JPH10341060A - Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode - Google Patents

Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode

Info

Publication number
JPH10341060A
JPH10341060A JP15076197A JP15076197A JPH10341060A JP H10341060 A JPH10341060 A JP H10341060A JP 15076197 A JP15076197 A JP 15076197A JP 15076197 A JP15076197 A JP 15076197A JP H10341060 A JPH10341060 A JP H10341060A
Authority
JP
Japan
Prior art keywords
plane
layer
gallium nitride
sapphire substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15076197A
Other languages
Japanese (ja)
Other versions
JP3119200B2 (en
Inventor
Akitaka Kimura
明隆 木村
Chiaki Sasaoka
千秋 笹岡
Atsushi Yamaguchi
敦史 山口
Masaaki Nidou
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15076197A priority Critical patent/JP3119200B2/en
Publication of JPH10341060A publication Critical patent/JPH10341060A/en
Application granted granted Critical
Publication of JP3119200B2 publication Critical patent/JP3119200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a laser with a low oscillation threshold carrier density by sequentially forming a gallium nitride semiconductor layer with a specific crystal surface as a surface on a sapphire substrate with the specific crystal surface as a surface. SOLUTION: A gallium nitride low-temperature growth buffer layer 102 is grown on a sapphire substrate 101 where a surface that has a tilt angle from (01-01) surface or (01-10) surface within 5 deg. is set to surface. Out it, a process for forming Inx Aly Ga1-x-y N layer (0<=x<=1, 0<=y<=1, 0<=x+y<=1) where the surface that has the tilt angle from (11-22) surface or (11-22) surface within 5 deg. is set to the surface is executed. Then, an n-type gallium nitride contact layer 103, an n-type InGaN layer 104, an n-type AlGaN cladding layer 105, an n-type gallium nitride light guide layer 106, a multiple-quantum well structure active layer 107 of an InGaN, a p-type AlGaN layer 108, a p-type gallium nitride light guide layer 109, a p-type AlGaN cladding layer 110, and a p-type gallium nitride contact layer 111 are sequentially laminated to form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化ガリウムまた
は窒化インジウムまたは窒化アルミニウムまたはそれら
の混晶(以下単に窒化物系化合物半導体)の結晶成長方
法に関する及び、窒化ガリウム系化合物半導体の層を少
なくとも1層含む発光素子(以下単に窒化ガリウム系発
光素子)に関し、特に、発振しきい値キャリア密度の低
いレーザおよび発光効率の良い発光ダイオードに関す
る。
The present invention relates to a method for growing a crystal of gallium nitride, indium nitride, aluminum nitride, or a mixed crystal thereof (hereinafter simply referred to as a nitride compound semiconductor). The present invention relates to a light-emitting element including a layer (hereinafter simply referred to as a gallium nitride-based light-emitting element), and particularly to a laser having a low oscillation threshold carrier density and a light-emitting diode having high luminous efficiency.

【0002】[0002]

【従来の技術】窒化ガリウムは、燐化インジウムや砒化
ガリウムといった従来の一般的な化合物半導体に比べ、
禁制帯エネルギーが大きい。そのため、窒化ガリウム系
化合物半導体は緑から紫外にかけての発光素子への応用
が期待されている。
2. Description of the Related Art Gallium nitride is compared with conventional general compound semiconductors such as indium phosphide and gallium arsenide.
Large forbidden energy. For this reason, gallium nitride-based compound semiconductors are expected to be applied to light emitting devices in the range from green to ultraviolet.

【0003】従来、代表的な窒化ガリウム系化合物半導
体は、一般に、有機金属化学気相成長法により、(11
−20)面(以下A面)または(0001)面(以下C
面)を表面とするサファイア基板上に形成されていた。
Conventionally, typical gallium nitride-based compound semiconductors are generally prepared by metal organic chemical vapor deposition (11).
−20) plane (hereinafter A plane) or (0001) plane (hereinafter C plane)
Surface) on the sapphire substrate.

【0004】窒化ガリウム、窒化アルミニウム、窒化イ
ンジウム、サファイアの常温付近での〔1000〕軸
(以下a軸)格子定数はそれぞれaGaN =3.1892
Å、aAlN =3.11Å、aInN =3.54Å、asap
=4.758Åである。窒化ガリウム、窒化アルミニウ
ム、窒化インジウム、サファイアの常温付近でのa軸方
向の熱膨張係数はそれぞれΔaGaN /aGaN =5.59
×10-6-1、ΔaAlN/aAlN =4.49×10-6
-1、ΔaInN /aInN =3.75×10-6-1、Δa
sap /asap =7.5×10-6-1である。窒化ガリウ
ム、窒化アルミニウム、窒化インジウム、サファイアの
常温付近での〔0001〕軸(以下c軸)方向の熱膨張
係数はそれぞれΔcGaN /cGaN =3.17×10-6
-1、ΔcAlN/cAlN =1.92×10-6-1、Δc
InN /cInN =2.85×10-6-1、Δcsap /c
sap =8.5×10-6-1である。
The lattice constants of gallium nitride, aluminum nitride, indium nitride, and sapphire near the room temperature at the [1000] axis (hereinafter a-axis) are a GaN = 3.1892, respectively.
A, a AlN = 3.11Å, a InN = 3.54Å, a sap
= 4.758 °. The thermal expansion coefficients of gallium nitride, aluminum nitride, indium nitride, and sapphire in the a-axis direction near normal temperature are Δa GaN / a GaN = 5.59, respectively.
× 10 −6 K −1 , Δa AlN / a AlN = 4.49 × 10 −6 K
−1 , Δa InN / a InN = 3.75 × 10 −6 K −1 , Δa
sap / a sap = 7.5 × 10 −6 K −1 . The thermal expansion coefficients of gallium nitride, aluminum nitride, indium nitride, and sapphire in the [0001] axis (hereinafter, c-axis) direction near room temperature are respectively Δc GaN / c GaN = 3.17 × 10 −6 K
−1 , Δc AlN / c AlN = 1.92 × 10 −6 K −1 , Δc
InN / c InN = 2.85 × 10 −6 K −1 , Δc sap / c
sap = 8.5 × 10 −6 K −1 .

