JPH09116225A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH09116225A
JPH09116225A JP27232195A JP27232195A JPH09116225A JP H09116225 A JPH09116225 A JP H09116225A JP 27232195 A JP27232195 A JP 27232195A JP 27232195 A JP27232195 A JP 27232195A JP H09116225 A JPH09116225 A JP H09116225A
Authority
JP
Japan
Prior art keywords
layer
semiconductor light
light emitting
quantum well
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27232195A
Other languages
Japanese (ja)
Inventor
Takaro Kuroda
Atsuko Niwa
So Otoshi
Toshiaki Tanaka
Akisada Watanabe
敦子 丹羽
創 大▲歳▼
明禎 渡辺
俊明 田中
崇郎 黒田
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP27232195A priority Critical patent/JPH09116225A/en
Publication of JPH09116225A publication Critical patent/JPH09116225A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the threshold carrier density of a gallium nitride-based compound semiconductor laser by reducing the state density of a valence band and increasing the transition probability of the band.
SOLUTION: A quantum well active layer 4 having a biaxial tensile strain is grown on a substrate crystal 1 having plane orientation of (1-100)-plane, (11-20)-plane, or an equivalent plane, and a resonator is constituted in the direction perpendicular to the (0001)-direction. Therefore, the state density of the upper part of a valence band can be reduced and, at the same time, the transition probability of the band can be increased. In addition, a gallium nitride-based compound semiconductor laser can be obtained, because the threshold current density can be reduced.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は窒化ガリウム系化合物半導体を用いた発光素子に関する。 The present invention relates to relates to light emitting device using a gallium nitride-based compound semiconductor.

【0002】 [0002]

【従来の技術】GaN、GaAlN、InGaN、In BACKGROUND OF THE INVENTION GaN, GaAlN, InGaN, In
GaAlN等の窒化ガリウム系化合物半導体は直接遷移型を有するワイドギャップ半導体であり、青色から紫外域までの発光素子を構成する材料として盛んに研究されている。 Gallium nitride-based compound such as GaAlN semiconductor is wide-gap semiconductor having a direct transition type, it has been actively studied as a material constituting the light emitting element from blue to ultraviolet region. 現在、この材料を用いた発光素子としてサファイア基板上に構成したZnドープInGaN層を発光層とするダブルヘテロ構造の高輝度青色LEDが知られている(S. Nakamura et al., Appl. Phys. Lett., 64(199 Currently, high-brightness blue LED double heterostructure to a Zn-doped InGaN layer configured on a sapphire substrate emitting layer is known as a light emitting device using this material (S. Nakamura et al., Appl. Phys. Lett., 64 (199
4) 1687)。 4) 1687). また、ZnO基板上に構成し格子歪による欠陥を減少した窒化ガリウム系発光素子が特開平5−20 Also, reduced gallium nitride-based light emitting device defects due configured lattice strain on the ZnO substrate Hei 5-20
6513公報に開示されている。 6513 disclosed in Japanese. しかし、これまで電流注入による窒化ガリウム系化合物半導体レーザは実現されていなかった。 However, the semiconductor laser gallium nitride by current injection up to now has not been realized.

【0003】 [0003]

【発明が解決しようとする課題】窒化ガリウム系化合物半導体において電流注入によるレーザ発振が困難であるのは、この材料系の価電子帯の状態密度が大きく、しきい値キャリア密度が高いことに起因する。 The laser oscillation is difficult due to current injection in a gallium nitride-based compound semiconductor [0004] is largely the state density of the valence band of the material system, due to the threshold carrier density is high to. 図5にウルツ鉱型GaNの歪の無い場合のΓ点付近の価電子帯上部のバンド構造を示す。 It shows the band structure of the valence band top of the near Γ point in the absence of distortion of wurtzite GaN in FIG.

【0004】因みに、Γ点は結晶内部の電子の波数ベクトルk(図5の横軸の波数に相当)が「0」となる点である。 [0004] Incidentally, the Γ point is that the wave vector k of the crystal internal electronic (corresponding to the wave number of the horizontal axis in FIG. 5) is "0". さて、ウルツ鉱型半導体では、結晶場とスピン軌道相互作用によりΓ点のエネルギーは三つにスプリットする。 Now, the wurtzite type semiconductor, the energy of the Γ point by the crystal field and spin-orbit interaction is split into three. この三つのバンドをΓ点の波動関数の状態で、便宜的に、それぞれhh(heavy hole)1、h In the state of the wave function of the three band Γ point, for convenience, each hh (heavy hole) 1, h
h2、lh(light hole)と呼ぶことにする。 h2, will be referred to as lh (light hole). GaNの価電子帯上部の状態密度はGaAs等の一般的なIII−V族半導体と比較して大きいため、レーザ発振を与えるしきい値キャリア密度が増大し、電流注入によるレーザ発振は困難であった。 State density of the GaN valence band top is larger as compared to the general Group III-V semiconductors such as GaAs, the threshold carrier density to provide a laser oscillation increases, the laser oscillation due to current injection is difficult It was. またウルツ鉱型半導体では、hh1とhh2の波動関数の性質が同じであるため、歪を加えてもhh1、hh2のエネルギースプリットはほとんど変化しない。 In the wurtzite semiconductor, because the nature of wave functions of hh1 and hh2 are the same, hh1, energy split hh2 hardly changes by adding distortion. このため、ウルツ鉱型半導体では圧縮歪による状態密度の低減も期待できなかった。 Therefore, it could not be expected the reduction of the density of states due to compressive strain in the wurtzite type semiconductor.

【0005】本発明は窒化ガリウム系化合物半導体の引っ張り歪による価電子帯上部の状態密度の低減と光学遷移確率の増大により、レーザ発振に必要なしきい値キャリア密度を低減し、電流注入による窒化ガリウム系半導体レーザを実現することを目的とする。 [0005] The present invention is the increase of the reduction and the optical transition probability density of states in the valence band top by the tensile strain of the gallium nitride-based compound semiconductor, reducing the threshold carrier density required for laser oscillation, gallium nitride by current injection and to realize the system semiconductor laser.

【0006】 [0006]

【課題を解決するための手段】本発明の窒化ガリウム系半導体発光素子は、ウルツ鉱構造をもつ第一の結晶の(1−100)面上に二軸性の引っ張り歪をもつ量子井戸活性層を成長し、導波路を第1の結晶の[0001] GaN-based semiconductor light-emitting device of the present invention According to an aspect of the quantum well active layer on the first crystal (1-100) plane with a wurtzite structure having tensile strain biaxial was grown, the waveguide of the first crystal [0001]
軸に垂直な方向、すなわち[11−20]方向に作製することを特徴とする。 A direction perpendicular to the axis, that is characterized in that to produce the [11-20] direction. また、第一の結晶の(11−2 In addition, the first crystal (11-2
0)面上に二軸性の引っ張り歪をもつ活性層を成長し、 0) is grown an active layer having a biaxial tensile strain on the surface,
導波路を[0001]軸に垂直な方向、すなわち[1− The waveguide [0001] direction perpendicular to the axis, namely [1-
100]方向に作製することによっても同様の効果を得ることができる。 100] can be obtained similar effects by making the direction. また、上記の第一の結晶の面方位が(1−100)あるいは(11−20)から10度以内のずれを有する面である場合にも同様の効果を得ることができる。 Further, it is possible to obtain the same effect even when a surface having a deviation within 10 degrees the surface orientation of the first crystal described above from (1-100) or (11-20). 換言すれば、本発明による半導体発光素子は、(1)活性層を構成する結晶のc軸が素子が形成される基板の表面に対して略平行であり、且つ(2)活性層の井戸層には引っ張り歪が加えられているという構造的な特徴を有する。 In other words, the semiconductor light emitting device according to the present invention, (1) is substantially parallel to the surface of the substrate c-axis of the crystal constituting the active layer element is formed, and (2) well of the active layer layer having structural features that tensile strain is applied to.

【0007】例えばウルツ鉱型GaNに2%の二軸性引っ張り歪を加えた場合のΓ点付近の価電子帯上部のバンド構造は図6のようになる。 [0007] The band structure of the valence band top of the near Γ point in the case of adding 2% of the biaxial tensile strain, for example, in wurtzite GaN is as shown in FIG. 図5と比較すると、引っ張り歪を印加することによりz軌道からなるlhバンドが上側にシフトしc軸すなわち[0001]軸に平行な方向の価電子帯上部の状態密度が大幅に低減することがわかる。 Compared to FIG. 5, it is shifted c axis or [0001] the state density in the valence band top of the direction parallel to the axis lh band of z trajectory upward by applying a tensile strain is greatly reduced Recognize. 即ち、c軸に平行な方向の波数(横軸)に対するエネルギ(縦軸)の変化が急となり、状態密度が低減している。 That is, the change in energy (vertical axis) with respect to the wave number in the direction parallel to the c-axis (horizontal axis) becomes steeper, the state density is reduced. したがって、量子井戸活性層を[0001]軸に垂直な方向、すなわち(1−100)面あるいは(1 Therefore, a quantum well active layer [0001] direction perpendicular to the axis, i.e., (1-100) plane or (1
1−20)面、またはこれと等価な面上に構成し、引っ張り歪を印加した構造とすることにより価電子帯の状態密度を低減することができる。 1-20) plane, or its configured into an equivalent on the surface, it is possible to reduce the density of states of the valence band by a structure of applying a tensile strain.

【0008】また、(1−100)面あるいは(11− [0008] Also, (1-100) plane or (11-
20)面上に量子井戸を形成すると量子井戸面内の異方性により光学遷移確率は偏光方向依存性をもつ。 20) optical transition probability anisotropic quantum well plane to form a quantum well on the surface has a polarization direction-dependent. 例えば、面方位が(1−100)である量子井戸のΓ点における遷移行列要素の偏光依存性は、(0001)面に構成した無歪の量子井戸の場合と比較すると表1のようになる。 For example, the polarization dependence of the transition matrix element in Γ point of the quantum well is a plane orientation of (1-100) is as shown in Table 1 as compared with the case of non-strained quantum well constituted to (0001) plane . 表1は、GaN量子井戸におけるバンド端での光学行列要素の計算結果を示す。 Table 1 shows the calculation results of the optical matrix elements in the band edge of the GaN quantum wells.

【0009】 [0009]

【表1】 [Table 1]

【0010】表1より、(1−100)面上の引っ張り歪量子井戸では導波路を[0001]と垂直な方向、すなわち[11−20]方向に形成すれば、遷移確率を2倍程度大きくできることがわかる(表中のエネルギ値は光学遷移の生じ易さを示し、大きいほど遷移確率は高い)。 [0010] From Table 1, (1-100) plane on the tensile strained quantum well in a direction perpendicular to the [0001] the waveguide, i.e. by forming the [11-20] direction, the transition probability of about 2 times greater it can be seen that (energy value in the table indicates the easiness resulting optical transitions, as the transition probability larger high). これにより、利得が増大し、発振に必要なしきい値キャリア密度が低減され、窒化ガリウム系半導体レーザを実現できる。 Thus, the gain is increased, the threshold carrier density required for oscillation is reduced, can be realized gallium nitride semiconductor laser.

【0011】 [0011]

【発明の実施の形態】本発明の第一の実施例を図1を用いて説明する。 The first embodiment of the embodiment of the present invention will be described with reference to FIG.

【0012】図示のように、この多重量子井戸レーザは、(1−100)面n型ZnO基板1上に、基板1と格子整合するInGaNバッファ層2、Siをドープしたn−InGaAlN層3、アンドープ多重量子井戸からなる活性層4、Mgをドープしたp−InGaAlN [0012] As shown, the multiple quantum well lasers (1-100) plane on the n-type ZnO substrate 1, the substrate 1 and the grating InGaN buffer layer 2 matching, Si-doped n-InGaAlN layer 3, p-InGaAlN doped with active layer 4, Mg of undoped multi-quantum well
層5が順次積層されて構成される。 Layer 5 is formed are sequentially laminated. これらの各層はガスソース分子線成長法によりエピタキシャル成長される。 These layers are epitaxially grown by gas source molecular beam epitaxy.
バッファ層2、n−InGaAlN層3、p−InGa Buffer layer 2, n-InGaAlN layer 3, p-InGa
AlN層5の膜厚はそれぞれ、2μm、0.15μm、 Each film thickness of the AlN layer 5, 2 [mu] m, 0.15 [mu] m,
0.15μmである。 It is 0.15μm. アンドープ多重量子井戸活性層4 Undoped multi-quantum well active layer 4
は、拡大して示したように、In 0.2 Ga 0.6 Al 0.2 As it indicated in an enlarged, In 0.2 Ga 0.6 Al 0.2 N
障壁層(膜厚8nm)6とIn 0.1 Ga 0.9 N井戸層(膜厚4nm)7が交互に積層形成された二重量子井戸構造を有する。 Having a double quantum well structure barrier layer (thickness 8 nm) 6 and In 0.1 Ga 0.9 N well layers (thickness 4 nm) 7 are stacked alternately. ここで井戸層7の組成比は、ZnOの格子定数をaとしたとき、これからの格子定数のずれΔa/a Wherein the composition ratio of the well layer 7, when the lattice constant of ZnO was a, deviation of future lattice constant .DELTA.a / a
が−1.8%となるように設定されており、二軸性の引っ張り歪が印加されている。 There are set to be -1.8%, biaxial tensile strain is applied. 以上のようにして得られたウエハーの基板1の裏面にn側In電極8、p型InG n-side In electrode 8 on the back surface of the substrate 1 of the wafer obtained as described above, p-type InG
aAlN層5にAl電極9を蒸着したのち、(11−2 After depositing Al electrodes 9 to aAlN layer 5, (11-2
0)面でへき開し[11−20]方向(図1の活性層4 Cleaved 0) plane [11-20] direction (the active layer 4 in FIG. 1
の側面側)に長さ約800μmの共振器を形成し半導体レーザを作製する。 A resonator length of about 800μm on a side surface side) form of fabricating a semiconductor laser. 本半導体レーザは室温においてしきい値電流約50mAで連続発振した。 This semiconductor laser was continuously oscillated at a threshold current of about 50mA at room temperature. 発振波長は約42 Oscillation wavelength is about 42
0nmであった。 It was 0nm.

【0013】本実施例において、ZnO基板の面方位を(11−20)面とし、共振器を[1−100]方向に形成した半導体レーザを同様に作製したところ、しきい値電流、発振波長はほぼ同等のものが得られた。 In the present embodiment, when the plane orientation of the ZnO substrate and (11-20) plane, was prepared similarly to the semiconductor laser formed a cavity in the [1-100] direction, the threshold current, oscillation wavelength almost the same thing is obtained. また、 Also,
本実施例において、ZnO基板の面方位を(1−10 In this embodiment, the plane orientation of the ZnO substrate (1-10
0)面から[0001]方向に10度傾斜した面とし、 0) and [0001] direction 10 degrees inclined surface from the surface,
共振器を[11−20]方向に形成した半導体レーザを同様に作製したところ、しきい値電流、発振波長はほぼ同等のものが得られた。 The resonator [11-20] a semiconductor laser formed in the direction were manufactured in the same manner, the threshold current, oscillation wavelength substantially equivalent was obtained.

【0014】次に本発明第二の実施例を図2を用いて説明する。 [0014] The invention will now second embodiment will be described with reference to FIG.

【0015】図示のように、(1−100)面n型Zn [0015] As shown, (1-100) plane n-type Zn
O基板1上に成長したIn1-xGaxNの組成xが0.8 The composition x of In1-xGaxN grown on the O substrate 1 is 0.8
から0.5まで連続的に変化するInGaN組成傾斜層11上に、組成傾斜層11に格子整合するIn 0.5 Ga On the InGaN composition gradient layer 11 varies continuously to 0.5 from lattice-matched to the composition gradient layer 11 an In 0.5 Ga
0.5 Nバッファ層12、Siをドープしたn−InGa 0.5 N buffer layer 12, n-InGa doped with Si
AlN層13、アンドープ多重量子井戸からなる活性層14、Mgをドープしたp−InGaAlN層15が順次積層されて構成される。 AlN layer 13, a p-InGaAlN layer 15 doped with the active layer 14, Mg of undoped multiple quantum well are sequentially stacked. これらの各層はガスソース分子線成長法によりエピタキシャル成長される。 These layers are epitaxially grown by gas source molecular beam epitaxy. バッファ層12、n−InGaAlN層13、p−InGaAl Buffer layer 12, n-InGaAlN layer 13, p-InGaAl
N層15の膜厚はそれぞれ、2μm、0.15μm、 Each film thickness of the N layer 15, 2μm, 0.15μm,
0.15μmである。 It is 0.15μm. アンドープ多重量子井戸活性層1 Undoped multi-quantum well active layer 1
4は、拡大して示したように、In 0.35 Ga 0.5 Al 4, as shown in an enlarged, an In 0.35 Ga 0.5 Al
0.15 N障壁層(膜厚5nm)16とIn 0.2 Ga 0.8 N井戸層(膜厚3nm)17が交互に積層形成された二重量子井戸構造を有する。 Having 0.15 N barrier layer (thickness 5 nm) 16 and an In 0.2 Ga 0.8 N well layer double quantum well structure (thickness 3 nm) 17 are laminated alternately. ここで井戸層17の組成比は、I Wherein the composition ratio of the well layer 17, I
0.5 Ga 0.5 Nバッファ層の格子定数をaとしたとき、 When the lattice constant of the n 0.5 Ga 0.5 N buffer layer was a,
これからの格子定数のずれΔa/aが−2.0%となるように設定されており、二軸性の引っ張り歪が印加されている。 Is set to shift .DELTA.a / a of future lattice constant is -2.0%, biaxial tensile strain is applied. 以上のようにして得られたウエハーの基板1の裏面にn側In電極8、p型InGaAlN層5にAl n-side In electrode 8 on the back surface of the substrate 1 of the wafer obtained as described above, the p-type InGaAlN layer 5 Al
電極9を蒸着したのち、(11−20)面でへき開し[11−20]方向に長さ約800μmの共振器を形成し半導体レーザを作製する。 After depositing the electrodes 9, to produce a semiconductor laser to form a (11-20) plane was cleaved with [11-20] having a length of about 800μm in a direction resonator. 本半導体レーザは室温においてしきい値電流約60mAで連続発振した。 This semiconductor laser was continuously oscillated at a threshold current of about 60mA at room temperature. 発振波長は約450nmであった。 Oscillation wavelength was about 450nm.

【0016】上記の実施例では量子井戸層としてInG [0016] In the above embodiments InG as the quantum well layer
aN、基板としてZnOを用いたが、本発明の発光素子に使用される構成はこれに限定されず、例えば図3〜図4に示す構成とすることができる。 aN, although ZnO was used as the substrate, configured to be used in the light-emitting device of the present invention is not limited to this and can be configured as shown in FIGS. 3-4, for example.

【0017】図3に示した半導体レーザは、n型ZnO The semiconductor laser shown in FIG. 3, n-type ZnO
基板1の(1−100)面上に、基板1と格子整合するInGaNバッファ層2が成長され、このバッファ層2 Of the substrate 1 (1-100) plane, InGaN buffer layer 2 to the substrate 1 and the lattice matching is grown, the buffer layer 2
上にn−InGaAlN層3、アンドープ単一量子井戸活性層21、p−InGaAlNクラッド層5が順次積層されて構成されている。 n-InGaAlN layer 3, an undoped single quantum well active layer 21, p-InGaAlN clad layer 5 is formed are sequentially laminated thereon. これらの各層はガスソース分子線成長法によりエピタキシャル成長される。 These layers are epitaxially grown by gas source molecular beam epitaxy. ここで量子井戸活性層21は、拡大して示したように、GaN Here the quantum well active layer 21, as shown in an enlarged, GaN
0.95 As 0.05井戸層(膜厚5nm)22がIn 0.2 Ga 0.95 As 0.05 well layers (thickness 5 nm) 22 is an In 0.2 Ga
0.6 Al 0.2 N障壁層(膜厚10nm)23にはさまれた単一量子井戸構造を有する。 Having a single quantum well structure sandwiched 0.6 Al 0.2 N barrier layer (thickness 10 nm) 23. ここで井戸層22の組成比は、ZnOの格子定数をaとしたとき、これからの格子定数のずれΔa/aが−1.8%となるように設定されており、二軸性の引っ張り歪が印加されている。 Wherein the composition ratio of the well layer 22 is, when the lattice constant of ZnO was a, it is set to shift .DELTA.a / a of future lattice constant is -1.8%, biaxial tensile strain There has been applied. 以上のようにして得られたウエハーの基板1の裏面にn側In n-side In the back surface of the substrate 1 of the wafer obtained as described above
電極8、p型InGaAlN層5にAl電極9を蒸着したのち、(11−20)面でへき開し[11−20]方向に長さ約800μmの共振器を形成し半導体レーザを作製する。 After depositing Al electrode 9 to electrode 8, p-type InGaAlN layer 5, to manufacture a semiconductor laser to form a (11-20) plane was cleaved with [11-20] having a length of about 800μm in a direction resonator. 本半導体レーザは室温においてしきい値電流約50mAで連続発振した。 This semiconductor laser was continuously oscillated at a threshold current of about 50mA at room temperature. 発振波長は約450nmであった。 Oscillation wavelength was about 450nm.

【0018】図4に示した半導体レーザは、サファイア基板31の(1−100)面上に、InGaNバッファ層2が成長され、このバッファ層2上にn−InGaA The semiconductor laser shown in FIG. 4, on the (1-100) plane of a sapphire substrate 31, InGaN buffer layer 2 is grown, n-InGaAs on the buffer layer 2
lN層3、アンドープ多重量子井戸活性層4、p−In lN layer 3, an undoped multiple quantum well active layer 4, p-an In
GaAlNクラッド層5が順次積層されて構成されている。 GaAlN cladding layer 5 is formed are sequentially laminated. これらの各層は有機金属気相成長法によりエピタキシャル成長される。 These layers are epitaxially grown by metal organic chemical vapor deposition. ここで量子井戸活性層4は、拡大して示したように、In 0.2 Ga 0.6 Al 0.2 N障壁層(膜厚8nm)6とIn 0.1 Ga 0.9 N井戸層(膜厚4nm) Here the quantum well active layer 4, as shown in an enlarged, In 0.2 Ga 0.6 Al 0.2 N barrier layer (thickness 8 nm) 6 and In 0.1 Ga 0.9 N well layers (thickness 4 nm)
7が交互に2周期積層形成された多重量子井戸構造を有する。 7 has a multiple quantum well structure formed two cycles alternately stacked. ここで井戸層7の組成比は、InGaNバッファ層の格子定数をaとしたとき、これからの格子定数のずれΔa/aが−1.8%となるように設定されており、 Wherein the composition ratio of the well layer 7, when the lattice constant of the InGaN buffer layer was a, is set to shift .DELTA.a / a of future lattice constant is -1.8%,
二軸性の引っ張り歪が印加されている。 Biaxial tensile strain is applied. 以上のようにして得られたウエハーのp−InGaAlNクラッド層5 p-InGaAlN clad layer 5 of the wafer obtained as described above
と量子井戸活性層4の一部をエッチングにより取り除き、n−InGaAlNクラッド層3を露出させ、p− Some of the quantum well active layer 4 was removed by etching to expose the n-InGaAlN clad layer 3 and, p-
クラッド層とn−クラッド層にAl電極9を蒸着したのち、(11−20)面でへき開し[11−20]方向に長さ約800μmの共振器を形成し半導体レーザを作製する。 After depositing Al electrodes 9 on the cladding layer and the n- cladding layer, to manufacture a semiconductor laser to form a (11-20) plane was cleaved with [11-20] having a length of about 800μm in a direction resonator. 本半導体レーザは室温においてしきい値電流約7 This semiconductor laser to about the threshold current at room temperature 7
0mAで連続発振した。 And continuous oscillation at 0mA. 発振波長は約420nmであった。 Oscillation wavelength was about 420nm.

【0019】なお、本発明は、実施例に示したレーザ構造に限らず、さまざまな半導体レーザ、例えば分布帰還型レーザ、ブラッグ反射型レーザ、波長可変レーザ、外部共振器付きレーザにも適用できる。 [0019] The present invention is not limited to the laser structure shown in the examples, it can be applied a variety of semiconductor lasers, for example, distributed feedback lasers, Bragg reflector laser, wavelength tunable laser can be used as a laser with external resonator.

【0020】 [0020]

【発明の効果】以上のように、本発明の窒化ガリウム系化合物半導体発光素子は、面方位が(1−100)面、 As it is evident from the foregoing description, the gallium nitride-based compound semiconductor light-emitting device of the present invention, the surface orientation of (1-100) plane,
あるいは(11−20)面である基体結晶上に二軸性の引っ張り歪をもつ量子井戸活性層を成長し、導波路を[0001]方向に垂直な方向に作製しているので、価電子帯上部の状態密度を小さく、かつ、遷移確率を増大できる。 Or (11-20) to grow a quantum well active layer having a biaxial tensile strain on the surface at which the substrate crystal, the waveguide [0001] Since the produced perpendicular to the direction, the valence band reduce the upper part of the density of states, and can increase the transition probabilities. これにより、利得が増大し、しきい値電流密度を低減できるため、窒化ガリウム系化合物半導体レーザを実現できる。 Thus, the gain is increased, it is possible to reduce the threshold current density can be realized gallium nitride-based compound semiconductor laser.

【0021】 [0021]

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明実施例の半導体レーザの構成図。 Figure 1 is a configuration diagram of a semiconductor laser of the present invention embodiment.

【図2】本発明実施例の半導体レーザの構成図。 Figure 2 is a configuration diagram of a semiconductor laser of the present invention embodiment.

【図3】本発明実施例の半導体レーザの構成図。 Figure 3 is a configuration diagram of a semiconductor laser of the present invention embodiment.

【図4】本発明実施例の半導体レーザの構成図。 Figure 4 is a configuration diagram of a semiconductor laser of the present invention embodiment.

【図5】歪の無い場合のウルツ鉱型GaNの価電子帯上部のエネルギー分散を示す図。 FIG. 5 is a diagram showing the energy distribution of the valence band top of the wurtzite-type GaN in the absence of distortion. .

【図6】2%二軸性引っ張り歪を印加した場合のウルツ鉱型GaNの価電子帯上部のエネルギー分散を示す図。 [6] 2% biaxial tensile diagram showing an energy distribution of the valence band top of the wurtzite GaN in a case of applying a distortion.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…(1−100)面n型ZnO基板、2…InGaN 1 ... (1-100) plane n-type ZnO substrate, 2 ... InGaN
バッファ層、3…n−InGaAlN層、4…アンドープ多重量子井戸活性層、5…p−InGaAlN層、6 Buffer layer, 3 ... n-InGaAlN layer, 4 ... undoped multi-quantum well active layer, 5 ... p-InGaAlN layer, 6
…In 0.2 Ga 0.6 Al 0.2 N障壁層、7…In 0.1 Ga ... In 0.2 Ga 0.6 Al 0.2 N barrier layer, 7 ... In 0.1 Ga
0.9 N井戸層、8…In電極、9…Al電極、11…I 0.9 N well layer, 8 ... an In electrode, 9 ... Al electrode, 11 ... I
nGaN組成傾斜層、12…In 0.5 Ga 0.5 Nバッファ層、13…n−InGaAlN層、14…アンドープ多重量子井戸活性層、15…p−InGaAlN層、16 nGaN composition gradient layer, 12 ... In 0.5 Ga 0.5 N buffer layer, 13 ... n-InGaAlN layer, 14 ... undoped multi-quantum well active layer, 15 ... p-InGaAlN layer, 16
…In 0.35 Ga 0.5 Al 0.15 N障壁層、17…In 0.2 ... In 0.35 Ga 0.5 Al 0.15 N barrier layer, 17 ... In 0.2 G
0.8 N井戸層、21…アンドープ単一量子井戸活性層、22…GaN 0.95 As 0.05井戸層、23…In 0.2 a 0.8 N well layers, 21 ... undoped single quantum well active layer, 22 ... GaN 0.95 As 0.05 well layers, 23 ... an In 0.2
Ga 0.6 Al 0.2 N障壁層、31…サファイア基板。 Ga 0.6 Al 0.2 N barrier layer, 31 ... sapphire substrate.

フロントページの続き (72)発明者 田中 俊明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 渡辺 明禎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 Of the front page Continued (72) inventor Toshiaki Tanaka Tokyo Kokubunji Higashikoigakubo 1-chome 280 address Hitachi, Ltd. center within the Institute (72) inventor Watanabe AkiraTadashi Tokyo Kokubunji Higashikoigakubo 1-chome 280 address Hitachi Central Research house

Claims (6)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】少なくとも化合物半導体で構成され、ウルツ鉱構造をもつ第一の結晶上に、第一導電型及び第二導電型の二層のクラッド層と、上記クラッド層に挟まれた量子井戸活性層をエピタキシャル成長してなる半導体発光素子であって、上記量子井戸活性層が(1−100) 1. A composed of at least a compound semiconductor, on a first crystal having a wurtzite structure, and the cladding layer of the first conductivity type and the second conductivity type having a two-layer, a quantum well sandwiched between the cladding layer the active layer is a semiconductor light emitting element formed by epitaxial growth, the quantum well active layer (1-100)
    面から10度以内のずれを有する面、あるいはこれと等価な面上に形成されており、上記量子井戸活性層の井戸層が、二軸性応力の無い状態での格子定数が上記第一の結晶の格子定数より小さい材料で構成されていることを特徴とする半導体発光素子。 Surface has a deviation of less than 10 degrees from the plane has or is formed to an equivalent on the surface, the well layer of the quantum well active layer, the lattice constant of the first in the absence of biaxial stress the semiconductor light emitting element characterized in that it is composed of material having a low lattice constant of the crystal.
  2. 【請求項2】少なくとも化合物半導体で構成され、ウルツ鉱構造をもつ第一の結晶上に、第一導電型及び第二導電型の二層のクラッド層と、上記クラッド層に挟まれた量子井戸活性層をエピタキシャル成長してなる半導体発光素子であって、上記量子井戸活性層が(11−20) 2. A composed of at least a compound semiconductor, on a first crystal having a wurtzite structure, and the cladding layer of the first conductivity type and the second conductivity type having a two-layer, a quantum well sandwiched between the cladding layer the active layer is a semiconductor light emitting element formed by epitaxial growth, the quantum well active layer (11-20)
    面から10度以内のずれを有する面、あるいはこれと等価な面上に形成されており、上記量子井戸活性層の井戸層が、二軸性応力の無い状態での格子定数が上記第一の結晶の格子定数より小さい材料で構成されていることを特徴とする半導体発光素子。 Surface has a deviation of less than 10 degrees from the plane has or is formed to an equivalent on the surface, the well layer of the quantum well active layer, the lattice constant of the first in the absence of biaxial stress the semiconductor light emitting element characterized in that it is composed of material having a low lattice constant of the crystal.
  3. 【請求項3】特許請求の範囲第1〜2項に記載の半導体発光素子において、[0001]方向と垂直な方向に導波路が形成されていることを特徴とする半導体発光素子。 3. A semiconductor light emitting device according to a 1-2 wherein the appended claims, the semiconductor light emitting device characterized by being formed waveguides [0001] direction perpendicular to the direction.
  4. 【請求項4】特許請求の範囲第1〜3項に記載の半導体発光素子において、上記量子井戸活性層がInxGayA 4. The semiconductor light-emitting device according to the first to third paragraph claims, the quantum well active layer is InxGayA
    l1-x-yNzAs1-z(0<x≦1、0<y≦1、0<z l1-x-yNzAs1-z (0 <x ≦ 1,0 <y ≦ 1,0 <z
    ≦1)で構成されていることを特徴とする半導体発光素子。 The semiconductor light emitting element characterized in that it is composed of ≦ 1).
  5. 【請求項5】特許請求の範囲第1〜4項記載の半導体発光素子において、上記第一の結晶がZnO基板上にエピタキシャル成長されていることを特徴とする半導体発光素子。 5. A semiconductor light-emitting device of Patent recited first to fourth term range, the semiconductor light emitting element, characterized in that said first crystal is epitaxially grown on a ZnO substrate.
  6. 【請求項6】特許請求の範囲第1〜5項記載の半導体発光素子において、発振波長が350nm〜550nmであることを特徴とする半導体発光素子。 6. The semiconductor light emitting device in the range first to fifth claim of claims semiconductor light emitting device characterized by oscillation wavelength is 350Nm~550nm.
JP27232195A 1995-10-20 1995-10-20 Semiconductor light emitting device Pending JPH09116225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27232195A JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27232195A JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH09116225A true JPH09116225A (en) 1997-05-02

Family

ID=17512259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27232195A Pending JPH09116225A (en) 1995-10-20 1995-10-20 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH09116225A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039827A1 (en) * 1997-03-07 1998-09-11 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6640463B1 (en) 1999-09-03 2003-11-04 Wabco Automotive Uk Limited Vehicle air supply systems
JP2005522888A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar (Al, B, In, Ga) N quantum well and heterostructure materials and devices,
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
JP2008066550A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP2008078311A (en) * 2006-09-20 2008-04-03 Toshiba Corp Nitride semiconductor laser device
JP2008198743A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor laser diode
JP2009071127A (en) * 2007-09-14 2009-04-02 Kyoto Univ Nitride semiconductor laser element
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element
US20110062864A1 (en) * 1996-07-29 2011-03-17 Yoshinori Shimizu Light emitting device and display

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304790B2 (en) 1995-11-06 2012-11-06 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166869B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US7166874B2 (en) 1995-11-06 2007-01-23 Nichia Corporation Nitride semiconductor with active layer of quantum well structure with indium-containing nitride semiconductor
US9130130B2 (en) 1996-07-29 2015-09-08 Nichia Corporation Light emitting device and display comprising a plurality of light emitting components on mount
US8679866B2 (en) * 1996-07-29 2014-03-25 Nichia Corporation Light emitting device and display
US20110062864A1 (en) * 1996-07-29 2011-03-17 Yoshinori Shimizu Light emitting device and display
US6956882B2 (en) 1997-03-07 2005-10-18 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
WO1998039827A1 (en) * 1997-03-07 1998-09-11 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US6377597B1 (en) 1997-03-07 2002-04-23 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US7183569B2 (en) 1997-03-07 2007-02-27 Sharp Kabushiki Kaisha Gallium nitride semiconductor light emitting device having multi-quantum-well structure active layer, and semiconductor laser light source device
US6940100B2 (en) 1999-01-07 2005-09-06 Matsushita Electric Industrial Co., Ltd. Group III-V nitride semiconductor light-emitting device which allows for efficient injection of electrons into an active layer
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6640463B1 (en) 1999-09-03 2003-11-04 Wabco Automotive Uk Limited Vehicle air supply systems
US9039834B2 (en) 2002-04-15 2015-05-26 The Regents Of The University Of California Non-polar gallium nitride thin films grown by metalorganic chemical vapor deposition
KR101288489B1 (en) * 2002-04-15 2013-07-26 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Non-polar (Al,B,In,Ga)N Quantum Well and Heterostructure Materials and Devices
JP2005522888A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar (Al, B, In, Ga) N quantum well and heterostructure materials and devices,
US8188458B2 (en) 2002-04-15 2012-05-29 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US7982208B2 (en) 2002-04-15 2011-07-19 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
JP2017011278A (en) * 2002-04-15 2017-01-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア NON-POLAR (Al, B, In, Ga)N QUANTUM WELL, HETEROSTRUCTURE MATERIAL, AND DEVICE
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
JP2007096331A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Substrate for growing group iii-v light-emitting device
JP2007096330A (en) * 2005-09-27 2007-04-12 Philips Lumileds Lightng Co Llc Group iii-v light-emitting device
US8222658B2 (en) 2006-09-08 2012-07-17 The Furukawa Electric Co., Ltd. Semiconductor light emitting element and method of manufacturing therefor
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
JP2008066550A (en) * 2006-09-08 2008-03-21 Furukawa Electric Co Ltd:The Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
JP2008078311A (en) * 2006-09-20 2008-04-03 Toshiba Corp Nitride semiconductor laser device
JP2008198743A (en) * 2007-02-09 2008-08-28 Furukawa Electric Co Ltd:The Semiconductor laser diode
JP2009071127A (en) * 2007-09-14 2009-04-02 Kyoto Univ Nitride semiconductor laser element
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element

Similar Documents

Publication Publication Date Title
US7235816B2 (en) Semiconductor light emitter
CN102782966B (en) Semipolar III- nitride optoelectronic device in the wrong direction at the C- cut of less than +/- 15 degrees m- plane substrate
CA2344391C (en) Vertical geometry ingan led
US6548834B2 (en) Semiconductor light emitting element
US6920166B2 (en) Thin film deposition method of nitride semiconductor and nitride semiconductor light emitting device
EP1022825B1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
US8357925B2 (en) Optoelectronic device based on non-polar and semi-polar aluminum indium nitride and aluminum indium gallium nitride alloys
US8013356B2 (en) Semiconductor light emitting device
CN1259734C (en) Nitride semiconductor, production method therefor and nitride semiconductor element
US7365369B2 (en) Nitride semiconductor device
JP5363996B2 (en) Al (x) Ga (1-x) N cladding-free nonpolar III-nitride based laser diodes and light emitting diodes
CN1203598C (en) The nitride semiconductor laser
US20100195687A1 (en) Semiconductor laser device
US6738175B2 (en) Light emitting device
US6835956B1 (en) Nitride semiconductor device and manufacturing method thereof
US20020110172A1 (en) Efficiency GaN-based light emitting devices
CN1160801C (en) Nitride semiconductor device
US6100106A (en) Fabrication of nitride semiconductor light-emitting device
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP4032803B2 (en) Gallium nitride-based compound semiconductor device and a manufacturing method thereof
JP3864735B2 (en) The semiconductor light emitting device and a manufacturing method thereof
US8017932B2 (en) Light-emitting device
JP2956489B2 (en) Gallium nitride-based compound semiconductor crystal growth method
JP3728332B2 (en) Compound semiconductor light-emitting device
JP4173445B2 (en) Nitride semiconductor substrate, a method of manufacturing the same, and a semiconductor light-emitting device using the same