JPH1051073A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH1051073A
JPH1051073A JP20447096A JP20447096A JPH1051073A JP H1051073 A JPH1051073 A JP H1051073A JP 20447096 A JP20447096 A JP 20447096A JP 20447096 A JP20447096 A JP 20447096A JP H1051073 A JPH1051073 A JP H1051073A
Authority
JP
Japan
Prior art keywords
gan
buffer layer
active layer
emitting device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20447096A
Other languages
Japanese (ja)
Inventor
Megumi Doumen
恵 堂免
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20447096A priority Critical patent/JPH1051073A/en
Publication of JPH1051073A publication Critical patent/JPH1051073A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the threshold current density of a semiconductor light emitting device for emitting a short wavelength light, by providing a GaN active layer on a low temperature grown buffer layer formed on a ZnO substrate whereinto a tensile strain originating from the difference between thermal expansion coefficients of the GaN active layer and the ZnO substrate is introduced. SOLUTION: On a ZnO substrate 1, a GaN buffer layer 2 is made to grow. On this GaN buffer layer 2 subjected to a low-temperature growth, a GaN buffer layer 3, an Si-doped n-(Al0.1 Ga0.9 )N barrier layer 4, an undoped GaN active layer 5 and an Mg-doped p-(Al0.1 Ga0.9 )N barrier layer 6 are made to grow in succession. Since the thermal expansion coefficients of the ZnO substrate 1 and the GaN active layer 5 are respectively 2.9×10<-6> /K and 5.59×10<-6> /K, a tensile strain of about 0.3% can be introduced in between them. Therefore, the edge of the valence band of the active layer 5 is occupied only by CH band to make the threshold current density of a semiconductor light emitting device reducible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaN系材料を用
い、引っ張り歪みを導入した半導体発光装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor light emitting device using a GaN-based material and introducing tensile strain.

【0002】近年、青色領域から近紫外領域の波長をも
つ光を発生する短波長半導体レーザの開発が盛んであ
る。
In recent years, short-wavelength semiconductor lasers that generate light having a wavelength in the blue to near-ultraviolet range have been actively developed.

【0003】一般に、青色発光の半導体レーザ用材料と
しては、二族・六族のZnSe系と三族・五族のGaN
系が知られているところであるが、ZnSe系は、高品
質の基板として実績があるGaAsに格子整合すること
から、今まで、ZnSe系が有利であると考えられてき
た。
[0003] In general, materials for blue-emitting semiconductor lasers include ZnSe-based materials of Group II / VI and GaN of Group III / V.
Although a system is known, the ZnSe system has been considered to be advantageous up to now because it is lattice-matched to GaAs which has been used as a high-quality substrate.

【0004】そのようなことから、世界に於ける研究者
の大半がZnSe系の研究に携わっていて、その研究は
他の系に比較して先行し、既に、室温連続発振が報告さ
れているのであるが、ZnSeが本質的に劣化し易い材
料であることから、信頼性に問題があり、未だ、実用化
に至っていない。
[0004] As such, most of the researchers in the world are engaged in research on the ZnSe system, and that research has preceded other researches, and room temperature continuous oscillation has already been reported. However, since ZnSe is a material that is inherently easily deteriorated, there is a problem in reliability, and it has not yet been put to practical use.

【0005】本発明は、充分に商用性がある短波長半導
体レーザを実現する為の一手段を提供することができ
る。
[0005] The present invention can provide one means for realizing a short-wavelength semiconductor laser that is sufficiently commercially available.

【0006】[0006]

【従来の技術】2年前、GaNを材料とした高輝度のL
ED(light emittingdiode)につ
いて研究成果の発表があった(要すれば、「1994年
4月1日 日経BP社発行 雑誌“日経マイクロデバイ
ス”1994年4月号 第99頁乃至第103頁」、を
参照)。
2. Description of the Related Art Two years ago, high brightness L made of GaN was used.
Research results were announced on ED (Light Emitting Diode) (in short, "Magazine" Nikkei Microdevice "published April 1, 1994, Nikkei BP, April 1994, pp. 99-103). reference).

【0007】この発表を境にして、信頼性がネックにな
っていたZnSe材料に代わり、耐環境性に優れている
GaNが見直され、研究が広がりつつある。
[0007] After this announcement, GaN having excellent environmental resistance has been reviewed instead of the ZnSe material whose reliability has been a bottleneck, and research has been expanding.

