JPH0983016A - Method for growing nitride semiconductor - Google Patents

Method for growing nitride semiconductor

Info

Publication number
JPH0983016A
JPH0983016A JP23750195A JP23750195A JPH0983016A JP H0983016 A JPH0983016 A JP H0983016A JP 23750195 A JP23750195 A JP 23750195A JP 23750195 A JP23750195 A JP 23750195A JP H0983016 A JPH0983016 A JP H0983016A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
layer
lt
nitride
semiconductor
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23750195A
Other languages
Japanese (ja)
Other versions
JP3604205B2 (en )
Inventor
Shigeto Iwasa
Shinichi Nagahama
Shuji Nakamura
修二 中村
成人 岩佐
慎一 長濱
Original Assignee
Nichia Chem Ind Ltd
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To enhance the crystallinity of nitride semiconductor by growing a layer of Al-Ga-N having inclining composition where the composition of Al decreases gradually on an SiC substrate and then growing an In-Al-Ga-N based nitride semiconductor thereon. SOLUTION: AlN 2 is deposited on one side of a 6H-SiC substrate and an Alx Ga1-x N (0<=X<=1) layer 3 is formed thereon while inclining the composition such that X decreased sequentially. A nitride semiconductor represented by a formula Ina Alb Ga1-a-b N (0<=a, 0<=b, a+b<=1), more sepecifically, a nitride semiconductor comprising an n-type In0.05 Ga0.95 N layer 4 and an In0.2 Ga0.8 N layer 5 is the formed. Subsequently, an Mg doped p-type Al0.15 Ga0.85 N layer 6, an Mg doped p-type Al0.3 Ga0.7 N layer 7, and an Mg doped p-type GaN layer 8 are formed thereon. Finally, etching is performed until the inclining composition n-AlGaN layer 3 is exposed and provided with negative and positive electrodes 10, 11.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は気相成長法により窒化物半導体In a Al b Ga 1-ab N(0≦a、0≦b、a+b≦ Nitride according to the invention vapor deposition BACKGROUND OF semiconductor In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦
1)の結晶を基板上に成長させる方法に関する。 The crystals of 1) relates to a method of growing on the substrate.

【0002】 [0002]

【従来の技術】窒化物半導体は有機金属気相成長法(M BACKGROUND OF THE INVENTION nitride semiconductor is metal organic chemical vapor deposition (M
OVPE)、分子線気相成長法(MBE)、ハライド気相成長法(HDVPE)等の気相成長法により基板上にエピタキシャル成長される。 OVPE), molecular beam vapor deposition (MBE), is epitaxially grown on a substrate by hydride vapor phase epitaxy (HDVPE) vapor deposition method or the like. 一般に化合物半導体をエピタキシャル成長させるには、化合物半導体と格子定数が一致した基板を用いると結晶性の良いものが得られることが常識であるが、窒化物半導体には格子整合する基板がないため、現在格子定数で13%もの差があるサファイア基板の上に成長されるのが常であった。 To generally a compound semiconductor epitaxial growth, but good and crystallinity using a substrate compound semiconductor lattice constant matches that are obtained is common knowledge, because there is no substrate which is lattice-matched to a nitride semiconductor, the current being grown on a sapphire substrate with a 13% of difference in lattice constant was normal.

【0003】サファイア基板の場合、窒化物半導体を成長させる前にまずサファイア基板上にAlN、GaNよりなるバッファ層を成長させ、そのバッファ層の上に窒化物半導体を成長することが知られている。 [0003] When the sapphire substrate, AlN on first sapphire substrate before growing the nitride semiconductor, is grown a buffer layer made of GaN, it is known to grow a nitride semiconductor on the buffer layer . 例えば特公昭59−48794号、特公平4−15200号公報にはAlNをバッファ層とする方法が記載され、また特開昭60−173829号、平4−297023号公報にはGaNをバッファ層とする方法が記載されている。 For example Japanese Patent Publication No. 59-48794, Japanese Patent Kokoku 4-15200 describes a process for the AlN buffer layer, JP 60-173829, a buffer layer of GaN in JP Rights 4-297023 how to have been described. その中でも特開平4−297023号による方法は現在実用化されている窒化物半導体LEDの基幹技術の一つとなっている。 The method has become one of key technologies of the nitride semiconductor LED that is currently commercialized by JP 4-297023 among them.

【0004】その他窒化物半導体を成長させる基板にはZnS(特開平4−68579)、MnO(特開平4− [0004] The other substrate of growing a nitride semiconductor ZnS (JP-4-68579), MnO (JP-4-
209577)、ZnO(特開平4−236477)、 Two hundred and nine thousand five hundred seventy-seven), ZnO (JP 4-236477),
SiC(特開平4−223330)等数々提案されており、特に特開平4−223330号公報にはSiC基板表面にSiCバッファ層を形成し、このバッファ層の上に窒化物半導体を成長させる技術が示されている。 SiC has been proposed (JP-A-4-223330), etc. many, particularly in JP-A-4-223330 to form a SiC buffer layer on the SiC substrate surface, a technique of growing a nitride semiconductor on the buffer layer It is shown.

【0005】 [0005]

【発明が解決しようとする課題】現在、サファイア基板の上に成長された窒化物半導体で、青色LED、青緑色LED等が実用化されているが、将来、さらに高輝度で信頼性に優れたLED、またLDのような高度な発光デバイス等を実現するためには、窒化物半導体の結晶性をさらに向上させる必要がある。 [SUMMARY OF THE INVENTION Currently, in grown nitride semiconductor on the sapphire substrate, a blue LED, but blue-green LED, etc. have been put to practical use in the future, superior further reliability in high brightness LED, also in order to achieve a high degree of light emitting devices such as LD, it is necessary to further improve the crystallinity of the nitride semiconductor. 従って本発明はこのような事情を鑑みて成されたもので、その目的とするところは基板の上に成長させる窒化物半導体の結晶性を向上させ、信頼性に優れたLED、LD等を実現することにある。 Accordingly, the present invention has been made in consideration of these circumstances, is to improve the crystallinity of the nitride semiconductor grown on a substrate and it is an object, LED is excellent in reliability, realized LD, etc. It is to.

【0006】 [0006]

【課題を解決するための手段】本発明の窒化物半導体の成長方法は、気相成長法によりIn a Al b Ga 1-ab Means for Solving the Problems] nitride semiconductor process of growth of the present invention, In the vapor deposition a Al b Ga 1-ab N
(0≦a、0≦b、a+b≦1)で示される窒化物半導体を基板上にエピタキシャル成長させる方法において、基板にSiCを使用し、そのSiC基板の上にX値が順次小さくなるように組成傾斜したAl X Ga 1-X N(0≦X≦ (0 ≦ a, 0 ≦ b, a + b ≦ 1) A method of epitaxially growing a nitride semiconductor represented by the substrate, using a SiC substrate, the composition as X values ​​gradually decrease over the SiC substrate inclined Al X Ga 1-X N ( 0 ≦ X ≦
1)層を成長させ、そのAl X Ga 1-X N層の上に前記窒化物半導体を成長させることを特徴とする。 1) layer is grown, wherein the growing the nitride semiconductor on the Al X Ga 1-X N layer.

【0007】本発明の成長方法において、気相成長法には先にも述べたように、例えばMOVPE法、MBE [0007] In the growth process of the present invention, as the vapor deposition mentioned above, for example MOVPE method, MBE
法、HDVPE法等が採用できるが、好ましくはMOV Law, but HDVPE method, or the like can be employed, preferably MOV
PE法で成長させることにより結晶性の良い半導体層が得られる。 Semiconductor layer of good crystallinity can be obtained by growing the PE method.

【0008】また基板のSiCは単結晶のSiC基板を利用する。 [0008] The SiC of the substrate using the SiC substrate of single crystal. SiCには4H、6H、3C等数々の結晶構造があるが特に限定するものではない。 The SiC 4H, 6H, there are a number of crystal structures such as 3C not particularly limited. 好ましくは6H Preferably, 6H
−SiCの(0001)面、3C−SiCの(111) (0001) plane of the -SiC, the 3C-SiC (111)
面の上に成長させることにより結晶性の良い窒化物半導体が得られる。 Good nitride semiconductor crystal can be obtained by growing on the surface.

【0009】組成傾斜したAl X Ga 1-X N層とはAl混晶比がSiC基板より離れるに従って少なくなるように構成したAl X Ga 1-X N層であり、このAl X Ga 1-X [0009] The Al X Ga 1-X N layer composition gradient is Al X Ga 1-X N layer configured to be less according to Al ratio is separated from the SiC substrate, the Al X Ga 1-X N
層は単一層で組成傾斜するように構成しても良いし、また後に述べるように複数のAl X Ga 1-X N層を積層した多層膜で構成して、各層の構成をSiCより離れるに従ってAl混晶比を少なくしたAl X Ga 1-X Nとしても良い。 Layers constitute a multilayer film formed by laminating a plurality of Al X Ga 1-X N layer as described may be configured to compositionally graded single layer or after, according to the configuration of each layer separated from the SiC Al was less Al ratio X Ga 1-X N may be.

【0010】Al X Ga 1-X N層は5nm〜5μmの膜厚で成長することが望ましく、さらに好ましくは5nm〜 [0010] Al X Ga 1-X N layer is desirably grown at a film thickness of 5 nm to 5 [mu] m, more preferably 5nm~
3μmに調整する。 Adjusted to 3μm. 5nmよりも薄いと組成傾斜した層が形成しにくく、また2μmよりも厚いとAl X Ga 1-X Thin and the layers were hardly formed composition gradient than 5 nm, also thicker than 2μm Al X Ga 1-X
N層自身にクラックが入りやすくなるからである。 This is because cracks are likely to enter the N layer itself. また組成傾斜させたAl X Ga 1-X N層の最表面はGaNとすることがさらに望ましい。 The outermost surface of the Al X Ga 1-X N layer formed by composition gradient, it is further desirable that the GaN. GaNとすると、その上に成長する窒化物半導体層の結晶性が特に良くなる。 When GaN, crystallinity of the nitride semiconductor layer grown thereon is particularly well.

【0011】次に本発明の成長方法は前記Al X Ga 1-X [0011] growth method of the present invention then the Al X Ga 1-X
N層と基板との間にAlN層を成長させることを特徴とする。 Wherein the growing an AlN layer between the N layer and the substrate. このAlN層を成長させることにより、その上のAl By growing the AlN layer, Al thereon X Ga 1-X N層の結晶性がさらに良くなる。 Crystalline X Ga 1-X N layer is further improved. 従ってA Therefore A
X Ga 1-X N層の上に成長する窒化物半導体層の結晶性も良くなる。 crystallinity of the nitride semiconductor layer grown on the l X Ga 1-X N layer is also improved. AlN層の膜厚は1nm〜0.1μmの膜厚で形成することが望ましい。 The film thickness of the AlN layer may be formed of a film thickness of 1Nm~0.1Myuemu. 0.1μmよりも厚いとAlN層自身にクラックが入りやすくなるので、その上に結晶性の良いAl X Ga 1-X N層が成長しにくい。 Since easily thicker cracked the AlN layer itself than 0.1 [mu] m, its good crystallinity Al X Ga 1-X N layer on the hard growth. Al Al
N層の成長条件は通常の気相成長法の条件で成長できる。 The growth conditions of the N layer can grow in conditions of normal vapor phase growth method. 例えばMOVPE法であれば、400℃〜1200 For example, if the MOVPE method, 400 ° C. to 1200
℃の範囲内に加熱されたSiC基板の表面に、Alを含む有機金属ガスと、窒素の水素化物とを供給することにより成長できる。 The ℃ surface of the SiC substrate heated in the range of, can be grown by supplying organometallic gases containing Al, and a hydride of nitrogen. この場合、900℃以下で成長されたAlNはアモルファスのAlNを含む結晶となり、約9 In this case, the AlN grown at 900 ° C. or less becomes crystal containing AlN amorphous, approximately 9
00℃以上で成長されたAlNは単結晶に近い結晶となるが、いずれの場合においても、そのAlN層の上に結晶性の良いAl X Ga 1-X N層が成長可能である。 AlN grown at 00 ° C. or higher is the crystal close to a single crystal, in any case, good crystallinity Al X Ga 1-X N layer on the AlN layer can be grown.

【0012】次にAl X Ga 1-X N層はX値が互いに異なる層が積層された多層膜よりなることを特徴とする。 [0012] Next Al X Ga 1-X N layer, wherein the layer of X values are different from each other is formed of multilayered films stacked. つまりSiC基板側にAl混晶比が大きいAlGaN層を形成し、その上にAl混晶比が小さいAlGaN層を形成し、次第にAl組成比の小さいAlGa層を積層した多層膜とする。 That the SiC substrate to form an AlGaN layer large Al content, the on Al mixed crystal ratio form small AlGaN layer, a multilayer film formed by laminating a smaller AlGa layer Al composition ratio gradually. 多層膜は何層積層しても特に問題はないが、前記のようにAlGaN層の総膜厚は5nm〜5μ Although there is no particular problem even if the multilayer film is what layer laminate, the total thickness of the AlGaN layer as 5nm~5μ
mの範囲に調整することが望ましい。 It is desirable to adjust the range of m.

【0013】 [0013]

【作用】SiC基板上に組成傾斜したAlGaN層を形成すると、そのAlGaN層が基板との格子不整合に起因する転位、歪み等を減少させることができる。 SUMMARY OF] When forming the AlGaN layer compositionally graded on a SiC substrate, dislocations whose AlGaN layer due to lattice mismatch with the substrate, it is possible to reduce the distortion and the like. これはAl混晶比の多いAlGaN層がSiCの格子定数に近いからであると推察できる。 This can be inferred that many AlGaN layer having Al ratio is from close to the lattice constant of SiC. 従って、組成傾斜したAl Therefore, Al with composition gradient
GaN層を成長させる前にAlN層を一番先に成長させると、AlGaNの結晶性が良くなる。 When growing the AlN layer to rank before growing the GaN layer, the crystallinity of the AlGaN becomes better. しかも順にAl Al Moreover, in order
混晶比を減少させることにより、最初に形成したAl混晶比の大きいAlGaN層の格子欠陥が次第に緩和されて、結晶性の良いAlGaN層が次第に成長されるのである。 By reducing the alloy composition, it is first lattice defects larger AlGaN layer of the formed Al ratio gradually relaxed, is the excellent crystallinity AlGaN layer is gradually grown. 結晶性のよいAlGaN層が成長できると、その上に成長させる窒化物半導体は先に形成したAlGaN When good crystallinity AlGaN layer can be grown, a nitride semiconductor to be grown thereon is previously formed AlGaN
層が格子整合基板となるので、窒化物半導体の結晶性が飛躍的に向上する。 Since the layer is lattice-matched substrate, crystallinity of nitride semiconductor is remarkably improved.

【0014】 [0014]

【実施例】以下、MOVPE法による本発明の成長方法について述べる。 EXAMPLES The following describes the growth method of the present invention by MOVPE.

【0015】1050℃に加熱された6H−SiC基板の(0001)面に、水素ガスをキャリアガスとして、 [0015] (0001) plane of the heated 6H-SiC substrate to 1050 ° C., the hydrogen gas as a carrier gas,
TMA(トリメチルアルミニウム)とアンモニアガスを供給し、AlNよりなる薄膜を50nmの膜厚で成長させる。 Supplying TMA (trimethylaluminum) and ammonia gas, to grow a thin film made of AlN with a thickness of 50nm. このAlN薄膜は400℃〜1200℃の範囲で成長可能であり、前記のようにおよそ900℃以下で成長させるとアモルファスのAlNを含む結晶が成長し、 The AlN thin film is possible growth in the range of 400 ° C. to 1200 ° C., crystals grow containing AlN is grown amorphous below approximately 900 ° C. As mentioned above,
900℃以上で成長させると単結晶のAlN薄膜が成長する傾向にあるが、アモルファスのAlN薄膜、単結晶のAlN薄膜、いずれを成長させてもよい。 While single crystal AlN thin film and grown at 900 ° C. or higher tends to grow, AlN amorphous thin film, the AlN thin film of single crystal may be grown either.

【0016】続いて、基板を1050℃に保持したままで、TMAガスに加えて、TMG(トリメチルガリウム)ガスを徐々に流し、組成傾斜したAlGaN層を成長させる。 [0016] Subsequently, while the substrate is held in a 1050 ° C., in addition to the TMA gas, it flowed slowly TMG (trimethylgallium) gas, growing a AlGaN layer composition gradient. TMGおよびTMAのガス流量はマスフローコントローラにより制御し、TMGのガスのガス流量を時間の経過と共に徐々に多くし、同時にTMAガスの流量を徐々に少なくして、TMGガスとTMAガスの合計のガス量を常時ほぼ同一に調整してAlGaN層を成長させる。 Gas flow rates of TMG and TMA was controlled by a mass flow controller, and gradually many over time the gas flow rates of the TMG gas, gradually reducing the flow rate of the TMA gas simultaneously, the total gas of TMG gas and TMA gas adjust the amount substantially equal at all times to grow the AlGaN layer. そして最後にTMAガスを止めてGaN層が成長するようにする。 And finally to stop the TMA gas to make GaN layer is grown. 以上のようにして組成傾斜したAl Al was composition gradient as described above
GaN層を2μmの膜厚で成長させる。 A GaN layer is grown to the thickness of 2μm. なお傾斜組成A Incidentally gradient composition A
lGaN層は最上層がGaNとなるようにしたが、特に傾斜組成していれば最上層をGaNとする必要はない。 lGaN layer was formed to the uppermost layer is GaN, it is not necessary to the uppermost layer of GaN if the particular graded composition.
好ましくは最上層はX値が0.5よりも小さいAl X Ga Preferably the top layer is X value is less than 0.5 Al X Ga
1-X N層、さらに好ましくは0.3以下とする方が、そのAl X Ga 1-X N層の上に結晶性の良い窒化物半導体層を成長できる。 1-X N layer, more preferably is better to 0.3 or less, it can be grown with good crystallinity nitride semiconductor layer on the Al X Ga 1-X N layer.

【0017】続いて、TMAガスを完全に止め、TMG [0017] Then, completely stop the TMA gas, TMG
ガス、アンモニアガスで1050℃にてGaN層を3μ Gas, the GaN layer at 1050 ℃ with ammonia gas 3μ
mの膜厚で成長させる。 It is grown to the thickness of m.

【0018】成長後基板を取り出し、得られたGaN層の結晶性を評価するためダブルクリスタルX線ロッキングカーブの半値幅(FWHM:Full Width at Half Max [0018] Growth After the substrate was taken out, the half-value width of the double-crystal X-ray rocking curve for evaluating the crystallinity of the obtained GaN layer (FWHM: Full Width at Half Max
imum)を測定したところ、1.5分と非常に結晶性に優れていることが判明した。 imum) was measured, it was found to be superior to 1.5 minutes and a very crystalline. またホール測定装置で結晶の移動度を測定したところ、900cm 2 /V・secと優れた値を示した。 The Measurement of the mobility of the crystals at the Hall measuring apparatus showed excellent value of 900cm 2 / V · sec. なおFWHMは小さいほど結晶性が良いと評価でき、移動度は大きいほど結晶性がよいと評価できる。 Note FWHM is small enough to evaluate the crystallinity is good, the mobility can be evaluated to have better crystallinity greater. 例えばサファイア基板上にGaNをバッファ層として成長したノンドープのGaN単結晶層で3分〜5分であり、また移動度は500〜600cm 2 /V・secの範囲である。 For example, 3 to 5 minutes at a non-doped GaN single crystal layer grown as a buffer layer of GaN on a sapphire substrate and the mobility is in the range of 500~600cm 2 / V · sec.

【0019】[実施例2]実施例1において、SiC基板の上にAlN薄膜を成長させない他は同様にしてGa [0019] In Example 2 Example 1, except that no grown AlN thin film on the SiC substrate in the same manner Ga
N層を成長させたところ、FWHMは2分、移動度80 Was the N layer is grown, FWHM is 2 minutes, mobility 80
0cm 2 /V・secであり、実施例1に比較して若干結晶性が劣っていた。 0cm a 2 / V · sec, was inferior slightly crystallinity than in Example 1.

【0020】[実施例3]実施例1において、AlN薄膜成長後、温度を1050℃に保持したままで、TM [0020] In Example 3 Example 1, after AlN film growth, while maintaining the temperature at 1050 ° C., TM
A、TMGのガス流量を調節して、まずAl0.9Ga0.1 A, by adjusting the gas flow rate of TMG, first Al0.9Ga0.1
N層を0.2μm成長させる。 The N layer is 0.2μm growth. 続いてAl0.8Ga0.2N Then Al0.8Ga0.2N
層を0.2μm、Al0.7Ga0.3N層を0.2μm・・ 0.2μm layer, 0.2μm ·· the Al0.7Ga0.3N layer
・・・Al0.2Ga0.8N層を0.2μm、Al0.1Ga ··· 0.2μm the Al0.2Ga0.8N layer, Al0.1Ga
0.9N層を0.2μmの順に9層積層して、組成傾斜したAlGaN多層膜を1.8μmの膜厚で成長する。 0.9N layer laminated 9 layers in the order of 0.2μm to grow the AlGaN multilayer film composition gradient in a thickness of 1.8 .mu.m. 後は実施例1と同様にしてAl0.1Ga0.9N層の上にGa Ga on the Al0.1Ga0.9N layer after the same manner as in Example 1
N層を2μm成長したところ、得られたGaN層の結晶性は、実施例1とほぼ同一の値を示した。 When the N layer was 2μm growth, the crystallinity of the obtained GaN layer, showed almost the same value as in Example 1.

【0021】[実施例4]実施例1において、傾斜組成させたAlGaN層を成長させた後、同じく温度を10 [0021] In Example 4 Example 1, after growing the AlGaN layer was graded composition, also temperature 10
50℃に保持しながら、TMA、TMG及びアンモニアガスでAl0.2Ga0.8N層を2μm成長させる。 While maintaining the 50 ° C., TMA, is 2μm grow Al0.2Ga0.8N layer in TMG and ammonia gas. このA The A
l0.2Ga0.8N層のFWHMは2分、移動度は800cm FWHM is 2 minutes of l0.2Ga0.8N layer, mobility 800cm
2 /V・secであり、AlGaNとしては非常に結晶性がよいことを示している。 A 2 / V · sec, shows that good very crystalline as AlGaN.

【0022】[実施例5]図1は本発明の方法により得られたレーザ素子の構造を示す模式的な断面図である。 [0022] [Embodiment 5] FIG. 1 is a schematic sectional view showing a structure of a laser device obtained by the method of the present invention.
以下実施例5をこの図面を元に説明する。 The following Example 5 describes this drawing based.

【0023】厚さ500μmの6H−SiC基板1の(0001)面に、AlN薄膜2を50nm、AlN〜 The thickness of 500 [mu] m 6H-SiC substrate 1 (0001) plane, an AlN thin film 2 50nm, AlN~
GaNまで組成傾斜させたn型AlGaN層3を2μm 2μm an n-type AlGaN layer 3 which is compositionally graded to GaN
の膜厚で実施例1と同様にして積層する。 To in thickness stacked in the same manner as in Example 1. なお、組成傾斜AlGaN層3は好ましいn型とするためにSiをドープしており、Si源としてシランガスを原料ガスと同時に流しながらドープして成長した。 The composition gradient AlGaN layer 3 is doped with Si to a preferred n-type, silane gas was grown by doping while passing at the same time as the raw material gas as the Si source.

【0024】次に基板の温度を800℃にして、原料ガスにTMI(トリメチルインジウム)ガス、TMG、アンモニア、シランガスを用い、n型In0.05Ga0.95N [0024] Next, the temperature of the substrate 800 ° C., TMI (trimethyl indium) gas, TMG, ammonia, silane gas used as a raw material gas, n-type In0.05Ga0.95N
層4を0.1μmの膜厚で成長した。 The layers 4 were grown to the thickness of 0.1 [mu] m.

【0025】続いてTMIの流量を多くして、活性層としてノンドープIn0.2Ga0.8N層5を2nmの膜厚で形成して、単一量子井戸構造となるようにした。 [0025] Then by increasing the flow rate of the TMI, the undoped In0.2Ga0.8N layer 5 as an active layer is formed with a thickness of 2 nm, it was made to be a single quantum well structure.

【0026】次にTMIを止め、基板の温度を1050 [0026] Next, stop the TMI, the temperature of the substrate 1050
℃にして、原料ガスにTMG、TMA、アンモニア、p In the ℃, TMG as a raw material gas, TMA, ammonia, p
型不純物ガスとしてCp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgドープp型Al0.15Ga0. Cp2Mg (cyclopentadienyl magnesium) as impurity gases, Mg-doped p-type Al0.15Ga0.
85N層6を0.1μm成長した。 The 85N layer 6 was 0.1μm growth.

【0027】続いてTMAの流量を多くして、Mgドープp型Al0.3Ga0.7N層7を0.1μm成長した。 [0027] Subsequently, the more the flow rate of TMA, was 0.1μm growth of the Mg-doped p-type Al0.3Ga0.7N layer 7.

【0028】最後にTMAを止め、Mgドープp型Ga [0028] Finally, stop the TMA, Mg-doped p-type Ga
N層8を0.5μm成長した。 The N layer 8 was 0.5μm growth.

【0029】以上のようにして窒化物半導体層を積層したウェーハを反応容器から取り出し、エッチング装置にて最上層のp−GaN層8より、組成傾斜n−AlGa The above manner the wafer formed by laminating nitride semiconductor layers taken out from the reaction vessel, from p-GaN layer 8 of the top layer by an etching apparatus, the composition gradient n-AlGa
N層3が露出するまでエッチングを行う。 Etched until N layer 3 is exposed. エッチング後、露出したn−AlGaN層3に負電極10を設け、 After etching, a negative electrode 10 n-AlGaN layer 3 exposed is provided,
最上層のp−GaN層にストライプ状の正電極11を設けた。 It provided stripe-shaped positive electrode 11 on the p-GaN layer of the uppermost layer.

【0030】電極設置後、正電極のストライプに対して垂直な方向でウェーハを劈開し、その劈開面に常法に従って誘電体多層膜よりなる反射膜を形成してレーザ素子とする。 [0030] After the electrode attachment, the wafer is cleaved in a direction perpendicular to the positive electrode stripes, the laser element by forming a reflective film made of a dielectric multi-layer film according to a conventional method in the cleaved surface. 図1はそのストライプ状の正電極11に垂直な方向で劈開した素子の断面図を示している。 Figure 1 shows a cross-sectional view of the device were cleaved in a direction perpendicular to the stripe-shaped positive electrode 11 thereof. なおこのレーザ素子は、しきい値電流密度500mA/cm 2において、室温でレーザ発振を示し、出力5mWであった。 Incidentally, this laser device, the threshold current density 500mA / cm 2, shows a laser oscillation at room temperature and an output 5 mW. これは組成傾斜したAlGaN層の上に成長した窒化物半導体の結晶性が良く、さらに基板の劈開性による共振面の形成が容易であったことによる。 This is because the crystallinity of the grown nitride semiconductor on the AlGaN layer compositionally graded well, was easy further formed in the resonance surface by cleavage of the substrate.

【0031】このレーザ素子は以下の利点がある。 [0031] The laser device has the following advantages. まず第一に基板にSiCを用いた場合、SiC基板は導電性を有しているため通常の負電極はSiC基板に接して設けられる。 When first using the SiC in the first substrate, SiC substrate generally negative electrode because it has electrically conductive is provided in contact with the SiC substrate. つまり正電極と負電極とが対向した状態とされる。 That the positive electrode and the negative electrode is a state of facing. しかし、SiCと窒化物半導体とはヘテロエピである。 However, the SiC and the nitride semiconductor is heteroepitaxial. 従ってSiCと窒化物半導体層との界面にヘテロエピに起因する障壁が存在するため、素子のVf(順方向電圧)が上昇する。 Therefore due to the presence of a barrier caused by the heteroepitaxial the interface between SiC and the nitride semiconductor layer, Vf of the element (forward voltage) is increased. 一方、本発明によるレーザ素子はSiCという導電性基板を使用したにも関わらず、負電極を基板側に設けず、敢えて窒化物半導体をエッチングして同一面側に設けた構造としている。 On the other hand, the laser device according to the invention despite the use of conductive substrate of SiC, without providing a negative electrode on the substrate side, has a structure which is provided on the same side to dare etching the nitride semiconductor. 従って、電流がSiCと窒化物半導体層との界面を流れないので、Vf Therefore, since current does not flow through the interface between SiC and the nitride semiconductor layer, Vf
の上昇を抑制できる。 An increase in can be suppressed. 第二に組成傾斜させたAlGaN Second was composition gradient AlGaN
層3は1μm以上と厚く成長させることにより、負電極を形成するためのコンタクト層、及び活性層の発光を閉じこめるためのクラッド層にもなる。 Layer 3 by growing thicker and more 1 [mu] m, a contact layer for forming a negative electrode, and also a clad layer for confining the light emission of the active layer. さらに第三にSi Furthermore, the third in Si
Cは従来のサファイア基板と異なり劈開性を有している。 C has a cleavage property unlike the conventional sapphire substrate. このためSiCの劈開性を利用すれば、窒化物半導体の劈開面をレーザ素子の光共振面とするのに非常に都合がよい。 By utilizing the cleavage of this for SiC, very good convenient cleavage plane of the nitride semiconductor to the optical resonance surface of the laser element.

【0032】 [0032]

【発明の効果】以上説明したように本発明の方法によると、結晶性の良い窒化物半導体層が得られる。 According to the method of the present invention described above, according to the present invention, good crystallinity nitride semiconductor layer. 例えば結晶のホール測定において、移動度が900cm 2 /V・sec For example, in Hall measurement of crystallinity, mobility of 900cm 2 / V · sec
という値は窒化物半導体では非常に優れた値である。 That the value is an excellent value in a nitride semiconductor. また本発明によると結晶性の良い窒化物半導体が得られるため、実施例5のように発光素子を作成した場合、発光出力の高い素子を得ることができ、その産業上の利用価値は大きい。 Since a good nitride semiconductor crystal can be obtained due to the present invention, when a light-emitting element as in Example 5, it is possible to obtain a high emission output device, a large utility value on that industry.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施例に係る方法により得られた窒化物半導体レーザ素子の構造を示す模式断面図。 Schematic cross-sectional view showing the structure of the obtained nitride semiconductor laser device by a method according to an embodiment of the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1・・・・SiC基板 2・・・・AlN薄膜 3・・・・Siドープn型AlGaN層 4・・・・Siドープn型In0.05Ga0.95N層 5・・・・ノンドープIn0.2Ga0.8N活性層 6・・・・Mgドープp型Al0.15Ga0.85N層 7・・・・Mgドープp型Al0.3Ga0.7N層 8・・・・p型GaN層 10・・・・負電極 11・・・・正電極 1 .... SiC substrate 2 .... AlN thin film 3 ... Si-doped n-type AlGaN layer 4 ... Si-doped n-type In0.05Ga0.95N layer 5 ... undoped In0.2Ga0. 8N active layer 6 ... Mg-doped p-type Al0.15Ga0.85N layer 7 ... Mg-doped p-type Al0.3Ga0.7N layer 8 ... p-type GaN layer 10 ... negative electrode 11 ... positive electrode

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 気相成長法により、In a Al b Ga By 1. A vapor phase growth method, In a Al b Ga
    1-ab N(0≦a、0≦b、a+b≦1)で示される窒化物半導体を基板上にエピタキシャル成長させる方法において、基板にSiCを使用し、そのSiC基板の上にX値が順次小さくなるように組成傾斜したAl X Ga 1-X In 1-ab N (0 ≦ a , 0 ≦ b, a + b ≦ 1) a method of epitaxially growing a nitride semiconductor represented by the substrate, using a SiC substrate, X value gradually decreases over the SiC substrate Al X Ga 1-X N with composition gradient such that
    (0≦X≦1)層を成長させ、そのAl X Ga 1- X N層の上に前記窒化物半導体を成長させることを特徴とする窒化物半導体の成長方法。 (0 ≦ X ≦ 1) layer is grown, a nitride semiconductor process growth, characterized in that growing the nitride semiconductor on the Al X Ga 1- X N layer.
  2. 【請求項2】 前記Al X Ga 1-X N層と基板との間にA Wherein A between the Al X Ga 1-X N layer and the substrate
    lN層を成長させることを特徴とする請求項1に記載の窒化物半導体の成長方法。 Nitride semiconductor method of growing according to claim 1, characterized in that growing lN layer.
  3. 【請求項3】 前記Al X Ga 1-X N層は、X値が互いに異なる層が積層された多層膜よりなることを特徴とする請求項1または請求項2に記載の窒化物半導体の成長方法。 Wherein the Al X Ga 1-X N layer, a nitride semiconductor growth according to claim 1 or claim 2 layers X values are different from each other is characterized by comprising a multilayer film laminated Method.
JP23750195A 1995-09-18 1995-09-18 The method of growing a nitride semiconductor Expired - Fee Related JP3604205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23750195A JP3604205B2 (en) 1995-09-18 1995-09-18 The method of growing a nitride semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23750195A JP3604205B2 (en) 1995-09-18 1995-09-18 The method of growing a nitride semiconductor

Publications (2)

Publication Number Publication Date
JPH0983016A true true JPH0983016A (en) 1997-03-28
JP3604205B2 JP3604205B2 (en) 2004-12-22

Family

ID=17016259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23750195A Expired - Fee Related JP3604205B2 (en) 1995-09-18 1995-09-18 The method of growing a nitride semiconductor

Country Status (1)

Country Link
JP (1) JP3604205B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048254A1 (en) * 1999-02-09 2000-08-17 Nichia Corporation Nitride semiconductor device and its manufacturino method
JP2002252177A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Semiconductor element
EP1263029A2 (en) 2001-05-31 2002-12-04 Ngk Insulators, Ltd. GaN semiconductor device
JP2004506323A (en) * 2000-08-04 2004-02-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method of controlling stress in gallium nitride films deposited on a substrate
US6706620B2 (en) 2001-02-27 2004-03-16 Ngk Insulators, Ltd. Method for fabricating a nitride film
JP2005536873A (en) * 2002-07-19 2005-12-02 クリー インコーポレイテッドCree Inc. Method of fabricating a distortion compensation semiconductor structure and distortion compensation semiconductor structure
US6984840B2 (en) 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
JP2006147663A (en) * 2004-11-16 2006-06-08 Fujitsu Ltd Compound semiconductor device and its manufacturing method
EP1235282A3 (en) * 2001-02-27 2006-08-30 Ngk Insulators, Ltd. Method for fabricating a nitride film
US7312480B2 (en) 1998-10-22 2007-12-25 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
JP2008500740A (en) * 2004-05-19 2008-01-10 エピヴァレー カンパニー リミテッド A method of forming a GaN-based nitride film
JP2008085123A (en) * 2006-09-28 2008-04-10 Covalent Materials Corp Substrate for compound semiconductor device, and the compound semiconductor device using the same
JP2008153531A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
WO2009026748A1 (en) * 2007-08-31 2009-03-05 Lattice Power (Jiangxi) Corporation Gallium nitride light-emitting device with ultra-high reverse breakdown voltage
US7501664B2 (en) 2004-02-13 2009-03-10 Epivalley Co., Ltd. III-Nitride compound semiconductor light emitting device
US7547909B2 (en) 2004-02-05 2009-06-16 Epivalley Co., Ltd. III-nitride compound semiconductor light emitting device
JP2009530808A (en) * 2006-03-13 2009-08-27 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and its manufacturing method having an aluminum gallium nitride buffer layer
WO2009113458A1 (en) * 2008-03-13 2009-09-17 昭和電工株式会社 Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
JP2010517298A (en) * 2007-01-26 2010-05-20 クリスタル・イズ,インコーポレイテッド Nitride epitaxial layer of pseudomorphic a thick
JP2010212458A (en) * 2009-03-10 2010-09-24 Hamamatsu Photonics Kk Method of manufacturing compound semiconductor layer structure
US7923749B2 (en) 2004-03-25 2011-04-12 EipValley Co., Ltd. III-nitride compound semiconductor light emitting device
JP2011216911A (en) * 2011-07-22 2011-10-27 Tokyo Univ Of Agriculture & Technology METHOD OF MANUFACTURING AlxGa1-xN CRYSTAL
CN102456548A (en) * 2010-10-25 2012-05-16 财团法人交大思源基金会 Multilayer substrate having gallium nitride layer and method for forming the same
JP2013128103A (en) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd Nitride semiconductor device and nitride semiconductor device manufacturing method
KR101380799B1 (en) * 2009-06-08 2014-04-04 에피스타 코포레이션 Light-emitting device and the manufacturing method thereof
CN103824912A (en) * 2014-03-12 2014-05-28 合肥彩虹蓝光科技有限公司 Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED)
JP2015079844A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting element using the same
US9028612B2 (en) 2010-06-30 2015-05-12 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US9299880B2 (en) 2013-03-15 2016-03-29 Crystal Is, Inc. Pseudomorphic electronic and optoelectronic devices having planar contacts
US9447519B2 (en) 2006-03-30 2016-09-20 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them
US9447521B2 (en) 2001-12-24 2016-09-20 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US9525032B2 (en) 2005-12-02 2016-12-20 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
US9624601B2 (en) 2007-01-17 2017-04-18 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984840B2 (en) 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US7312480B2 (en) 1998-10-22 2007-12-25 Sanyo Electric Co., Ltd. Semiconductor device and method of fabricating the same
WO2000048254A1 (en) * 1999-02-09 2000-08-17 Nichia Corporation Nitride semiconductor device and its manufacturino method
JP2012109583A (en) * 2000-08-04 2012-06-07 Regents Of The Univ Of California Method of controlling stress in gallium nitride films deposited on substrates
US8525230B2 (en) 2000-08-04 2013-09-03 The Regents Of The University Of California Field-effect transistor with compositionally graded nitride layer on a silicaon substrate
JP2004506323A (en) * 2000-08-04 2004-02-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method of controlling stress in gallium nitride films deposited on a substrate
US9691712B2 (en) 2000-08-04 2017-06-27 The Regents Of The University Of California Method of controlling stress in group-III nitride films deposited on substrates
US9129977B2 (en) 2000-08-04 2015-09-08 The Regents Of The University Of California Method of controlling stress in group-III nitride films deposited on substrates
JP2002252177A (en) * 2000-12-21 2002-09-06 Ngk Insulators Ltd Semiconductor element
EP1235282A3 (en) * 2001-02-27 2006-08-30 Ngk Insulators, Ltd. Method for fabricating a nitride film
US6706620B2 (en) 2001-02-27 2004-03-16 Ngk Insulators, Ltd. Method for fabricating a nitride film
EP1263029A3 (en) * 2001-05-31 2009-02-25 Ngk Insulators, Ltd. GaN semiconductor device
EP1263029A2 (en) 2001-05-31 2002-12-04 Ngk Insulators, Ltd. GaN semiconductor device
US9447521B2 (en) 2001-12-24 2016-09-20 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
JP2011119748A (en) * 2002-07-19 2011-06-16 Cree Inc Strain-compensated semiconductor structure and method of manufacturing the strain-compensated semiconductor structure
JP2005536873A (en) * 2002-07-19 2005-12-02 クリー インコーポレイテッドCree Inc. Method of fabricating a distortion compensation semiconductor structure and distortion compensation semiconductor structure
US7547909B2 (en) 2004-02-05 2009-06-16 Epivalley Co., Ltd. III-nitride compound semiconductor light emitting device
US7501664B2 (en) 2004-02-13 2009-03-10 Epivalley Co., Ltd. III-Nitride compound semiconductor light emitting device
US7923749B2 (en) 2004-03-25 2011-04-12 EipValley Co., Ltd. III-nitride compound semiconductor light emitting device
JP2008500740A (en) * 2004-05-19 2008-01-10 エピヴァレー カンパニー リミテッド A method of forming a GaN-based nitride film
JP2006147663A (en) * 2004-11-16 2006-06-08 Fujitsu Ltd Compound semiconductor device and its manufacturing method
JP4514584B2 (en) * 2004-11-16 2010-07-28 富士通株式会社 A compound semiconductor device and a manufacturing method thereof
US7838903B2 (en) 2004-11-16 2010-11-23 Fujitsu Limited Compound semiconductor device and the fabricating method of the same
US7638819B2 (en) 2004-11-16 2009-12-29 Fujitsu Limited Compound semiconductor device and the fabricating method of the same
US9525032B2 (en) 2005-12-02 2016-12-20 Crystal Is, Inc. Doped aluminum nitride crystals and methods of making them
JP2009530808A (en) * 2006-03-13 2009-08-27 ソウル オプト デバイス カンパニー リミテッド Light emitting diode and its manufacturing method having an aluminum gallium nitride buffer layer
US9447519B2 (en) 2006-03-30 2016-09-20 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them
JP2008085123A (en) * 2006-09-28 2008-04-10 Covalent Materials Corp Substrate for compound semiconductor device, and the compound semiconductor device using the same
JP2008153531A (en) * 2006-12-19 2008-07-03 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
US9670591B2 (en) 2007-01-17 2017-06-06 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9624601B2 (en) 2007-01-17 2017-04-18 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
JP2010517298A (en) * 2007-01-26 2010-05-20 クリスタル・イズ,インコーポレイテッド Nitride epitaxial layer of pseudomorphic a thick
WO2009026748A1 (en) * 2007-08-31 2009-03-05 Lattice Power (Jiangxi) Corporation Gallium nitride light-emitting device with ultra-high reverse breakdown voltage
US8569794B2 (en) 2008-03-13 2013-10-29 Toyoda Gosei Co., Ltd. Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
WO2009113458A1 (en) * 2008-03-13 2009-09-17 昭和電工株式会社 Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp
JP2010212458A (en) * 2009-03-10 2010-09-24 Hamamatsu Photonics Kk Method of manufacturing compound semiconductor layer structure
KR101380799B1 (en) * 2009-06-08 2014-04-04 에피스타 코포레이션 Light-emitting device and the manufacturing method thereof
US9028612B2 (en) 2010-06-30 2015-05-12 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US9580833B2 (en) 2010-06-30 2017-02-28 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
CN102456548A (en) * 2010-10-25 2012-05-16 财团法人交大思源基金会 Multilayer substrate having gallium nitride layer and method for forming the same
JP2012094802A (en) * 2010-10-25 2012-05-17 Jiaotong Univ Multilayer structure substrate having gallium nitride layer and method of manufacturing the same
JP2011216911A (en) * 2011-07-22 2011-10-27 Tokyo Univ Of Agriculture & Technology METHOD OF MANUFACTURING AlxGa1-xN CRYSTAL
JP2013128103A (en) * 2011-11-17 2013-06-27 Sanken Electric Co Ltd Nitride semiconductor device and nitride semiconductor device manufacturing method
US9299880B2 (en) 2013-03-15 2016-03-29 Crystal Is, Inc. Pseudomorphic electronic and optoelectronic devices having planar contacts
JP2015079844A (en) * 2013-10-17 2015-04-23 日亜化学工業株式会社 Nitride semiconductor laminate and light emitting element using the same
CN103824912A (en) * 2014-03-12 2014-05-28 合肥彩虹蓝光科技有限公司 Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED)

Also Published As

Publication number Publication date Type
JP3604205B2 (en) 2004-12-22 grant

Similar Documents

Publication Publication Date Title
US6452214B2 (en) Group III nitride compound semiconductor light-emitting device having a light emission output of high light intensity
US8017932B2 (en) Light-emitting device
US6455877B1 (en) III-N compound semiconductor device
US20090095973A1 (en) Semiconductor light emitting device
US5959307A (en) Nitride semiconductor device
JP3515974B2 (en) Nitride semiconductor, manufacturing method thereof and a nitride semiconductor device
US20060126688A1 (en) Blue and green laser diodes with gallium nitride or indium gallium nitride cladding laser structure
US20100133506A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP2785254B2 (en) The gallium nitride-based compound semiconductor light-emitting device
JP3314666B2 (en) Nitride semiconductor device
JP2917742B2 (en) The gallium nitride-based compound semiconductor light emitting device and manufacturing method thereof
US6631149B1 (en) Laser diode using group III nitride group compound semiconductor
JP3374737B2 (en) Nitride semiconductor device
JP3250438B2 (en) The nitride semiconductor light emitting device
US6337493B1 (en) Nitride semiconductor device
JP4629178B2 (en) Nitride semiconductor device
JP3063756B1 (en) Nitride semiconductor device
JP2735057B2 (en) The nitride semiconductor light emitting device
JP2008311640A (en) Semiconductor laser diode
US6365923B1 (en) Nitride semiconductor light-emitting element and process for production thereof
JP3622562B2 (en) The nitride semiconductor light emitting diode
JP2002141553A (en) Nitride semiconductor light emitting element
JP2001148507A (en) Nitride semiconductor device
US20110017976A1 (en) Ultraviolet light emitting diode/laser diode with nested superlattice
JP2002261014A (en) Method of manufacturing nitride semiconductor element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees