
特徴とする半導体発光素子。
2. A first crystal having at least a compound semiconductor and having a wurtzite structure, two clad layers of a first conductivity type and a second conductivity type, and a quantum well sandwiched between the clad layers. A semiconductor light emitting device having an active layer epitaxially grown, wherein the quantum well active layer is (11-20)
The quantum well active layer is formed on a surface having a deviation of 10 degrees or less from the surface, or a surface equivalent thereto, and the well layer of the quantum well active layer has a lattice constant in the state without biaxial stress as described above. A semiconductor light emitting device, characterized in that it is made of a material smaller than the lattice constant of the crystal.
【請求項3】特許請求の範囲第1〜2項に記載の半導体
発光素子において、[0001]方向と垂直な方向に導
波路が形成されていることを特徴とする半導体発光素
子。
3. The semiconductor light emitting device according to claim 1 or 2, wherein a waveguide is formed in a direction perpendicular to the [0001] direction.
【請求項4】特許請求の範囲第1〜3項に記載の半導体
発光素子において、上記量子井戸活性層がInxGayA
l1-x-yNzAs1-z(0<x≦1、0<y≦1、0<z
≦1)で構成されていることを特徴とする半導体発光素
子。
4. The semiconductor light emitting device according to claim 1, wherein the quantum well active layer is InxGayA.
l1-x-yNzAs1-z (0 <x ≦ 1, 0 <y ≦ 1, 0 <z
<1) A semiconductor light emitting device characterized in that
【請求項5】特許請求の範囲第1〜4項記載の半導体発
光素子において、上記第一の結晶がZnO基板上にエピ
タキシャル成長されていることを特徴とする半導体発光
素子。
5. A semiconductor light emitting device according to any one of claims 1 to 4, wherein the first crystal is epitaxially grown on a ZnO substrate.
【請求項6】特許請求の範囲第1〜5項記載の半導体発
光素子において、発振波長が350nm〜550nmで
あることを特徴とする半導体発光素子。
6. The semiconductor light emitting device according to claim 1, wherein the oscillation wavelength is 350 nm to 550 nm.
JP27232195A 1995-10-20 1995-10-20 Semiconductor light emitting device Pending JPH09116225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27232195A JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27232195A JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH09116225A true JPH09116225A (en) 1997-05-02

Family

ID=17512259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27232195A Pending JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH09116225A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039827A1 (en) * 1997-03-07 1998-09-11 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6640463B1 (en) 1999-09-03 2003-11-04 Wabco Automotive Uk Limited Vehicle air supply systems
JP2005522888A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar (Al, B, In, Ga) N quantum wells and heterostructure materials and devices
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
JP2008066550A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP2008078311A (en) * 2006-09-20 2008-04-03 Toshiba Corp Nitride semiconductor laser device
JP2008198743A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor laser diode
JP2009071127A (en) * 2007-09-14 2009-04-02 Kyoto Univ Nitride semiconductor laser element
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element
US20110062864A1 (en) * 1996-07-29 2011-03-17 Yoshinori Shimizu Light emitting device and display

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US9130130B2 (en) 1996-07-29 2015-09-08 Nichia Corporation Light emitting device and display comprising a plurality of light emitting components on mount
US20110062864A1 (en) * 1996-07-29 2011-03-17 Yoshinori Shimizu Light emitting device and display
US8679866B2 (en) * 1996-07-29 2014-03-25 Nichia Corporation Light emitting device and display
US7183569B2 (en) 1997-03-07 2007-02-27 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
WO1998039827A1 (en) * 1997-03-07 1998-09-11 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6956882B2 (en) 1997-03-07 2005-10-18 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
US6377597B1 (en) 1997-03-07 2002-04-23 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6940100B2 (en) 1999-01-07 2005-09-06 Matsushita Electric Industrial Co., Ltd. Group III-V nitride semiconductor light-emitting device which allows for efficient injection of electrons into an active layer
US6640463B1 (en) 1999-09-03 2003-11-04 Wabco Automotive Uk Limited Vehicle air supply systems
JP2005522888A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar (Al, B, In, Ga) N quantum wells and heterostructure materials and devices
JP2017011278A (en) * 2002-04-15 2017-01-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
US9039834B2 (en) 2002-04-15 2015-05-26 The Regents Of The University Of California Non-polar gallium nitride thin films grown by metalorganic chemical vapor deposition
KR101288489B1 (en) * 2002-04-15 2013-07-26 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Non-polar (Al,B,In,Ga)N Quantum Well and Heterostructure Materials and Devices
US8188458B2 (en) 2002-04-15 2012-05-29 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US7982208B2 (en) 2002-04-15 2011-07-19 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
US8222658B2 (en) 2006-09-08 2012-07-17 The Furukawa Electric Co., Ltd. Semiconductor light emitting element and method of manufacturing therefor
JP2008066550A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
JP2008078311A (en) * 2006-09-20 2008-04-03 Toshiba Corp Nitride semiconductor laser device
JP2008198743A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor laser diode
JP2009071127A (en) * 2007-09-14 2009-04-02 Kyoto Univ Nitride semiconductor laser element
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element

Similar Documents

Publication Publication Date Title
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
US6803596B2 (en) Light emitting device
JP3180743B2 (en) Nitride compound semiconductor light emitting device and method of manufacturing the same
US6858877B2 (en) Nitride semiconductor, method for manufacturing the same and nitride semiconductor device
US20090238227A1 (en) Semiconductor light emitting device
JP2003069159A (en) Nitride semiconductor and manufacturing method thereof, and nitride semiconductor device
JPH09116225A (en) Semiconductor light emitting device
JP2900990B2 (en) Nitride semiconductor light emitting device
JPH09139543A (en) Semiconductor laser element
JPH0963962A (en) Crystal growth and semiconductor light-emitting element
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
US6081001A (en) Nitride semiconductor light emitting device
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP2003086903A (en) Semiconductor light emitting device and its manufacturing method
JP2003506877A (en) Semiconductor structure using group III nitride quaternary material system
JP3056062B2 (en) Semiconductor light emitting device
JP3711020B2 (en) Light emitting element
JP4084506B2 (en) Manufacturing method of semiconductor light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
JPH10303459A (en) Gallium nitride based semiconductor light emitting element and its manufacture
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JP3716395B2 (en) Semiconductor light emitting device
JP4179280B2 (en) Manufacturing method of semiconductor light emitting device
JPH1051073A (en) Semiconductor light emitting device
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same