【0005】図2は、このような従来技術の結晶成長方
法によりC面サファイア基板上に形成された代表的な窒
化ガリウム系半導体レーザ(以下単に窒化ガリウム系レ
ーザ)の概略断面図である(S.Nakamura e
t al.,Jpn.J.Appl.Phys.35
(1996)L74)。
FIG. 2 is a schematic cross-sectional view of a typical gallium nitride-based semiconductor laser (hereinafter simply referred to as a gallium nitride-based laser) formed on a C-plane sapphire substrate by such a conventional crystal growth method (S). .Nakamura e
t al. , Jpn. J. Appl. Phys. 35
(1996) L74).

【0006】図2に於いて、この窒化ガリウム系レーザ
は、C面を表面とするサファイア基板201上に、厚さ
300Åのアンドープの窒化ガリウム低温成長バッファ
層102、珪素が添加された厚さ3μmのn型窒化ガリ
ウムコンタクト層103、珪素が添加された厚さ0.1
μmのn型In0.1 Ga0.9 N層104、珪素が添加さ
れた厚さ0.4μmのn型Al0.15Ga0.85Nクラッド
層105、珪素が添加された厚さ0.1μmのn型窒化
ガリウム光ガイド層106、厚さ25Åのアンドープの
In0.2 Ga0.8 N量子井戸層と厚さ50Åのアンドー
プのIn0.05Ga0.95N障壁層からなる26周期の多重
量子井戸構造活性層107、マグネシウムが添加された
厚さ200Åのp型Al0.2 Ga0.8 N層108、マグ
ネシウムが添加された厚さ0.1μmのp型窒化ガリウ
ム光ガイド層109、マグネシウムが添加された厚さ
0.4μmのp型1l0.15Ga0.85Nクラッド層11
0、マグネシウムが添加された厚さ0.5μmのp型窒
化ガリウムコンタクト層111、ニッケル(第1層)お
よび金(第2層)からなるp電極112、チタン(第1
層)およびアルミニウム(第2層)からなるn電極11
3が形成されている。半導体結晶層102、103、1
04、105、106、107、108、109、11
0、111の形成は有機金属化学気相成長法により行わ
れた。
Referring to FIG. 2, this gallium nitride-based laser comprises a 300-nm thick undoped gallium nitride low-temperature growth buffer layer 102 on a C-plane sapphire substrate 201, a silicon-added 3 μm thick N-type gallium nitride contact layer 103 having a thickness of 0.1
μm n-type In 0.1 Ga 0.9 N layer 104, silicon-added 0.4 μm thick n-type Al 0.15 Ga 0.85 N cladding layer 105, silicon-added 0.1 μm thick n-type gallium nitride light A guide layer 106, an active layer 107 having a multi-quantum well structure having a period of 26 periods composed of an undoped In 0.2 Ga 0.8 N quantum well layer having a thickness of 25 ° and an undoped In 0.05 Ga 0.95 N barrier layer having a thickness of 50 °, and magnesium were added. P-type Al 0.2 Ga 0.8 N layer 108 with a thickness of 200 °, p-type gallium nitride optical guide layer 109 with a thickness of 0.1 μm to which magnesium is added, p-type 11 0.15 Ga with a thickness of 0.4 μm to which magnesium is added 0.85 N cladding layer 11
0, a 0.5 μm-thick p-type gallium nitride contact layer 111 to which magnesium is added, a p-electrode 112 made of nickel (first layer) and gold (second layer), and titanium (first
Layer 11) and n-electrode 11 made of aluminum (second layer)
3 are formed. Semiconductor crystal layers 102, 103, 1
04, 105, 106, 107, 108, 109, 11
The formation of 0 and 111 was performed by metal organic chemical vapor deposition.