【0008】GaN系電流注入型半導体発光装置の発振
は、室温パルス発振が報告されたばかりであるが、しき
い値電流密度が大きい旨を指摘され、また、理論計算に
依っても、バンドの有効質量が大きいことなどから、同
じく、しきい値電流密度が非常に大きくなることが予測
されている。
As for the oscillation of the GaN-based current injection type semiconductor light emitting device, although pulse oscillation at room temperature has just been reported, it has been pointed out that the threshold current density is large. Similarly, it is predicted that the threshold current density will be very large because of the large mass.

【0009】理論計算に依れば、GaN系材料を用いた
場合、引っ張り歪みの導入に依ってバンド端を形成する
のはCHバンドのみとなる為、引っ張り歪みがしきい値
電流密度の低減に有効であることが予測されている。
According to theoretical calculations, when a GaN-based material is used, only the CH band forms a band edge due to the introduction of tensile strain, so that tensile strain reduces the threshold current density. It is expected to be effective.

【0010】図2は価電子帯構造の歪み依存性を表す線
図であり、縦軸には価電子帯エネルギ準位を、横軸に歪
みをそれぞれ採ってある。
FIG. 2 is a diagram showing the strain dependence of the valence band structure. The ordinate shows the valence band energy level, and the abscissa shows the strain.

【0011】図では、電子に対し正に縦軸を採ってある
ので、ホールのエネルギは、縦軸で下方になるほど大き
くなる。従って、バンド端となるのは、一番上のバンド
である。
In the figure, since the vertical axis is taken positively for the electrons, the energy of the hole increases as it goes down the vertical axis. Therefore, the band end is the top band.

【0012】図からすると、圧縮歪み、即ち、歪み量が
負の方向では、バンド端にHHとLHとが近接して存在
することが看取され、これからすると、バンド端に於け
る状態密度が非常に大きく、フェルミ・レベルは上がり
難いことが推定される。
From the figure, it can be seen that in the negative direction of the compressive strain, that is, the amount of distortion, HH and LH are present close to the band edge. It is very large, and it is estimated that the Fermi level is hard to rise.

【0013】これに対し、引っ張り歪み、即ち、歪み量
が正の方向では、バンド端がCHバンドだけになること
が看取され、これからすると、バンド端に於ける状態密
度が低減されて、圧縮歪みや無歪の状態に比較し、フェ
ルミ・レベルが上がり易くなることが期待される。
On the other hand, in the tensile strain, that is, when the strain amount is in the positive direction, it is observed that the band edge is only the CH band. From this, the density of states at the band edge is reduced, and the compression is reduced. It is expected that the Fermi level will increase more easily than in a strained or unstrained state.

【0014】[0014]

【発明が解決しようとする課題】前記したように、Ga
N系材料を用いた場合、引っ張り歪みを導入することで
しきい値電流密度を低減できることが明らかであるが、
それを実現することは大変困難である。
SUMMARY OF THE INVENTION As described above, Ga
When an N-based material is used, it is apparent that the threshold current density can be reduced by introducing tensile strain,
It is very difficult to achieve.

【0015】通常、半導体結晶に歪みを導入するには、
格子定数のずれを利用することが多いのであるが、Ga
Nに比較して適当な量、即ち、0.5〔%〕以内の範囲
で、格子定数が大きい材料がない為である。
Usually, to introduce strain into a semiconductor crystal,
It is common to use the shift of the lattice constant.
This is because there is no material having a large lattice constant in an appropriate amount as compared with N, that is, within a range of 0.5%.

【0016】本発明では、極めて簡単な手段を適用する
ことに依って、GaN系材料に引っ張り歪みの導入を可
能とし、短波長光を発生する半導体発光装置のしきい値
電流密度を低減させようとする。
According to the present invention, by applying extremely simple means, it is possible to introduce tensile strain into a GaN-based material and to reduce the threshold current density of a semiconductor light emitting device that generates short wavelength light. And

【0017】[0017]

【課題を解決するための手段】本発明者等は、サファイ
ア基板上に形成したGaN系結晶の研究を行なってきた
のであるが、低温バッファ層上に成長された結晶層で
は、その歪み量は、格子定数差に依存せず、基板との熱
膨張係数差のみで決定されることを確認した。
The present inventors have studied GaN-based crystals formed on a sapphire substrate. However, in a crystal layer grown on a low-temperature buffer layer, the amount of distortion is small. It was confirmed that the determination was made only by the difference in thermal expansion coefficient with the substrate, without depending on the lattice constant difference.

【0018】この現象を利用すれば、熱膨張係数差を利
用してGaN系結晶に引っ張り歪みを導入することが可
能となる。
By utilizing this phenomenon, it is possible to introduce tensile strain into the GaN-based crystal by utilizing the difference in thermal expansion coefficient.

【0019】ところで、ZnO基板は、a軸の格子定数
3.252〔Å〕をもち、この上にGaNを直接成長し
たのでは、約3.2〔%〕の引っ張り歪みが導入され、
歪み量が大き過ぎて、まともな結晶は得られない。
Incidentally, the ZnO substrate has an a-axis lattice constant of 3.252 [Å], and when GaN is directly grown thereon, a tensile strain of about 3.2 [%] is introduced.
Since the amount of strain is too large, a proper crystal cannot be obtained.

【0020】然しながら、ZnO基板とGaN層との間
に低温成長のバッファ層を介在させた場合、低温成長バ
ッファ層上の結晶に於ける歪み量は、略熱膨張係数差の
みに依存する。
However, when a low-temperature growth buffer layer is interposed between the ZnO substrate and the GaN layer, the amount of strain in the crystal on the low-temperature growth buffer layer substantially depends only on the difference in thermal expansion coefficient.

【0021】ZnO基板の熱膨張係数は2.9×10-6
/Kであり、また、GaN層の熱膨張係数は5.59×
10-6/Kであるから、両者の間には、約0.3〔%〕
の引っ張り歪みを導入することができる。
The thermal expansion coefficient of the ZnO substrate is 2.9 × 10 -6
/ K, and the coefficient of thermal expansion of the GaN layer is 5.59 ×
Since it is 10 -6 / K, about 0.3 [%]
Tensile strain can be introduced.

【0022】このようなことから、本発明に依る半導体
発光装置に於いては、 (1)ZnO基板(例えばZnO基板1)上に形成され
た低温成長バッファ層(例えば500〔℃〕で成長され
たGaNバッファ層2)と、該低温成長バッファ層上に
形成され該ZnO基板との熱膨張係数差に由来する引っ
張り歪みが導入されたGaN活性層(例えば引っ張り歪
みが導入されたアンドープGaN活性層5)とを備えて
なることを特徴とするか、或いは、
From the above, in the semiconductor light emitting device according to the present invention, (1) the semiconductor light emitting device is grown on a low-temperature growth buffer layer (for example, 500 ° C.) formed on a ZnO substrate (for example, ZnO substrate 1). GaN buffer layer 2) and a GaN active layer formed on the low-temperature growth buffer layer and having a tensile strain derived from the difference in thermal expansion coefficient between the ZnO substrate and the GaN active layer (for example, an undoped GaN active layer having a tensile strain introduced) 5) is provided, or

【0023】(2)ZnO基板上に形成された低温成長
バッファ層と、該低温成長バッファ層上に形成され該Z
nO基板との熱膨張係数差に由来する引っ張り歪みが導
入されたGaInN活性層とを備えてなることを特徴と
するか、或いは、
(2) a low-temperature growth buffer layer formed on a ZnO substrate;
or a GaInN active layer into which a tensile strain derived from a difference in thermal expansion coefficient from the nO substrate has been introduced, or

【0024】(3)前記(1)に於いて、引っ張り歪み
が導入されたGaN活性層をAlGaN或いはAlIn
N或いはAlGaInNから選択した材料で構成された
障壁層で挟んで形成したダブル・ヘテロ構造を備えてな
ることを特徴とするか、或いは、
(3) In the above (1), the GaN active layer into which the tensile strain has been introduced is made of AlGaN or AlIn.
A double hetero structure formed between barrier layers made of a material selected from N or AlGaInN, or

【0025】(4)前記(2)に於いて、引っ張り歪み
が導入されたGaInN活性層をAlGaN或いはAl
InN或いはAlGaInNから選択した材料で構成さ
れた障壁層で挟んで形成したダブル・ヘテロ構造を備え
てなることを特徴とする。
(4) In the above (2), the GaInN active layer in which the tensile strain has been introduced is made of AlGaN or AlGaN.
It is characterized by having a double hetero structure formed between barrier layers made of a material selected from InN or AlGaInN.

【0026】前記手段を採ることに依り、GaN系活性
層に引っ張り歪みを容易に導入することが可能となっ
て、バンド端ではCHバンドのみとなり、状態密度が低
減される為、短波長光を発生する半導体発光装置を低い
しきい値電流密度で発振させることが可能となる。
By adopting the above-mentioned means, it becomes possible to easily introduce tensile strain into the GaN-based active layer, and only the CH band is formed at the band edge, and the state density is reduced. The generated semiconductor light emitting device can be oscillated at a low threshold current density.

【0027】[0027]

【発明の実施の形態】図1は本発明に於ける一実施の形
態を説明する為の短波長光発生用半導体レーザを表す要
部切断側面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cutaway side view of a main part of a semiconductor laser for generating short-wavelength light for explaining an embodiment of the present invention.

【0028】図に於いて、1はZnO基板、2は低温成
長GaNバッファ層、3はGaNバッファ層、4はn−
(Al0.1 Ga0.9 )N障壁層、5はアンドープGaN
活性層、6はp−(Al0.1 Ga0.9 )N障壁層、7は
n側電極、8はp側電極、をそれぞれ示している。
In the figure, 1 is a ZnO substrate, 2 is a GaN buffer layer grown at a low temperature, 3 is a GaN buffer layer, and 4 is an n-
(Al 0.1 Ga 0.9 ) N barrier layer, 5 is undoped GaN
The active layer, 6 indicates a p- (Al 0.1 Ga 0.9 ) N barrier layer, 7 indicates an n-side electrode, and 8 indicates a p-side electrode.

【0029】この半導体レーザを製造する工程は、極め
て簡単であり、次に、その一例を説明する。
The process of manufacturing this semiconductor laser is extremely simple, and an example will be described below.

【0030】(1) MOCVD(metalorga
nic chemical vapour depos
ition)法を適用することに依って、成長温度を例
えば500〔℃〕として、ZnO基板1上に厚さが例え
ば500〔Å〕のGaNバッファ層2を成長させる。
(1) MOCVD (metalorga)
nic chemical vapor depos
The GaN buffer layer 2 having a thickness of, for example, 500 [Å] is grown on the ZnO substrate 1 at a growth temperature of, for example, 500 [° C.] by applying the method.

【0031】(2) 引き続きMOCVD法を適用し、
それぞれの物質被膜を成長させるのに必要な温度(〜1
100〔℃〕〜)として、低温成長GaNバッファ層2
上に厚さが例えば0.5〔μm〕のGaNバッファ層
3、厚さが例えば1〔μm〕のSiドープn−(Al
0.1 Ga0.9 )N障壁層4、厚さが例えば0.1〔μ
m〕のアンドープGaN活性層5、厚さが例えば1〔μ
m〕のMgドープp−(Al0.1 Ga0.9 )N障壁層6
を順に成長させる。
(2) Subsequently, MOCVD is applied,
The temperature required to grow each material coating (~ 1
100 [° C.]), the low-temperature-grown GaN buffer layer 2
A GaN buffer layer 3 having a thickness of, for example, 0.5 [μm] and a Si-doped n- (Al
0.1 Ga 0.9 ) N barrier layer 4 having a thickness of, for example, 0.1 [μ
m] undoped GaN active layer 5 having a thickness of, for example, 1 μm
m] Mg-doped p- (Al 0.1 Ga 0.9 ) N barrier layer 6
Grow in order.

【0032】(3) リソグラフィ技術に於けるレジス
ト・プロセス、及び、エッチング・ガスをCHF3 又は
2 6 などとするドライ・エッチング法を適用するこ
とに依り、n側電極形成予定部分に於いて、表面からn
−(Al0.1 Ga0.9 )N障壁層4に達するエッチング
を行なって切り欠き部分4Aを生成させる。
(3) By applying a resist process in the lithography technique and a dry etching method using CHF 3 or C 2 H 6 as an etching gas, a portion where an n-side electrode is to be formed is formed. And n from the surface
The etching reaching the (Al 0.1 Ga 0.9 ) N barrier layer 4 is performed to form a notch 4A.

【0033】(4) リソグラフィ技術に於けるレジス
ト・プロセス、真空蒸着法、レジストを溶解するリフト
・オフ法などを適用することに依り、前記切り欠き部分
4Aを形成したことで一部が表出されたn−(Al0.1
Ga0.9 )N障壁層4上に厚さが例えば1000〔Å〕
のTiからなるn側電極7を形成し、また、p−(Al
0.1 Ga0.9 )N障壁層6上に厚さが例えば1000
〔Å〕のNiからなるp側電極8を形成する。
(4) A part of the cutout 4A is exposed by applying a resist process, a vacuum deposition method, a lift-off method for dissolving the resist, or the like in the lithography technique. N- (Al 0.1
Ga 0.9 ) N barrier layer 4 has a thickness of, for example, 1000 [Å].
The n-side electrode 7 made of Ti is formed, and p- (Al
0.1 Ga 0.9 ) The thickness on the N barrier layer 6 is, for example, 1000
[Å] The p-side electrode 8 made of Ni is formed.

【0034】前記のようにして作成した半導体レーザで
は、アンドープGaN活性層5に約0.3〔%〕程度の
引っ張り歪みが導入されて、バンド端はCHバンドのみ
となり、しきい値電流密度を低下させることができた。
In the semiconductor laser fabricated as described above, a tensile strain of about 0.3% is introduced into the undoped GaN active layer 5, the band edge becomes only the CH band, and the threshold current density is reduced. Could be lowered.

【0035】[0035]

【発明の効果】本発明に依る半導体発光装置に於いて
は、ZnO基板上に形成された低温成長バッファ層、該
低温成長バッファ層上に形成され該ZnO基板との熱膨
張係数差に由来する引っ張り歪みが導入されたGaN活
性層とを備える。
In the semiconductor light-emitting device according to the present invention, the low-temperature growth buffer layer formed on the ZnO substrate and the difference in thermal expansion coefficient between the low-temperature growth buffer layer and the ZnO substrate formed on the low-temperature growth buffer layer. A GaN active layer into which tensile strain has been introduced.

【0036】前記構成を採ることに依り、GaN系活性
層に引っ張り歪みを容易に導入することが可能となっ
て、バンド端ではCHバンドのみとなり、状態密度が低
減される為、短波長光を発生する半導体発光装置を低い
しきい値電流密度で発振させることが可能となる。
By employing the above configuration, it is possible to easily introduce tensile strain into the GaN-based active layer, and only the CH band is formed at the band edge, and the state density is reduced. The generated semiconductor light emitting device can be oscillated at a low threshold current density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に於ける一実施の形態を説明する為の短
波長光発生用半導体レーザを表す要部切断側面図であ
る。
FIG. 1 is a cutaway side view of a main part of a semiconductor laser for generating short-wavelength light for explaining an embodiment of the present invention.

【図2】価電子帯構造の歪み依存性を表す線図である。FIG. 2 is a diagram showing the strain dependence of the valence band structure.

【符号の説明】[Explanation of symbols]

1 ZnO基板 2 低温成長GaNバッファ層 3 GaNバッファ層 4 n−(Al0.1 Ga0.9 )N障壁層 5 アンドープGaN活性層 6 p−(Al0.1 Ga0.9 )N障壁層 7 n側電極 8 p側電極Reference Signs List 1 ZnO substrate 2 GaN buffer layer at low temperature growth 3 GaN buffer layer 4 n- (Al 0.1 Ga 0.9 ) N barrier layer 5 undoped GaN active layer 6 p- (Al 0.1 Ga 0.9 ) N barrier layer 7 n-side electrode 8 p-side electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ZnO基板上に形成された低温成長バッフ
ァ層と、 該低温成長バッファ層上に形成され該ZnO基板との熱
膨張係数差に由来する引っ張り歪みが導入されたGaN
活性層とを備えてなることを特徴とする半導体発光装
置。
1. A low-temperature growth buffer layer formed on a ZnO substrate, and GaN formed on the low-temperature growth buffer layer and having tensile strain induced by a difference in thermal expansion coefficient between the ZnO substrate and the GaN.
A semiconductor light emitting device comprising an active layer.
【請求項2】ZnO基板上に形成された低温成長バッフ
ァ層と、 該低温成長バッファ層上に形成され該ZnO基板との熱
膨張係数差に由来する引っ張り歪みが導入されたGaI
nN活性層とを備えてなることを特徴とする半導体発光
装置。
2. A low-temperature growth buffer layer formed on a ZnO substrate, and a GaI formed on the low-temperature growth buffer layer and having tensile strain induced by a difference in thermal expansion coefficient between the ZnO substrate and the low-temperature growth buffer layer.
A semiconductor light emitting device comprising an nN active layer.
【請求項3】引っ張り歪みが導入されたGaN活性層を
AlGaN或いはAlInN或いはAlGaInNから
選択した材料で構成された障壁層で挟んで形成したダブ
ル・ヘテロ構造を備えてなることを特徴とする請求項1
記載の半導体発光装置。
3. A double hetero structure comprising a GaN active layer in which a tensile strain has been introduced and sandwiched by a barrier layer made of a material selected from AlGaN, AlInN, or AlGaInN. 1
14. The semiconductor light emitting device according to claim 1.
【請求項4】引っ張り歪みが導入されたGaInN活性
層をAlGaN或いはAlInN或いはAlGaInN
から選択した材料で構成された障壁層で挟んで形成した
ダブル・ヘテロ構造を備えてなることを特徴とする請求
項2記載の半導体発光装置。
4. The method according to claim 1, wherein the GaInN active layer in which the tensile strain is introduced is made of AlGaN, AlInN, or AlGaInN.
3. The semiconductor light emitting device according to claim 2, comprising a double hetero structure formed between barrier layers made of a material selected from the group consisting of:
JP20447096A 1996-08-02 1996-08-02 Semiconductor light emitting device Withdrawn JPH1051073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20447096A JPH1051073A (en) 1996-08-02 1996-08-02 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20447096A JPH1051073A (en) 1996-08-02 1996-08-02 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH1051073A true JPH1051073A (en) 1998-02-20

Family

ID=16491070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20447096A Withdrawn JPH1051073A (en) 1996-08-02 1996-08-02 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH1051073A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016411A1 (en) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
US6365921B1 (en) * 1999-06-15 2002-04-02 Pioneer Corporation Gallium-nitride-based semiconductor light emitting device and fabrication method
US7312480B2 (en) 1998-10-22 2007-12-25 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
JP2009032985A (en) * 2007-07-27 2009-02-12 Furukawa Electric Co Ltd:The Semiconductor luminous element and method for manufacturing the same
CN102651432A (en) * 2012-05-17 2012-08-29 上海大学 Method for preparing thin film type LED

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016411A1 (en) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same
US7312480B2 (en) 1998-10-22 2007-12-25 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
US6365921B1 (en) * 1999-06-15 2002-04-02 Pioneer Corporation Gallium-nitride-based semiconductor light emitting device and fabrication method
WO2008029915A1 (en) * 2006-09-08 2008-03-13 The Furukawa Electric Co., Ltd. Semiconductor light emitting device and process for producing the same
US8222658B2 (en) 2006-09-08 2012-07-17 The Furukawa Electric Co., Ltd. Semiconductor light emitting element and method of manufacturing therefor
JP2009032985A (en) * 2007-07-27 2009-02-12 Furukawa Electric Co Ltd:The Semiconductor luminous element and method for manufacturing the same
CN102651432A (en) * 2012-05-17 2012-08-29 上海大学 Method for preparing thin film type LED

Similar Documents

Publication Publication Date Title
US6100106A (en) Fabrication of nitride semiconductor light-emitting device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JP2002261395A (en) Semiconductor light-emitting device and its manufacturing method, and semiconductor device and its manufacturing method
JP2001053339A (en) Semiconductor light-emitting device and manufacture thereof
JP3105981B2 (en) Semiconductor light emitting device
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JPH09116225A (en) Semiconductor light emitting device
JP2800666B2 (en) Gallium nitride based compound semiconductor laser device
JP2003046201A (en) Semiconductor laser element and method of manufacturing the same
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP4877294B2 (en) Manufacturing method of semiconductor light emitting device
JP2003086903A (en) Semiconductor light emitting device and its manufacturing method
JP2000261035A (en) GaN-BASED SEMICONDUCTOR DEVICE
JP2004247563A (en) Semiconductor device
JPH09252163A (en) Semiconductor light-emitting element
JPH1051073A (en) Semiconductor light emitting device
JPH1154847A (en) Crystal growth method for gallium nitride-based semiconductor layer containing ingan layer, gallium nitride-based light-emitting element, and manufacture thereof
JP2000077783A (en) Growth method of indium-containing nitride semiconductor crystal
KR100475005B1 (en) Nitride semiconductor device
US20090135873A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JPH10284802A (en) Nitride-based compound semiconductor light emitting element
JP3716395B2 (en) Semiconductor light emitting device
JPH11224972A (en) Nitride semiconductor light-emitting element
JP3219231B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JPH10341036A (en) Semiconductor substrate, semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007