JPH10303459A - Gallium nitride based semiconductor light emitting element and its manufacture - Google Patents

Gallium nitride based semiconductor light emitting element and its manufacture

Info

Publication number
JPH10303459A
JPH10303459A JP10551597A JP10551597A JPH10303459A JP H10303459 A JPH10303459 A JP H10303459A JP 10551597 A JP10551597 A JP 10551597A JP 10551597 A JP10551597 A JP 10551597A JP H10303459 A JPH10303459 A JP H10303459A
Authority
JP
Japan
Prior art keywords
layer
substrate
quantum well
gan
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10551597A
Other languages
Japanese (ja)
Other versions
JP3880683B2 (en
Inventor
Toshiyuki Okumura
敏之 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10551597A priority Critical patent/JP3880683B2/en
Publication of JPH10303459A publication Critical patent/JPH10303459A/en
Application granted granted Critical
Publication of JP3880683B2 publication Critical patent/JP3880683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain excellent laser oscillation characteristics which are uniform in a substrate wafer surface, by defining the thickness of a substrate at the time of forming a quantum well structure active layer composed of nitride semiconductor containing indium and gallium. SOLUTION: The thickness of a semi-insulating GaN substrate at the time of forming a quantum well structure active layer 6 is made thicker than or equal to 5 μm and thinner than or equal to 50 μm, and temperature difference between the bottom surface and the upper surface of a substrate 1 at the time of growing crystal of InGaN is cancelled. The warp of a substrate wafer at the time of crystal growth is restrained, so that the whole bottom surface of the substrate wafer comes into contact with a heat generating member, and the distribution of surface temperature in the substrate wafer surface is restrained. As a result, the distribution of light emitting characteristics from the quantum well structure active layer 6 is improved, and a gallium nitride based semiconductor laser element wherein oscillation wavelength is uniform in the substrate wafer surface and oscillation threshold current value is low, and a gallium nitride based light emitting diode element wherein emission wavelength is uniform in the substrate wafer surface are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化ガリウム系半導
体発光素子及びその製造方法に係り、特に、窒化物半導
体よりなる量子井戸構造活性層を備えた窒化ガリウム系
発光素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium nitride based semiconductor light emitting device and a method of manufacturing the same, and more particularly, to a gallium nitride based light emitting device having a quantum well structure active layer made of a nitride semiconductor and a method of manufacturing the same.

【0002】[0002]

【従来の技術】紫外から緑色の波長領域での発光波長を
有する半導体レーザ素子(LD)や発光ダイオード素子
(LED)等の半導体材料として、窒化ガリウム系半導
体(GaInAlN)が用いられている。これらの発光
素子を作製するための基板としては、サファイア基板や
GaN基板等が用いられており、これらの基板の上に有
機金属気相成長法(MOCVD法)や分子線エピタキシ
ー法(MBE法)等の気相成長法により窒化ガリウム系
半導体からなる発光部を形成している。サファイア基板
を用いた場合の気相成長法による窒化ガリウム系半導体
を形成する際の基板の厚さとしては、例えば特開平5−
166923号公報に記載されており、通常300〜5
00μmの厚さが用いられていた。またGaN基板を用
いた場合は、例えば特開平7−94784号公報に記載
されており、気相成長法による窒化ガリウム系半導体を
形成する際の基板の厚さとしては特にこだわらず、50
μm〜500μmを好ましい厚さとして用いられてい
た。
2. Description of the Related Art A gallium nitride based semiconductor (GaInAlN) is used as a semiconductor material for a semiconductor laser device (LD) or a light emitting diode device (LED) having an emission wavelength in a wavelength range from ultraviolet to green. A sapphire substrate, a GaN substrate, or the like is used as a substrate for manufacturing these light-emitting elements, and a metal organic chemical vapor deposition (MOCVD) or a molecular beam epitaxy (MBE) is formed on these substrates. A light emitting portion made of a gallium nitride-based semiconductor is formed by a vapor phase growth method such as described above. When a gallium nitride-based semiconductor is formed by a vapor phase growth method using a sapphire substrate, the thickness of the substrate is, for example, disclosed in
No. 166923, and usually 300 to 5
A thickness of 00 μm was used. When a GaN substrate is used, it is described in, for example, JP-A-7-94784, and the thickness of the substrate when a gallium nitride-based semiconductor is formed by a vapor phase growth method is not particularly limited.
μm to 500 μm have been used as preferred thicknesses.

【0003】一方最近では、このような窒化ガリウム系
半導体による発光素子の活性層として、量子井戸構造が
用いられている。例えば青色LDは、Applied
Physics Letters,vol.69,N
o.10,p.1477〜1479に記載されており、
その断面図を図7に示す。図7において、101はサフ
ァイア基板、102はGaNバッファ層、103はn−
GaNコンタクト層、104はn−In0.05Ga0.95
層、105はn−Al0.05Ga0.95Nクラッド層、10
6はn−GaNガイド層、107はIn0.2Ga0.8N量
子井戸層とIn0.05Ga0.95N障壁層とからなる多重量
子井戸構造活性層、108はp−Al0.2Ga0.8N層、
109はp−GaNガイド層、110はp−Al0.05
0.95Nクラッド層、111はp−GaNコンタクト
層、112はp側電極、113はn側電極、114はS
iO2絶縁膜である。ここで、多重量子井戸構造活性層
107は、3nm厚のIn0.2Ga0.8N量子井戸層が5
層、6nm厚のIn0.05Ga0.95N障壁層が4層、の合
計9層で構成され、量子井戸層と障壁層が交互に形成さ
れている。またこれらの結晶成長時の温度は、GaNバ
ッファ層102が510℃、多重量子井戸構造活性層1
07が830℃、これら以外の各層は1020℃であ
る。この他、特開平8−316528号公報にも同様に
量子井戸構造活性層を有する窒化ガリウム系半導体を用
いた青色LDが記載されているが、これらはいずれも結
晶成長時における基板の厚さについては特にこだわらず
に作成されていた。
On the other hand, recently, a quantum well structure has been used as an active layer of such a gallium nitride based semiconductor light emitting device. For example, a blue LD is Applied
Physics Letters, vol. 69, N
o. 10, p. 1477-1479,
FIG. 7 shows a cross-sectional view thereof. In FIG. 7, 101 is a sapphire substrate, 102 is a GaN buffer layer, and 103 is n-
GaN contact layer 104 is n-In 0.05 Ga 0.95 N
Layer 105, n-Al 0.05 Ga 0.95 N cladding layer, 10
6 is an n-GaN guide layer, 107 is a multiple quantum well structure active layer composed of an In 0.2 Ga 0.8 N quantum well layer and an In 0.05 Ga 0.95 N barrier layer, 108 is a p-Al 0.2 Ga 0.8 N layer,
109 is a p-GaN guide layer, 110 is p-Al 0.05 G
a 0.95 N cladding layer, 111 is a p-GaN contact layer, 112 is a p-side electrode, 113 is an n-side electrode, 114 is S
It is an iO 2 insulating film. Here, the multi-quantum well structure active layer 107 is composed of 5 nm thick In 0.2 Ga 0.8 N quantum well layers.
The barrier layer is composed of a total of 9 layers, that is, four layers of In 0.05 Ga 0.95 N barrier layers having a thickness of 6 nm, and quantum well layers and barrier layers are formed alternately. The temperature during the crystal growth is 510 ° C. for the GaN buffer layer 102, and the multiple quantum well structure active layer 1
07 is 830 ° C., and other layers are 1020 ° C. In addition, Japanese Patent Application Laid-Open No. 8-316528 similarly discloses a blue LD using a gallium nitride-based semiconductor having a quantum well structure active layer. Was created without particular attention.

【0004】また青色LEDは、例えば、上記の特開平
8−316528号公報に記載されており、その断面図
を図8に示す。図8において、121はサファイア基
板、122はGaNバッファ層、123はn−GaNコ
ンタクト層、124はn−Al0.3Ga0.7N第2n型ク
ラッド層、125はn−In0.01Ga0.99GaN第1n
型クラッド層、126は3nm厚のIn0.05Ga0.95
単一量子井戸構造活性層、127はp−In0.01Ga
0.99GaN第1p型クラッド層、128はp−Al0.3
Ga0.7N第2p型クラッド層、129はp−GaNコ
ンタクト層、130はp側電極、131はn側電極あ
る。これらの結晶成長時の温度は、GaNバッファ層1
22が500℃、単一量子井戸構造活性層126が80
0℃、これら以外の各層は1050℃である。このよう
な青色LEDにおいても、結晶成長時における基板の厚
さについては特にこだわらず作成されていた。
A blue LED is described, for example, in the above-mentioned Japanese Patent Application Laid-Open No. 8-316528, and a cross-sectional view thereof is shown in FIG. 8, 121 is a sapphire substrate, 122 is a GaN buffer layer, 123 is an n-GaN contact layer, 124 is an n-Al 0.3 Ga 0.7 N second n-type cladding layer, and 125 is n-In 0.01 Ga 0.99 GaN first n
Type cladding layer 126 is 3 nm thick In 0.05 Ga 0.95 N
Single quantum well structure active layer, 127 is p-In 0.01 Ga
0.99 GaN first p-type cladding layer, 128 is p-Al 0.3
Ga 0.7 N second p-type cladding layer, 129 is a p-GaN contact layer, 130 is a p-side electrode, and 131 is an n-side electrode. The temperature during the growth of these crystals depends on the GaN buffer layer 1
22 is 500 ° C., and the single quantum well structure active layer 126 is 80 ° C.
The temperature is 0 ° C., and that of each of the other layers is 1050 ° C. Also in such a blue LED, the thickness of the substrate at the time of crystal growth has been produced without particular consideration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、量子井
戸構造活性層を用いた従来の青色LD及び青色LED素
子には、結晶成長時に用いた基板ウェハーの面内での発
光特性の分布が非常に大きいという問題点があった。す
なわち青色LDでは発振波長が基板ウェハーの中心部分
と周辺部分で大きく異なり、所望の発振波長を得るため
の歩留まりが大きく低下してしまう。例えば直径2イン
チのサファイア基板を使用した場合、発振波長は基板ウ
ェハーの中心部と周辺部とで150nmもの違いを生じ
ていた。さらに、従来の青色LDは発振閾値電流値が1
00mA以上と高く、光ディスク等の情報処理用として
実用に供するためには大幅に発振閾値電流値を低減する
必要があった。
However, conventional blue LDs and blue LED elements using a quantum well structure active layer have a very large distribution of light emission characteristics in the plane of a substrate wafer used during crystal growth. There was a problem. That is, in a blue LD, the oscillation wavelength greatly differs between the central portion and the peripheral portion of the substrate wafer, and the yield for obtaining a desired oscillation wavelength is greatly reduced. For example, when a sapphire substrate having a diameter of 2 inches is used, the oscillation wavelength has a difference of 150 nm between the central portion and the peripheral portion of the substrate wafer. Furthermore, the conventional blue LD has an oscillation threshold current value of 1
Since it is as high as 00 mA or more, it has been necessary to drastically reduce the oscillation threshold current value for practical use for information processing of optical disks and the like.

【0006】また、青色LEDに関してはすでに実用化
されているものの、やはり青色LDと同様に発光波長が
基板ウェハーの中心部分と周辺部分で大きく異なり、所
望の発光波長を得るための歩留まりが大きく低下してし
まうという問題がある。LEDを用いた大型のフルカラ
ーディスプレーのように、同一の発光波長を有するLE
Dを大量に必要とするような用途の場合、発光波長の面
内分布が大きいことにより青色LEDの歩留まりが低下
してしまうと、フルカラーディスプレーのコストの増大
につながってしまう。このため、歩留まりよく同一の発
光波長で作製できる青色LEDの実現が望まれていた。
Although blue LEDs have already been put into practical use, the emission wavelengths are significantly different between the central portion and the peripheral portion of the substrate wafer as in the case of the blue LD, and the yield for obtaining the desired emission wavelength is greatly reduced. There is a problem of doing it. LEs with the same emission wavelength, like a large full-color display using LEDs
In an application that requires a large amount of D, if the yield of blue LEDs is reduced due to the large in-plane distribution of the emission wavelength, the cost of a full-color display will increase. For this reason, realization of a blue LED that can be manufactured with the same emission wavelength with high yield has been desired.

【0007】本発明は以上のような事情に鑑みてなされ
たものであり、上記窒化ガリウム系半導体発光素子にお
ける課題を解決して、基板ウェハー面内において均一で
良好なレーザ発振特性を有する半導体レーザ素子とその
製造方法、及び、基板ウェハー面内で発光波長が均一な
発光ダイオード素子とその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and solves the above-mentioned problems in the gallium nitride-based semiconductor light emitting device to provide a semiconductor laser having uniform and good laser oscillation characteristics within the surface of a substrate wafer. It is an object of the present invention to provide an element and a method of manufacturing the same, and a light emitting diode element having a uniform emission wavelength within a substrate wafer surface and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る窒化ガリウム系半導体発光素子は、気
相成長法により、窒化物半導体からなるクラッド層及び
/又はガイド層に挟まれた、少なくともインジウムとガ
リウムを含む窒化物半導体からなる量子井戸構造活性層
を形成する際の基板の厚さを、5μm以上50μm以下
とすることにより製造される。
In order to achieve the above object, a gallium nitride based semiconductor light emitting device according to the present invention is sandwiched between a cladding layer and / or a guide layer made of a nitride semiconductor by a vapor growth method. It is manufactured by setting the thickness of a substrate when forming a quantum well structure active layer made of a nitride semiconductor containing at least indium and gallium to 5 μm or more and 50 μm or less.

【0009】このような本発明を見い出すにあたって、
本発明者は従来素子における前記課題の原因について詳
細に調査を行い、その結果、量子井戸層を形成する際の
結晶成長時における基板ウェハーの面内での表面温度の
分布により、基板ウェハーの面内での発光特性の分布が
生じていることが判明した。すなわち、窒化ガリウム系
半導体発光素子において量子井戸層として用いられるI
nGaN材料は、InGaNが形成される基板表面の温
度によってIn組成が大きく変化する。特にInGaN
の結晶成長を開始した直後は、基板表面の温度によるI
n組成の変化が大きくなっている。従って、層厚が非常
に薄い量子井戸層をInGaNで形成する場合は、In
GaNの結晶成長を開始した直後の影響が大きくなく、
基板表面温度が低下すると急激にIn組成が大きくなっ
てしまうことがわかった。InGaN材料においてはI
n組成によって発光波長が変化するため、In組成が大
きくなると発光波長は長波長化してしまう。
In finding such a present invention,
The present inventor has conducted a detailed investigation on the cause of the problem in the conventional device, and as a result, the distribution of the surface temperature within the surface of the substrate wafer during the crystal growth when forming the quantum well layer revealed that It was found that a distribution of the light emission characteristics occurred in the inside. That is, I used as a quantum well layer in a gallium nitride based semiconductor light emitting device
In the nGaN material, the In composition greatly changes depending on the temperature of the substrate surface on which InGaN is formed. Especially InGaN
Immediately after the crystal growth of
The change in n composition is large. Therefore, when a quantum well layer having a very small thickness is formed of InGaN,
The effect immediately after starting the crystal growth of GaN is not significant,
It has been found that when the substrate surface temperature decreases, the In composition rapidly increases. In InGaN materials, I
Since the emission wavelength changes depending on the n composition, the emission wavelength becomes longer as the In composition increases.

【0010】さらに、基板ウェハー面内での表面温度の
分布は、結晶成長時の基板の反りによる不均一な熱伝導
が影響していることが判明した。窒化ガリウム系半導体
の結晶成長では基板ウェハーの温度を500℃〜110
0℃に上昇して結晶成長を行っているが、基板の温度を
上昇するには基板の底面に接した発熱体からの熱伝導に
より基板の温度を上昇させている。この場合、基板の厚
さが50μm以上である従来の窒化ガリウム系半導体発
光素子では、基板が厚いために基板の底面と表面とで温
度差が生じ、底面の方が表面よりも温度が高くなる。そ
の結果、基板の底面は表面に比べて熱膨張が大きくな
り、図9に示されるように基板ウェハー130が反って
しまい、中心部のみが発熱体131に接して周辺部が発
熱体から離れた状態になってしまう。従って、周辺部へ
は発熱体からの熱が伝わりにくくなり、中心部に比べて
周辺部の温度は低くなっている。このためInGaNを
結晶成長した際に周辺部ではIn組成が大きくなり、基
板ウェハーの面内での発光特性の分布を引き起こしてい
た。
Further, it has been found that the distribution of the surface temperature in the substrate wafer surface is affected by uneven heat conduction due to the warpage of the substrate during crystal growth. In crystal growth of a gallium nitride based semiconductor, the temperature of the substrate wafer is set to 500 ° C. to 110 ° C.
Although the crystal growth is performed at 0 ° C., the temperature of the substrate is increased by heat conduction from a heating element in contact with the bottom surface of the substrate to increase the temperature of the substrate. In this case, in a conventional gallium nitride based semiconductor light emitting device having a substrate thickness of 50 μm or more, a temperature difference occurs between the bottom surface and the surface of the substrate because the substrate is thick, and the bottom surface has a higher temperature than the surface. . As a result, the bottom surface of the substrate has a larger thermal expansion than the surface, and the substrate wafer 130 is warped as shown in FIG. 9, and only the center portion is in contact with the heating element 131 and the peripheral portion is separated from the heating element. It will be in a state. Therefore, heat from the heating element is less likely to be transmitted to the peripheral portion, and the temperature of the peripheral portion is lower than that of the central portion. For this reason, when InGaN is crystal-grown, the In composition becomes large in the peripheral portion, causing a distribution of the light emission characteristics in the plane of the substrate wafer.

【0011】すなわち、青色LDでは発振波長がInG
aN量子井戸構造活性層のIn組成で決まるために、基
板ウェハーの中心部分と周辺部分でIn組成が異なるこ
とによって発振波長が大きく異なり、所望の発振波長を
得るための歩留まりが大きく低下してしまっていた。さ
らに、1個の青色LD素子の共振器構造の内部でもIn
GaN量子井戸層のIn組成に分布が生じているため、
一定の発光波長で得られる光利得が小さくなって、発振
閾値電流を増大させていた。一方、青色LEDに関して
も青色LDと同様に発光波長が基板ウェハーの中心部分
と周辺部分で大きく異なり、所望の発光波長を得るため
の歩留まりが大きく低下してしまっていた。
That is, in a blue LD, the oscillation wavelength is InG.
Since the In composition of the aN quantum well structure active layer is determined by the In composition in the central portion and the peripheral portion of the substrate wafer, the oscillating wavelength varies greatly due to the difference in In composition, and the yield for obtaining a desired oscillating wavelength is greatly reduced. I was Furthermore, the In inside the resonator structure of one blue LD element also
Since the distribution of the In composition of the GaN quantum well layer occurs,
The optical gain obtained at a constant emission wavelength is reduced, and the oscillation threshold current is increased. On the other hand, the emission wavelength of the blue LED is significantly different between the central portion and the peripheral portion of the substrate wafer, similarly to the blue LD, and the yield for obtaining the desired emission wavelength has been greatly reduced.

【0012】従って本発明では、気相成長法により、窒
化物半導体からなるクラッド層及び/又はガイド層に挟
まれた、少なくともインジウムとガリウムを含む窒化物
半導体からなる量子井戸構造活性層を形成する際の基板
の厚さを、5μm以上50μm以下と薄くすることによ
り、InGaNを結晶成長する際の基板の底面と表面と
の温度差が無くなり、結晶成長時における基板ウェハー
の反りが抑えられることによって基板ウェハーは底面全
体で発熱体と接することになるため、基板ウェハー面内
での表面温度の分布が抑えられた。
Therefore, according to the present invention, a quantum well structure active layer made of a nitride semiconductor containing at least indium and gallium sandwiched between a clad layer and / or a guide layer made of a nitride semiconductor is formed by a vapor phase growth method. By reducing the thickness of the substrate at this time to 5 μm or more and 50 μm or less, the temperature difference between the bottom surface and the surface of the substrate when growing InGaN crystal is eliminated, and the warpage of the substrate wafer during crystal growth is suppressed. Since the substrate wafer comes into contact with the heating element on the entire bottom surface, the distribution of the surface temperature in the surface of the substrate wafer was suppressed.

【0013】さらに、基板ウェハー面内での表面温度の
分布を引き起こす基板の反りは、結晶成長時の基板の厚
さだけではなく、基板上に形成した窒化ガリウム系半導
体と基板との熱膨張係数の違いにも起因している。すな
わち従来例のように、基板上に約1050℃で窒化ガリ
ウム系半導体からなるクラッド層等を形成した後、In
GaN量子井戸構造活性層を形成するために基板温度を
約800℃に下げる際に、基板とその基板上に形成され
た窒化ガリウム系半導体との熱膨張係数の違いによって
基板が反ってしまい、基板ウェハー面内での表面温度の
分布を引き起こしていた。
Further, the warpage of the substrate causing the surface temperature distribution in the surface of the substrate wafer is caused not only by the thickness of the substrate during crystal growth but also by the coefficient of thermal expansion between the gallium nitride based semiconductor formed on the substrate and the substrate. It is also caused by the difference. That is, as in the conventional example, after forming a cladding layer or the like made of a gallium nitride based semiconductor on a substrate at about 1050 ° C.,
When the substrate temperature is lowered to about 800 ° C. to form a GaN quantum well structure active layer, the substrate warps due to the difference in thermal expansion coefficient between the substrate and the gallium nitride based semiconductor formed on the substrate, This caused a surface temperature distribution in the plane of the wafer.

【0014】従って本発明によれば、基板として窒化ガ
リウムを用いることにより、基板上に形成される半導体
層と基板との熱膨張係数の違いが小さくなり、熱歪みに
よるウェハーの反りも抑えられ基板ウェハーの面内での
表面温度の分布がさらに改善された。
Therefore, according to the present invention, by using gallium nitride as the substrate, the difference in the coefficient of thermal expansion between the semiconductor layer formed on the substrate and the substrate is reduced, and the warpage of the wafer due to thermal strain is suppressed. The surface temperature distribution in the plane of the wafer was further improved.

【0015】以上の結果、InGaN量子井戸構造活性
層からの発光特性の分布が改善され、基板ウェハー面内
において発振波長が均一で発振閾値電流値が低い窒化ガ
リウム系半導体レーザ素子と、基板ウェハー面内で発光
波長が均一な窒化ガリウム系発光ダイオード素子が実現
できた。
As a result, the gallium nitride-based semiconductor laser device having an improved emission characteristic distribution from the InGaN quantum well structure active layer, a uniform oscillation wavelength within the substrate wafer surface and a low oscillation threshold current value, and a substrate wafer surface A gallium nitride-based light-emitting diode device having a uniform emission wavelength within the device was realized.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(発明の実施の形態1)図1は本発明の第1の実施例に
係る窒化ガリウム系半導体レーザ素子を示す断面図であ
り、図2は図1中のA部を拡大した断面図である。この
図において、1はc面を表面として有し厚さが40μ
m、直径が2インチである半絶縁性GaN基板、2はノ
ンドープGaNバッファ層、3はn−GaNn型コンタ
クト層、4はn−Al0.1Ga0.9Nn型クラッド層、5
はn−GaNガイド層、6は2層のIn0.2Ga0.8N量
子井戸層14と1層のIn0.05Ga0.95N障壁層15と
からなる多重量子井戸構造活性層、7はAl0.2Ga0.8
N蒸発防止層、8はp−GaNガイド層、9はp−Al
0.1Ga0.9Np型クラッド層、10はp−GaNp型コ
ンタクト層、11はp側電極、12はn側電極、13は
SiO2絶縁膜である。
(Embodiment 1) FIG. 1 is a sectional view showing a gallium nitride based semiconductor laser device according to a first embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a portion A in FIG. . In this figure, 1 has a c-plane as a surface and a thickness of 40 μm.
m, a semi-insulating GaN substrate having a diameter of 2 inches, 2 a non-doped GaN buffer layer, 3 an n-GaN n-type contact layer, 4 an n-Al 0.1 Ga 0.9 Nn clad layer, 5
Is an n-GaN guide layer, 6 is a multiple quantum well structure active layer composed of two In 0.2 Ga 0.8 N quantum well layers 14 and one In 0.05 Ga 0.95 N barrier layer 15, and 7 is Al 0.2 Ga 0.8
N evaporation prevention layer, 8 is a p-GaN guide layer, 9 is p-Al
0.1 Ga 0.9 Np-type clad layer, 10 is a p-GaN p-type contact layer, 11 is a p-side electrode, 12 is an n-side electrode, and 13 is a SiO 2 insulating film.

【0017】本実施例において、半絶縁性GaN基板1
の厚さを40μmとしたが、5μmから50μmの間で
あればこの厚さにこだわらない。また基板の表面はa面
等の他の面方位であっても構わない。
In this embodiment, the semi-insulating GaN substrate 1
Was set to 40 μm, but the thickness is not particularly limited as long as it is between 5 μm and 50 μm. The surface of the substrate may have another plane orientation such as the a-plane.

【0018】ノンドープGaNバッファ層2は、半絶縁
性GaN基板1の表面状態の変質によってその上に形成
する窒化ガリウム系半導体発光部の結晶性が低下するこ
とを防ぐためのものであるが、半絶縁性GaN基板1の
表面状態が良好に保たれていればバッファ層2は無くて
もよい。またバッファ層2の材料は、その上に窒化ガリ
ウム系半導体をエピタキシャル成長させることが出来る
ものであればGaNにこだわらず他の材料、例えばAl
NやAlGaN3元混晶等を用いてもよい。
The non-doped GaN buffer layer 2 is for preventing the gallium nitride based semiconductor light emitting portion formed thereon from deteriorating due to the deterioration of the surface state of the semi-insulating GaN substrate 1. The buffer layer 2 may not be provided as long as the surface state of the insulating GaN substrate 1 is kept good. The material of the buffer layer 2 is not limited to GaN as long as a gallium nitride-based semiconductor can be epitaxially grown thereon.
N or AlGaN ternary mixed crystal may be used.

【0019】n型クラッド層4及びp型クラッド層9
は、n−Al0.1Ga0.9N以外のAl組成を持つAlG
aN3元混晶でもよい。この場合Al組成を大きくする
と活性層とクラッド層とのエネルギーギャップ差及び屈
折率差が大きくなり、キャリアや光が活性層に有効に閉
じ込められてさらに発振閾値電流の低減及び、温度特性
の向上が図れる。またキャリアや光の閉じ込めが保持さ
れる程度でAl組成を小さくしていくと、クラッド層に
おけるキャリアの移動度が大きくなるため、半導体レー
ザ素子の素子抵抗を小さくできる利点がある。さらにこ
れらのクラッド層は微量に他の元素を含んだ4元以上の
混晶半導体でもよく、n型クラッド層4とp型クラッド
層9とで混晶の組成が同一でなくても構わない。
N-type cladding layer 4 and p-type cladding layer 9
Is an AlG having an Al composition other than n-Al 0.1 Ga 0.9 N
An aN ternary mixed crystal may be used. In this case, when the Al composition is increased, the energy gap difference and the refractive index difference between the active layer and the cladding layer increase, and carriers and light are effectively confined in the active layer, further reducing the oscillation threshold current and improving the temperature characteristics. I can do it. Also, if the Al composition is reduced to such an extent that the confinement of carriers and light is maintained, the mobility of carriers in the cladding layer increases, and thus there is an advantage that the device resistance of the semiconductor laser device can be reduced. Further, these cladding layers may be quaternary or higher mixed crystal semiconductors containing trace amounts of other elements, and the composition of the mixed crystals in the n-type cladding layer 4 and the p-type cladding layer 9 may not be the same.

【0020】ガイド層5と8は、そのエネルギーギャッ
プが、多重量子井戸構造活性層6を構成する量子井戸層
のエネルギーギャップとクラッド層4と9のエネルギー
ギャップの間の値を持つような材料であればGaNにこ
だわらず他の材料、例えばInGaNやAlGaN等の
3元混晶やInGaAlN4元混晶等を用いてもよい。
またガイド層全体にわたってドナー又はアクセプターを
ドーピングする必要はなく、多重量子井戸構造活性層6
側の一部のみをノンドープとしてもよく、さらにはガイ
ド層全体をノンドープとしてもよい。この場合、ガイド
層に存在するキャリアが少なくなり、自由キャリアによ
る光の吸収が低減されて、さらに発振閾値電流が低減で
きるという利点がある。
The guide layers 5 and 8 are made of a material whose energy gap has a value between the energy gap of the quantum well layer constituting the multiple quantum well structure active layer 6 and the energy gap of the cladding layers 4 and 9. If so, other materials such as a ternary mixed crystal such as InGaN or AlGaN or an InGaAlN quaternary mixed crystal may be used without being limited to GaN.
It is not necessary to dope the entire guide layer with a donor or an acceptor.
Only a part of the side may be non-doped, and further, the entire guide layer may be non-doped. In this case, there are advantages that the number of carriers existing in the guide layer is reduced, light absorption by free carriers is reduced, and the oscillation threshold current can be further reduced.

【0021】多重量子井戸構造活性層6を構成する2層
のIn0.2Ga0.8N量子井戸層14と1層のIn0.05
0.95N障壁層15は、必要なレーザ発振波長に応じて
その組成を設定すればよく、発振波長を長くしたい場合
は量子井戸層14のIn組成を大きくし、短くしたい場
合は量子井戸層14のIn組成を小さくする。また量子
井戸層14と障壁層15は、InGaN3元混晶に微量
に他の元素を含んだ4元以上の混晶半導体でもよい。さ
らに障壁層15は単にGaNを用いてもよい。
The two-layer In 0.2 Ga 0.8 N quantum well layer 14 constituting the multi-quantum well structure active layer 6 and the single layer In 0.05 G
The composition of the a 0.95 N barrier layer 15 may be set according to the required laser oscillation wavelength. If the oscillation wavelength is desired to be longer, the In composition of the quantum well layer 14 is to be increased, and if the shorter wavelength is desired, the quantum well layer 14 is required. Is reduced. Further, the quantum well layer 14 and the barrier layer 15 may be a quaternary or higher mixed crystal semiconductor containing a small amount of another element in the InGaN ternary mixed crystal. Further, the barrier layer 15 may simply use GaN.

【0022】次に、図1と図2を参照して上記窒化ガリ
ウム系半導体レーザの作製方法を説明する。以下の説明
ではMOCVD法(有機金属気相成長法)を用いた場合
を示しているが、GaNをエピタキシャル成長できる成
長法であればよく、MBE法(分子線エピタキシャル成
長法)やHDVPE(ハイドライド気相成長法)等の他
の気相成長法を用いることもできる。
Next, a method for fabricating the gallium nitride based semiconductor laser will be described with reference to FIGS. In the following description, the case where MOCVD (metal organic chemical vapor deposition) is used is shown, but any growth method capable of epitaxially growing GaN may be used, such as MBE (molecular beam epitaxy) or HDVPE (hydride vapor phase epitaxy). Other vapor phase epitaxy methods such as the method described above.

【0023】まず所定の成長炉内の発熱体上に設置され
た、c面を表面として有し厚さが40μm、直径が2イ
ンチである半絶縁性GaN基板1上に、トリメチルガリ
ウム(TMG)とアンモニア(NH3)を原料に用い
て、成長温度600℃でノンドープGaNバッファ層2
を35nm成長させる。
First, trimethyl gallium (TMG) is placed on a semi-insulating GaN substrate 1 having a c-plane as a surface, a thickness of 40 μm, and a diameter of 2 inches, which is placed on a heating element in a predetermined growth furnace. Non-doped GaN buffer layer 2 at a growth temperature of 600 ° C. using ammonia and ammonia (NH 3 ) as raw materials.
Is grown to 35 nm.

【0024】次に成長温度を1050℃まで上昇させ
て、TMGとNH3、及びシランガス(SiH4)を原料
に用いて、厚さ3μmのSiドープn−GaNn型コン
タクト層3を成長する。さらに続けてトリメチルアルミ
ニウム(TMA)を原料に加え、成長温度は1050℃
のままで厚さ0.7μmのSiドープn−Al0.1Ga
0.9Nn型クラッド層4を成長する。続けて、TMAを
原料から除いて、成長温度は1050℃のままで厚さ
0.05μmのSiドープn−GaNガイド層5を成長
する。
Next, the growth temperature is raised to 1050 ° C., and a 3 μm-thick Si-doped n-GaN n-type contact layer 3 is grown using TMG, NH 3 and silane gas (SiH 4 ) as raw materials. Subsequently, trimethyl aluminum (TMA) was added to the raw material, and the growth temperature was 1050 ° C.
0.7 μm thick Si-doped n-Al 0.1 Ga
A 0.9 Nn-type cladding layer 4 is grown. Subsequently, the TMA is removed from the raw material, and the Si-doped n-GaN guide layer 5 having a thickness of 0.05 μm is grown at a growth temperature of 1050 ° C.

【0025】次に、成長温度を800℃に下げ、TMG
とNH3、及びトリメチルインジウム(TMI)を原料
に用いて、In0.2Ga0.8N量子井戸層(厚さ5nm)
14、In0.05Ga0.95N障壁層(厚さ5nm)15、
In0.2Ga0.8N量子井戸層(厚さ5nm)14を順次
成長することにより多重量子井戸構造活性層(トータル
の厚さ15nm)6を作成する。さらに続けてTMGと
TMAとNH3を原料に用いて、成長温度は800℃の
ままで厚さ10nmのAl0.2Ga0.8N蒸発防止層7を
成長する。
Next, the growth temperature is lowered to 800 ° C.
, NH 3 , and trimethylindium (TMI) as raw materials and an In 0.2 Ga 0.8 N quantum well layer (5 nm thick)
14, In 0.05 Ga 0.95 N barrier layer (5 nm thick) 15,
An In 0.2 Ga 0.8 N quantum well layer (thickness: 5 nm) 14 is sequentially grown to form a multiple quantum well structure active layer (total thickness: 15 nm) 6. Further, using TMG, TMA and NH 3 as raw materials, an Al 0.2 Ga 0.8 N evaporation preventing layer 7 having a thickness of 10 nm is grown at a growth temperature of 800 ° C.

【0026】次に、再び成長温度を1050℃に上昇し
て、TMGとNH3、及びシクロペンタジエニルマグネ
シウム(Cp2Mg)を原料に用いて、厚さ0.05μ
mのMgドープp−GaNガイド層8を成長する。さら
に続けてTMAを原料に加え、成長温度は1050℃の
ままで厚さ0.7μmのMgドープp−Al0.1Ga0.9
Np型クラッド層9を成長する。続けて、TMAを原料
から除いて、成長温度は1050℃のままで厚さ0.2
μmのMgドープp−GaNp型コンタクト層10を成
長して、窒化ガリウム系エピタキシャルウエハーを完成
する。
Next, the growth temperature is raised again to 1050 ° C., and TMG, NH 3 , and cyclopentadienyl magnesium (Cp 2 Mg) are used as raw materials to a thickness of 0.05 μm.
An m-doped Mg-doped p-GaN guide layer 8 is grown. Subsequently, TMA was added to the raw material, and the growth temperature was kept at 1050 ° C., and the Mg-doped p-Al 0.1 Ga 0.9 layer having a thickness of 0.7 μm was formed.
The Np-type cladding layer 9 is grown. Subsequently, except that TMA was removed from the raw material, the growth temperature was kept at 1050 ° C. and the thickness was 0.2 mm.
A μm Mg-doped p-GaN p-type contact layer 10 is grown to complete a gallium nitride based epitaxial wafer.

【0027】その後、このウエハーを800℃の窒素ガ
ス雰囲気中でアニールして、Mgドープのp型層を低抵
抗化する。
Thereafter, the wafer is annealed in a nitrogen gas atmosphere at 800 ° C. to lower the resistance of the Mg-doped p-type layer.

【0028】さらに通常のフォトリソグラフィーとドラ
イエッチング技術を用いて、200μm幅のストライプ
状にp−GaNp型コンタクト層10の最表面から、n
−GaNn型コンタクト層3が露出するまでエッチング
を行う。次に、上記と同様のフォトリソグラフィーとド
ライエッチング技術を用いて、残ったp−GaNp型コ
ンタクト層10の最表面に、5μm幅のストライプ状に
リッジ構造を形成するようにp−GaNp型コンタクト
層10とp−Al0.1Ga0.9Np型クラッド層9をエッ
チングする。
Further, the n-type p-GaN p-type contact layer 10 is stripped from the outermost surface of the p-GaN p-type contact layer 10 by a conventional photolithography and dry etching technique.
-Etching is performed until the GaN n-type contact layer 3 is exposed. Next, using the same photolithography and dry etching techniques as described above, the p-GaN p-type contact layer is formed on the outermost surface of the remaining p-GaN p-type contact layer 10 so as to form a ridge structure in a stripe shape having a width of 5 μm. 10 and p-Al 0.1 Ga 0.9 Np type clad layer 9 are etched.

【0029】続いて、リッジの側面とリッジ以外のp型
層表面に厚さ200nmのSiO絶縁膜13を形成す
る。このSiO絶縁膜13とp−GaNp型コンタク
ト層10の表面にニッケルと金からなるp側電極11を
形成し、エッチングにより露出したn−GaNn型コン
タクト層3の表面にチタンとアルミニウムからなるn側
電極12を形成して、窒化ガリウム系LDウエハーを完
成する。
Subsequently, a 200 nm thick SiO 2 insulating film 13 is formed on the side surfaces of the ridge and on the surface of the p-type layer other than the ridge. A p-side electrode 11 made of nickel and gold is formed on the surfaces of the SiO 2 insulating film 13 and the p-GaN p-type contact layer 10, and an n-GaN n-type contact layer 3 exposed by etching is formed on the surface of the n-GaN n-type contact layer 3. The side electrode 12 is formed to complete a gallium nitride based LD wafer.

【0030】その後、このウエハーをリッジストライプ
に垂直な方向に劈開してレーザの共振器端面を形成し、
さらに個々のチップに分割する。そして、各チップをス
テムにマウントし、ワイヤーボンディングにより各電極
とリード端子とを接続して、窒化ガリウム系半導体レー
ザ素子を完成する。
Thereafter, the wafer is cleaved in a direction perpendicular to the ridge stripe to form a laser cavity end face.
It is further divided into individual chips. Then, each chip is mounted on a stem, each electrode is connected to a lead terminal by wire bonding, and a gallium nitride based semiconductor laser device is completed.

【0031】以上のようにして作製された青色LD素子
は、発振波長430nm、発振閾値電流40mAという
レーザ特性が得られた。また、基板ウエハー面内での発
振波長の分布は小さくなり、ウェハーの中心部と周辺部
とで従来150nmあった発振波長の違いは10nmに
まで低減された。このように本発明により、InGaN
量子井戸活性層からの発光特性の分布が改善され、基板
ウェハー面内において発振波長が均一で発振閾値電流値
が低い窒化ガリウム系半導体レーザ素子が実現できた。
The blue LD device manufactured as described above has the laser characteristics of an oscillation wavelength of 430 nm and an oscillation threshold current of 40 mA. Further, the distribution of the oscillation wavelength in the plane of the substrate wafer was reduced, and the difference in the oscillation wavelength between the central portion and the peripheral portion of the wafer, which was conventionally 150 nm, was reduced to 10 nm. Thus, according to the present invention, InGaN
The distribution of the emission characteristics from the quantum well active layer was improved, and a gallium nitride based semiconductor laser device having a uniform oscillation wavelength and a low oscillation threshold current value within the surface of the substrate wafer was realized.

【0032】図3には、窒化ガリウム系半導体レーザ素
子において、直径が2インチである半絶縁性GaN基板
の厚さによる、ウェハーの中心部と周辺部とでの発振波
長の違いの大きさの変化、及び、発振閾値電流値の変化
を表すグラフ図が示されている。各半導体レーザの構造
は、結晶成長時におけるGaN基板の厚さが異なること
以外は本発明の第1の実施例に係る窒化ガリウム系半導
体レーザ素子と同じである。この図からわかるように、
結晶成長時におけるGaN基板の厚さが50μmを越え
ると、発振波長の面内分布が急速に増大し、発振閾値電
流値も高くなっている。従って、ウェハー面内において
発光波長が均一であり、かつ低い発振閾値電流値を得る
ことが出来るのは、結晶成長時におけるGaN基板の厚
さが5μm以上50μm以下である本発明の第1の実施
例に係る窒化ガリウム系半導体レーザ素子のみである。
なお、基板の厚さを5μmより薄くすると基板の機械的
強度が低下するため割れやすくなり、基板ウェハーの取
り扱い時に破損してしまうことによりコストの増大につ
ながってしまった。
FIG. 3 shows the difference in oscillation wavelength between the center and the periphery of the wafer due to the thickness of the semi-insulating GaN substrate having a diameter of 2 inches in the gallium nitride based semiconductor laser device. A graph showing the change and the change of the oscillation threshold current value is shown. The structure of each semiconductor laser is the same as the gallium nitride based semiconductor laser device according to the first embodiment of the present invention except that the thickness of the GaN substrate during crystal growth is different. As you can see from this figure,
When the thickness of the GaN substrate during crystal growth exceeds 50 μm, the in-plane distribution of the oscillation wavelength increases rapidly, and the oscillation threshold current value also increases. Therefore, the reason why the emission wavelength is uniform in the wafer surface and a low oscillation threshold current value can be obtained is that the thickness of the GaN substrate during crystal growth is 5 μm or more and 50 μm or less in the first embodiment of the present invention. Only the gallium nitride based semiconductor laser device according to the example is used.
When the thickness of the substrate is smaller than 5 μm, the mechanical strength of the substrate is reduced, so that the substrate is easily broken, and the substrate is broken when handling the wafer, which leads to an increase in cost.

【0033】なお、本実施例では、多重量子井戸構造活
性層6を構成する量子井戸層14の層数を2層とした
が、3層以上の多重量子井戸構造でもよく、1層のみの
単一量子井戸構造でもよい。さらに、本実施例では、量
子井戸層14と障壁層15の層厚をともに5nmとした
が、これらの層厚が同一である必要はなく、異なってい
ても構わない。また量子井戸層の層厚も本実施例にこだ
わらない。
In the present embodiment, the number of the quantum well layers 14 constituting the multi-quantum well structure active layer 6 is two. However, a multi-quantum well structure having three or more layers may be used. A single quantum well structure may be used. Further, in the present embodiment, the layer thicknesses of the quantum well layer 14 and the barrier layer 15 are both 5 nm, but these layer thicknesses need not be the same, and may be different. Further, the thickness of the quantum well layer is not limited to this embodiment.

【0034】また本実施例では、多重量子井戸構造活性
層6に接するようにAl0.2Ga0.8N蒸発防止層7を形
成しているが、これは量子井戸層14が成長温度を上昇
している間に蒸発してしまうことを防ぐためである。従
って、量子井戸層14を保護するものであれば蒸発防止
層7として用いることができ、他のAl組成を有するA
lGaN3元混晶やGaNを用いてもよい。また、この
蒸発防止層7にMgをドーピングしてもよく、この場合
はp−GaNガイド層8やp−Al0.1Ga0.9Np型ク
ラッド層9から正孔が注入され易くなるという利点があ
る。さらに、量子井戸層14のIn組成が小さい場合は
蒸発防止層7を形成しなくても量子井戸層14は蒸発し
ないため、特に蒸発防止層7を形成しなくても、本実施
例の窒化ガリウム系半導体レーザ素子の特性は損なわれ
ない。
In this embodiment, the Al 0.2 Ga 0.8 N evaporation preventing layer 7 is formed so as to be in contact with the active layer 6 having a multiple quantum well structure. However, the growth temperature of the quantum well layer 14 is increased. This is to prevent evaporation in between. Therefore, any material that protects the quantum well layer 14 can be used as the evaporation prevention layer 7 and has another Al composition.
You may use 1GaN ternary mixed crystal or GaN. The evaporation preventing layer 7 may be doped with Mg. In this case, there is an advantage that holes are easily injected from the p-GaN guide layer 8 and the p-Al 0.1 Ga 0.9 Np type clad layer 9. Further, when the In composition of the quantum well layer 14 is small, the quantum well layer 14 does not evaporate even if the evaporation prevention layer 7 is not formed. The characteristics of the system semiconductor laser device are not impaired.

【0035】本実施例では、リッジストライプ構造を形
成して注入電流の狭窄を行っているが、電極ストライプ
構造等の他の電流狭窄の手法を用いてもよい。また、本
実施例では劈開によりレーザの共振器端面を形成してい
るが、ドライエッチングにより共振器端面を形成するこ
ともできる。
In this embodiment, the injection current is narrowed by forming the ridge stripe structure. However, other current narrowing methods such as an electrode stripe structure may be used. Further, in the present embodiment, the cavity facet of the laser is formed by cleavage, but the cavity facet can also be formed by dry etching.

【0036】さらに本実施例では半絶縁性GaN基板を
用いたため、エッチングにより露出したn−GaNn型
コンタクト層3の表面にn側電極12を形成している
が、n型導電性を有するGaN基板を用いれば、この基
板の裏面にn側電極12を形成してもよい。また、p型
とn型の構成を逆にしても構わない。
Further, in this embodiment, since the semi-insulating GaN substrate is used, the n-side electrode 12 is formed on the surface of the n-GaN n-type contact layer 3 exposed by etching. , The n-side electrode 12 may be formed on the back surface of the substrate. Further, the p-type and n-type configurations may be reversed.

【0037】また本実施例の窒化ガリウム系半導体レー
ザを光ディスクのデータ読み出し用光源として用いたと
ころ、レーザの出射面上の発光部から約60μmだけ離
れた所に入射される光ディスクからの戻り光が、GaN
基板に入射されなかった。従って、50μmより厚い基
板を用いていた従来例では、基板に入射したこの戻り光
が半導体レーザの雑音を引き起こし、データの読み出し
エラーを生じていたが、本実施例では基板が50μm以
下と薄いことにより基板に戻り光が入射ぜず、戻り光に
よる雑音の発生が抑えられて、データの読み出しエラー
を生じないという効果も得られた。
When the gallium nitride based semiconductor laser of this embodiment was used as a light source for reading data from an optical disk, return light from the optical disk which was incident on the laser emission surface at a distance of about 60 μm from a light emitting portion was generated. , GaN
It was not incident on the substrate. Therefore, in the conventional example in which a substrate thicker than 50 μm was used, this return light incident on the substrate caused noise of the semiconductor laser and caused a data read error, but in this embodiment, the substrate was as thin as 50 μm or less. As a result, the return light does not enter the substrate, the generation of noise due to the return light is suppressed, and the effect that no data reading error occurs is obtained.

【0038】(発明の実施の形態2)図4は本発明の第
2の実施例に係る窒化ガリウム系半導体発光ダイオード
素子を示す断面図である。この図において、21はc面
を表面として有し厚さが20μm、直径が2インチであ
るn型GaN基板、22はn−GaNn型コンタクト
層、23はn−Al0.1Ga0.9Nn型クラッド層、24
はn−GaNガイド層、25はIn0.2Ga0.8N量子井
戸層からなる単一量子井戸構造活性層、26はAl0.2
Ga0.8N蒸発防止層、27はp−GaNガイド層、2
8はp−Al0.1Ga0.9Np型クラッド層、29はp−
GaNp型コンタクト層、30はp側電極、31はn側
電極である。
(Embodiment 2) FIG. 4 is a sectional view showing a gallium nitride based semiconductor light emitting diode device according to a second embodiment of the present invention. In this figure, 21 is an n-type GaN substrate having a c-plane as a surface and having a thickness of 20 μm and a diameter of 2 inches, 22 is an n-GaN n-type contact layer, and 23 is an n-Al 0.1 Ga 0.9 Nn-type clad layer. , 24
Is an n-GaN guide layer, 25 is an active layer having a single quantum well structure composed of an In 0.2 Ga 0.8 N quantum well layer, and 26 is an Al 0.2
Ga 0.8 N evaporation preventing layer, 27 is a p-GaN guide layer, 2
8 p-Al 0.1 Ga 0.9 Np-type cladding layer, the 29 p-
A GaN p-type contact layer, 30 is a p-side electrode, and 31 is an n-side electrode.

【0039】本実施例において、n型GaN基板21の
厚さを20μmとしたが、5μmから50μmの間であ
ればこの厚さにこだわらない。また基板の表面はa面等
の他の面方位であっても構わない。
In this embodiment, the thickness of the n-type GaN substrate 21 is set to 20 μm, but the thickness is not limited as long as it is between 5 μm and 50 μm. The surface of the substrate may have another plane orientation such as the a-plane.

【0040】n型クラッド層23及びp型クラッド層2
8は、n−Al0.1Ga0.9N以外のAl組成を持つAl
GaN3元混晶や、単にGaNを用いてもよい。この場
合Al組成を大きくすると活性層とクラッド層とのエネ
ルギーギャップ差が大きくなり、キャリアが活性層に有
効に閉じ込められて温度特性の向上が図れる。またキャ
リアの閉じ込めが保持される程度でAl組成を小さくし
ていくと、クラッド層におけるキャリアの移動度が大き
くなるため、発光ダイオード素子の素子抵抗を小さくで
きる利点がある。さらにこれらのクラッド層は微量に他
の元素を含んだ4元以上の混晶半導体でもよく、n型ク
ラッド層23とp型クラッド層28とで混晶の組成が同
一でなくても構わない。
N-type cladding layer 23 and p-type cladding layer 2
8 is Al having an Al composition other than n-Al 0.1 Ga 0.9 N.
A GaN ternary mixed crystal or simply GaN may be used. In this case, when the Al composition is increased, the energy gap difference between the active layer and the cladding layer increases, and the carriers are effectively confined in the active layer, thereby improving the temperature characteristics. Further, when the Al composition is reduced to such an extent that the confinement of the carriers is maintained, the mobility of the carriers in the cladding layer is increased, so that there is an advantage that the element resistance of the light emitting diode element can be reduced. Further, these cladding layers may be quaternary or higher mixed crystal semiconductors containing trace amounts of other elements, and the composition of the mixed crystal in the n-type cladding layer 23 and the p-type cladding layer 28 may not be the same.

【0041】ガイド層24と27は、そのエネルギーギ
ャップが、単一量子井戸構造活性層25を構成する量子
井戸層のエネルギーギャップとクラッド層23と28の
エネルギーギャップの間の値を持つような材料であれば
GaNにこだわらず他の材料、例えばInGaN・Al
GaN3元混晶やInGaAlN4元混晶等を用いても
よい。またガイド層全体にわたってドナー又はアクセプ
ターをドーピングする必要はなく、単一量子井戸構造活
性層25側の一部のみをノンドープとしてもよく、さら
にはガイド層全体をノンドープとしてもよい。この場
合、ガイド層に存在するキャリアが少なくなり、自由キ
ャリアによる光の吸収が低減されて、さらに光出力が向
上するという利点がある。また、ガイド層24と27に
は、n型クラッド層23とp型クラッド層28からそれ
ぞれ電子と正孔を単一量子井戸構造活性層25へ注入し
やすくするという利点があるが、特にガイド層24と2
7を設けなくてもLED素子特性が大きく悪化すること
はないので、ガイド層24と27はなくても構わない。
The guide layers 24 and 27 are made of a material whose energy gap has a value between the energy gap of the quantum well layer constituting the single quantum well structure active layer 25 and the energy gap of the cladding layers 23 and 28. If GaN is not limited to other materials, such as InGaN / Al
GaN ternary mixed crystal, InGaAlN quaternary mixed crystal, or the like may be used. Further, it is not necessary to dope the entire guide layer with a donor or an acceptor, and only a part of the single quantum well structure active layer 25 side may be non-doped, and further, the entire guide layer may be non-doped. In this case, there is an advantage that the number of carriers existing in the guide layer is reduced, light absorption by free carriers is reduced, and light output is further improved. The guide layers 24 and 27 have an advantage that electrons and holes can be easily injected from the n-type cladding layer 23 and the p-type cladding layer 28 into the single quantum well structure active layer 25, respectively. 24 and 2
Even if the layer 7 is not provided, the LED element characteristics will not be significantly deteriorated, so that the guide layers 24 and 27 may be omitted.

【0042】単一量子井戸構造活性層25を構成するI
0.2Ga0.8N量子井戸層は、必要な発光波長に応じて
その組成を設定すればよく、発光波長を長くしたい場合
は量子井戸層25のIn組成を大きくし、短くしたい場
合は量子井戸層25のIn組成を小さくする。また量子
井戸層25は、InGaN3元混晶に微量に他の元素を
含んだ4元以上の混晶半導体でもよい。
I constituting the single quantum well structure active layer 25
The composition of the n 0.2 Ga 0.8 N quantum well layer may be set according to the required emission wavelength. If the emission wavelength is to be increased, the In composition of the quantum well layer 25 is to be increased, and if the emission wavelength is to be shortened, the quantum well layer is to be reduced. 25 In composition is reduced. Further, the quantum well layer 25 may be a quaternary or higher mixed crystal semiconductor containing a small amount of another element in the ternary mixed crystal of InGaN.

【0043】次に、図4を参照して上記窒化ガリウム系
半導体発光ダイオードの作製方法を説明する。以下の説
明ではMOCVD法(有機金属気相成長法)を用いた場
合を示しているが、GaNをエピタキシャル成長できる
成長法であればよく、MBE法(分子線エピタキシャル
成長法)やHDVPE(ハイドライド気相成長法)等の
他の気相成長法を用いることもできる。
Next, a method for fabricating the gallium nitride based semiconductor light emitting diode will be described with reference to FIG. In the following description, the case where MOCVD (metal organic chemical vapor deposition) is used is shown, but any growth method capable of epitaxially growing GaN may be used, such as MBE (molecular beam epitaxy) or HDVPE (hydride vapor phase epitaxy). Other vapor phase epitaxy methods such as the method described above.

【0044】まず所定の成長炉内の発熱体上に設置され
た、c面を表面として有し厚さが20μm、直径が2イ
ンチであるn型GaN基板21上に、TMGとNH3
及びSiH4を原料に用いて、成長温度を1050℃と
して、厚さ3μmのSiドープn−GaNn型コンタク
ト層22を成長する。さらに続けてTMAを原料に加
え、成長温度は1050℃のままで厚さ0.3μmのS
iドープn−Al0.1Ga0.9Nn型クラッド層23を成
長する。続けて、TMAを原料から除いて、成長温度は
1050℃のままで厚さ0.05μmのSiドープn−
GaNガイド層24を成長する。
First, on an n-type GaN substrate 21 having a c-plane as a surface and a thickness of 20 μm and a diameter of 2 inches, which is set on a heating element in a predetermined growth furnace, TMG, NH 3 ,
Using SiH 4 as a raw material and a growth temperature of 1050 ° C., a 3 μm-thick Si-doped n-GaN n-type contact layer 22 is grown. Subsequently, TMA was added to the raw material, and 0.3 μm thick S
An i-doped n-Al 0.1 Ga 0.9 Nn-type clad layer 23 is grown. Then, excluding TMA from the raw material, the growth temperature was kept at 1050 ° C., and the Si-doped n-
A GaN guide layer 24 is grown.

【0045】次に、成長温度を800℃に下げ、TMG
とNH3、及びTMIを原料に用いて、厚さ3nmのI
0.2Ga0.8N量子井戸層からなる単一量子井戸構造活
性層25を作成する。さらに続けてTMGとTMAとN
3を原料に用いて、成長温度は800℃のままで厚さ
10nmのAl0.2Ga0.8N蒸発防止層26を成長す
る。
Next, the growth temperature was lowered to 800 ° C.
, NH 3 , and TMI as raw materials, and a 3 nm-thick I
An active layer 25 having a single quantum well structure composed of an n 0.2 Ga 0.8 N quantum well layer is formed. Continue with TMG, TMA and N
Using H 3 as a raw material, an Al 0.2 Ga 0.8 N evaporation preventing layer 26 having a thickness of 10 nm is grown at a growth temperature of 800 ° C.

【0046】次に、再び成長温度を1050℃に上昇し
て、TMGとNH3、及びCp2Mgを原料に用いて、厚
さ0.05μmのMgドープp−GaNガイド層27を
成長する。さらに続けてTMAを原料に加え、成長温度
は1050℃のままで厚さ0.3μmのMgドープp−
Al0.1Ga0.9Np型クラッド層28を成長する。続け
て、TMAを原料から除いて、成長温度は1050℃の
ままで厚さ0.2μmのMgドープp−GaNp型コン
タクト層29を成長して、窒化ガリウム系エピタキシャ
ルウエハーを完成する。
Next, the growth temperature is increased again to 1050 ° C., and a 0.05 μm-thick Mg-doped p-GaN guide layer 27 is grown using TMG, NH 3 and Cp 2 Mg as raw materials. Subsequently, TMA was added to the raw material, and the growth temperature was kept at 1050 ° C., and a 0.3 μm-thick Mg-doped p-
An Al 0.1 Ga 0.9 Np type clad layer 28 is grown. Subsequently, the TMA is removed from the raw material, and the Mg-doped p-GaN p-type contact layer 29 having a thickness of 0.2 μm is grown at a growth temperature of 1050 ° C. to complete a gallium nitride based epitaxial wafer.

【0047】その後、このウエハーを800℃の窒素ガ
ス雰囲気中でアニールして、Mgドープのp型層を低抵
抗化する。
Thereafter, the wafer is annealed in a nitrogen gas atmosphere at 800 ° C. to lower the resistance of the Mg-doped p-type layer.

【0048】続いて、p−GaNp型コンタクト層29
の表面にニッケルと金からなるp側電極30を形成し、
n型GaN基板21の裏面にチタンとアルミニウムから
なるn側電極31を形成して、窒化ガリウム系LEDウ
エハーを完成する。
Subsequently, the p-GaN p-type contact layer 29
A p-side electrode 30 made of nickel and gold is formed on the surface of
An n-side electrode 31 made of titanium and aluminum is formed on the back surface of the n-type GaN substrate 21 to complete a gallium nitride-based LED wafer.

【0049】その後、このウエハーを個々のチップに分
割する。そして、各チップをステムにマウントしてn側
電極31とステムとを接続し、ワイヤーボンディングに
よりp側電極30とリード端子とを接続して、窒化ガリ
ウム系半導体発光ダイオード素子を完成する。
Thereafter, the wafer is divided into individual chips. Then, each chip is mounted on the stem, the n-side electrode 31 and the stem are connected, and the p-side electrode 30 and the lead terminal are connected by wire bonding, thereby completing a gallium nitride based semiconductor light emitting diode device.

【0050】以上のようにして作製された青色LED素
子は、順方向電流20mAで、発光波長430nm・光
出力4mWという発光特性が得られた。また、実施例1
と同様に、基板ウエハー面内での発光波長の分布は小さ
くなり、ウェハーの中心部と周辺部とで従来150nm
あった発光波長の違いは3nmにまで低減された。この
ように本発明により、InGaN量子井戸活性層からの
発光特性の分布が改善され、基板ウェハー面内において
均一な発光波長を有する窒化ガリウム系半導体発光ダイ
オード素子が実現できた。
The blue LED device manufactured as described above exhibited light emission characteristics of a light emission wavelength of 430 nm and a light output of 4 mW at a forward current of 20 mA. Example 1
Similarly to the above, the distribution of the emission wavelength in the surface of the substrate wafer becomes smaller, and the center of the wafer and the peripheral portion are conventionally 150 nm.
The difference in the emission wavelength was reduced to 3 nm. As described above, according to the present invention, the distribution of the light emission characteristics from the InGaN quantum well active layer is improved, and a gallium nitride based semiconductor light emitting diode element having a uniform light emission wavelength within the surface of the substrate wafer can be realized.

【0051】なお、本実施例では、単一量子井戸構造活
性層25を構成するIn0.2Ga0.8N量子井戸層の層数
を1とし層厚を3nmとしたが、2層以上の多重量子井
戸構造活性層でもよく、量子井戸層の層厚も本実施例に
こだわらない。
In this embodiment, the number of In 0.2 Ga 0.8 N quantum well layers constituting the single quantum well structure active layer 25 is set to 1 and the thickness is set to 3 nm. A structure active layer may be used, and the layer thickness of the quantum well layer is not limited to this embodiment.

【0052】また本実施例では、単一量子井戸構造活性
層25に接するようにAl0.2Ga0.8N蒸発防止層26
を形成しているが、これは量子井戸層25が成長温度を
上昇している間に蒸発してしまうことを防ぐためであ
る。従って、量子井戸層25を保護するものであれば蒸
発防止層26として用いることができ、他のAl組成を
有するAlGaN3元混晶やGaNを用いてもよい。ま
た、この蒸発防止層26にMgをドーピングしてもよ
く、この場合はp−GaNガイド層27やp−Al0.1
Ga0.9Np型クラッド層28から正孔が注入され易く
なるという利点がある。さらに、量子井戸層25のIn
組成が小さい場合は蒸発防止層26を形成しなくても量
子井戸層25は蒸発しないため、特に蒸発防止層26を
形成しなくても、本実施例の窒化ガリウム系半導体発光
ダイオード素子の特性は損なわれない。
In this embodiment, the Al 0.2 Ga 0.8 N evaporation preventing layer 26 is in contact with the single quantum well structure active layer 25.
Is formed in order to prevent the quantum well layer 25 from evaporating while the growth temperature is being increased. Therefore, any material that protects the quantum well layer 25 can be used as the evaporation prevention layer 26, and an AlGaN ternary mixed crystal or GaN having another Al composition may be used. The evaporation preventing layer 26 may be doped with Mg. In this case, the p-GaN guide layer 27 or the p-Al 0.1
There is an advantage that holes are easily injected from the Ga 0.9 Np type cladding layer 28. Further, In of the quantum well layer 25
When the composition is small, the quantum well layer 25 does not evaporate without forming the evaporation prevention layer 26. Therefore, even if the evaporation prevention layer 26 is not formed, the characteristics of the gallium nitride based semiconductor light emitting diode element of the present embodiment are It is not spoiled.

【0053】さらに本実施例ではn型GaN基板を用い
たことにより、実施例1のようなn−GaNn型コンタ
クト層を露出するためのドライエッチング工程を必要と
しないため、青色LEDの製造におけるコストの低減が
図れる。なお、p型とn型の構成を逆にしても構わな
い。また、半絶縁性GaN基板を用いた場合は、従来と
同様の製造プロセスで作製できるが、結晶成長時の基板
の厚さを5μm以上50μm以下とすれば、実施例2と
同様の本発明の効果が得られる。
Further, in this embodiment, since the n-type GaN substrate is used, a dry etching step for exposing the n-GaN n-type contact layer as in the first embodiment is not required, so that the cost in manufacturing the blue LED is reduced. Can be reduced. Note that the p-type and n-type configurations may be reversed. When a semi-insulating GaN substrate is used, it can be manufactured by the same manufacturing process as the conventional one. However, if the thickness of the substrate at the time of crystal growth is 5 μm or more and 50 μm or less, the present invention similar to the second embodiment can be obtained. The effect is obtained.

【0054】(発明の実施の形態3)図5は本発明の第
3の実施例に係る窒化ガリウム系半導体レーザ素子を示
す断面図であり、図6は図5中のB部を拡大した断面図
である。この図において、41はc面を表面として有し
厚さが8μm、直径が2インチであるn型GaN基板、
42はn−GaNバッファ層、43はn−GaN層、4
4はn−Al0.1Ga0.9Nn型クラッド層、45はn−
GaNガイド層、46は3層のIn0.2Ga0.8N量子井
戸層54と2層のIn0.05Ga0.95N障壁層55とから
なる多重量子井戸構造活性層、47はAl0.2Ga0.8
蒸発防止層、48はp−GaNガイド層、49はp−A
0.1Ga0.9Np型クラッド層、50はp−GaNp型
コンタクト層、51はp側電極、52はn側電極、53
はSiO2絶縁膜である。
(Embodiment 3) FIG. 5 is a sectional view showing a gallium nitride based semiconductor laser device according to a third embodiment of the present invention, and FIG. 6 is an enlarged sectional view of a portion B in FIG. FIG. In this figure, reference numeral 41 denotes an n-type GaN substrate having a c-plane as a surface, a thickness of 8 μm, and a diameter of 2 inches;
42 is an n-GaN buffer layer, 43 is an n-GaN layer, 4
4 n-Al 0.1 Ga 0.9 Nn-type cladding layer, the 45 n-
A GaN guide layer, 46 is a multiple quantum well structure active layer comprising three In 0.2 Ga 0.8 N quantum well layers 54 and two In 0.05 Ga 0.95 N barrier layers 55, and 47 is Al 0.2 Ga 0.8 N
Evaporation prevention layer, 48 is a p-GaN guide layer, 49 is pA
l 0.1 Ga 0.9 Np type cladding layer, 50 is a p-GaN p type contact layer, 51 is a p-side electrode, 52 is an n-side electrode, 53
Is an SiO 2 insulating film.

【0055】本実施例において、n型GaN基板41の
厚さを8μmとしたが、5μmから50μmの間であれ
ばこの厚さにこだわらない。また基板の表面はa面等の
他の面方位であっても構わない。
In this embodiment, the thickness of the n-type GaN substrate 41 is set to 8 μm. However, the thickness is not limited as long as it is between 5 μm and 50 μm. The surface of the substrate may have another plane orientation such as the a-plane.

【0056】n−GaNバッファ層42は、n型GaN
基板41の表面状態の変質によってその上に形成する窒
化ガリウム系半導体発光部の結晶性が低下することを防
ぐためのものであるが、n型GaN基板41の表面状態
が良好に保たれていればバッファ層42は無くてもよ
い。またバッファ層42の材料は、その上に窒化ガリウ
ム系半導体をエピタキシャル成長させることが出来るも
のであればGaNにこだわらず他の材料、例えばAlN
やAlGaN3元混晶等を用いてもよいが、ヘテロ接合
による電位障壁を低減する点から、GaNを用いること
が好ましい。さらに、n型クラッド層44及びp型クラ
ッド層49、ガイド層45と48は、第1の実施例と同
様に、本実施例にこだわらず他の組成や他の材料を用い
ても構わない。
The n-GaN buffer layer 42 is made of n-type GaN
This is to prevent the crystallinity of the gallium nitride based semiconductor light emitting portion formed thereon from being deteriorated due to the deterioration of the surface state of the substrate 41. However, if the surface state of the n-type GaN substrate 41 is kept good. As long as the buffer layer 42 is not provided. The material of the buffer layer 42 is not limited to GaN as long as a gallium nitride-based semiconductor can be epitaxially grown thereon.
Although a ternary mixed crystal of AlGaN or the like may be used, it is preferable to use GaN from the viewpoint of reducing a potential barrier due to a heterojunction. Further, the n-type cladding layer 44, the p-type cladding layer 49, and the guide layers 45 and 48 may use other compositions or other materials without being limited to the present embodiment, as in the first embodiment.

【0057】次に、図5と図6を参照して上記窒化ガリ
ウム系半導体レーザの作製方法を説明する。以下の説明
ではMOCVD法(有機金属気相成長法)を用いた場合
を示しているが、GaNをエピタキシャル成長できる成
長法であればよく、MBE法(分子線エピタキシャル成
長法)やHDVPE(ハイドライド気相成長法)等の他
の気相成長法を用いることもできる。
Next, a method for fabricating the gallium nitride based semiconductor laser will be described with reference to FIGS. In the following description, the case where MOCVD (metal organic chemical vapor deposition) is used is shown, but any growth method capable of epitaxially growing GaN may be used, such as MBE (molecular beam epitaxy) or HDVPE (hydride vapor phase epitaxy). Other vapor phase epitaxy methods such as the method described above.

【0058】まず所定の成長炉内の発熱体上に設置され
た、c面を表面として有し厚さが8μm、直径が2イン
チであるn型GaN基板41上に、TMGとNH3を原
料に用いて、成長温度600℃でn−GaNバッファ層
42を35nm成長させる。
First, TMG and NH 3 were placed on an n-type GaN substrate 41 having a c-plane as a surface and having a thickness of 8 μm and a diameter of 2 inches, which was placed on a heating element in a predetermined growth furnace. The n-GaN buffer layer 42 is grown to 35 nm at a growth temperature of 600 ° C.

【0059】次に成長温度を1050℃まで上昇させ
て、TMGとNH3、及びSiH4を原料に用いて、厚さ
1μmのSiドープn−GaN層43を成長する。さら
に続けてTMAを原料に加え、成長温度は1050℃の
ままで厚さ0.7μmのSiドープn−Al0.1Ga0.9
Nn型クラッド層44を成長する。続けて、TMAを原
料から除いて、成長温度は1050℃のままで厚さ0.
05μmのSiドープn−GaNガイド層45を成長す
る。
Next, the growth temperature is raised to 1050 ° C., and a 1 μm-thick Si-doped n-GaN layer 43 is grown using TMG, NH 3 and SiH 4 as raw materials. Subsequently, TMA was added to the raw material, and the Si-doped n-Al 0.1 Ga 0.9 layer having a thickness of 0.7 μm was kept at a growth temperature of 1050 ° C.
A Nn-type cladding layer 44 is grown. Subsequently, the TMA was removed from the raw material, and the growth temperature was kept at 1050 ° C. and the thickness was reduced to 0.1 mm.
A 05 μm Si-doped n-GaN guide layer 45 is grown.

【0060】次に、成長温度を800℃に下げ、TMG
とNH3、及びTMIを原料に用いて、In0.2Ga0.8
N量子井戸層(厚さ4nm)54とIn0.05Ga0.95
障壁層(厚さ3nm)55を交互に2層ずつ成長し、最
後にIn0.2Ga0.8N量子井戸層(厚さ4nm)54を
1層成長することにより多重量子井戸構造活性層(トー
タルの厚さ18nm)46を作成する。さらに続けてT
MGとTMAとNH3を原料に用いて、成長温度は80
0℃のままで厚さ10nmのAl0.2Ga0.8N蒸発防止
層47を成長する。
Next, the growth temperature was lowered to 800 ° C.
, NH 3 , and TMI as raw materials, and In 0.2 Ga 0.8
N quantum well layer (4 nm thick) 54 and In 0.05 Ga 0.95 N
Barrier layers (thickness: 3 nm) 55 are alternately grown two by two, and one In 0.2 Ga 0.8 N quantum well layer (thickness: 4 nm) 54 is finally grown to form a multiple quantum well structure active layer (total thickness). (18 nm) 46 is created. Continue to T
Using MG, TMA and NH 3 as raw materials, the growth temperature is 80
At 0 ° C., an Al 0.2 Ga 0.8 N evaporation preventing layer 47 having a thickness of 10 nm is grown.

【0061】次に、再び成長温度を1050℃に上昇し
て、TMGとNH3、及びCp2Mgを原料に用いて、厚
さ0.05μmのMgドープp−GaNガイド層48を
成長する。さらに続けてTMAを原料に加え、成長温度
は1050℃のままで厚さ0.7μmのMgドープp−
Al0.1Ga0.9Np型クラッド層49を成長する。続け
て、TMAを原料から除いて、成長温度は1050℃の
ままで厚さ0.2μmのMgドープp−GaNp型コン
タクト層50を成長して、窒化ガリウム系エピタキシャ
ルウエハーを完成する。
Next, the growth temperature is raised to 1050 ° C. again, and a Mg-doped p-GaN guide layer 48 having a thickness of 0.05 μm is grown using TMG, NH 3 and Cp 2 Mg as raw materials. Subsequently, TMA was added to the raw material, and the growth temperature was kept at 1050 ° C., and the Mg-doped p-
An Al 0.1 Ga 0.9 Np type clad layer 49 is grown. Subsequently, the Mg-doped p-GaN p-type contact layer 50 having a thickness of 0.2 μm is grown at a growth temperature of 1050 ° C., excluding TMA from the raw material, to complete a gallium nitride-based epitaxial wafer.

【0062】その後、このウエハーを800℃の窒素ガ
ス雰囲気中でアニールして、Mgドープのp型層を低抵
抗化する。さらに通常のフォトリソグラフィーとドライ
エッチング技術を用いて、p−GaNp型コンタクト層
50の最表面に、5μm幅のストライプ状にリッジ構造
を形成するようにp−GaNp型コンタクト層50とp
−Al0.1Ga0.9Np型クラッド層49をエッチングす
る。
Thereafter, the wafer is annealed in a nitrogen gas atmosphere at 800 ° C. to lower the resistance of the Mg-doped p-type layer. Further, the p-GaN p-type contact layer 50 and p-type p-GaN p-type contact layer 50 are formed on the outermost surface of the p-GaN p-type contact layer 50 by using ordinary photolithography and dry etching techniques so as to form a ridge structure having a stripe shape of 5 μm width.
-The Al 0.1 Ga 0.9 Np type clad layer 49 is etched.

【0063】続いて、リッジの側面とリッジ以外のp型
層表面に厚さ200nmのSiO2絶縁膜53を形成す
る。このSiO2絶縁膜53とp−GaNp型コンタク
ト層50の表面にニッケルと金からなるp側電極51を
形成し、n型GaN基板41の裏面にチタンとアルミニ
ウムからなるn側電極52を形成して、窒化ガリウム系
LDウエハーを完成する。
Subsequently, a 200 nm thick SiO 2 insulating film 53 is formed on the side surfaces of the ridge and on the surface of the p-type layer other than the ridge. A p-side electrode 51 made of nickel and gold is formed on the surface of the SiO 2 insulating film 53 and the p-GaN p-type contact layer 50, and an n-side electrode 52 made of titanium and aluminum is formed on the back surface of the n-type GaN substrate 41. Thus, a gallium nitride based LD wafer is completed.

【0064】その後、このウエハーをリッジストライプ
に垂直な方向に劈開してレーザの共振器端面を形成し、
さらに個々のチップに分割する。そして、各チップをス
テムにマウントしてn側電極52とステムとを接続し、
ワイヤーボンディングによりp側電極51とリード端子
とを接続して、窒化ガリウム系半導体レーザ素子を完成
する。
Thereafter, the wafer is cleaved in a direction perpendicular to the ridge stripe to form a laser cavity end face.
It is further divided into individual chips. Then, each chip is mounted on a stem, the n-side electrode 52 and the stem are connected,
The gallium nitride based semiconductor laser device is completed by connecting the p-side electrode 51 and the lead terminal by wire bonding.

【0065】以上のようにして作製された青色LD素子
は、発振波長430nm、発振閾値電流40mAという
レーザ特性が得られた。また、基板ウエハー面内での発
振波長の分布は小さくなり、ウェハーの中心部と周辺部
とで従来150nmあった発振波長の違いは5nmにま
で低減された。このように本実施例においてもInGa
N量子井戸活性層からの発光特性の分布が改善され、基
板ウェハー面内において発振波長が均一で発振閾値電流
値が低い窒化ガリウム系半導体レーザ素子が実現でき
た。
The blue LD device manufactured as described above had laser characteristics of an oscillation wavelength of 430 nm and an oscillation threshold current of 40 mA. In addition, the distribution of the oscillation wavelength in the plane of the substrate wafer became smaller, and the difference in the oscillation wavelength between the center and the periphery of the wafer, which was conventionally 150 nm, was reduced to 5 nm. As described above, also in this embodiment, InGa
The distribution of the emission characteristics from the N quantum well active layer was improved, and a gallium nitride based semiconductor laser device having a uniform oscillation wavelength and a low oscillation threshold current value within the surface of the substrate wafer was realized.

【0066】また本実施例ではn型GaN基板の厚さを
8μmと薄くしたことにより、レーザ共振器の反射端面
を劈開によって作製する際に、劈開が行いやすくなると
いう効果も生じた。この結果、素子作製の歩留まりが向
上しコストの低減が図れた。さらにn型GaN基板を用
いて基板の裏面にn側電極を形成したことによりワイヤ
ーボンドの工程が1回で済み、素子作製工程が簡略化で
きた。
In the present embodiment, the thickness of the n-type GaN substrate is reduced to 8 μm, so that when the reflection end face of the laser resonator is formed by cleavage, the cleavage is easily performed. As a result, the production yield of the device was improved and the cost was reduced. Furthermore, since the n-side electrode was formed on the back surface of the substrate using the n-type GaN substrate, only one wire bonding process was required, and the device manufacturing process was simplified.

【0067】なお本実施例ではn型GaN基板を用いた
が、p型導電性を有するGaN基板を用いてp型とn型
の構成を本実施例と逆にしても構わない。さらに、本実
施例では、多重量子井戸構造活性層46を構成する量子
井戸層54の層数を3層としたが、2層や4層以上の多
重量子井戸構造でもよく、1層のみの単一量子井戸構造
でもよい。また量子井戸層や障壁層の層厚も本実施例に
こだわらず、他の膜厚を用いることもできる。
In this embodiment, the n-type GaN substrate is used. However, the configuration of the p-type and n-type may be reversed by using a GaN substrate having p-type conductivity. Further, in the present embodiment, the number of the quantum well layers 54 constituting the multiple quantum well structure active layer 46 is three, but a multiple quantum well structure of two layers or four or more layers may be used. A single quantum well structure may be used. Further, the thicknesses of the quantum well layer and the barrier layer are not limited to the present embodiment, and other thicknesses can be used.

【0068】[0068]

【発明の効果】上述したように本発明による窒化ガリウ
ム系半導体発光素子においては、気相成長法により、窒
化物半導体からなるクラッド層及び/又はガイド層に挟
まれた、少なくともインジウムとガリウムを含む窒化物
半導体からなる量子井戸構造活性層を形成する際の基板
の厚さを、5μm以上50μm以下と薄くすることによ
り、InGaNを結晶成長する際の基板の底面と表面と
の温度差が無くなり、基結晶成長時における基板ウェハ
ーの反りが抑えられることによって基板ウェハーは底面
全体で発熱体と接することになるため、基板ウェハー面
内での表面温度の分布が抑えられた。
As described above, the gallium nitride based semiconductor light emitting device according to the present invention contains at least indium and gallium sandwiched between a cladding layer and / or a guide layer made of a nitride semiconductor by a vapor growth method. By reducing the thickness of the substrate when forming the quantum well structure active layer made of a nitride semiconductor to 5 μm or more and 50 μm or less, the temperature difference between the bottom surface and the surface of the substrate when growing InGaN crystal is eliminated. By suppressing the warpage of the substrate wafer during the growth of the base crystal, the substrate wafer comes into contact with the heating element on the entire bottom surface, so that the distribution of the surface temperature in the substrate wafer surface was suppressed.

【0069】さらに、基板として窒化ガリウムを用いる
ことによって基板上に形成される半導体層と基板との熱
膨張係数の違いが小さくなり、熱歪みによるウェハーの
反りも抑えられ基板ウェハーの面内での表面温度の分布
がさらに改善された。
Further, by using gallium nitride as the substrate, the difference in the coefficient of thermal expansion between the semiconductor layer formed on the substrate and the substrate is reduced, and the warpage of the wafer due to thermal distortion is suppressed, so that the in-plane of the substrate wafer can be reduced. The distribution of surface temperature was further improved.

【0070】その結果、InGaN量子井戸活性層から
の発光特性の分布が改善され、基板ウェハー面内におい
て発振波長が均一で発振閾値電流値が低い窒化ガリウム
系半導体レーザ素子と、基板ウェハー面内で発光波長が
均一な窒化ガリウム系発光ダイオード素子が実現でき
た。
As a result, the distribution of the light emission characteristics from the InGaN quantum well active layer is improved, the gallium nitride based semiconductor laser device having a uniform oscillation wavelength and a low oscillation threshold current value within the substrate wafer surface, and A gallium nitride-based light emitting diode device having a uniform emission wavelength was realized.

【0071】また本実施例の窒化ガリウム系半導体レー
ザを光ディスクのデータ読み出し用光源として用いたと
ころ、基板の厚さが50μm以下と薄いことにより基板
に戻り光が入射ぜず、戻り光による雑音の発生が抑えら
れて、データの読み出しエラーが低減できた。さらに
は、基板の厚さが薄いことによりレーザ共振器の反射端
面を劈開により作製する際に、歩留まりよく劈開を行う
ことができ、コストが低減できた。
When the gallium nitride based semiconductor laser of this embodiment was used as a light source for reading data from an optical disk, no return light was incident on the substrate because the substrate was as thin as 50 μm or less. The occurrence was suppressed, and the data read error was reduced. Furthermore, when the reflection end face of the laser resonator is formed by cleavage due to the thinness of the substrate, cleavage can be performed with good yield, and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る半導体レーザ素子
を示す断面図である。
FIG. 1 is a sectional view showing a semiconductor laser device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に係る半導体レーザ素子
のA部を拡大した断面図である。
FIG. 2 is an enlarged sectional view of a portion A of the semiconductor laser device according to the first embodiment of the present invention.

【図3】窒化ガリウム系半導体レーザ素子において、ウ
ェハーの中心部と周辺部とでの発振波長の違いの大きさ
のGaN基板の厚さ依存性、及び、発振閾値電流値のG
aN基板の厚さ依存性を表すグラフ図である。
FIG. 3 shows the dependence of the difference in oscillation wavelength between the central part and the peripheral part of the wafer on the thickness of the GaN substrate in the gallium nitride based semiconductor laser device and the G of the oscillation threshold current value.
FIG. 4 is a graph showing the thickness dependency of an aN substrate.

【図4】本発明の第2の実施例に係る半導体発光ダイオ
ード素子を示す断面図である。
FIG. 4 is a sectional view showing a semiconductor light emitting diode device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例に係る半導体レーザ素子
を示す断面図である。
FIG. 5 is a sectional view showing a semiconductor laser device according to a third embodiment of the present invention.

【図6】本発明の第3の実施例に係る半導体レーザ素子
のB部を拡大した断面図である。
FIG. 6 is an enlarged sectional view of a portion B of a semiconductor laser device according to a third embodiment of the present invention.

【図7】窒化ガリウム系半導体を用いた従来の青色LD
の断面図である。
FIG. 7 shows a conventional blue LD using a gallium nitride based semiconductor.
FIG.

【図8】窒化ガリウム系半導体を用いた従来の青色LE
Dの断面図である。
FIG. 8 shows a conventional blue LE using a gallium nitride-based semiconductor.
It is sectional drawing of D.

【図9】発熱体上に設置された従来の基板ウェハーの温
度を上昇したときの、基板の反りを示す図である。
FIG. 9 is a diagram showing the warpage of a substrate when the temperature of a conventional substrate wafer placed on a heating element is increased.

【符号の説明】[Explanation of symbols]

1 半絶縁性GaN基板 2 ノンドープGaNバッファ層 3 n−GaNn型コンタクト層 4 n−Al0.1Ga0.9Nn型クラッド層 5 n−GaNガイド層 6 多重量子井戸構造活性層 7 Al0.2Ga0.8N蒸発防止層 8 p−GaNガイド層 9 p−Al0.1Ga0.9Np型クラッド層 10 p−GaNp型コンタクト層 12 n側電極 13 SiO2絶縁膜 14 In0.2Ga0.8N量子井戸層 15 In0.05Ga0.95N障壁層1 semi-insulating GaN substrate 2 non-doped GaN buffer layer 3 n-Gann type contact layer 4 n-Al 0.1 Ga 0.9 Nn type cladding layer 5 n-GaN guide layer 6 multiple quantum well structure active layer 7 Al 0.2 Ga 0.8 N evaporation preventing Layer 8 p-GaN guide layer 9 p-Al 0.1 Ga 0.9 Np-type cladding layer 10 p-GaN p-type contact layer 12 n-side electrode 13 SiO 2 insulating film 14 In 0.2 Ga 0.8 N quantum well layer 15 In 0.05 Ga 0.95 N barrier layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気相成長法により、窒化物半導体からな
るクラッド層及び/又はガイド層に挟まれた、少なくと
もインジウムとガリウムを含む窒化物半導体からなる量
子井戸構造活性層を形成する際の窒化ガリウム基板の厚
さを、5μm以上50μm以下とすることを特徴とする
窒化ガリウム系半導体発光素子の製造方法。
1. A nitride for forming a quantum well structure active layer made of a nitride semiconductor containing at least indium and gallium sandwiched between a clad layer and / or a guide layer made of a nitride semiconductor by a vapor growth method. A method for manufacturing a gallium nitride-based semiconductor light emitting device, wherein a thickness of a gallium substrate is 5 μm or more and 50 μm or less.
【請求項2】 気相成長法により、窒化物半導体からな
るクラッド層及び/又はガイド層に挟まれた、少なくと
もインジウムとガリウムを含む窒化物半導体からなる量
子井戸構造活性層を形成する際の基板の厚さを5μm以
上50μm以下とすることにより得られた、少なくとも
1層の量子井戸層を有する窒化ガリウム系半導体発光素
子。
2. A substrate for forming a quantum well structure active layer made of a nitride semiconductor containing at least indium and gallium sandwiched between a clad layer and / or a guide layer made of a nitride semiconductor by a vapor phase growth method. A gallium nitride based semiconductor light emitting device having at least one quantum well layer obtained by setting the thickness of the semiconductor layer to 5 μm or more and 50 μm or less.
JP10551597A 1997-04-23 1997-04-23 Method for manufacturing gallium nitride based semiconductor light emitting device Expired - Fee Related JP3880683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10551597A JP3880683B2 (en) 1997-04-23 1997-04-23 Method for manufacturing gallium nitride based semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10551597A JP3880683B2 (en) 1997-04-23 1997-04-23 Method for manufacturing gallium nitride based semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10303459A true JPH10303459A (en) 1998-11-13
JP3880683B2 JP3880683B2 (en) 2007-02-14

Family

ID=14409747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10551597A Expired - Fee Related JP3880683B2 (en) 1997-04-23 1997-04-23 Method for manufacturing gallium nitride based semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3880683B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001022545A1 (en) * 1999-09-22 2001-03-29 Mitsubishi Chemical Corporation Luminous element and luminous element module
JP2001094188A (en) * 1999-09-22 2001-04-06 Mitsubishi Chemicals Corp Light-emitting element and light-emitting element module
JP2003530703A (en) * 2000-04-12 2003-10-14 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク Thin semiconductor layer made of GaInN, method of manufacturing the same, LED provided with the semiconductor layer, and lighting device provided with the LED
CN100452447C (en) * 2000-12-18 2009-01-14 三星电机株式会社 GaN group III-V family nitride light-emitting diode and its production method
JP2009091245A (en) * 2004-03-23 2009-04-30 Sumitomo Electric Ind Ltd Gallium nitride substrate and epitaxial substrate
JP2009200337A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Group iii nitride light emitting element, and method of manufacturing group iii nitride-based semiconductor light emitting element
JP2009283588A (en) * 2008-05-21 2009-12-03 Sanyo Electric Co Ltd Method of manufacturing nitride-semiconductor light emitting device
JP2012129340A (en) * 2010-12-15 2012-07-05 Toshiba Corp Semiconductor light-emitting element
WO2021177036A1 (en) * 2020-03-05 2021-09-10 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164157B2 (en) 1999-09-22 2007-01-16 Mitsubishi Chemical Corporation Light emitting device and light emitting device module
JP2001094188A (en) * 1999-09-22 2001-04-06 Mitsubishi Chemicals Corp Light-emitting element and light-emitting element module
EP1146615A1 (en) * 1999-09-22 2001-10-17 Mitsubishi Chemical Corporation Luminous element and luminous element module
WO2001022545A1 (en) * 1999-09-22 2001-03-29 Mitsubishi Chemical Corporation Luminous element and luminous element module
EP1146615A4 (en) * 1999-09-22 2005-10-19 Mitsubishi Chem Corp Luminous element and luminous element module
US7102174B2 (en) 1999-09-22 2006-09-05 Mitsubishi Chemical Corporation Light emitting device and light emitting device module
JP2003530703A (en) * 2000-04-12 2003-10-14 サントル・ナショナル・ドゥ・ラ・レシェルシュ・サイエンティフィーク Thin semiconductor layer made of GaInN, method of manufacturing the same, LED provided with the semiconductor layer, and lighting device provided with the LED
CN100452447C (en) * 2000-12-18 2009-01-14 三星电机株式会社 GaN group III-V family nitride light-emitting diode and its production method
JP2009091245A (en) * 2004-03-23 2009-04-30 Sumitomo Electric Ind Ltd Gallium nitride substrate and epitaxial substrate
JP2009200337A (en) * 2008-02-22 2009-09-03 Sumitomo Electric Ind Ltd Group iii nitride light emitting element, and method of manufacturing group iii nitride-based semiconductor light emitting element
US7968864B2 (en) 2008-02-22 2011-06-28 Sumitomo Electric Industries, Ltd. Group-III nitride light-emitting device
JP2009283588A (en) * 2008-05-21 2009-12-03 Sanyo Electric Co Ltd Method of manufacturing nitride-semiconductor light emitting device
JP2012129340A (en) * 2010-12-15 2012-07-05 Toshiba Corp Semiconductor light-emitting element
US8895956B2 (en) 2010-12-15 2014-11-25 Kabushiki Kaisha Toshiba Semiconductor light emitting device
WO2021177036A1 (en) * 2020-03-05 2021-09-10 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser

Also Published As

Publication number Publication date
JP3880683B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP3653169B2 (en) Gallium nitride semiconductor laser device
US6940100B2 (en) Group III-V nitride semiconductor light-emitting device which allows for efficient injection of electrons into an active layer
JP3770014B2 (en) Nitride semiconductor device
WO1998039827A1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JP2008141187A (en) Nitride semiconductor laser device
JP2008109066A (en) Light emitting element
JPH10321910A (en) Light-emitting semiconductor element
JP2000058915A (en) Gallium nitride-based semiconductor laser element and optical pickup device
JP4822608B2 (en) Nitride-based semiconductor light-emitting device and manufacturing method thereof
JP2900990B2 (en) Nitride semiconductor light emitting device
JPH10261838A (en) Gallium nitride semiconductor light-emitting element and semiconductor laser beam source device
JP3880683B2 (en) Method for manufacturing gallium nitride based semiconductor light emitting device
JP2002374035A (en) Semiconductor laser device and producing method therefor
JP4493041B2 (en) Nitride semiconductor light emitting device
JPH10303505A (en) Gallium nitride semiconductor light emitting device and its manufacture
JP2001156327A (en) Semiconductor light-emitting device
JPH1117248A (en) High reflecting film structure for semiconductor laser and semiconductor laser
JP2000091701A (en) Reflection mirror, semiconductor laser, formation of reflection mirror, and manufacture of semiconductor laser
JP4365898B2 (en) Gallium nitride semiconductor laser device and semiconductor laser light source device
JP4683731B2 (en) Nitride semiconductor laser device and optical device including the same
JPH11340573A (en) Gallium nitride based semiconductor laser element
JP3933637B2 (en) Gallium nitride semiconductor laser device
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
JPH11224972A (en) Nitride semiconductor light-emitting element
JP3454181B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040423

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees