JPH11220173A - Gallium nitride compound semiconductor light emitting element - Google Patents

Gallium nitride compound semiconductor light emitting element

Info

Publication number
JPH11220173A
JPH11220173A JP10329384A JP32938498A JPH11220173A JP H11220173 A JPH11220173 A JP H11220173A JP 10329384 A JP10329384 A JP 10329384A JP 32938498 A JP32938498 A JP 32938498A JP H11220173 A JPH11220173 A JP H11220173A
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
buffer layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10329384A
Other languages
Japanese (ja)
Other versions
JP3548442B2 (en
Inventor
Shuji Nakamura
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22767994A external-priority patent/JP2956489B2/en
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP32938498A priority Critical patent/JP3548442B2/en
Publication of JPH11220173A publication Critical patent/JPH11220173A/en
Priority to JP2000384363A priority patent/JP3646649B2/en
Application granted granted Critical
Publication of JP3548442B2 publication Critical patent/JP3548442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise the performance of a nitride semiconductor light emitting element by putting a light emitting element in double hetero structure which has, between a substrate and an active layer, an n-type gallium nitride compound semiconductor layer having such structure that a second nitride semiconductor layer including one kind among Ina Ga1-a N, Aln Ga1-b N (a and b are specified values), etc., is put between first and third nitride semiconductor layers. SOLUTION: Putting a second nitride semiconductor layer different in composition in an n-type nitride semiconductor layer will let the second nitride semiconductor layer (buffer layer) works as a buffer layer, which can lighten a crystal defect. It is to be desired that this second buffer layer 33 should be a multilayer film where films of InIGa1-a N (0<a<=1) or Alb Ga1-b N (0<b<=1) or Alb Ga1-b N (0<a<=1) different in composition are stacked. Furthermore, for the most desirable combination, the n-type nitride semiconductor layers 3' and 3" are n-type GaN, and the second buffer layer 33 is n-type Ina Ga1-a N (0<a<=0.5) or n-type Alb Ga1-b N (0<b<=0.5), or the like. Accordingly, an excellent light emitting element little in crystal defects can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード、レーザ
ダイオード等の電子デバイスに使用されるn型窒化ガリ
ウム系化合物半導体(InXAlYGa1-X-YN、0≦X、
0≦Y、X+Y≦1、以下窒化ガリウム系化合物半導体を
窒化物半導体という。)の結晶を用いた窒化ガリウム系
化合物半導体発光素子に関する。
The present invention relates to a light emitting diode, n-type gallium nitride compound is used in an electronic device such as a laser diode semiconductor (In X Al Y Ga 1- XY N, 0 ≦ X,
0 ≦ Y, X + Y ≦ 1, hereinafter, a gallium nitride-based compound semiconductor is referred to as a nitride semiconductor. The present invention relates to a gallium nitride-based compound semiconductor light emitting device using the crystal of the above).

【0002】[0002]

【従来の技術】青色、紫外に発光するレーザダイオー
ド、発光ダイオードの材料として窒化物半導体(InX'
AlY'Ga1-X'-Y'N、0≦X'、0≦Y'、X'+Y'≦1)
が注目されており、最近この材料で光度1cdの青色発
光ダイオードが実用化されたばかりである。この青色発
光ダイオードは図1に示すように、サファイアよりなる
基板1の表面に、GaNよりなるバッファ層2と、Ga
Nよりなるn型層3と、AlGaNよりなるn型クラッ
ド層4と、InGaNよりなる活性層5と、AlGaN
よりなるp型クラッド層6と、GaNよりなるp型コン
タクト層7とが順に積層された構造を有している。
2. Description of the Related Art Laser diodes emitting blue and ultraviolet light and nitride semiconductors (In X '
Al Y ′ Ga 1−X′−Y ′ N, 0 ≦ X ′, 0 ≦ Y ′, X ′ + Y ′ ≦ 1)
Recently, a blue light emitting diode with a luminous intensity of 1 cd has just been put to practical use with this material. As shown in FIG. 1, the blue light emitting diode has a buffer layer 2 made of GaN and a Ga layer on a surface of a substrate 1 made of sapphire.
An n-type layer 3 of N, an n-type cladding layer 4 of AlGaN, an active layer 5 of InGaN,
And a p-type contact layer 7 made of GaN.

【0003】窒化物半導体素子は、一般にMOVPE
(有機金属気相エピタキシャル)法、MBE(分子線エ
ピタキシャル)法、HDVPE(ハイドライド気相エピ
タキシャル)法等の気相成長法を用い、基板表面に窒化
物半導体層を積層させることにより得られる。基板には
サファイア、ZnO、SiC、GaAs、MgO等の材
料が使用される。基板の表面にはバッファ層を介してn
型の窒化物半導体(In XAlYGa1-X-YN、0≦X、0
≦Y、X+Y≦1、その中でも特にn型GaN、n型Al
GaNが多い。)が成長される。また、SiC、ZnO
のように窒化物半導体と格子定数の近い基板を用いる場
合には、バッファ層を形成せず、基板に直接n型窒化物
半導体が成長されることもある。基本的には、基板の表
面にまずn型窒化物半導体層を成長させることにより、
発光素子、受光素子等の窒化物半導体素子が作製され
る。
[0003] A nitride semiconductor device is generally a MOVPE.
(Organic metal vapor phase epitaxy) method, MBE (molecular beam
(Pitaxial) method, HDVPE (hydride vapor phase epitaxy)
Nitridation on the substrate surface using vapor phase growth method such as
It is obtained by laminating an object semiconductor layer. On the board
Sapphire, ZnO, SiC, GaAs, MgO, etc.
Fees are used. N is provided on the surface of the substrate via a buffer layer.
Type nitride semiconductor (In XAlYGa1-XYN, 0 ≦ X, 0
≦ Y, X + Y ≦ 1, among which n-type GaN and n-type Al
Mostly GaN. ) Will be grown. Also, SiC, ZnO
When using a substrate with a lattice constant close to that of a nitride semiconductor as in
In this case, the buffer layer is not formed, and the n-type nitride
Semiconductors may be grown. Basically, the board table
By first growing an n-type nitride semiconductor layer on the surface,
Nitride semiconductor devices such as light-emitting devices and light-receiving devices are manufactured.
You.

【0004】例えばMOVPE法によると、窒化物半導
体は、原料ガスにGa源、Al源、In源となる有機金
属化合物ガスと、N源となるアンモニアガスとが用いら
れる。これらの原料ガスを加熱した基板表面に接触させ
ることにより原料ガスを分解して、基板上に窒化物半導
体がエピタキシャル成長される。バッファ層には通常G
aN、AlN、GaAlN等が選択され、300℃〜9
00℃の温度で10オングストローム〜0.1μmの厚
さで成長される。バッファ層の上に成長するn型窒化物
半導体層は900℃以上の温度で、通常1μm以上、4
μm以下の膜厚で成長される。
For example, according to the MOVPE method, as a nitride semiconductor, an organic metal compound gas serving as a Ga source, an Al source, and an In source and an ammonia gas serving as an N source are used as source gases. By bringing these source gases into contact with the heated substrate surface, the source gases are decomposed, and a nitride semiconductor is epitaxially grown on the substrate. Normally G
aN, AlN, GaAlN, etc. are selected,
It is grown at a temperature of 00 ° C. with a thickness of 10 Å to 0.1 μm. The n-type nitride semiconductor layer grown on the buffer layer is usually at least 1 μm at a temperature of 900 ° C. or more.
It is grown with a thickness of less than μm.

【0005】[0005]

【発明が解決しようとする課題】窒化物半導体は、完全
に格子整合する基板がないため、非常にエピタキシャル
成長させにくい結晶であることが知られている。従っ
て、従来ではSiC基板のように、成長させようする窒
化物半導体の格子定数に近い基板を利用するか、または
格子不整合を緩和するバッファ層を介して無理矢理エピ
タキシャル成長されてきた。
It is known that a nitride semiconductor is a crystal that is very difficult to grow epitaxially because there is no substrate that is perfectly lattice-matched. Therefore, conventionally, a substrate close to the lattice constant of the nitride semiconductor to be grown, such as a SiC substrate, has been used, or epitaxial growth has been forcibly performed via a buffer layer that reduces lattice mismatch.

【0006】格子整合しない基板の表面に成長したn型
窒化物半導体の結晶の模式断面図を一例として図2に示
す。これはジャーナル オブ クリスタル グロウス
{Jounal of Crystal Growth, 115, (1991) P628−63
3}より引用したものであり、サファイア基板の表面に
AlNよりなるバッファ層を介してn型GaNをエピタ
キシャル成長させ、その断面をTEM(transmission e
lectron microscopy)で測定して、そのTEM像から結
晶の構造を模式的に示したものである。この図による
と、基板上に配向性が整っていないバッファ層が柱状に
成長されており、そのバッファ層の上にGaNをエピタ
キシャル成長させると、そのバッファ層の一部が種結晶
のような役割を果たして、徐々にGaNの配向性が整う
ことにより、結晶性がよくなったGaN層が成長される
ことを示している。
FIG. 2 shows, as an example, a schematic cross-sectional view of an n-type nitride semiconductor crystal grown on the surface of a substrate that does not have lattice matching. This is the Journal of Crystal Growth, 115, (1991) P628−63.
3), n-type GaN is epitaxially grown on the surface of a sapphire substrate via a buffer layer made of AlN, and its cross section is TEM (transmission e).
(electron microscopy) and schematically shows the crystal structure from the TEM image. According to this figure, a buffer layer with poor orientation is grown on the substrate in a columnar shape, and when GaN is epitaxially grown on the buffer layer, a part of the buffer layer plays a role like a seed crystal. This shows that the GaN layer with improved crystallinity is grown by gradually adjusting the orientation of GaN.

【0007】しかしながら、完全に結晶欠陥の無いGa
Nを成長させることは難しく、図2の破線に示すような
多数の結晶欠陥が、バッファ層とGaN層との界面か
ら、GaN層表面に達するまで伸びている。この欠陥は
結晶の内部で止まるものもあるが、GaN層表面にまで
達するものは、表面で例えば107〜109個/cm2
る。同様に図1の発光ダイオード素子においても、n型
層3の結晶中では同様の現象が発生している。
However, Ga which is completely free from crystal defects
It is difficult to grow N, and many crystal defects as shown by broken lines in FIG. 2 extend from the interface between the buffer layer and the GaN layer until reaching the GaN layer surface. Some of these defects stop inside the crystal, but those reaching the surface of the GaN layer are, for example, 10 7 to 10 9 / cm 2 at the surface. Similarly, in the light emitting diode element of FIG. 1, the same phenomenon occurs in the crystal of the n-type layer 3.

【0008】基板の表面に成長したn型窒化物半導体層
の表面に多数の結晶欠陥があると、その欠陥がn型層の
表面に成長するクラッド層、活性層等、全ての半導体層
に受け継がれ、素子構造全体に悪影響を及ぼすという問
題がある。結晶欠陥の多い素子は、例えば上記のような
発光ダイオードとした場合に、発光出力、寿命等の素子
性能に悪影響を及ぼすという欠点がある。
When a large number of crystal defects are present on the surface of the n-type nitride semiconductor layer grown on the surface of the substrate, the defects are inherited by all the semiconductor layers such as the cladding layer and active layer growing on the surface of the n-type layer. This has the problem of adversely affecting the entire element structure. An element having a large number of crystal defects has a disadvantage that, for example, when the above-described light emitting diode is used, the element performance such as light emission output and life is adversely affected.

【0009】基板の表面にまずn型窒化物半導体層を成
長させるにあたり、結晶欠陥の少ないn型結晶を成長さ
せることが非常に重要であり、それを実現できれば、そ
のn型結晶の上に成長させるクラッド層、活性層等の結
晶欠陥が少なくなるので、窒化物半導体より成るあらゆ
る素子の性能を向上させることができる。従って、本発
明はこのような事情を鑑みなされたものであり、MOV
PE、MBE法等の気相成長法により、完全に格子整合
していない基板の表面にn型窒化物半導体層を成長させ
る際に、そのn型窒化物半導体層の格子欠陥を少なくし
て成長させたn型窒化物半導体を用いた発光素子を提供
することを目的とする。
In growing an n-type nitride semiconductor layer on the surface of a substrate, it is very important to grow an n-type crystal having few crystal defects. Since the number of crystal defects in the clad layer, active layer, and the like is reduced, the performance of any device made of a nitride semiconductor can be improved. Accordingly, the present invention has been made in view of such circumstances, and the MOV
When growing an n-type nitride semiconductor layer on the surface of a substrate that is not completely lattice-matched by a vapor phase growth method such as PE or MBE, the growth is performed by reducing lattice defects in the n-type nitride semiconductor layer. It is an object of the present invention to provide a light emitting device using the n-type nitride semiconductor.

【0010】[0010]

【課題を解決するための手段】本発明は、InaGa1-a
N(0<a≦1)、もしくはAlbGa1-bN(0<b≦
1)、または組成の異なるAlbGa1-bN(0≦b≦
1)の薄膜を積層した多層膜の内のいずれか一種類を含
む第2のn型窒化ガリウム系化合物半導体層を、第1の
n型窒化ガリウム系化合物半導体層と、第3のn型窒化
ガリウム系化合物半導体層とで挟んだ構造を有するn型
窒化ガリウム系化合物半導体を、基板と活性層との間に
有するダブルへテロ構造の窒化ガリウム系化合物半導体
発光素子が特徴である。
SUMMARY OF THE INVENTION The present invention provides an In a Ga 1-a
N (0 <a ≦ 1) or Al b Ga 1-b N (0 <b ≦
1) or Al b Ga 1-b N having a different composition (0 ≦ b ≦
The second n-type gallium nitride-based compound semiconductor layer including any one of the multilayer films obtained by laminating the thin films of 1) is formed by combining the first n-type gallium nitride-based compound semiconductor layer with the third n-type gallium nitride-based compound semiconductor layer. A gallium nitride-based compound semiconductor light emitting device having a double hetero structure in which an n-type gallium nitride-based compound semiconductor having a structure sandwiched between gallium-based compound semiconductor layers is provided between a substrate and an active layer.

【0011】また請求項2の発光素子は、前記活性層が
InGaNからなることを特徴とし、請求項3は、前記
第1の窒化ガリウム系化合物半導体層と、第3の窒化ガ
リウム系化合物半導体層とが同一組成を有することを特
徴とする。
The light emitting device according to claim 2 is characterized in that the active layer is made of InGaN, and wherein the first gallium nitride compound semiconductor layer and the third gallium nitride compound semiconductor layer are made of InGaN. Have the same composition.

【0012】[0012]

【作用】n型窒化物半導体層の中に、組成の異なる第2
の窒化物半導体層を形成すると、第2の窒化物半導体が
緩衝層、即ちバッファ層として作用するので、バッファ
層で結晶欠陥を緩和できると考えられる(以下本明細書
において、第2の窒化物半導体層を第2のバッファ層と
いう)。詳しく述べると、n型窒化物半導体層が基板上
に成長される場合、基板と窒化物半導体とのミスマッチ
が大きいため、成長中に図2の破線に示すような結晶欠
陥が結晶中に発生する。ところが、成長させようとする
n型窒化物半導体層と組成の異なる第2のバッファ層を
中間層として介在させることにより、n型窒化物半導体
層の連続した結晶欠陥が、組成が異なる第2のバッファ
層で一時的に止まる。次に、第2のバッファ層の表面に
n型窒化物半導体を成長させる際は、その第2のバッフ
ァ層がミスマッチの少ない基板のような作用をするた
め、第2のバッファ層の上に成長させるn型窒化物半導
体の結晶性がよくなると推察される。
In the n-type nitride semiconductor layer, a second composition having a different composition is contained.
Is formed, it is considered that the second nitride semiconductor acts as a buffer layer, that is, a buffer layer, so that crystal defects can be reduced in the buffer layer (hereinafter, in this specification, the second nitride semiconductor The semiconductor layer is called a second buffer layer). More specifically, when an n-type nitride semiconductor layer is grown on a substrate, a mismatch between the substrate and the nitride semiconductor is large, so that a crystal defect as shown by a broken line in FIG. 2 occurs in the crystal during the growth. . However, by interposing, as an intermediate layer, a second buffer layer having a different composition from the n-type nitride semiconductor layer to be grown, continuous crystal defects of the n-type nitride semiconductor layer cause the second buffer layer having a different composition. Stops temporarily in the buffer layer. Next, when the n-type nitride semiconductor is grown on the surface of the second buffer layer, the n-type nitride semiconductor acts like a substrate having a small mismatch, and is grown on the second buffer layer. It is presumed that the crystallinity of the n-type nitride semiconductor is improved.

【0013】第2のバッファ層は一層以上形成すればよ
く、その一層あたりの膜厚は10オングストローム
(0.001μm)以上、1μm以下、さらに好ましく
は0.001μm以上、0.1μm以下の範囲に調整す
ることが望ましい。0.001μmよりも薄いと、結晶
欠陥を第2のバッファ層で結晶欠陥を止めることが困難
となる傾向にある。また1μmよりも厚いと第2のバッ
ファ層から新たな結晶欠陥が発生しやすくなる傾向にあ
るからである。この第2のバッファ層はまた、一層の膜
厚が数十オングストロームで、それを2層以上積層した
多層膜とすることもできる。
The second buffer layer may be formed in one or more layers, and the thickness of one layer is in the range of 10 Å (0.001 μm) or more and 1 μm or less, and more preferably 0.001 μm or more and 0.1 μm or less. It is desirable to adjust. If the thickness is smaller than 0.001 μm, it tends to be difficult to stop crystal defects in the second buffer layer. If the thickness is larger than 1 μm, new crystal defects tend to be easily generated from the second buffer layer. The second buffer layer may have a thickness of several tens angstroms, and may be a multilayer film in which two or more layers are stacked.

【0014】第2のバッファ層はInaGa1-aN(0<
a≦1)、もしくはAlbGa1-bN(0<b≦1)、また
は組成の異なるAlbGa1-bN(0≦b≦1)の薄膜を
積層した多層膜であることが望ましい。さらに好ましく
はa値が0.5以下のInaGa1-aNか、またはb値が
0.5以下のAlbGa1-bNを成長させる。なぜなら、
窒化物半導体では四元混晶の半導体層よりも、前記のよ
うな三元混晶の方が結晶性がよい。その中でも三元混晶
のInaGa1-aN、AlbGa1-bNにおいて、a値、お
よびb値を前記範囲に調整したバッファ層が、さらに結
晶性のよいものが得られるため、第2のバッファ層の結
晶欠陥が少なくなり、第2のバッファ層の上に成長する
n型窒化物半導体層の結晶欠陥が少なくなる。さらに、
第2のバッファ層を多層膜とすると結晶欠陥を非常によ
く止めることができる。最も好ましい組み合わせは、n
型窒化物半導体層がn型GaN(GaNが最も格子欠陥
が少ない。)、第2のバッファ層がn型InaGa1-a
(0<a≦0.5)か、若しくはn型AlbGa1-b
(0<b≦0.5)か、または組成の異なるAlbGa
1-bN(0≦b≦1)の薄膜を積層した多層膜(超格子)
である。
The second buffer layer is composed of In a Ga 1-a N (0 <
a ≦ 1), Al b Ga 1-b N (0 <b ≦ 1), or a multilayer film in which thin films of Al b Ga 1-b N (0 ≦ b ≦ 1) having different compositions are stacked. desirable. More preferably, In a Ga 1-a N having an a value of 0.5 or less or Al b Ga 1-b N having a b value of 0.5 or less is grown. Because
In a nitride semiconductor, the ternary mixed crystal has better crystallinity than the quaternary semiconductor layer. In a Ga 1-a N ternary mixed crystal Among them, the Al b Ga 1-b N, a value, and the buffer layer a b value was adjusted to the range further for good crystallinity is obtained In addition, crystal defects of the second buffer layer are reduced, and crystal defects of the n-type nitride semiconductor layer grown on the second buffer layer are reduced. further,
When the second buffer layer is a multilayer film, crystal defects can be stopped very well. The most preferred combination is n
N-type GaN (GaN has the fewest lattice defects), and the second buffer layer is n-type In a Ga 1-a N
(0 <a ≦ 0.5) or n-type Al b Ga 1-b N
(0 <b ≦ 0.5) or Al b Ga having a different composition
1-b N (0 ≦ b ≦ 1) multilayer film (superlattice)
It is.

【0015】さらに、第2のバッファ層の電子キャリア
濃度は先に形成したn型窒化物半導体層とほぼ同一か、
またはそれより大きく調整することが望ましい。図3お
よび図4は本発明の方法により得られたn型窒化物半導
体層3”の上に、nクラッド層4'、活性層5'、pクラ
ッド層6'、pコンタクト層7'を積層して実際の発光素
子として、その発光素子の構造を断面図でもって示した
図である。図3は、第2のバッファ層33が、負電極形
成用のn型層のエッチング面よりも活性層5'側にある
のに対し、図4は第2のバッファ層33がエッチング面
よりも基板1'側に形成された点で異なっている。例え
ば、図3に示すような発光素子を実現した場合、つまり
第2のバッファ層33の位置が、負電極を形成すべきエ
ッチング面よりも活性層側に近い位置にあるような素子
を実現した場合、第2のバッファ層33の電子キャリア
濃度がn型層3'よりも小さいと、第2のバッファ層で
nからpへ供給される電子が阻止されて、n型層からp
層に電流が流れにくくなり、素子の性能が悪くなる。逆
に、第2のバッファ層33の電子キャリア濃度がn型層
3よりも大きいと、電子は第2のバッファ層33に均一
に広がりやすくなるので、均一な発光を得ることができ
る。一方、図4のような素子であると、第2のバッファ
層33の電子キャリア濃度は小さくても、電流は電子キ
ャリア濃度の大きいn型層3”の方を流れるので、発光
素子の特性にはほとんど影響がないが、逆に第2のバッ
ファ層33の電子キャリア濃度が大きい場合は、電流は
第2のバッファ層33の方に流れやすくなって、均一な
発光が得られる。従って、第2のバッファ層33の電子
キャリア濃度は先に形成したn型窒化物半導体層とほぼ
同一か、またはそれより大きく調整することが好まし
い。
Further, the electron carrier concentration of the second buffer layer is substantially the same as that of the previously formed n-type nitride semiconductor layer.
Or it is desirable to adjust larger. FIGS. 3 and 4 show that an n-cladding layer 4 ', an active layer 5', a p-cladding layer 6 ', and a p-contact layer 7' are laminated on the n-type nitride semiconductor layer 3 "obtained by the method of the present invention. 3 is a cross-sectional view showing the structure of the light emitting device as an actual light emitting device, wherein the second buffer layer 33 is more active than the etched surface of the n-type layer for forming the negative electrode. 4 differs from the layer 5 'in that the second buffer layer 33 is formed closer to the substrate 1' than the etched surface.For example, a light emitting device as shown in FIG. In other words, when an element is realized in which the position of the second buffer layer 33 is closer to the active layer side than the etching surface on which the negative electrode is to be formed, the electron carrier concentration of the second buffer layer 33 is Is smaller than the n-type layer 3 ′, n is supplied from n to p in the second buffer layer. Electrons are blocked and p-type
Current hardly flows through the layer, and the performance of the device deteriorates. Conversely, if the electron carrier concentration of the second buffer layer 33 is higher than that of the n-type layer 3, electrons are likely to spread uniformly in the second buffer layer 33, so that uniform light emission can be obtained. On the other hand, in the device as shown in FIG. 4, even if the electron carrier concentration of the second buffer layer 33 is low, the current flows through the n-type layer 3 ″ having a high electron carrier concentration. Has almost no effect, but conversely, if the electron carrier concentration of the second buffer layer 33 is high, the current tends to flow toward the second buffer layer 33, and uniform light emission is obtained. The electron carrier concentration of the second buffer layer 33 is preferably adjusted to be substantially the same as or higher than that of the n-type nitride semiconductor layer formed earlier.

【0016】n型窒化物半導体層を5μmよりも厚く成
長させることにより、表面に到達する結晶欠陥を少なく
することもできる。図2において、破線がn型層の中間
で止まっているのは、結晶欠陥が途中で止まっているこ
とを示している。この途中で止まっている結晶欠陥につ
いて、さらによく研究してみると、n型窒化物半導体層
が基板からおよそ4μmぐらいで止まるものが多いこと
を新たに見いだした。そこで、同一材料を連続して成長
中であれば、結晶欠陥を成長中に次第に止めることが可
能であるので、5μm以上でn層を成長させることによ
り、n層の表面にまで到達する結晶欠陥を少なくするこ
とができる。さらに好ましいn型窒化物半導体層の厚さ
は7μm以上である。
By growing the n-type nitride semiconductor layer thicker than 5 μm, crystal defects reaching the surface can be reduced. In FIG. 2, the broken line stops in the middle of the n-type layer, indicating that the crystal defect stops in the middle. When the crystal defects stopped on the way were studied in more detail, it was newly found that many of the n-type nitride semiconductor layers stopped at about 4 μm from the substrate. Therefore, if the same material is continuously grown, it is possible to gradually stop the crystal defects during the growth. Therefore, by growing the n-layer at 5 μm or more, the crystal defects reaching the surface of the n-layer can be obtained. Can be reduced. More preferably, the thickness of the n-type nitride semiconductor layer is 7 μm or more.

【0017】本発明において、基板上に成長されている
n型窒化物半導体(InXAlYGa 1-X-YN、0≦X、0
≦Y、X+Y≦1)は、Y値が0≦Y≦0.5の範囲のAlY
Ga 1-YN、さらに好ましくは0.3以下のAlYGa
1-YN、最も好ましくはY=0のGaNを成長させる。な
ぜなら、前記のように四元混晶の窒化物半導体より、三
元混晶の窒化物半導体の方が結晶欠陥が少ないからであ
る。さらに、発光素子、受光素子等の電子デバイスとし
てn型窒化物半導体を利用する際には、まず基板上に成
長させるn型窒化物半導体は、バンドギャップの小さい
InGaNよりもバンドギャップの大きいAlGaN、
GaNの方がシングルへテロ、ダブルへテロ等種々の構
造を実現する上で好都合であるからである。その中で
も、特にAlGaNはAlを含有させるほど結晶欠陥が
多くなる傾向にあり、GaNが最も結晶欠陥の少ないn
型窒化物半導体層を成長できる傾向にある。
In the present invention, the substrate is grown on a substrate.
n-type nitride semiconductor (InXAlYGa 1-XYN, 0 ≦ X, 0
≦ Y, X + Y ≦ 1) means that the Y value is in the range of 0 ≦ Y ≦ 0.5.Y
Ga 1-YN, more preferably Al not more than 0.3YGa
1-YGrow N, most preferably Y = 0 GaN. What
In other words, as described above, a quaternary mixed crystal nitride semiconductor
The original mixed crystal nitride semiconductor has fewer crystal defects.
You. In addition, electronic devices such as light emitting elements and light receiving elements
When using an n-type nitride semiconductor, the
The n-type nitride semiconductor to be elongated has a small band gap.
AlGaN having a larger band gap than InGaN,
GaN has various structures such as single hetero and double hetero.
This is because it is convenient for realizing the structure. inside that
However, in particular, AlGaN has crystal defects that contain Al.
GaN tends to increase and n
Type nitride semiconductor layers tend to grow.

【0018】基板にはサファイア、GaAs、Si、Z
nO、SiC等の材料が使用できるが、一般的にはサフ
ァイアを用いる。サファイアを基板とする場合には、基
板にはバッファ層を成長させることが好ましいが、サフ
ァイア基板の面方位によってはバッファ層無しでも成長
可能である。好ましくバッファ層を成長させることによ
り、格子欠陥を計測できるような平滑で鏡面状のn型窒
化物半導体の結晶を得ることができる。また、窒化物半
導体をn型にするにはノンドープの状態で、またはS
i、Ge、C等のドナー不純物を結晶成長中にドープす
ることにより実現可能である。
The substrate is sapphire, GaAs, Si, Z
Although materials such as nO and SiC can be used, sapphire is generally used. When sapphire is used as a substrate, it is preferable to grow a buffer layer on the substrate. However, depending on the plane orientation of the sapphire substrate, growth can be performed without a buffer layer. By preferably growing the buffer layer, it is possible to obtain a smooth and mirror-like n-type nitride semiconductor crystal capable of measuring lattice defects. Further, in order to make the nitride semiconductor n-type, a non-doped state or S
This can be realized by doping a donor impurity such as i, Ge, and C during crystal growth.

【0019】[0019]

【実施例】以下、MOVPE法による本発明の方法を詳
説する。 [実施例1] まず、よく洗浄したサファイア基板を反応容器内の
サセプターの上に設置する。容器内を真空排気した後、
水素ガスを容器内に流しながら、基板を1050℃で約
20分間加熱し表面の酸化物を除去して、基板のクリー
ニングを行う。その後サセプターの温度を500℃に調
整し、500℃においてGa源としてTMG(トリメチ
ルガリウムガス)、N源としてアンモニアガスを基板の
表面に流しながら、GaNよりなるバッファ層を0.0
2μmの膜厚で成長させる。
The method of the present invention by the MOVPE method will be described in detail below. [Example 1] First, a well-washed sapphire substrate is placed on a susceptor in a reaction vessel. After evacuating the container,
While flowing hydrogen gas into the container, the substrate is heated at 1050 ° C. for about 20 minutes to remove oxides on the surface, and the substrate is cleaned. Thereafter, the temperature of the susceptor was adjusted to 500 ° C., and at 500 ° C., TMG (trimethyl gallium gas) as a Ga source and ammonia gas as an N source were flowed over the surface of the substrate, and the buffer layer made of GaN was placed at 0.0 ° C.
It is grown to a thickness of 2 μm.

【0020】 次に、TMGガスを止め、温度を10
50℃まで上昇させた後、TMGガス、SiH4ガスを
流し、Siドープn型GaN層を2μmの膜厚で成長さ
せる。
Next, the TMG gas is stopped and the temperature is set to 10
After the temperature is raised to 50 ° C., TMG gas and SiH 4 gas are flowed to grow a Si-doped n-type GaN layer to a thickness of 2 μm.

【0021】 次に、TMGガス、SiH4ガスを止
め温度を800℃にする。800℃になったらキャリア
ガスを窒素に切り替え、TMGガス、TMI(トリメチ
ルインジウム)、SiH4ガスを流し、第2のバッファ
層としてSiドープn型In0.1Ga0.9N層を0.01
μmの膜厚で成長させる。
Next, the TMG gas and the SiH 4 gas are stopped and the temperature is set to 800 ° C. When the temperature reaches 800 ° C., the carrier gas is switched to nitrogen, TMG gas, TMI (trimethylindium), and SiH 4 gas are flown, and a Si-doped n-type In0.1Ga0.9N layer is formed as a second buffer layer by 0.01.
It is grown to a thickness of μm.

【0022】 In0.1Ga0.9N層成長後、再度温度
を1050℃まで上昇させ、キャリアガスを水素に戻し
てTMGガスおよびSiH4ガスを流し、同様にしてS
iドープn型GaN層を2μmの膜厚で成長させる。な
お第2のバッファ層のキャリア濃度とこのn型GaN層
のキャリア濃度はほぼ同一とした。
After the growth of the In0.1Ga0.9N layer, the temperature is increased again to 1050 ° C., the carrier gas is returned to hydrogen, and the TMG gas and the SiH 4 gas are flown.
An i-doped n-type GaN layer is grown to a thickness of 2 μm. Note that the carrier concentration of the second buffer layer and the carrier concentration of this n-type GaN layer were almost the same.

【0023】成長後、基板を反応容器から取り出し、最
上層のn型GaN層の表面をTEMで測定し、そのTE
M像より、単位面積あたりの結晶欠陥の数を計測したと
ころ、およそ1×104個/cm2であった。
After the growth, the substrate is taken out of the reactor, the surface of the uppermost n-type GaN layer is measured by TEM, and its TE is measured.
When the number of crystal defects per unit area was measured from the M image, it was about 1 × 10 4 / cm 2 .

【0024】[実施例2]およびのn型窒化物半導
体層の工程において、TMG、TMA(トリメチルアル
ミニウム)、SiH4ガスを用い、Siドープn型Al
0.3Ga0.7N層をそれぞれ2μmの膜厚で成長させて第
2のバッファ層を挟む構造とする他は、実施例1と同様
に行う。その結果、同様にして計測したところ、Siド
ープn型Al0.3Ga0.7N層表面に達している結晶欠陥
の数はおよそ5×105個/cm2であった。なお、Siド
ープn型Al0.3Ga0.7N層の電子キャリア濃度は第2
のバッファ層とほぼ同一とした。
In Example 2 and the step of forming the n-type nitride semiconductor layer, TMG, TMA (trimethylaluminum) and SiH 4 gas were used, and the Si-doped n-type Al
The procedure is the same as that of the first embodiment, except that a 0.3Ga0.7N layer is grown to a thickness of 2 μm to sandwich the second buffer layer. As a result, the number of crystal defects reaching the surface of the Si-doped n-type Al0.3Ga0.7N layer was about 5 × 10 5 / cm 2 , as measured in the same manner. The electron carrier concentration of the Si-doped n-type Al0.3Ga0.7N layer is the second
Of the buffer layer.

【0025】[実施例3]のn型窒化物半導体層の工
程と同様にしてSiドープn型GaN層を1μmの膜厚
で成長させる。次にの第2のバッファ層の工程と同様
にして、第2のバッファ層としてSiドープn型In0.
1Ga0.9N層を50オングストロームの膜厚で成長させ
る。さらに、のn型窒化物半導体層の工程と同様にし
て同じくSiドープn型GaN層を1μmの膜厚で順に
成長させる。
A Si-doped n-type GaN layer is grown to a thickness of 1 μm in the same manner as in the step of forming the n-type nitride semiconductor layer in [Example 3]. Next, as in the step of the second buffer layer, a Si-doped n-type In0.
A 1 Ga 0.9 N layer is grown to a thickness of 50 Å. Further, similarly to the process of the n-type nitride semiconductor layer, a Si-doped n-type GaN layer is sequentially grown to a thickness of 1 μm.

【0026】さらに、Siドープn型GaN層の上に
の工程と同様にして、第3のバッファ層としてSiドー
プn型In0.1Ga0.9N層を50オングストロームの膜
厚でもう一度成長させた後、最後にの工程と同様にし
てSiドープGaN層を2μmの膜厚で成長させる。つ
まり実施例3では、サファイア基板の表面にGaNバッ
ファ層200オングストローム、n型GaN層1μm、
Siドープn型In0.1Ga0.9N第2バッファ層50オ
ングストローム、n型GaN層1μm、Siドープn型
In0.1Ga0.9N第3バッファ層50オングストロー
ム、n型GaN層2μmを順に積層した。
Further, in the same manner as in the step on the Si-doped n-type GaN layer, a Si-doped n-type In0.1Ga0.9N layer is grown once more as a third buffer layer to a thickness of 50 angstroms. As in the last step, a Si-doped GaN layer is grown to a thickness of 2 μm. That is, in Example 3, the GaN buffer layer 200 Å, the n-type GaN layer 1 μm,
An Si-doped n-type In0.1Ga0.9N second buffer layer 50 Å, an n-type GaN layer 1 μm, a Si-doped n-type In0.1Ga0.9N third buffer layer 50 Å, and an n-type GaN layer 2 μm were sequentially stacked.

【0027】その結果、最終層のSiドープn型GaN
層の表面に達している結晶欠陥の数はおよそ1×104
個/cm2であった。なお第2のバッファ層と第3のバッ
ファ層とSiドープn型GaN層との電子キャリア濃度
はほぼ同一とした。
As a result, the final layer of Si-doped n-type GaN
The number of crystal defects reaching the surface of the layer is approximately 1 × 10 4
Pieces / cm 2 . The electron carrier concentrations of the second buffer layer, the third buffer layer, and the Si-doped n-type GaN layer were almost the same.

【0028】[実施例4]の第2のバッファ層の工程
において、成長温度を変化させずTMG、TMA(トリ
メチルアルミニウム)、SiH4ガスを用い、Siドー
プn型Al0.3Ga0.7N層を0.01μmの膜厚で成長
させて第2のバッファ層を形成する他は、実施例1と同
様に行う。その結果、同様にして計測したところ、Si
ドープn型GaN層表面に達している結晶欠陥の数はお
よそ1×104個/cm2であった。なお、第2のバッファ
層の電子キャリア濃度はSiドープn型GaN層とほぼ
同一とした。
In a step of the second buffer layer of Example 4], TMG without changing the growth temperature, TMA (trimethyl aluminum), using the SiH 4 gas, a Si-doped n-type Al0.3Ga0.7N layer 0 The process is performed in the same manner as in the first embodiment, except that the second buffer layer is formed by growing at a thickness of 0.01 μm. As a result, when measured in the same manner, Si
The number of crystal defects reaching the surface of the doped n-type GaN layer was about 1 × 10 4 / cm 2 . Note that the electron carrier concentration of the second buffer layer was almost the same as that of the Si-doped n-type GaN layer.

【0029】[実施例5]の第2のバッファ層の工程
において、成長温度を変化させずTMG、TMA、Si
4ガスを用い、まずSiドープn型Al0.02Ga0.98
N層を30オングストロームの膜厚で成長させる。次に
TMAガスを止め、Siドープn型GaN層を30オン
グストロームの膜厚で成長させる。そして、この操作を
それぞれ5回繰り返し、30オングストロームのSiド
ープn型Al0.02Ga0.98N層と、30オングストロー
ムのn型GaN層とをそれぞれ交互に5層づつ積層した
多層膜を形成する。以上のようにして第2のバッファ層
を形成する他は、実施例1と同様に行う。その結果、格
子欠陥を同様にして計測したところ、Siドープn型G
aN層表面に達している結晶欠陥の数はおよそ5×10
3個/cm2であった。なお、第2のバッファ層である多層
膜の電子キャリア濃度は、Siドープn型GaN層とほ
ぼ同一とした。
In the step of forming the second buffer layer in the fifth embodiment, TMG, TMA, Si
Using H 4 gas, first, Si-doped n-type Al0.02Ga0.98
An N layer is grown to a thickness of 30 Å. Next, the TMA gas is stopped, and a Si-doped n-type GaN layer is grown to a thickness of 30 Å. This operation is repeated five times to form a multilayer film in which 30 angstrom Si-doped n-type Al0.02Ga0.98N layers and 30 angstrom n-type GaN layers are alternately laminated by five layers. Except for forming the second buffer layer as described above, the same operation as in the first embodiment is performed. As a result, when the lattice defect was measured in the same manner, the Si-doped n-type G
The number of crystal defects reaching the surface of the aN layer is about 5 × 10
It was 3 pieces / cm 2 . Note that the electron carrier concentration of the multilayer film as the second buffer layer was substantially the same as that of the Si-doped n-type GaN layer.

【0030】[実施例6]実施例2の工程において、第
2のバッファ層としてSiドープn型Al0.1GaGa
0.9Nを0.01μmの膜厚で成長させる他は同様にし
て、Siドープn型Al0.3Ga0.7N層を成長させた。
その結果、最表面のn型Al0.3Ga0.7N層に達してい
た格子欠陥の数はおよそ1×105/cm2であった。なお
この実施例の電子キャリア濃度もほぼ同一とした。
[Embodiment 6] In the process of Embodiment 2, Si-doped n-type Al0.1GaGa was used as the second buffer layer.
A Si-doped n-type Al0.3Ga0.7N layer was grown in the same manner except that 0.9N was grown to a thickness of 0.01 μm.
As a result, the number of lattice defects reaching the outermost n-type Al0.3Ga0.7N layer was about 1 × 10 5 / cm 2. The electron carrier concentration in this example was also substantially the same.

【0031】[比較例1]実施例1において、第2のバ
ッファ層を成長させず、連続してSiドープn型GaN
層を4μmの膜厚で成長させたところ、n型GaN層の
表面に達した結晶欠陥の数はおよそ1×107個/cm2
あった。
[Comparative Example 1] In Example 1, the second buffer layer was not grown and Si-doped n-type GaN was continuously formed.
When the layer was grown to a thickness of 4 μm, the number of crystal defects reaching the surface of the n-type GaN layer was about 1 × 10 7 / cm 2 .

【0032】[実施例7]実際の発光素子の構造とした
実施例を示す。実施例1のの工程の後に以下の工程を
加えた。 Siドープn型GaN層成長後、新たにTMA(ト
リメチルアルミニウム)ガスを加え、同じく1050℃
で、nクラッド層としてSiドープn型Al0.2Ga0.8
N層を0.1μmの膜厚で成長させる。
[Embodiment 7] An embodiment in which the structure of an actual light emitting element is used will be described. The following steps were added after the steps of Example 1. After the growth of the Si-doped n-type GaN layer, a new TMA (trimethylaluminum) gas is
Then, as an n-cladding layer, Si-doped n-type Al0.2 Ga0.8
An N layer is grown to a thickness of 0.1 μm.

【0033】 nクラッド層成長後、TMG、TM
A、SiH4ガスを止め、再び温度を800℃に設定し
て、TMG、TMI、SiH4ガスに加えてDEZ(ジ
エチルジンク)を流し、活性層としてSiおよびZnド
ープIn0.05Ga0.95N層を0.1μmの膜厚で成長さ
せる。
After growing the n-cladding layer, TMG, TM
A, the SiH 4 gas was stopped, the temperature was set again to 800 ° C., and in addition to TMG, TMI, and SiH 4 gas, DEZ (diethyl zinc) was flown, and an Si and Zn-doped In0.05Ga0.95N layer was formed as an active layer. It is grown to a thickness of 0.1 μm.

【0034】 活性層成長後、TMG、TMI、Si
4、DEZガスを止め、温度を1050℃にした後、
TMG、TMA、Cp2Mg(シクロペンタジエニルマ
グネシウム)ガスを流し、pクラッド層としてMgドー
プp型Al0.1Ga0.9N層を0.1μmの膜厚で成長さ
せる。
After growing the active layer, TMG, TMI, Si
After stopping H 4 and DEZ gas and setting the temperature to 1050 ° C.,
TMG, TMA, and Cp2Mg (cyclopentadienylmagnesium) gas are flowed, and a Mg-doped p-type Al0.1Ga0.9N layer is grown as a p-cladding layer to a thickness of 0.1 .mu.m.

【0035】 p型Al0.1Ga0.9N層成長後、TM
Aガスを止め、同じく1050℃でpコンタクト層とし
てMgドープp型GaN層を0.3μmの膜厚で成長さ
せる。
After growing the p-type Al0.1Ga0.9N layer, the TM
The A gas is stopped, and a Mg-doped p-type GaN layer is grown at 1050 ° C. as a p-contact layer with a thickness of 0.3 μm.

【0036】 以上のようにして得た素子のエッチン
グを行い、第2のバッファ層の次に成長したn型GaN
層を露出させ、pコンタクト層と、露出したSiドープ
n型GaN層とに電極を形成した。つまり図4に示すよ
うな構造の発光ダイオード素子とした。さらにこの素子
をリードフレームに取り付け、樹脂でモールドした。こ
の発光ダイオードは20mAにおいてVf3.6V、発
光波長450nmであり、光度3.0cd、発光出力は
3.5mWであった。
The device obtained as described above is etched, and the n-type GaN grown next to the second buffer layer is etched.
The layer was exposed, and electrodes were formed on the p-contact layer and the exposed Si-doped n-type GaN layer. That is, a light emitting diode element having a structure as shown in FIG. 4 was obtained. The device was mounted on a lead frame and molded with resin. This light-emitting diode had a Vf of 3.6 V, an emission wavelength of 450 nm, a luminous intensity of 3.0 cd, and an emission output of 3.5 mW at 20 mA.

【0037】[比較例2]比較例1で成長させたSiド
ープGaN層の上に、実施例7と同一の工程を行い、図
1に示すような構造の発光ダイオード素子としたとこ
ろ、この発光ダイオードは20mAにおいてVf3.6
V、発光波長450nmであったが、光度は1.0cd
であり、発光出力は1.2mWしかなかった。
Comparative Example 2 The same process as in Example 7 was performed on the Si-doped GaN layer grown in Comparative Example 1 to obtain a light emitting diode device having a structure as shown in FIG. The diode has a Vf of 3.6 at 20 mA.
V, the emission wavelength was 450 nm, but the luminous intensity was 1.0 cd.
And the light emission output was only 1.2 mW.

【0038】このように本発明の発光素子では、結晶欠
陥の少ないn型層を有しているので、その上に積層する
クラッド層、活性層等の結晶欠陥が少なくなる。特に活
性層の膜厚は約0.2μm以下と薄いため、結晶欠陥の
少ない結晶を成長させることは非常に重要である。従っ
て、結晶欠陥の少ない結晶を成長できたことにより、従
来の光度1cd以上の光度を有し、発光出力に優れた発
光ダイオード素子を実現できる。
As described above, since the light emitting device of the present invention has the n-type layer with few crystal defects, the crystal defects such as the cladding layer and the active layer laminated thereon are reduced. In particular, since the thickness of the active layer is as thin as about 0.2 μm or less, it is very important to grow a crystal having few crystal defects. Therefore, since a crystal having few crystal defects can be grown, it is possible to realize a light-emitting diode element having a luminous intensity of 1 cd or more and excellent in light-emission output as in the related art.

【0039】[実施例8] 実施例1のの工程と同様にしてサファイア基板の
表面にGaNよりなるバッファ層を0.02μmの膜厚
で成長させる。
[Embodiment 8] A buffer layer made of GaN is grown to a thickness of 0.02 μm on the surface of a sapphire substrate in the same manner as in the process of Embodiment 1.

【0040】 実施例1のの工程と同様にして、バ
ッファ層の上に、Siドープn型GaN層を10μmの
膜厚で成長させる。
In the same manner as in the first embodiment, a Si-doped n-type GaN layer is grown to a thickness of 10 μm on the buffer layer.

【0041】成長後、基板を反応容器から取り出し、n
型GaN層表面をTEMで測定し、そのTEM像より、
単位面積あたりの結晶欠陥の数を計測したところ、およ
そ1×105個/cm2であった。
After the growth, the substrate is taken out of the reaction vessel and n
GaN layer surface is measured by TEM, and from the TEM image,
When the number of crystal defects per unit area was measured, it was about 1 × 10 5 / cm 2 .

【0042】[実施例9]Siドープn型GaN層の膜
厚を5μmとする他は実施例5と同様にして結晶成長を
行ったところ、n型GaN層表面の結晶欠陥の数はおよ
そ5×106個であった。
Example 9 Crystal growth was performed in the same manner as in Example 5 except that the thickness of the Si-doped n-type GaN layer was changed to 5 μm, and the number of crystal defects on the surface of the n-type GaN layer was about 5 × 10 6 pieces.

【0043】[実施例10]実施例5のの工程におい
て、実施例2のと同様にしてSiドープn型Al0.3
Ga0.7N層を連続して10μmの厚さで成長させる他
は同様にして結晶成長を行ったところ、n型Al0.3G
a0.7N層表面の結晶欠陥の数は、およそ3×106個/
cm2であった。
[Embodiment 10] In the process of Embodiment 5, the Si-doped n-type Al 0.3
Crystal growth was performed in the same manner except that a Ga0.7N layer was continuously grown to a thickness of 10 μm.
The number of crystal defects on the a0.7N layer surface is approximately 3 × 10 6 /
It was cm 2.

【0044】[実施例11]実施例5で得られたSiド
ープGaN層の上に実施例7と同様にして、nクラッド
層、活性層、pクラッド層、pコンタクト層を積層し
て、同様にして発光ダイオードとしたところ、その特性
は実施例7のものとほぼ同等であった。
[Embodiment 11] An n-cladding layer, an active layer, a p-cladding layer and a p-contact layer were laminated on the Si-doped GaN layer obtained in the embodiment 5 in the same manner as in the embodiment 7, and As a result, the characteristics were almost the same as those of Example 7.

【0045】[0045]

【発明の効果】以上説明したように、本発明の発光素子
では、基板上に結晶欠陥の少ないn型窒化物半導体層を
有している。従って本発明は、格子整合する基板を有し
ていない窒化物半導体発光素子にとって、結晶欠陥の少
ない結晶を積層しているので、受光素子等の電子デバイ
スにも応用でき、非常に有用である。
As described above, the light emitting device of the present invention has the n-type nitride semiconductor layer with few crystal defects on the substrate. Therefore, the present invention is very useful because it can be applied to an electronic device such as a light-receiving element, because the nitride semiconductor light-emitting element having no lattice-matching substrate has crystals with few crystal defects stacked thereon.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の発光ダイオード素子の一構造を示す模
式断面図。
FIG. 1 is a schematic cross-sectional view showing one structure of a conventional light emitting diode element.

【図2】 基板の表面にAlNバッファ層を介してn型
GaN層を成長した際の結晶の構造を示す模式断面図。
FIG. 2 is a schematic cross-sectional view showing a crystal structure when an n-type GaN layer is grown on a surface of a substrate via an AlN buffer layer.

【図3】 本発明のn型窒化物半導体層を有する発光ダ
イオード素子の一構造を示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing one structure of a light emitting diode device having an n-type nitride semiconductor layer of the present invention.

【図4】 本発明のn型窒化物半導体層を有する発光ダ
イオード素子の一構造を示す模式断面図。
FIG. 4 is a schematic cross-sectional view showing one structure of a light emitting diode device having an n-type nitride semiconductor layer of the present invention.

【符号の説明】[Explanation of symbols]

1、1’・・・基板 2、2'・
・・バッファ層 3、3'、3”・・・n型窒化物半導体層 4、4'・
・・n型クラッド層 5、5'・・・活性層 6、6'・
・・pクラッド層 7、7'・・・pコンタクト層 33・・・第2のバッファ層(第2の窒化物半導体層)
1, 1 '... substrate 2, 2'
..Buffer layers 3,3 ', 3 "... N-type nitride semiconductor layers 4,4'.
..N-type cladding layers 5, 5 '... Active layers 6, 6'
..P cladding layer 7, 7 '... p contact layer 33 ... second buffer layer (second nitride semiconductor layer)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 InaGa1-aN(0<a≦1)、もしく
はAlbGa1-bN(0<b≦1)、または組成の異なる
AlbGa1-bN(0≦b≦1)の薄膜を積層した多層膜
の内のいずれか一種類を含む第2のn型窒化ガリウム系
化合物半導体層を、第1のn型窒化ガリウム系化合物半
導体層と、第3のn型窒化ガリウム系化合物半導体層と
で挟んだ構造を有するn型窒化ガリウム系化合物半導体
を、基板と活性層との間に有するダブルへテロ構造の窒
化ガリウム系化合物半導体発光素子。
1. A In a Ga 1-a N ( 0 <a ≦ 1), or Al b Ga 1-b N ( 0 <b ≦ 1), or a different Al b Ga 1-b N compositions (0 ≦ b ≦ 1), a second n-type gallium nitride-based compound semiconductor layer including any one of the multilayer films laminated with the first n-type gallium nitride-based compound semiconductor layer and a third n-type gallium nitride-based compound semiconductor layer A gallium nitride-based compound semiconductor light-emitting device having a double hetero structure, comprising an n-type gallium nitride-based compound semiconductor having a structure sandwiched between n-type gallium nitride-based compound semiconductor layers between a substrate and an active layer.
【請求項2】 前記活性層がInGaNからなることを
特徴とする請求項1に記載の窒化ガリウム系化合物半導
体発光素子。
2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein said active layer is made of InGaN.
【請求項3】 前記第1の窒化ガリウム系化合物半導体
層と、第3の窒化ガリウム系化合物半導体層とが同一組
成を有することを特徴とする請求項1に記載の窒化ガリ
ウム系化合物半導体の成長方法。
3. The growth of a gallium nitride-based compound semiconductor according to claim 1, wherein the first gallium nitride-based compound semiconductor layer and the third gallium nitride-based compound semiconductor layer have the same composition. Method.
JP32938498A 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP3548442B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32938498A JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device
JP2000384363A JP3646649B2 (en) 1994-09-22 2000-12-18 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22767994A JP2956489B2 (en) 1994-06-24 1994-09-22 Crystal growth method of gallium nitride based compound semiconductor
JP32938498A JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22767994A Division JP2956489B2 (en) 1994-06-24 1994-09-22 Crystal growth method of gallium nitride based compound semiconductor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000384363A Division JP3646649B2 (en) 1994-09-22 2000-12-18 Gallium nitride compound semiconductor light emitting device
JP2002034089A Division JP3767491B2 (en) 2002-02-12 2002-02-12 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11220173A true JPH11220173A (en) 1999-08-10
JP3548442B2 JP3548442B2 (en) 2004-07-28

Family

ID=32852524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32938498A Expired - Lifetime JP3548442B2 (en) 1994-09-22 1998-11-19 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3548442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822272B2 (en) 2001-07-09 2004-11-23 Nichia Corporation Multilayered reflective membrane and gallium nitride-based light emitting element
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH05110138A (en) * 1991-10-12 1993-04-30 Nichia Chem Ind Ltd Growing method for crystal of gallium nitride compound semiconductor and element thereof
JPH05335622A (en) * 1992-05-27 1993-12-17 Asahi Chem Ind Co Ltd Semiconductor light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321280A (en) * 1991-04-19 1992-11-11 Nichia Chem Ind Ltd Blue color light-emitting diode
JPH05110138A (en) * 1991-10-12 1993-04-30 Nichia Chem Ind Ltd Growing method for crystal of gallium nitride compound semiconductor and element thereof
JPH05335622A (en) * 1992-05-27 1993-12-17 Asahi Chem Ind Co Ltd Semiconductor light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822272B2 (en) 2001-07-09 2004-11-23 Nichia Corporation Multilayered reflective membrane and gallium nitride-based light emitting element
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer

Also Published As

Publication number Publication date
JP3548442B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP2956489B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP3646649B2 (en) Gallium nitride compound semiconductor light emitting device
JP3548442B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3656456B2 (en) Nitride semiconductor device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
US7550368B2 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP4071308B2 (en) Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and optical fiber communication system
JP3890930B2 (en) Nitride semiconductor light emitting device
JPH06268259A (en) Gallium nitride compound semiconductor light emitting element
JPH08330629A (en) Light-emitting nitride semiconductor element
US6462354B1 (en) Semiconductor device and semiconductor light emitting device
JP2900990B2 (en) Nitride semiconductor light emitting device
JP2891348B2 (en) Nitride semiconductor laser device
JP3366188B2 (en) Nitride semiconductor device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP3767491B2 (en) Gallium nitride compound semiconductor light emitting device
JPH06260682A (en) Blue light-emitting element
JPH077182A (en) Gallium nitride based compound semiconductor light emitting element
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
JP3953077B2 (en) Gallium nitride compound semiconductor light emitting device
JPH06209120A (en) Blue colored light emitting element
JP3888036B2 (en) Method for growing n-type nitride semiconductor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term