【0007】[0007]

【発明が解決しようとする課題】図2に示されたよう
な、従来技術によりC面サファイア基板上に形成された
窒化ガリウム系レーザに於いては、窒化ガリウム系化合
物半導体層103、104、105、106、107、
108、109、110、111はC面を表面とする六
方晶となる。この窒化ガリウム系化合物半導体層には、
サファイア基板との間に存在する大きな格子定数差や熱
膨張係数差のため、歪が加わっているが、その歪は窒化
ガリウム系化合物半導体層のC面内に等方的なものとな
る。
As shown in FIG. 2, in a gallium nitride based laser formed on a C-plane sapphire substrate according to the prior art, gallium nitride based compound semiconductor layers 103, 104, 105 , 106, 107,
108, 109, 110 and 111 are hexagonal with the C-plane as the surface. In this gallium nitride-based compound semiconductor layer,
Strain is applied due to a large lattice constant difference and a thermal expansion coefficient difference existing between the sapphire substrate and the sapphire substrate. The strain is isotropic in the C plane of the gallium nitride-based compound semiconductor layer.

【0008】例えば燐化インジウムや砒化ガリウム系の
III−V族化合物半導体に於いては、(100)面内に
等方的な歪を加えた場合、価電子帯状態密度が減少する
が、窒化ガリウム系化合物半導体に於いては、C面内に
等方的な歪が加わった場合、価電子帯状態密度が殆ど減
少しない(堂免ら、1996年(平成8年)春季第43
回応用物理学関係連合講演会講演予稿集29a−ZB−
10)。したがって従来のようにC面サファイア基板上
に窒化ガリウム系レーザを形成した場合、発振しきい値
キャリア密度が大きいという問題があった。
For example, indium phosphide and gallium arsenide
In a III-V compound semiconductor, when an isotropic strain is applied in the (100) plane, the valence band state density is reduced. , The valence band density of states hardly decreases when isotropic strain is applied (Domen et al., Spring 43rd 1996).
Of the Special Lecture Meeting of the Japan Society of Applied Physics 29a-ZB-
10). Therefore, when a gallium nitride based laser is formed on a C-plane sapphire substrate as in the prior art, there is a problem that the oscillation threshold carrier density is large.

【0009】またC面サファイア基板の他にはR面サフ
ァイア基板上に窒化ガリウムを形成した例が存在するが
(例えば、分子線エピタキシー法ではC.R.Edd
y,Jr.et al.,J.Appl.Phys.7
3(1993)448、塩化物気相成長法ではM.Sa
no et al.,Jpn.J.Appl.Phy
s.15(1976)1943など)、いずれも、窒化
ガリウム層の結晶性が非常に悪く、その膜質は発光素子
の半導体層に用いることが出来るものではなかった。
In addition to the C-plane sapphire substrate, there is an example in which gallium nitride is formed on an R-plane sapphire substrate (for example, in a molecular beam epitaxy method, CR Ed.
y, Jr. et al. , J. et al. Appl. Phys. 7
3 (1993) 448; Sa
no et al. , Jpn. J. Appl. Phys
s. 15 (1976) 1943), the crystallinity of the gallium nitride layer was very poor, and the film quality of the gallium nitride layer could not be used for the semiconductor layer of the light emitting element.

【0010】さらにM面サファイア基板上にGaNの
(1−103)面を表面とする六方晶を形成するという
発明が松岡等により特開平2−211620号公報で開
示されているが、(1−103)面を表面とするGaN
は不安定でありR面サファイア基板と同様に素子への適
用は不可能であった。
The invention of forming a hexagonal crystal having a (1-103) plane of GaN as a surface on an M-plane sapphire substrate is disclosed by Matsuoka et al. 103) GaN with plane as the surface
Was unstable and could not be applied to the device like the R-plane sapphire substrate.

【0011】本発明の目的は、結晶性がよく、窒化ガリ
ウム系化合物半導体のC面内に非等方的な歪を加えるこ
との出来る結晶成長方法を提供し、発振しきい値キャリ
ア密度の低い窒化ガリウム系レーザおよび発光効率の良
い窒化ガリウム系発光ダイオードを実現することであ
る。
An object of the present invention is to provide a crystal growth method having good crystallinity and capable of applying anisotropic strain to a C-plane of a gallium nitride-based compound semiconductor, and having a low oscillation threshold carrier density. It is an object of the present invention to realize a gallium nitride laser and a gallium nitride light emitting diode with high light emission efficiency.

【0012】[0012]

【課題を解決するための手段】本発明の窒化物系半導体
の結晶成長方法は、(01−10)面または(01−1
0)面からの傾斜角が5°以内である面を表面とするサ
ファイア基板上に、(11−22)面または(11−2
2)面からの傾斜角が5°以内である面を表面とするI
x Aly Ga1-x-y N層(0≦x≦1、0≦y≦1、
0≦x+y≦1)を形成する工程とを含むことを特徴と
する。
According to the present invention, there is provided a method for growing a crystal of a nitride-based semiconductor according to the present invention, comprising the steps of:
A (11-22) plane or a (11-2) plane is formed on a sapphire substrate having a plane whose inclination angle from the (0) plane is within 5 °.
2) I having a surface whose inclination angle from the surface is within 5 ° as a surface
n x Al y Ga 1-xy N layer (0 ≦ x ≦ 1,0 ≦ y ≦ 1,
0 ≦ x + y ≦ 1).

【0013】また必要に応じてサファイア基板上に、基
板温度400℃以上700℃以下でAlx Ga1-x N低
温バッファ層(0≦x≦1)を形成する工程を入れても
良い。半導体層は有機金属化学気相成長法によって成長
させることを特徴とする。
If necessary, a step of forming an Al x Ga 1 -xN low temperature buffer layer (0 ≦ x ≦ 1) on the sapphire substrate at a substrate temperature of 400 ° C. to 700 ° C. may be inserted. The semiconductor layer is grown by metal organic chemical vapor deposition.

【0014】本発明の窒化ガリウム系発光素子は、(0
1−10)面または(01−10)面からの傾斜角が5
°以内である面を表面とするサファイア基板上に、(1
1−22)面または(11−22)面からの傾斜角が5
°以内である面を表面とするInx Aly Ga1-x-y
層(0≦x≦1、0≦y≦1、0≦x+y≦1)で表さ
れる多層構造とを少なくとも有することを特徴とする。
また必要に応じてサファイア基板上に、Alx Ga1-x
N低温バッファ層(0≦x≦1)を設けても良い。
The gallium nitride-based light emitting device of the present invention has a (0
The inclination angle from the (1-10) plane or the (01-10) plane is 5
(1) on a sapphire substrate whose surface is within
The inclination angle from the (1-22) plane or the (11-22) plane is 5
In x Al y Ga 1-xy N whose surface is within °
A multilayer structure represented by layers (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1).
If necessary, Al x Ga 1 -x
An N low temperature buffer layer (0 ≦ x ≦ 1) may be provided.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態について、実
施例に基づき図面を参照して詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail based on embodiments with reference to the drawings.

【0016】図1は本発明の実施例を示す窒化ガリウム
系レーザの概略断面図である。本実施例ではM面((0
1−10)面)サファイア基板上に、(11−22)面
を表面とする窒化ガリウム系化合物半導体層を成長して
窒化ガリウム系レーザ構造を形成した。
FIG. 1 is a schematic sectional view of a gallium nitride based laser showing an embodiment of the present invention. In this embodiment, the M plane ((0
1-10) Plane A gallium nitride based compound semiconductor layer having a (11-22) plane as a surface was grown on a sapphire substrate to form a gallium nitride based laser structure.

【0017】以下に本実施例における窒化ガリウム系レ
ーザ構造の詳細について説明する。図1に於いて、窒化
ガリウム系レーザは、M面を表面とするサファイア基板
101上に、厚さ300Åのアンドープの窒化ガリウム
低温成長バッファ層102、珪素が添加された厚さ3μ
mのn型窒化ガリウムコンタクト層103、珪素が添加
された厚さ0.1μmのn型In0.1 Ga0.9 N層10
4、珪素が添加された厚さ0.4μmのn型Al0.15
0.85Nクラッド層105、珪素が添加された厚さ0.
1μmのn型窒化ガリウム光ガイド層106、厚さ25
ÅのアンドープのIn0.2 Ga0.8 N量子井戸層と厚さ
50ÅのアンドープのIn0.05Ga0.95N障壁層からな
る26周期の多重量子井戸構造活性層107、マグネシ
ウムが添加された厚さ200Åのp型Al0.2 Ga0.8
N層108、マグネシウムが添加された厚さ0.1μm
のp型窒化ガリウム光ガイド層109、マグネシウムが
添加された厚さ0.4μmのp型Al0.15Ga0.85Nク
ラッド層110、マグネシウムが添加された厚さ0.5
μmのp型窒化ガリウムコンタクト層111、ニッケル
(第1層)および金(第2層)からなるp電極112、
チタン(第1層)およびアルミニウム(第2層)からな
るn電極113が形成されている。実施例の窒化ガリウ
ム系レーザに於いては、窒化ガリウム系化合物半導体層
103、104、105、106、107、108、1
09、110、111は、(11−22)面を表面とす
る六方晶となっている。
The details of the gallium nitride based laser structure in this embodiment will be described below. In FIG. 1, a gallium nitride-based laser comprises a 300-nm thick undoped gallium nitride low-temperature growth buffer layer 102 on a sapphire substrate 101 having an M-plane, and a silicon-added 3 μm thick layer.
m n-type gallium nitride contact layer 103, silicon-added n-type In 0.1 Ga 0.9 N layer 10 having a thickness of 0.1 μm
4. 0.4 μm thick n-type Al 0.15 G doped with silicon
a 0.85 N cladding layer 105, silicon-added thickness 0.
1 μm n-type gallium nitride light guide layer 106, thickness 25
26-period active layer 107 having a multiple quantum well structure 107 composed of an undoped In 0.2 Ga 0.8 N quantum well layer and an undoped In 0.05 Ga 0.95 N barrier layer having a thickness of 50 °, and a 200 μm thick p-type doped with magnesium. Al 0.2 Ga 0.8
N layer 108, thickness 0.1 μm to which magnesium is added
P-type gallium nitride optical guide layer 109, magnesium-added 0.4 μm thick p-type Al 0.15 Ga 0.85 N cladding layer 110, magnesium-added thickness 0.5
μm p-type gallium nitride contact layer 111, p electrode 112 made of nickel (first layer) and gold (second layer),
An n-electrode 113 made of titanium (first layer) and aluminum (second layer) is formed. In the gallium nitride based laser of the embodiment, the gallium nitride based compound semiconductor layers 103, 104, 105, 106, 107, 108, 1
09, 110, and 111 are hexagonal with the (11-22) plane as the surface.

【0018】次に実施例の成長条件について説明する。
減圧MOVPE装置を用いてGaN低温バッファ層とG
aNエピタキシャル層を成長する二段階成長法を用いて
素子を作成した。本実施例では成長圧力を100Tor
r、III 族原料としてトリメチルガリウム(TMG)、
V族原料としてアンモニア(NH3 )を用いTMG供給
量を57.8mmol/min、NH3 供給量を0.1
79mol/min、V/III 比を3097で、M面を
表面とするサファイア基板上にGaN低温バッファ層の
成長温度を450℃、GaNエピタキシャル層の成長温
度を1050℃として成長した。実施例ではM面サファ
イア基板上に発光素子に用いることが出来る結晶性を得
ることができた。
Next, the growth conditions of the embodiment will be described.
GaN low temperature buffer layer and G using low pressure MOVPE equipment
An element was fabricated using a two-step growth method for growing an aN epitaxial layer. In this embodiment, the growth pressure is set to 100 Torr.
r, trimethyl gallium (TMG) as a group III raw material,
Using ammonia (NH 3 ) as a group V raw material, the supply amount of TMG was 57.8 mmol / min, and the supply amount of NH 3 was 0.1.
A GaN low-temperature buffer layer was grown at 450 ° C. and a GaN epitaxial layer was grown at 1050 ° C. on a sapphire substrate having an M-plane at 79 mol / min and a V / III ratio of 3097. In the example, crystallinity that can be used for a light emitting element was obtained on an M-plane sapphire substrate.

【0019】本実施例では、サファイア基板との間に存
在する大きな格子定数差や熱膨張係数差のため、形成さ
れた窒化ガリウム系化合物半導体層に歪が加わっている
が、その歪は窒化ガリウム系化合物半導体層のC面内に
非等方的なものとなっており、価電子帯状態密度が減少
する。したがってM面サファイア基板上に(11−2
2)面を表面とする窒化ガリウム系化合物半導体層を形
成した実施例の窒化ガリウム系レーザは、従来のC面サ
ファイア基板上に形成した窒化ガリウム系レーザに比
べ、発振しきい値キャリア密度が小さくすることができ
る。
In this embodiment, a strain is applied to the formed gallium nitride-based compound semiconductor layer due to a large difference in lattice constant and a difference in thermal expansion coefficient between the gallium nitride and the sapphire substrate. It is anisotropic in the C plane of the system compound semiconductor layer, and the valence band state density decreases. Therefore, (11-2) on the M-plane sapphire substrate
2) The gallium nitride-based laser of the embodiment in which a gallium nitride-based compound semiconductor layer having a surface as a surface is formed has a smaller oscillation threshold carrier density than a conventional gallium nitride-based laser formed on a C-plane sapphire substrate. can do.

【0020】本発明の結晶成長方法は、上述した実施例
に示される層構造に於いてのみ有効であるという訳では
なく、あらゆる層構造の窒化ガリウム系化合物半導体の
結晶成長方法に於いても有効である。
The crystal growth method of the present invention is not only effective in the layer structure shown in the above-described embodiment, but is also effective in the crystal growth method of a gallium nitride compound semiconductor having any layer structure. It is.

【0021】また本発明に於けるサファイア基板の表面
面方位に関しては、実施例に示されたように厳密にM面
である必要はなく、またM面に対し5°以内の傾斜なら
ば発明の効果に影響はない。また窒化ガリウム系化合物
半導体の組成は必要に応じてInx Aly Ga1-x-y
(0≦x≦1、0≦y≦1、0≦x+y≦1)の範囲で
変化させてもよい。
The surface plane orientation of the sapphire substrate in the present invention does not need to be strictly M-plane as shown in the embodiment. There is no effect on the effect. The composition of the gallium nitride-based compound semiconductor may be In x Al y Ga 1-xy N if necessary.
(0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1).

【0022】さらに本発明の窒化ガリウム系発光素子
は、上述した実施例に示されるレーザ構造に於いてのみ
有効であるという訳ではなく、あらゆる構造の窒化ガリ
ウム系レーザに於いて有効である。
Further, the gallium nitride-based light emitting device of the present invention is not only effective in the laser structure shown in the above-mentioned embodiment, but is also effective in gallium nitride-based lasers of all structures.

【0023】本実施例では窒化ガリウム系レーザについ
て説明したが、これに限られるというものではなく、価
電子帯状態密度が減少することで発光効率の改善が見込
まれる発光ダイオードに於いても有効であることはいう
までもない。
In this embodiment, a gallium nitride based laser has been described. However, the present invention is not limited to this. The present invention is also effective in a light emitting diode in which luminous efficiency is expected to improve due to a decrease in the valence band state density. Needless to say, there is.

【0024】[0024]

【発明の効果】本発明の結晶成長方法では、結晶性よく
窒化ガリウム系化合物半導体のC面内に非等方的な歪を
加えることができ、これにより発振しきい値キャリア密
度の低い窒化ガリウム系レーザおよび発光効率の良い窒
化ガリウム系発光ダイオードを実現することができる。
According to the crystal growth method of the present invention, anisotropic strain can be applied to the C-plane of a gallium nitride-based compound semiconductor with good crystallinity, whereby gallium nitride having a low oscillation threshold carrier density can be obtained. And a gallium nitride-based light emitting diode with high luminous efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す図であり、M面サファ
イア基板上に形成された、(11−22)面を表面とす
る窒化ガリウム系レーザの概略断面図である。
FIG. 1 is a view showing Example 1 of the present invention, and is a schematic cross-sectional view of a gallium nitride based laser having a (11-22) plane as a surface formed on an M-plane sapphire substrate.

【図2】従来技術を示すであり、A面サファイア基板上
に形成された、A面を表面とする窒化ガリウム系レーザ
の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a gallium nitride-based laser having an A-plane as a surface and formed on an A-plane sapphire substrate according to a conventional technique.

【符号の説明】[Explanation of symbols]

101 M面サファイア基板 102 窒化ガリウム低温成長バッファ層 103 n型In0.2 Ga0.8 Nコンタクト層 104 n型In0.1 Ga0.9 N層 105 n型Al0.15Ga0.85N層 106 n型窒化ガリウム光ガイド層 107 In0.2 Ga0.8 N/In0.05Ga0.95N多
重量子井戸活性層 108 p型Al0.2 Ga0.8 N層 109 p型窒化ガリウム光ガイド層 110 p型Al0.15Ga0.85Nクラッド層 111 p型In0.2 Ga0.8 Nコンタクト層 112 ニッケルおよび金からなるp電極 113 チタンおよびアルミニウムからなるn電極 201 A面サファイア基板
Reference Signs List 101 M-plane sapphire substrate 102 Low-temperature growth buffer layer of gallium nitride 103 n-type In 0.2 Ga 0.8 N contact layer 104 n-type In 0.1 Ga 0.9 N layer 105 n-type Al 0.15 Ga 0.85 N layer 106 n-type gallium nitride optical guide layer 107 In 0.2 Ga 0.8 N / In 0.05 Ga 0.95 N multiple quantum well active layer 108 p-type Al 0.2 Ga 0.8 N layer 109 p-type gallium nitride optical guide layer 110 p-type Al 0.15 Ga 0.85 N cladding layer 111 p-type In 0.2 Ga 0.8 N Contact layer 112 P electrode made of nickel and gold 113 N electrode made of titanium and aluminum 201 A-plane sapphire substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仁道 正明 東京都港区芝五丁目7番1号 日本電気株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaaki Nindo 5-7-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (01−10)面または(01−10)
面からの傾斜角が5°以内である面を表面とするサファ
イア基板上に、(11−22)面または(11−22)
面からの傾斜角が5°以内である面を表面とするInx
Aly Ga1-x-y N層(0≦x≦1、0≦y≦1、0≦
x+y≦1)を形成する工程とを含むことを特徴とする
窒化物系化合物半導体の結晶成長方法。
1. The (01-10) plane or the (01-10) plane
A (11-22) plane or a (11-22) plane is formed on a sapphire substrate having a plane whose inclination angle from the plane is within 5 °.
In x having a surface whose inclination angle from the surface is within 5 ° as a surface
Al y Ga 1-xy N layer (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦
x + y ≦ 1). A crystal growth method for a nitride-based compound semiconductor.
【請求項2】 (01−10)面または(01−10)
面からの傾斜角が5°以内である面を表面とするサファ
イア基板上に、基板温度400℃以上700℃以下でA
x Ga1-x N低温バッファ層(0≦x≦1)を形成す
る工程と、(11−22)面または(11−22)面か
らの傾斜角が5°以内である面を表面とするInx Al
y Ga1-x-y N層(0≦x≦1、0≦y≦1、0≦x+
y≦1)を形成する工程とを有することを特徴とする窒
化物系化合物半導体の結晶成長方法。
2. The (01-10) plane or the (01-10) plane
On a sapphire substrate having a surface inclined at an angle of 5 ° or less from the surface as a surface, A at a substrate temperature of 400 ° C. or more and 700 ° C. or less.
forming a 1 x Ga 1 -xN low - temperature buffer layer (0 ≦ x ≦ 1); and defining the (11-22) plane or a plane whose inclination angle from the (11-22) plane is within 5 ° as a surface. In x Al
y Ga 1-xy N layer (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x +
forming a y ≦ 1) crystal growth method for a nitride-based compound semiconductor.
【請求項3】 有機金属化学気相成長法によって半導体
層を成長させることを特徴とする請求項1又は2記載の
窒化物系化合物半導体の結晶成長方法。
3. The method of growing a nitride-based compound semiconductor according to claim 1, wherein the semiconductor layer is grown by metal organic chemical vapor deposition.
【請求項4】 (01−10)面または(01−10)
面からの傾斜角が5°以内である面を表面とするサファ
イア基板上に、(11−22)面または(11−22)
面からの傾斜角が5°以内である面を表面とするInx
Aly Ga1-x-y N層(0≦x≦1、0≦y≦1、0≦
x+y≦1)で表される多層構造とを少なくとも有する
ことを特徴とする窒化ガリウム系発光素子。
4. The (01-10) plane or the (01-10) plane
A (11-22) plane or a (11-22) plane is formed on a sapphire substrate having a plane whose inclination angle from the plane is within 5 °.
In x having a surface whose inclination angle from the surface is within 5 ° as a surface
Al y Ga 1-xy N layer (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦
a gallium nitride-based light-emitting device having at least a multilayer structure represented by x + y ≦ 1).
【請求項5】 (01−10)面または(01−10)
面からの傾斜角が5°以内である面を表面とするサファ
イア基板上に、Alx Ga1-x N低温バッファ層(0≦
x≦1)と、(11−22)面または(11−22)面
からの傾斜角が5°以内である面を表面とするInx
y Ga1-x-y N層(0≦x≦1、0≦y≦1、0≦x
+y≦1)で表される多層構造とを少なくとも有するこ
とを特徴とする窒化ガリウム系発光素子。
5. The (01-10) plane or the (01-10) plane
An Al x Ga 1 -xN low - temperature buffer layer (0 ≦) is formed on a sapphire substrate having a surface inclined at an angle of 5 ° or less from the surface.
x ≦ 1) and In x A having a (11-22) plane or a plane whose inclination angle from the (11-22) plane is within 5 ° as a surface.
l y Ga 1-xy N layer (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x
+ Y ≦ 1) at least a gallium nitride-based light emitting device.
JP15076197A 1997-06-09 1997-06-09 Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device Expired - Fee Related JP3119200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15076197A JP3119200B2 (en) 1997-06-09 1997-06-09 Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15076197A JP3119200B2 (en) 1997-06-09 1997-06-09 Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device

Publications (2)

Publication Number Publication Date
JPH10341060A true JPH10341060A (en) 1998-12-22
JP3119200B2 JP3119200B2 (en) 2000-12-18

Family

ID=15503846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15076197A Expired - Fee Related JP3119200B2 (en) 1997-06-09 1997-06-09 Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device

Country Status (1)

Country Link
JP (1) JP3119200B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373864A (en) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate
JP2006240988A (en) * 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd METHOD FOR DOPING OXYGEN TO GALLIUM NITRIDE CRYSTAL AND OXYGEN-DOPED n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
JP2006282504A (en) * 2001-04-12 2006-10-19 Sumitomo Electric Ind Ltd Gallium nitride single crystal substrate and method for manufacturing the same
CN1293685C (en) * 2003-03-26 2007-01-03 夏普株式会社 Semiconductor laser device and method of producing the same, and optical disc unit
JP2009508336A (en) * 2005-09-09 2009-02-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for promoting growth of semipolar (Al, In, Ga, B) N by metalorganic chemical vapor deposition
JP2009130364A (en) * 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd Nitride semiconductor light emitting device and method of manufacturing the same
JP2009524250A (en) * 2006-01-20 2009-06-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for improving the growth of semipolar (Al, In, Ga, B) N
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
US20110058585A1 (en) * 2009-09-10 2011-03-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110062449A1 (en) * 2005-06-01 2011-03-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices
US8405128B2 (en) 2006-01-20 2013-03-26 The Regents Of The University Of California Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
US8524012B2 (en) 2005-03-10 2013-09-03 The Regents Of The University Of California Technique for the growth of planar semi-polar gallium nitride
KR101453563B1 (en) * 2007-05-18 2014-10-21 소니 주식회사 Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234914A (en) * 2001-04-12 2009-10-15 Sumitomo Electric Ind Ltd METHOD OF PRODUCING LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE, METHOD FOR PRODUCTION OF GaN SUBSTRATE, AND GaN SUBSTRATE
JP2006240988A (en) * 2001-04-12 2006-09-14 Sumitomo Electric Ind Ltd METHOD FOR DOPING OXYGEN TO GALLIUM NITRIDE CRYSTAL AND OXYGEN-DOPED n-TYPE GALLIUM NITRIDE SINGLE CRYSTAL SUBSTRATE
JP2006282504A (en) * 2001-04-12 2006-10-19 Sumitomo Electric Ind Ltd Gallium nitride single crystal substrate and method for manufacturing the same
JP2002373864A (en) * 2001-04-12 2002-12-26 Sumitomo Electric Ind Ltd Method of doping oxygen to gallium nitride crystal and n-type oxygen-doped gallium nitride single crystal substrate
JP4562000B2 (en) * 2001-04-12 2010-10-13 住友電気工業株式会社 Method of doping oxygen into gallium nitride crystal and oxygen-doped n-type gallium nitride single crystal substrate
JP4562001B2 (en) * 2001-04-12 2010-10-13 住友電気工業株式会社 Gallium nitride single crystal substrate and manufacturing method thereof
CN1293685C (en) * 2003-03-26 2007-01-03 夏普株式会社 Semiconductor laser device and method of producing the same, and optical disc unit
US9231376B2 (en) 2004-05-10 2016-01-05 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US9793435B2 (en) 2004-05-10 2017-10-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
JP2014222780A (en) * 2005-03-10 2014-11-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Technique for growth of planar semi-polar gallium nitride
US8524012B2 (en) 2005-03-10 2013-09-03 The Regents Of The University Of California Technique for the growth of planar semi-polar gallium nitride
US10529892B2 (en) 2005-06-01 2020-01-07 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
US20110062449A1 (en) * 2005-06-01 2011-03-17 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices
US8686466B2 (en) 2005-06-01 2014-04-01 The Regents Of The University Of California Technique for the growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices
KR101347848B1 (en) * 2005-09-09 2014-01-06 재팬 사이언스 앤드 테크놀로지 에이젼시 Method for enhancing growth of semi-polar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
JP2012209586A (en) * 2005-09-09 2012-10-25 Regents Of The Univ Of California Device structure having semipolar nitride, and characterized in nitride nucleation layer or buffer layer
JP2009508336A (en) * 2005-09-09 2009-02-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for promoting growth of semipolar (Al, In, Ga, B) N by metalorganic chemical vapor deposition
JP2014220524A (en) * 2006-01-20 2014-11-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Device consisting of semipolar group iii nitride film and manufacturing method thereof
US8368179B2 (en) 2006-01-20 2013-02-05 The Regents Of The University Of California Miscut semipolar optoelectronic device
US8405128B2 (en) 2006-01-20 2013-03-26 The Regents Of The University Of California Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
JP2013010689A (en) * 2006-01-20 2013-01-17 Regents Of The Univ Of California SEMIPOLAR (Al, In, Ga, B)N OR GROUP III NITRIDE CRYSTAL
KR101510461B1 (en) * 2006-01-20 2015-04-08 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Method for improved growth of semipolar (Al,In,Ga,B)N
JP2009524250A (en) * 2006-01-20 2009-06-25 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for improving the growth of semipolar (Al, In, Ga, B) N
KR101453563B1 (en) * 2007-05-18 2014-10-21 소니 주식회사 Method for growing semiconductor layer, method for producing semiconductor light-emitting element, semiconductor light-emitting element, and electronic device
US8253125B2 (en) 2007-11-23 2012-08-28 Samsung Led Co., Ltd. Semiconductor light emitting device and method of manufacturing the same
JP2009130364A (en) * 2007-11-23 2009-06-11 Samsung Electro-Mechanics Co Ltd Nitride semiconductor light emitting device and method of manufacturing the same
US8227277B2 (en) 2009-09-10 2012-07-24 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device
CN102025104A (en) * 2009-09-10 2011-04-20 住友电气工业株式会社 Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US20110058585A1 (en) * 2009-09-10 2011-03-10 Sumitomo Electric Industries, Ltd. Group-iii nitride semiconductor laser device, and method of fabricating group-iii nitride semiconductor laser device
US8306082B2 (en) * 2009-09-10 2012-11-06 Sumitomo Electric Industries, Ltd. Group-III nitride semiconductor laser device, and method of fabricating group-III nitride semiconductor laser device

Also Published As

Publication number Publication date
JP3119200B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP4743214B2 (en) Semiconductor device and manufacturing method thereof
US8306081B1 (en) High indium containing InGaN substrates for long wavelength optical devices
US6920166B2 (en) Thin film deposition method of nitride semiconductor and nitride semiconductor light emitting device
JP3153153B2 (en) Gallium nitride based semiconductor laser and method of manufacturing the same
JPH11150335A (en) Nitride-compound semiconductor light-emitting element
WO2002103812A1 (en) Nitride semiconductor, production method therefor and nitride semiconductor element
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
JPH0983016A (en) Method for growing nitride semiconductor
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
JP2900990B2 (en) Nitride semiconductor light emitting device
JP2830814B2 (en) Crystal growth method of gallium nitride based compound semiconductor and method of manufacturing semiconductor laser
JP3119200B2 (en) Crystal growth method for nitride-based compound semiconductor and gallium nitride-based light emitting device
JP2002145700A (en) Sapphire substrate, semiconductor device, electronic part and crystal growing method
JP3395631B2 (en) Nitride semiconductor device and method of manufacturing nitride semiconductor device
JPH09116225A (en) Semiconductor light emitting device
JP2891348B2 (en) Nitride semiconductor laser device
JP3252779B2 (en) Semiconductor light emitting element and semiconductor light emitting device
JP4631214B2 (en) Manufacturing method of nitride semiconductor film
JP3147821B2 (en) Nitride compound semiconductor, crystal growth method thereof, and gallium nitride light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
WO2006106928A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JP2000216502A (en) Manufacture of nitride semiconductor element
JP3454037B2 (en) GaN-based element substrate, method of manufacturing the same, and GaN-based element
JP3716395B2 (en) Semiconductor light emitting device
JP2003101157A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees