JPH0983016A - Method for growing nitride semiconductor - Google Patents
Method for growing nitride semiconductorInfo
- Publication number
- JPH0983016A JPH0983016A JP23750195A JP23750195A JPH0983016A JP H0983016 A JPH0983016 A JP H0983016A JP 23750195 A JP23750195 A JP 23750195A JP 23750195 A JP23750195 A JP 23750195A JP H0983016 A JPH0983016 A JP H0983016A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- nitride semiconductor
- grown
- substrate
- growing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は気相成長法により窒化物
半導体InaAlbGa1-a-bN(0≦a、0≦b、a+b≦
1)の結晶を基板上に成長させる方法に関する。The present invention relates to a nitride semiconductor In a Al b Ga 1 -ab N (0≤a, 0≤b, a + b≤ by a vapor phase growth method.
The present invention relates to a method of growing a crystal of 1) on a substrate.
【0002】[0002]
【従来の技術】窒化物半導体は有機金属気相成長法(M
OVPE)、分子線気相成長法(MBE)、ハライド気
相成長法(HDVPE)等の気相成長法により基板上に
エピタキシャル成長される。一般に化合物半導体をエピ
タキシャル成長させるには、化合物半導体と格子定数が
一致した基板を用いると結晶性の良いものが得られるこ
とが常識であるが、窒化物半導体には格子整合する基板
がないため、現在格子定数で13%もの差があるサファ
イア基板の上に成長されるのが常であった。2. Description of the Related Art Nitride semiconductors are metal organic chemical vapor deposition (M
OVPE), molecular beam vapor phase epitaxy (MBE), halide vapor phase epitaxy (HDVPE) and the like are used to epitaxially grow on the substrate. In general, for epitaxial growth of a compound semiconductor, it is common knowledge that a substrate with a lattice constant that matches that of the compound semiconductor will yield good crystallinity. It was always grown on sapphire substrates with a lattice constant difference of as much as 13%.
【0003】サファイア基板の場合、窒化物半導体を成
長させる前にまずサファイア基板上にAlN、GaNよ
りなるバッファ層を成長させ、そのバッファ層の上に窒
化物半導体を成長することが知られている。例えば特公
昭59−48794号、特公平4−15200号公報に
はAlNをバッファ層とする方法が記載され、また特開
昭60−173829号、平4−297023号公報に
はGaNをバッファ層とする方法が記載されている。そ
の中でも特開平4−297023号による方法は現在実
用化されている窒化物半導体LEDの基幹技術の一つと
なっている。In the case of a sapphire substrate, it is known that before growing a nitride semiconductor, a buffer layer made of AlN or GaN is first grown on the sapphire substrate and then the nitride semiconductor is grown on the buffer layer. . For example, Japanese Examined Patent Publication No. 59-48794 and Japanese Examined Patent Publication No. 4-15200 describe a method of using AlN as a buffer layer, and Japanese Laid-Open Patent Publication Nos. 60-173829 and 4-297023 disclose GaN as a buffer layer. How to do is described. Among them, the method disclosed in JP-A-4-297023 is one of the core technologies of the nitride semiconductor LEDs currently put into practical use.
【0004】その他窒化物半導体を成長させる基板には
ZnS(特開平4−68579)、MnO(特開平4−
209577)、ZnO(特開平4−236477)、
SiC(特開平4−223330)等数々提案されてお
り、特に特開平4−223330号公報にはSiC基板
表面にSiCバッファ層を形成し、このバッファ層の上
に窒化物半導体を成長させる技術が示されている。Other substrates for growing nitride semiconductors include ZnS (Japanese Patent Laid-Open No. 4-68579) and MnO (Japanese Patent Laid-Open No. 4-19859).
209577), ZnO (JP-A-4-236477),
Many proposals have been made, such as SiC (Japanese Patent Laid-Open No. 4-223330). In particular, Japanese Patent Laid-Open No. 4-223330 discloses a technique of forming a SiC buffer layer on the surface of a SiC substrate and growing a nitride semiconductor on the buffer layer. It is shown.
【0005】[0005]
【発明が解決しようとする課題】現在、サファイア基板
の上に成長された窒化物半導体で、青色LED、青緑色
LED等が実用化されているが、将来、さらに高輝度で
信頼性に優れたLED、またLDのような高度な発光デ
バイス等を実現するためには、窒化物半導体の結晶性を
さらに向上させる必要がある。従って本発明はこのよう
な事情を鑑みて成されたもので、その目的とするところ
は基板の上に成長させる窒化物半導体の結晶性を向上さ
せ、信頼性に優れたLED、LD等を実現することにあ
る。Currently, blue LEDs, blue-green LEDs, etc. are practically used for nitride semiconductors grown on a sapphire substrate, but in the future, they will have higher brightness and excellent reliability. In order to realize advanced light emitting devices such as LEDs and LDs, it is necessary to further improve the crystallinity of the nitride semiconductor. Therefore, the present invention has been made in view of such circumstances, and an object of the present invention is to improve the crystallinity of a nitride semiconductor grown on a substrate and realize a highly reliable LED, LD, or the like. To do.
【0006】[0006]
【課題を解決するための手段】本発明の窒化物半導体の
成長方法は、気相成長法によりInaAlbGa1-a-bN
(0≦a、0≦b、a+b≦1)で示される窒化物半導体を
基板上にエピタキシャル成長させる方法において、基板
にSiCを使用し、そのSiC基板の上にX値が順次小
さくなるように組成傾斜したAlXGa1-XN(0≦X≦
1)層を成長させ、そのAlXGa1-XN層の上に前記窒
化物半導体を成長させることを特徴とする。The method for growing a nitride semiconductor of the present invention is a vapor phase epitaxy method of In a Al b Ga 1 -ab N.
In a method of epitaxially growing a nitride semiconductor represented by (0 ≦ a, 0 ≦ b, a + b ≦ 1) on a substrate, SiC is used for the substrate, and the composition is such that the X value is gradually decreased on the SiC substrate. Inclined Al X Ga 1-X N (0 ≦ X ≦
1) A layer is grown, and the nitride semiconductor is grown on the Al x Ga 1-x N layer.
【0007】本発明の成長方法において、気相成長法に
は先にも述べたように、例えばMOVPE法、MBE
法、HDVPE法等が採用できるが、好ましくはMOV
PE法で成長させることにより結晶性の良い半導体層が
得られる。In the growth method of the present invention, the vapor phase growth method is, for example, the MOVPE method or the MBE method as described above.
Method, HDVPE method, etc. can be adopted, but MOV is preferable.
By growing by the PE method, a semiconductor layer with good crystallinity can be obtained.
【0008】また基板のSiCは単結晶のSiC基板を
利用する。SiCには4H、6H、3C等数々の結晶構
造があるが特に限定するものではない。好ましくは6H
−SiCの(0001)面、3C−SiCの(111)
面の上に成長させることにより結晶性の良い窒化物半導
体が得られる。For the SiC substrate, a single crystal SiC substrate is used. SiC has various crystal structures such as 4H, 6H, and 3C, but is not particularly limited. Preferably 6H
-SiC (0001) plane, 3C-SiC (111) plane
A nitride semiconductor with good crystallinity can be obtained by growing it on the surface.
【0009】組成傾斜したAlXGa1-XN層とはAl混
晶比がSiC基板より離れるに従って少なくなるように
構成したAlXGa1-XN層であり、このAlXGa1-XN
層は単一層で組成傾斜するように構成しても良いし、ま
た後に述べるように複数のAlXGa1-XN層を積層した
多層膜で構成して、各層の構成をSiCより離れるに従
ってAl混晶比を少なくしたAlXGa1-XNとしても良
い。[0009] The Al X Ga 1-X N layer composition gradient is Al X Ga 1-X N layer configured to be less according to Al ratio is separated from the SiC substrate, the Al X Ga 1-X N
The layer may be composed of a single layer having a composition gradient, or may be composed of a multilayer film in which a plurality of Al X Ga 1 -X N layers are laminated as described later, and the composition of each layer is separated from SiC as it is separated from SiC. It is also possible to use Al X Ga 1-X N with a reduced Al mixed crystal ratio.
【0010】AlXGa1-XN層は5nm〜5μmの膜厚
で成長することが望ましく、さらに好ましくは5nm〜
3μmに調整する。5nmよりも薄いと組成傾斜した層
が形成しにくく、また2μmよりも厚いとAlXGa1-X
N層自身にクラックが入りやすくなるからである。また
組成傾斜させたAlXGa1-XN層の最表面はGaNとす
ることがさらに望ましい。GaNとすると、その上に成
長する窒化物半導体層の結晶性が特に良くなる。The Al X Ga 1-X N layer is preferably grown to a thickness of 5 nm to 5 μm, more preferably 5 nm to 5 μm.
Adjust to 3 μm. If it is thinner than 5 nm, it is difficult to form a compositionally graded layer, and if it is thicker than 2 μm, Al x Ga 1 -x.
This is because the N layer itself is likely to be cracked. Further, it is more preferable that the outermost surface of the compositionally graded Al X Ga 1-X N layer is GaN. When GaN is used, the crystallinity of the nitride semiconductor layer grown thereon is particularly good.
【0011】次に本発明の成長方法は前記AlXGa1-X
N層と基板との間にAlN層を成長させることを特徴と
する。このAlN層を成長させることにより、その上の
Al XGa1-XN層の結晶性がさらに良くなる。従ってA
lXGa1-XN層の上に成長する窒化物半導体層の結晶性
も良くなる。AlN層の膜厚は1nm〜0.1μmの膜
厚で形成することが望ましい。0.1μmよりも厚いと
AlN層自身にクラックが入りやすくなるので、その上
に結晶性の良いAlXGa1-XN層が成長しにくい。Al
N層の成長条件は通常の気相成長法の条件で成長でき
る。例えばMOVPE法であれば、400℃〜1200
℃の範囲内に加熱されたSiC基板の表面に、Alを含
む有機金属ガスと、窒素の水素化物とを供給することに
より成長できる。この場合、900℃以下で成長された
AlNはアモルファスのAlNを含む結晶となり、約9
00℃以上で成長されたAlNは単結晶に近い結晶とな
るが、いずれの場合においても、そのAlN層の上に結
晶性の良いAlXGa1-XN層が成長可能である。Next, the growth method of the present invention uses the above-mentioned Al.XGa1-X
Characterized in that an AlN layer is grown between the N layer and the substrate.
I do. By growing this AlN layer,
Al XGa1-XThe crystallinity of the N layer is further improved. Therefore A
lXGa1-XCrystallinity of nitride semiconductor layer grown on N layer
Also gets better. The film thickness of the AlN layer is 1 nm to 0.1 μm
It is desirable to form it with a large thickness. If it is thicker than 0.1 μm
Since cracks are likely to occur in the AlN layer itself,
Al with good crystallinityXGa1-XIt is difficult for the N layer to grow. Al
The N layer can be grown under the conditions of ordinary vapor phase growth method.
You. For example, in the case of MOVPE method, 400 ° C to 1200
The surface of the SiC substrate heated within the range of ° C contains Al.
To supply organometallic gas and nitrogen hydride
You can grow more. In this case, it was grown below 900 ° C
AlN becomes a crystal containing amorphous AlN,
AlN grown at more than 00 ° C becomes a crystal close to a single crystal.
However, in either case, the bonding is performed on the AlN layer.
Al with good crystallinityXGa1-XN layers can be grown.
【0012】次にAlXGa1-XN層はX値が互いに異な
る層が積層された多層膜よりなることを特徴とする。つ
まりSiC基板側にAl混晶比が大きいAlGaN層を
形成し、その上にAl混晶比が小さいAlGaN層を形
成し、次第にAl組成比の小さいAlGa層を積層した
多層膜とする。多層膜は何層積層しても特に問題はない
が、前記のようにAlGaN層の総膜厚は5nm〜5μ
mの範囲に調整することが望ましい。Next, the Al X Ga 1-X N layer is characterized by being formed of a multilayer film in which layers having different X values are laminated. That is, an AlGaN layer having a large Al mixed crystal ratio is formed on the SiC substrate side, an AlGaN layer having a small Al mixed crystal ratio is formed thereon, and an AlGa layer having a gradually smaller Al composition ratio is laminated to form a multilayer film. There is no particular problem even if the number of layers of the multilayer film is laminated, but as described above, the total film thickness of the AlGaN layer is 5 nm to 5 μm.
It is desirable to adjust to the range of m.
【0013】[0013]
【作用】SiC基板上に組成傾斜したAlGaN層を形
成すると、そのAlGaN層が基板との格子不整合に起
因する転位、歪み等を減少させることができる。これは
Al混晶比の多いAlGaN層がSiCの格子定数に近
いからであると推察できる。従って、組成傾斜したAl
GaN層を成長させる前にAlN層を一番先に成長させ
ると、AlGaNの結晶性が良くなる。しかも順にAl
混晶比を減少させることにより、最初に形成したAl混
晶比の大きいAlGaN層の格子欠陥が次第に緩和され
て、結晶性の良いAlGaN層が次第に成長されるので
ある。結晶性のよいAlGaN層が成長できると、その
上に成長させる窒化物半導体は先に形成したAlGaN
層が格子整合基板となるので、窒化物半導体の結晶性が
飛躍的に向上する。When the compositionally graded AlGaN layer is formed on the SiC substrate, the AlGaN layer can reduce dislocations, strains and the like due to lattice mismatch with the substrate. It can be inferred that this is because the AlGaN layer having a large Al mixed crystal ratio is close to the lattice constant of SiC. Therefore, the compositionally graded Al
If the AlN layer is grown first before the GaN layer is grown, the crystallinity of AlGaN is improved. Moreover, Al
By reducing the mixed crystal ratio, the lattice defects of the AlGaN layer having a large Al mixed crystal ratio formed first are gradually relaxed, and the AlGaN layer having good crystallinity is gradually grown. If an AlGaN layer with good crystallinity can be grown, the nitride semiconductor grown on it will be the AlGaN layer previously formed.
Since the layer serves as a lattice-matched substrate, the crystallinity of the nitride semiconductor is dramatically improved.
【0014】[0014]
【実施例】以下、MOVPE法による本発明の成長方法
について述べる。EXAMPLES The growth method of the present invention by the MOVPE method will be described below.
【0015】1050℃に加熱された6H−SiC基板
の(0001)面に、水素ガスをキャリアガスとして、
TMA(トリメチルアルミニウム)とアンモニアガスを
供給し、AlNよりなる薄膜を50nmの膜厚で成長さ
せる。このAlN薄膜は400℃〜1200℃の範囲で
成長可能であり、前記のようにおよそ900℃以下で成
長させるとアモルファスのAlNを含む結晶が成長し、
900℃以上で成長させると単結晶のAlN薄膜が成長
する傾向にあるが、アモルファスのAlN薄膜、単結晶
のAlN薄膜、いずれを成長させてもよい。Hydrogen gas was used as a carrier gas on the (0001) plane of the 6H-SiC substrate heated to 1050 ° C.
TMA (trimethylaluminum) and ammonia gas are supplied to grow a thin film of AlN to a thickness of 50 nm. This AlN thin film can be grown in the range of 400 ° C. to 1200 ° C., and when it is grown at about 900 ° C. or lower, a crystal containing amorphous AlN grows,
Although a single crystal AlN thin film tends to grow when grown at 900 ° C. or higher, either an amorphous AlN thin film or a single crystal AlN thin film may be grown.
【0016】続いて、基板を1050℃に保持したまま
で、TMAガスに加えて、TMG(トリメチルガリウ
ム)ガスを徐々に流し、組成傾斜したAlGaN層を成
長させる。TMGおよびTMAのガス流量はマスフロー
コントローラにより制御し、TMGのガスのガス流量を
時間の経過と共に徐々に多くし、同時にTMAガスの流
量を徐々に少なくして、TMGガスとTMAガスの合計
のガス量を常時ほぼ同一に調整してAlGaN層を成長
させる。そして最後にTMAガスを止めてGaN層が成
長するようにする。以上のようにして組成傾斜したAl
GaN層を2μmの膜厚で成長させる。なお傾斜組成A
lGaN層は最上層がGaNとなるようにしたが、特に
傾斜組成していれば最上層をGaNとする必要はない。
好ましくは最上層はX値が0.5よりも小さいAlXGa
1-XN層、さらに好ましくは0.3以下とする方が、そ
のAlXGa1-XN層の上に結晶性の良い窒化物半導体層
を成長できる。Subsequently, while maintaining the substrate at 1050 ° C., in addition to TMA gas, TMG (trimethylgallium) gas is gradually flowed to grow a compositionally graded AlGaN layer. The gas flow rates of TMG and TMA are controlled by a mass flow controller, the gas flow rate of TMG gas is gradually increased with the passage of time, and at the same time, the flow rate of TMA gas is gradually decreased to obtain the total gas of TMG gas and TMA gas. The AlGaN layer is grown by always adjusting the amount to be almost the same. Finally, the TMA gas is stopped so that the GaN layer grows. Al having a composition gradient as described above
A GaN layer is grown to a film thickness of 2 μm. Gradient composition A
Although the uppermost layer of the lGaN layer is made of GaN, it is not necessary to make the uppermost layer of GaN as long as it has a graded composition.
Preferably, the uppermost layer is Al X Ga having an X value smaller than 0.5.
A 1-X N layer, more preferably 0.3 or less, allows a nitride semiconductor layer having good crystallinity to grow on the Al X Ga 1-X N layer.
【0017】続いて、TMAガスを完全に止め、TMG
ガス、アンモニアガスで1050℃にてGaN層を3μ
mの膜厚で成長させる。Then, the TMA gas was completely stopped, and the TMG was removed.
Gas, ammonia gas at 1050 ℃ 3μ GaN layer
It is grown to a thickness of m.
【0018】成長後基板を取り出し、得られたGaN層
の結晶性を評価するためダブルクリスタルX線ロッキン
グカーブの半値幅(FWHM:Full Width at Half Max
imum)を測定したところ、1.5分と非常に結晶性に優
れていることが判明した。またホール測定装置で結晶の
移動度を測定したところ、900cm2/V・secと優れた
値を示した。なおFWHMは小さいほど結晶性が良いと
評価でき、移動度は大きいほど結晶性がよいと評価でき
る。例えばサファイア基板上にGaNをバッファ層とし
て成長したノンドープのGaN単結晶層で3分〜5分で
あり、また移動度は500〜600cm2/V・secの範囲
である。After growth, the substrate was taken out and the full width at half maximum (FWHM) of the double crystal X-ray rocking curve was used to evaluate the crystallinity of the obtained GaN layer.
It was found that the crystallinity was extremely excellent at 1.5 minutes. Further, when the mobility of the crystal was measured by a Hall measuring device, it showed an excellent value of 900 cm 2 / V · sec. Note that the smaller the FWHM, the better the crystallinity, and the larger the mobility, the better the crystallinity. For example, a non-doped GaN single crystal layer grown on a sapphire substrate using GaN as a buffer layer has a mobility of 3 to 5 minutes and a mobility of 500 to 600 cm 2 / V · sec.
【0019】[実施例2]実施例1において、SiC基
板の上にAlN薄膜を成長させない他は同様にしてGa
N層を成長させたところ、FWHMは2分、移動度80
0cm2/V・secであり、実施例1に比較して若干結晶性
が劣っていた。[Embodiment 2] The same as in Embodiment 1 except that the AlN thin film is not grown on the SiC substrate.
When the N layer was grown, the FWHM was 2 minutes and the mobility was 80.
It was 0 cm 2 / V · sec, and the crystallinity was slightly inferior to that of Example 1.
【0020】[実施例3]実施例1において、AlN薄
膜成長後、温度を1050℃に保持したままで、TM
A、TMGのガス流量を調節して、まずAl0.9Ga0.1
N層を0.2μm成長させる。続いてAl0.8Ga0.2N
層を0.2μm、Al0.7Ga0.3N層を0.2μm・・
・・・Al0.2Ga0.8N層を0.2μm、Al0.1Ga
0.9N層を0.2μmの順に9層積層して、組成傾斜し
たAlGaN多層膜を1.8μmの膜厚で成長する。後
は実施例1と同様にしてAl0.1Ga0.9N層の上にGa
N層を2μm成長したところ、得られたGaN層の結晶
性は、実施例1とほぼ同一の値を示した。Example 3 In Example 1, after the AlN thin film was grown, the temperature was kept at 1050 ° C.
First, adjust the gas flow rates of A and TMG, and then Al0.9Ga0.1
The N layer is grown to 0.2 μm. Then Al0.8Ga0.2N
Layer is 0.2μm, Al0.7Ga0.3N layer is 0.2μm ...
... Al0.2Ga0.8N layer 0.2 μm, Al0.1Ga
Nine 0.9N layers are laminated in the order of 0.2 μm to grow a compositionally graded AlGaN multilayer film with a thickness of 1.8 μm. Thereafter, in the same manner as in Example 1, Ga was formed on the Al0.1Ga0.9N layer.
When the N layer was grown to 2 μm, the crystallinity of the obtained GaN layer showed almost the same value as in Example 1.
【0021】[実施例4]実施例1において、傾斜組成
させたAlGaN層を成長させた後、同じく温度を10
50℃に保持しながら、TMA、TMG及びアンモニア
ガスでAl0.2Ga0.8N層を2μm成長させる。このA
l0.2Ga0.8N層のFWHMは2分、移動度は800cm
2/V・secであり、AlGaNとしては非常に結晶性が
よいことを示している。[Embodiment 4] In Embodiment 1, after the AlGaN layer having the graded composition is grown, the same temperature is set to 10.
While maintaining the temperature at 50 ° C., an Al 0.2 Ga 0.8 N layer is grown to 2 μm with TMA, TMG and ammonia gas. This A
FWHM of 0.2Ga0.8N layer is 2 minutes, mobility is 800cm
2 / V · sec, which indicates that AlGaN has very good crystallinity.
【0022】[実施例5]図1は本発明の方法により得
られたレーザ素子の構造を示す模式的な断面図である。
以下実施例5をこの図面を元に説明する。[Embodiment 5] FIG. 1 is a schematic sectional view showing the structure of a laser device obtained by the method of the present invention.
Embodiment 5 will be described below with reference to this drawing.
【0023】厚さ500μmの6H−SiC基板1の
(0001)面に、AlN薄膜2を50nm、AlN〜
GaNまで組成傾斜させたn型AlGaN層3を2μm
の膜厚で実施例1と同様にして積層する。なお、組成傾
斜AlGaN層3は好ましいn型とするためにSiをド
ープしており、Si源としてシランガスを原料ガスと同
時に流しながらドープして成長した。An AlN thin film 2 having a thickness of 50 nm is formed on the (0001) plane of a 6 H—SiC substrate 1 having a thickness of 500 μm.
2 μm of n-type AlGaN layer 3 with composition gradient up to GaN
With the same film thickness as in Example 1, the layers are stacked. Note that the compositionally graded AlGaN layer 3 was doped with Si in order to obtain a preferable n-type, and was grown while being doped with silane gas as a Si source while flowing a source gas.
【0024】次に基板の温度を800℃にして、原料ガ
スにTMI(トリメチルインジウム)ガス、TMG、ア
ンモニア、シランガスを用い、n型In0.05Ga0.95N
層4を0.1μmの膜厚で成長した。Next, the substrate temperature is set to 800 ° C., and TMI (trimethylindium) gas, TMG, ammonia, and silane gas are used as source gases, and n-type In0.05Ga0.95N is used.
Layer 4 was grown to a film thickness of 0.1 μm.
【0025】続いてTMIの流量を多くして、活性層と
してノンドープIn0.2Ga0.8N層5を2nmの膜厚で
形成して、単一量子井戸構造となるようにした。Subsequently, the flow rate of TMI was increased to form a non-doped In0.2Ga0.8N layer 5 having a thickness of 2 nm as an active layer so that a single quantum well structure was formed.
【0026】次にTMIを止め、基板の温度を1050
℃にして、原料ガスにTMG、TMA、アンモニア、p
型不純物ガスとしてCp2Mg(シクロペンタジエニル
マグネシウム)を用い、Mgドープp型Al0.15Ga0.
85N層6を0.1μm成長した。Next, the TMI is stopped and the temperature of the substrate is changed to 1050.
℃, the source gas TMG, TMA, ammonia, p
Cp2Mg (cyclopentadienylmagnesium) is used as a type impurity gas, and Mg-doped p-type Al0.15Ga0.
The 85N layer 6 was grown to 0.1 μm.
【0027】続いてTMAの流量を多くして、Mgドー
プp型Al0.3Ga0.7N層7を0.1μm成長した。Subsequently, the flow rate of TMA was increased to grow the Mg-doped p-type Al0.3Ga0.7N layer 7 to a thickness of 0.1 μm.
【0028】最後にTMAを止め、Mgドープp型Ga
N層8を0.5μm成長した。Finally, TMA was stopped and Mg-doped p-type Ga was used.
The N layer 8 was grown to 0.5 μm.
【0029】以上のようにして窒化物半導体層を積層し
たウェーハを反応容器から取り出し、エッチング装置に
て最上層のp−GaN層8より、組成傾斜n−AlGa
N層3が露出するまでエッチングを行う。エッチング
後、露出したn−AlGaN層3に負電極10を設け、
最上層のp−GaN層にストライプ状の正電極11を設
けた。The wafer on which the nitride semiconductor layers are laminated as described above is taken out of the reaction container, and the composition gradient n-AlGa is formed from the uppermost p-GaN layer 8 by an etching apparatus.
Etching is performed until the N layer 3 is exposed. After etching, the negative electrode 10 is provided on the exposed n-AlGaN layer 3,
Striped positive electrodes 11 were provided on the uppermost p-GaN layer.
【0030】電極設置後、正電極のストライプに対して
垂直な方向でウェーハを劈開し、その劈開面に常法に従
って誘電体多層膜よりなる反射膜を形成してレーザ素子
とする。図1はそのストライプ状の正電極11に垂直な
方向で劈開した素子の断面図を示している。なおこのレ
ーザ素子は、しきい値電流密度500mA/cm2におい
て、室温でレーザ発振を示し、出力5mWであった。こ
れは組成傾斜したAlGaN層の上に成長した窒化物半
導体の結晶性が良く、さらに基板の劈開性による共振面
の形成が容易であったことによる。After the electrode is installed, the wafer is cleaved in a direction perpendicular to the stripe of the positive electrode, and a reflective film made of a dielectric multilayer film is formed on the cleaved surface by a conventional method to obtain a laser device. FIG. 1 shows a sectional view of an element cleaved in a direction perpendicular to the stripe-shaped positive electrode 11. This laser device showed laser oscillation at room temperature at a threshold current density of 500 mA / cm 2 and an output of 5 mW. This is because the nitride semiconductor grown on the compositionally graded AlGaN layer has good crystallinity, and the cleavage plane of the substrate facilitates the formation of a resonance surface.
【0031】このレーザ素子は以下の利点がある。まず
第一に基板にSiCを用いた場合、SiC基板は導電性
を有しているため通常の負電極はSiC基板に接して設
けられる。つまり正電極と負電極とが対向した状態とさ
れる。しかし、SiCと窒化物半導体とはヘテロエピで
ある。従ってSiCと窒化物半導体層との界面にヘテロ
エピに起因する障壁が存在するため、素子のVf(順方
向電圧)が上昇する。一方、本発明によるレーザ素子は
SiCという導電性基板を使用したにも関わらず、負電
極を基板側に設けず、敢えて窒化物半導体をエッチング
して同一面側に設けた構造としている。従って、電流が
SiCと窒化物半導体層との界面を流れないので、Vf
の上昇を抑制できる。第二に組成傾斜させたAlGaN
層3は1μm以上と厚く成長させることにより、負電極
を形成するためのコンタクト層、及び活性層の発光を閉
じこめるためのクラッド層にもなる。さらに第三にSi
Cは従来のサファイア基板と異なり劈開性を有してい
る。このためSiCの劈開性を利用すれば、窒化物半導
体の劈開面をレーザ素子の光共振面とするのに非常に都
合がよい。This laser device has the following advantages. First of all, when SiC is used as the substrate, since the SiC substrate has conductivity, a normal negative electrode is provided in contact with the SiC substrate. That is, the positive electrode and the negative electrode face each other. However, SiC and nitride semiconductor are heteroepitaxial. Therefore, since a barrier caused by heteroepitaxial exists at the interface between the SiC and the nitride semiconductor layer, Vf (forward voltage) of the device increases. On the other hand, the laser device according to the present invention has a structure in which the negative electrode is not provided on the substrate side but the nitride semiconductor is intentionally etched to be provided on the same surface side, although the conductive substrate of SiC is used. Therefore, since the current does not flow at the interface between the SiC and the nitride semiconductor layer, Vf
Can be suppressed. Secondly, compositionally graded AlGaN
By growing the layer 3 to a thickness of 1 μm or more, it becomes a contact layer for forming a negative electrode and a clad layer for confining light emission of the active layer. Thirdly, Si
Unlike the conventional sapphire substrate, C has a cleavability. Therefore, by utilizing the cleavage property of SiC, it is very convenient to use the cleavage surface of the nitride semiconductor as the optical resonance surface of the laser element.
【0032】[0032]
【発明の効果】以上説明したように本発明の方法による
と、結晶性の良い窒化物半導体層が得られる。例えば結
晶のホール測定において、移動度が900cm2/V・sec
という値は窒化物半導体では非常に優れた値である。ま
た本発明によると結晶性の良い窒化物半導体が得られる
ため、実施例5のように発光素子を作成した場合、発光
出力の高い素子を得ることができ、その産業上の利用価
値は大きい。As described above, according to the method of the present invention, a nitride semiconductor layer having good crystallinity can be obtained. For example, in hole measurement of crystals, the mobility is 900 cm 2 / V · sec.
Is a very excellent value for nitride semiconductors. Further, according to the present invention, a nitride semiconductor having good crystallinity can be obtained. Therefore, when a light emitting device is produced as in Example 5, a device having a high light emission output can be obtained, and its industrial utility value is great.
【図1】 本発明の一実施例に係る方法により得られた
窒化物半導体レーザ素子の構造を示す模式断面図。FIG. 1 is a schematic cross-sectional view showing the structure of a nitride semiconductor laser device obtained by a method according to an embodiment of the present invention.
1・・・・SiC基板 2・・・・AlN薄膜 3・・・・Siドープn型AlGaN層 4・・・・Siドープn型In0.05Ga0.95N層 5・・・・ノンドープIn0.2Ga0.8N活性層 6・・・・Mgドープp型Al0.15Ga0.85N層 7・・・・Mgドープp型Al0.3Ga0.7N層 8・・・・p型GaN層 10・・・・負電極 11・・・・正電極 1 ... SiC substrate 2 ... AlN thin film 3 ... Si-doped n-type AlGaN layer 4 ... Si-doped n-type In0.05Ga0.95N layer 5 ... Undoped In0.2Ga0. 8N active layer 6 ... Mg-doped p-type Al0.15Ga0.85N layer 7 ...- Mg-doped p-type Al0.3Ga0.7N layer 8 ... p-type GaN layer 10 ... Negative electrode 11 .... Positive electrode
Claims (3)
1-a-bN(0≦a、0≦b、a+b≦1)で示される窒化物
半導体を基板上にエピタキシャル成長させる方法におい
て、基板にSiCを使用し、そのSiC基板の上にX値
が順次小さくなるように組成傾斜したAlXGa1-XN
(0≦X≦1)層を成長させ、そのAlXGa1- XN層の
上に前記窒化物半導体を成長させることを特徴とする窒
化物半導体の成長方法。1. In a Al b Ga.
In a method of epitaxially growing a nitride semiconductor represented by 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1) on a substrate, SiC is used as the substrate and the X value is gradually reduced on the SiC substrate. Compositionally graded Al X Ga 1-X N
A method for growing a nitride semiconductor, which comprises growing a (0 ≦ X ≦ 1) layer and growing the nitride semiconductor on the Al X Ga 1- X N layer.
lN層を成長させることを特徴とする請求項1に記載の
窒化物半導体の成長方法。2. A layer between the Al x Ga 1 -x N layer and the substrate.
The method for growing a nitride semiconductor according to claim 1, wherein an IN layer is grown.
異なる層が積層された多層膜よりなることを特徴とする
請求項1または請求項2に記載の窒化物半導体の成長方
法。3. The growth of the nitride semiconductor according to claim 1, wherein the Al X Ga 1-X N layer is composed of a multilayer film in which layers having different X values are laminated. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23750195A JP3604205B2 (en) | 1995-09-18 | 1995-09-18 | Method for growing nitride semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23750195A JP3604205B2 (en) | 1995-09-18 | 1995-09-18 | Method for growing nitride semiconductor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002244428A Division JP3767534B2 (en) | 2002-08-26 | 2002-08-26 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0983016A true JPH0983016A (en) | 1997-03-28 |
JP3604205B2 JP3604205B2 (en) | 2004-12-22 |
Family
ID=17016259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23750195A Expired - Fee Related JP3604205B2 (en) | 1995-09-18 | 1995-09-18 | Method for growing nitride semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3604205B2 (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000048254A1 (en) * | 1999-02-09 | 2000-08-17 | Nichia Corporation | Nitride semiconductor device and its manufacturino method |
JP2002252177A (en) * | 2000-12-21 | 2002-09-06 | Ngk Insulators Ltd | Semiconductor element |
EP1263029A2 (en) | 2001-05-31 | 2002-12-04 | Ngk Insulators, Ltd. | GaN semiconductor device |
EP1307903A1 (en) * | 2000-08-04 | 2003-05-07 | The Regents Of The University Of California | Method of controlling stress in gallium nitride films deposited on substrates |
US6706620B2 (en) | 2001-02-27 | 2004-03-16 | Ngk Insulators, Ltd. | Method for fabricating a nitride film |
WO2005078813A1 (en) * | 2004-02-13 | 2005-08-25 | Epivalley Co., Ltd. | Iii-nitride compound semiconductor light emitting device |
JP2005536873A (en) * | 2002-07-19 | 2005-12-02 | クリー インコーポレイテッド | Strain-compensating semiconductor structure and method of fabricating a strain-compensating semiconductor structure |
US6984840B2 (en) | 1998-05-18 | 2006-01-10 | Fujitsu Limited | Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element |
JP2006147663A (en) * | 2004-11-16 | 2006-06-08 | Fujitsu Ltd | Compound semiconductor device and its manufacturing method |
EP1235282A3 (en) * | 2001-02-27 | 2006-08-30 | Ngk Insulators, Ltd. | Method for fabricating a nitride film |
US7312480B2 (en) | 1998-10-22 | 2007-12-25 | Sanyo Electric Co., Ltd. | Semiconductor device and method of fabricating the same |
JP2008500740A (en) * | 2004-05-19 | 2008-01-10 | エピヴァレー カンパニー リミテッド | Method for forming GaN-based nitride film |
JP2008085123A (en) * | 2006-09-28 | 2008-04-10 | Covalent Materials Corp | Substrate for compound semiconductor device, and the compound semiconductor device using the same |
JP2008153531A (en) * | 2006-12-19 | 2008-07-03 | Sumitomo Electric Ind Ltd | Semiconductor light-emitting element |
WO2009026748A1 (en) * | 2007-08-31 | 2009-03-05 | Lattice Power (Jiangxi) Corporation | Gallium nitride light-emitting device with ultra-high reverse breakdown voltage |
US7547909B2 (en) | 2004-02-05 | 2009-06-16 | Epivalley Co., Ltd. | III-nitride compound semiconductor light emitting device |
JP2009530808A (en) * | 2006-03-13 | 2009-08-27 | ソウル オプト デバイス カンパニー リミテッド | Light emitting diode having aluminum gallium nitride buffer layer and method for manufacturing the same |
WO2009113458A1 (en) * | 2008-03-13 | 2009-09-17 | 昭和電工株式会社 | Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
JP2010517298A (en) * | 2007-01-26 | 2010-05-20 | クリスタル・イズ,インコーポレイテッド | Thick pseudo-lattice matched nitride epitaxial layer |
JP2010212458A (en) * | 2009-03-10 | 2010-09-24 | Hamamatsu Photonics Kk | Method of manufacturing compound semiconductor layer structure |
US7923749B2 (en) | 2004-03-25 | 2011-04-12 | EipValley Co., Ltd. | III-nitride compound semiconductor light emitting device |
JP2011216911A (en) * | 2011-07-22 | 2011-10-27 | Tokyo Univ Of Agriculture & Technology | METHOD OF MANUFACTURING AlxGa1-xN CRYSTAL |
CN102456548A (en) * | 2010-10-25 | 2012-05-16 | 财团法人交大思源基金会 | Multilayer structure substrate with gallium nitride layer and manufacturing method thereof |
JP2013128103A (en) * | 2011-11-17 | 2013-06-27 | Sanken Electric Co Ltd | Nitride semiconductor device and nitride semiconductor device manufacturing method |
KR101380799B1 (en) * | 2009-06-08 | 2014-04-04 | 에피스타 코포레이션 | Light-emitting device and the manufacturing method thereof |
CN103824912A (en) * | 2014-03-12 | 2014-05-28 | 合肥彩虹蓝光科技有限公司 | Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED) |
JP2015079844A (en) * | 2013-10-17 | 2015-04-23 | 日亜化学工業株式会社 | Nitride semiconductor laminate and light emitting element using the same |
US9028612B2 (en) | 2010-06-30 | 2015-05-12 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
US9299880B2 (en) | 2013-03-15 | 2016-03-29 | Crystal Is, Inc. | Pseudomorphic electronic and optoelectronic devices having planar contacts |
US9447521B2 (en) | 2001-12-24 | 2016-09-20 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
US9447519B2 (en) | 2006-03-30 | 2016-09-20 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them |
US9525032B2 (en) | 2005-12-02 | 2016-12-20 | Crystal Is, Inc. | Doped aluminum nitride crystals and methods of making them |
US9624601B2 (en) | 2007-01-17 | 2017-04-18 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US9771666B2 (en) | 2007-01-17 | 2017-09-26 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US10074784B2 (en) | 2011-07-19 | 2018-09-11 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
US10446391B2 (en) | 2007-01-26 | 2019-10-15 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
-
1995
- 1995-09-18 JP JP23750195A patent/JP3604205B2/en not_active Expired - Fee Related
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6984840B2 (en) | 1998-05-18 | 2006-01-10 | Fujitsu Limited | Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element |
US7312480B2 (en) | 1998-10-22 | 2007-12-25 | Sanyo Electric Co., Ltd. | Semiconductor device and method of fabricating the same |
WO2000048254A1 (en) * | 1999-02-09 | 2000-08-17 | Nichia Corporation | Nitride semiconductor device and its manufacturino method |
US8525230B2 (en) | 2000-08-04 | 2013-09-03 | The Regents Of The University Of California | Field-effect transistor with compositionally graded nitride layer on a silicaon substrate |
JP2004506323A (en) * | 2000-08-04 | 2004-02-26 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Method for controlling stress in gallium nitride films deposited on a substrate |
JP2012109583A (en) * | 2000-08-04 | 2012-06-07 | Regents Of The Univ Of California | Method of controlling stress in gallium nitride films deposited on substrates |
EP1307903A1 (en) * | 2000-08-04 | 2003-05-07 | The Regents Of The University Of California | Method of controlling stress in gallium nitride films deposited on substrates |
US9129977B2 (en) | 2000-08-04 | 2015-09-08 | The Regents Of The University Of California | Method of controlling stress in group-III nitride films deposited on substrates |
US9691712B2 (en) | 2000-08-04 | 2017-06-27 | The Regents Of The University Of California | Method of controlling stress in group-III nitride films deposited on substrates |
JP2002252177A (en) * | 2000-12-21 | 2002-09-06 | Ngk Insulators Ltd | Semiconductor element |
US6706620B2 (en) | 2001-02-27 | 2004-03-16 | Ngk Insulators, Ltd. | Method for fabricating a nitride film |
EP1235282A3 (en) * | 2001-02-27 | 2006-08-30 | Ngk Insulators, Ltd. | Method for fabricating a nitride film |
EP1263029A3 (en) * | 2001-05-31 | 2009-02-25 | Ngk Insulators, Ltd. | GaN semiconductor device |
EP1263029A2 (en) | 2001-05-31 | 2002-12-04 | Ngk Insulators, Ltd. | GaN semiconductor device |
US9447521B2 (en) | 2001-12-24 | 2016-09-20 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
JP2005536873A (en) * | 2002-07-19 | 2005-12-02 | クリー インコーポレイテッド | Strain-compensating semiconductor structure and method of fabricating a strain-compensating semiconductor structure |
JP2011119748A (en) * | 2002-07-19 | 2011-06-16 | Cree Inc | Strain-compensated semiconductor structure and method of manufacturing the strain-compensated semiconductor structure |
US7547909B2 (en) | 2004-02-05 | 2009-06-16 | Epivalley Co., Ltd. | III-nitride compound semiconductor light emitting device |
US7501664B2 (en) | 2004-02-13 | 2009-03-10 | Epivalley Co., Ltd. | III-Nitride compound semiconductor light emitting device |
WO2005078813A1 (en) * | 2004-02-13 | 2005-08-25 | Epivalley Co., Ltd. | Iii-nitride compound semiconductor light emitting device |
US7923749B2 (en) | 2004-03-25 | 2011-04-12 | EipValley Co., Ltd. | III-nitride compound semiconductor light emitting device |
JP2008500740A (en) * | 2004-05-19 | 2008-01-10 | エピヴァレー カンパニー リミテッド | Method for forming GaN-based nitride film |
US7838903B2 (en) | 2004-11-16 | 2010-11-23 | Fujitsu Limited | Compound semiconductor device and the fabricating method of the same |
JP4514584B2 (en) * | 2004-11-16 | 2010-07-28 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
JP2006147663A (en) * | 2004-11-16 | 2006-06-08 | Fujitsu Ltd | Compound semiconductor device and its manufacturing method |
US7638819B2 (en) | 2004-11-16 | 2009-12-29 | Fujitsu Limited | Compound semiconductor device and the fabricating method of the same |
US9525032B2 (en) | 2005-12-02 | 2016-12-20 | Crystal Is, Inc. | Doped aluminum nitride crystals and methods of making them |
JP2009530808A (en) * | 2006-03-13 | 2009-08-27 | ソウル オプト デバイス カンパニー リミテッド | Light emitting diode having aluminum gallium nitride buffer layer and method for manufacturing the same |
US9447519B2 (en) | 2006-03-30 | 2016-09-20 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to untraviolet light and methods of forming them |
JP2008085123A (en) * | 2006-09-28 | 2008-04-10 | Covalent Materials Corp | Substrate for compound semiconductor device, and the compound semiconductor device using the same |
JP2008153531A (en) * | 2006-12-19 | 2008-07-03 | Sumitomo Electric Ind Ltd | Semiconductor light-emitting element |
US9771666B2 (en) | 2007-01-17 | 2017-09-26 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US9670591B2 (en) | 2007-01-17 | 2017-06-06 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
US9624601B2 (en) | 2007-01-17 | 2017-04-18 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
JP2010517298A (en) * | 2007-01-26 | 2010-05-20 | クリスタル・イズ,インコーポレイテッド | Thick pseudo-lattice matched nitride epitaxial layer |
US10446391B2 (en) | 2007-01-26 | 2019-10-15 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
WO2009026748A1 (en) * | 2007-08-31 | 2009-03-05 | Lattice Power (Jiangxi) Corporation | Gallium nitride light-emitting device with ultra-high reverse breakdown voltage |
US8569794B2 (en) | 2008-03-13 | 2013-10-29 | Toyoda Gosei Co., Ltd. | Group III nitride semiconductor device and method for manufacturing the same, group III nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
WO2009113458A1 (en) * | 2008-03-13 | 2009-09-17 | 昭和電工株式会社 | Group iii nitride semiconductor device and method for manufacturing the same, group iii nitride semiconductor light-emitting device and method for manufacturing the same, and lamp |
JP2010212458A (en) * | 2009-03-10 | 2010-09-24 | Hamamatsu Photonics Kk | Method of manufacturing compound semiconductor layer structure |
KR101380799B1 (en) * | 2009-06-08 | 2014-04-04 | 에피스타 코포레이션 | Light-emitting device and the manufacturing method thereof |
US9580833B2 (en) | 2010-06-30 | 2017-02-28 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
US9028612B2 (en) | 2010-06-30 | 2015-05-12 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
JP2012094802A (en) * | 2010-10-25 | 2012-05-17 | Jiaotong Univ | Multilayer structure substrate having gallium nitride layer and method of manufacturing the same |
TWI414004B (en) * | 2010-10-25 | 2013-11-01 | Univ Nat Chiao Tung | Multilayer substrate having a gallium nitride layer and fabrication method thereof |
CN102456548A (en) * | 2010-10-25 | 2012-05-16 | 财团法人交大思源基金会 | Multilayer structure substrate with gallium nitride layer and manufacturing method thereof |
US10074784B2 (en) | 2011-07-19 | 2018-09-11 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
JP2011216911A (en) * | 2011-07-22 | 2011-10-27 | Tokyo Univ Of Agriculture & Technology | METHOD OF MANUFACTURING AlxGa1-xN CRYSTAL |
JP2013128103A (en) * | 2011-11-17 | 2013-06-27 | Sanken Electric Co Ltd | Nitride semiconductor device and nitride semiconductor device manufacturing method |
US9299880B2 (en) | 2013-03-15 | 2016-03-29 | Crystal Is, Inc. | Pseudomorphic electronic and optoelectronic devices having planar contacts |
JP2015079844A (en) * | 2013-10-17 | 2015-04-23 | 日亜化学工業株式会社 | Nitride semiconductor laminate and light emitting element using the same |
CN103824912A (en) * | 2014-03-12 | 2014-05-28 | 合肥彩虹蓝光科技有限公司 | Epitaxial growth method for improving reverse electric leakage of GaN-based light-emitting diode (LED) |
Also Published As
Publication number | Publication date |
---|---|
JP3604205B2 (en) | 2004-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3604205B2 (en) | Method for growing nitride semiconductor | |
JP2956489B2 (en) | Crystal growth method of gallium nitride based compound semiconductor | |
AU738480B2 (en) | Nitride semiconductor device | |
JP2000232238A (en) | Nitride semiconductor light-emitting element and manufacture thereof | |
JP3646649B2 (en) | Gallium nitride compound semiconductor light emitting device | |
JP4131101B2 (en) | Method of manufacturing nitride semiconductor device | |
JP2002374043A (en) | Gallium nitride compound semiconductor device | |
JP2000299532A (en) | Nitride semiconductor laser element | |
JP3292083B2 (en) | Method for manufacturing nitride semiconductor substrate and method for manufacturing nitride semiconductor element | |
JP2900990B2 (en) | Nitride semiconductor light emitting device | |
JPH11220173A (en) | Gallium nitride compound semiconductor light emitting element | |
JP3551751B2 (en) | Method for growing nitride semiconductor | |
JPH0963962A (en) | Crystal growth and semiconductor light-emitting element | |
JP4291960B2 (en) | Nitride semiconductor device | |
JP2002313739A (en) | Nitride semiconductor substrate and its growth method | |
JP2891348B2 (en) | Nitride semiconductor laser device | |
JP3282175B2 (en) | Nitride semiconductor device | |
JPH10145006A (en) | Compound semiconductor device | |
JPH10341060A (en) | Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode | |
JPH11191639A (en) | Nitride semiconductor device | |
JPH1041581A (en) | Nitride semiconductor element | |
JP3434162B2 (en) | Nitride semiconductor device | |
JP2003115641A (en) | Nitride semiconductor layer element | |
JP4628651B2 (en) | Manufacturing method of nitride semiconductor light emitting device | |
JP4647286B2 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040928 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071008 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081008 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091008 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101008 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111008 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121008 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131008 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |