JPH08330629A - Light-emitting nitride semiconductor element - Google Patents

Light-emitting nitride semiconductor element

Info

Publication number
JPH08330629A
JPH08330629A JP31784495A JP31784495A JPH08330629A JP H08330629 A JPH08330629 A JP H08330629A JP 31784495 A JP31784495 A JP 31784495A JP 31784495 A JP31784495 A JP 31784495A JP H08330629 A JPH08330629 A JP H08330629A
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
light emitting
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31784495A
Other languages
Japanese (ja)
Other versions
JP3250438B2 (en
Inventor
Takashi Mukai
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP31784495A priority Critical patent/JP3250438B2/en
Publication of JPH08330629A publication Critical patent/JPH08330629A/en
Application granted granted Critical
Publication of JP3250438B2 publication Critical patent/JP3250438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To obtain a light-emitting nitride semiconductor element which lowers a Vf (a forward voltage) by a method wherein a p-type layer forming a positive electrode is constituted of a heavily acceptor-doped first p-type layer and a lightly doped second p-type layer. CONSTITUTION: A contact layer is constituted of a first p-type contact layer 71 in which a layer coming into contact with a positive electrode 9 is formed as a heavily acceptor-doped first nitride semiconductor layer and a second p-type contact layer 72 as a second nitride semiconductor layer acceptor-doped more lightly than the first p-type contact layer. The acceptor concentration of the first heavily doped p-type contact layer is adjusted to 1×10<17> to 5×10<21> /cm<3> . The acceptor concentration of the second lightly doped p-type contact layer 2 is adjusted to a range of 2×10<15> to 5×10<20> /cm<3> . The contact layer 71, 72 form the positive electrode 9, and they are layers which can form desirable ohmic contacts with the positive electrode 9. The closer they are perfect ohmic contacts, the more the Vf of a light-emitting element can be lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード(LE
D)、レーザダイオード(LD)等に使用される窒化物
半導体(InaAlbGa1-a-bN、0≦a、0≦b、a+b
≦1)よりなる発光素子に係り、特にn型窒化物半導体
層とp型窒化物半導体層との間に活性層を有するダブル
へテロ構造の窒化物半導体発光素子に関する。
The present invention relates to a light emitting diode (LE
D), nitride semiconductors (In a Al b Ga 1-ab N, 0 ≦ a, 0 ≦ b, a + b used for laser diode (LD), etc.
<1) The present invention relates to a light emitting device having a double hetero structure having an active layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.

【0002】[0002]

【従来の技術】紫外〜赤色に発光するLED、LD等の
発光素子の材料として窒化物半導体(InaAlbGa
1-a-bN、0≦a、0≦b、a+b≦1)が知られている。
我々はこの半導体材料を用いて、1993年11月に光
度1cdの青色LEDを発表し、1994年4月に光度
2cdの青緑色LEDを発表し、1994年10月には
光度2cdの青色LEDを発表した。これらのLEDは
全て製品化されて、現在ディスプレイ、道路信号等の実
用に供されている。
2. Description of the Related Art Nitride semiconductors (In a Al b Ga) have been used as materials for light emitting devices such as LEDs and LDs that emit ultraviolet to red light.
1-ab N, 0 ≦ a, 0 ≦ b, a + b ≦ 1) are known.
Using this semiconductor material, we announced a blue LED with a luminous intensity of 1 cd in November 1993, a blue-green LED with a luminous intensity of 2 cd in April 1994, and a blue LED with a luminous intensity of 2 cd in October 1994. Announced. All of these LEDs have been commercialized and are now in practical use for displays, road signals, etc.

【0003】図2に窒化物半導体よりなる従来の青色、
青緑色LEDの発光チップの構造を示す。基本的には、
基板21の上に、GaNよりなるバッファ層22、n型
GaNよりなるn型コンタクト層23と、n型AlGa
Nよりなるn型クラッド層24と、n型InGaNより
なる活性層25と、p型AlGaNよりなるp型クラッ
ド層26と、p型GaNよりなるp型コンタクト層27
とが順に積層されたダブルへテロ構造を有している。活
性層25のn型InGaNにはSi、Ge等のドナー不
純物および/またはZn、Mg等のアクセプター不純物
がドープされており、LED素子の発光波長は、その活
性層のInGaNのIn組成比を変更するか、若しくは
活性層にドープする不純物の種類を変更することで、紫
外〜赤色まで変化させることが可能となっている。現
在、活性層にドナー不純物とアクセプター不純物とが同
時にドープされた発光波長510nm以下のLEDが実
用化されている。
FIG. 2 shows a conventional blue color composed of a nitride semiconductor,
The structure of the light emitting chip of a blue-green LED is shown. Basically,
On the substrate 21, a buffer layer 22 made of GaN, an n-type contact layer 23 made of n-type GaN, and an n-type AlGa
An n-type clad layer 24 made of N, an active layer 25 made of n-type InGaN, a p-type clad layer 26 made of p-type AlGaN, and a p-type contact layer 27 made of p-type GaN.
It has a double hetero structure in which and are sequentially stacked. The n-type InGaN of the active layer 25 is doped with donor impurities such as Si and Ge and / or acceptor impurities such as Zn and Mg, and the emission wavelength of the LED element changes the In composition ratio of InGaN of the active layer. It is possible to change from ultraviolet to red by changing the kind of impurities to be doped into the active layer. Currently, an LED having an emission wavelength of 510 nm or less, in which an active layer is simultaneously doped with a donor impurity and an acceptor impurity, has been put into practical use.

【0004】[0004]

【発明が解決しようとする課題】従来の青色LEDは順
方向電流(If)20mAで順方向電圧(Vf)が3.
6V〜3.8V、発光出力は3mW近くあり、SiCよ
りなる青色LEDと比較して20倍以上の発光出力を有
している。順方向電圧が低いのはp−n接合を形成して
いるためであり、発光出力が高いのはダブルへテロ構造
を実現しているためである。このように、現在実用化さ
れているLEDは非常に性能の高いものであるが、さら
に高性能なLED、LDのような発光素子が求められて
いる。例えばLEDのVfは前記のように3.6V〜
3.8Vという低い値を達成しているが、LDのように
電極幅や電極面積の小さい発光素子を実現するために
は、さらにVfを低下させる必要がある。
The conventional blue LED has a forward current (If) of 20 mA and a forward voltage (Vf) of 3.
The light emission output is 6 V to 3.8 V, and the light emission output is close to 3 mW, and the light emission output is 20 times or more that of the blue LED made of SiC. The forward voltage is low because the pn junction is formed, and the light emission output is high because the double hetero structure is realized. As described above, the LEDs currently put into practical use have extremely high performance, but light emitting elements such as LEDs and LDs with higher performance are required. For example, the Vf of the LED is 3.6 V or more as described above.
Although it has achieved a low value of 3.8 V, it is necessary to further reduce Vf in order to realize a light emitting element having a small electrode width and a small electrode area such as an LD.

【0005】従って、本発明はこのような事情を鑑みて
成されたものであり、その目的とするところは、ダブル
へテロ構造の窒化物半導体よりなる発光素子の性能をさ
らに向上させることにあり、具体的には、発光素子のV
fをさらに低下させることにより発光効率に優れた素子
を提供することにある。
Therefore, the present invention has been made in view of such circumstances, and an object thereof is to further improve the performance of a light emitting device made of a nitride semiconductor having a double hetero structure. , Specifically, V of the light emitting element
It is to provide an element having excellent luminous efficiency by further reducing f.

【0006】[0006]

【課題を解決するための手段】本発明の発光素子は、n
型窒化物半導体層とp型窒化物半導体層との間に発光す
る活性層を有し、p型窒化物半導体層表面に正電極が形
成されてなる窒化物半導体発光素子において、前記p型
窒化物半導体層は正電極と接する側から順にアクセプタ
ー不純物濃度の高い第一のp型窒化物半導体層と、第一
のp型窒化物半導体層よりもアクセプター不純物濃度の
低い第二のp型窒化物半導体層とを含むことを特徴とす
る。
The light emitting device of the present invention has
A nitride semiconductor light emitting device having an active layer for emitting light between a p-type nitride semiconductor layer and a p-type nitride semiconductor layer, wherein a positive electrode is formed on the surface of the p-type nitride semiconductor layer. The object semiconductor layer is a first p-type nitride semiconductor layer having a high acceptor impurity concentration in order from the side in contact with the positive electrode, and a second p-type nitride having a lower acceptor impurity concentration than the first p-type nitride semiconductor layer. And a semiconductor layer.

【0007】さらに前記発光素子において、第一のp型
窒化物半導体の膜厚は0.1μm以下、さらに好ましく
は500オングストローム以下、最も好ましくは200
オングストローム以下に調整する。0.1μmよりも厚
いと結晶自体に不純物による結晶欠陥が多くなり、逆に
Vfが高くなる傾向にある。
Further, in the above light emitting device, the film thickness of the first p-type nitride semiconductor is 0.1 μm or less, more preferably 500 angstroms or less, and most preferably 200.
Adjust to less than Angstrom. If it is thicker than 0.1 μm, crystal defects due to impurities increase in the crystal itself, and Vf tends to increase.

【0008】[0008]

【作用】p層を高キャリア濃度のp+型と低キャリア濃
度のp型とする技術が特開平6−151964号、特開
平6−151965号、特開平6−151966号等に
記載されている。これらの公報に開示される発光素子は
GaNのホモ接合により発光する。このためp−n接合
界面を基準として、この接合界面より遠ざかる方向にn
型GaN層を低キャリア濃度のn型と高キャリア濃度の
n+型とし、p型GaNを低キャリア濃度のp型と、高
キャリア濃度のp+型としている。そしてこれら二段の
キャリア濃度よりなるn層とp層とを組み合わせること
により、発光素子の長寿命と発光輝度の向上を図ってい
る。
A technique for making the p layer a high carrier concentration p + type and a low carrier concentration p type is described in JP-A-6-151964, JP-A-6-151965, JP-A-6-151966 and the like. . The light emitting elements disclosed in these publications emit light by a homojunction of GaN. Therefore, with the pn junction interface as a reference, n is separated in the direction away from this junction interface.
The n-type GaN layer is a low carrier concentration n-type and a high carrier concentration n + type, and the p-type GaN is a low carrier concentration p-type and a high carrier concentration p + -type. By combining the n-layer and the p-layer having these two-stage carrier concentration, the long-life and light-emission luminance of the light-emitting element are improved.

【0009】一方、本発明の発光素子が前記公報と異な
るところは、ダブルへテロ構造の発光素子のp型層をア
クセプター不純物濃度の低い第二のp型層と、アクセプ
ター不純物濃度の高い第一のp型層とにしている点であ
る。ダブルへテロ構造の発光素子はホモ接合の発光素子
に比較して10倍以上発光出力が高い。従って、前記公
報のようにp型層をp+型とp型との組み合わせにして
も、出力の増加はほとんどない。むしろ本発明では発光
出力よりも、ダブルへテロ構造のVfを低下させ、発光
効率を改善している点が従来の技術と異なる。また、ア
クセプター不純物に関して、一般にキャリア濃度はアク
セプター不純物の濃度とおおよそ比例しているが、窒化
物半導体の場合、半導体層にアクセプター不純物をドー
プした後、400℃以上でアニーリングを行うことによ
り完全なp型として作用する。このためホールキャリア
濃度はアニーリング状態、アニール温度等により変動す
ることが多く、素子構造とした時の正確なキャリア濃度
を測定することは困難であるので、本発明ではアクセプ
ター不純物濃度で発光素子を特徴づけている。
On the other hand, the light emitting device of the present invention is different from the above publication in that the p-type layer of the light emitting device having the double hetero structure is a second p-type layer having a low acceptor impurity concentration and a first p-type layer having a high acceptor impurity concentration. Is a p-type layer. The light emitting element having the double hetero structure has a light emission output 10 times or more higher than that of the homojunction light emitting element. Therefore, even if the p-type layer is a combination of p + -type and p-type as in the above publication, the output is hardly increased. Rather, the present invention differs from the conventional art in that Vf of the double hetero structure is lowered rather than the light emission output to improve the light emission efficiency. Regarding the acceptor impurities, the carrier concentration is generally approximately proportional to the concentration of the acceptor impurities. However, in the case of a nitride semiconductor, after the semiconductor layer is doped with the acceptor impurities, annealing is performed at 400 ° C. or higher to obtain a complete p-type impurity. Acts as a mold. For this reason, the hole carrier concentration often changes depending on the annealing state, the annealing temperature, etc., and it is difficult to accurately measure the carrier concentration when the device structure is adopted. Therefore, in the present invention, the light emitting device is characterized by the acceptor impurity concentration. I am attaching.

【0010】次に、本発明の発光素子は従来のようにp
−n接合界面を基準としているのではなく、正電極の接
触面を基準とし、この正電極と接する面を高不純物濃度
の第一のp型層として、その第一のp型層に接して低不
純物濃度の第二のp型層としている点で異なる。正電極
に接する層を基準としてp層を構成することにより、V
fを低下させることができる。
Next, the light emitting device of the present invention has a conventional p
Instead of using the −n junction interface as a reference, the contact surface of the positive electrode is used as a reference, and the surface in contact with this positive electrode is used as the first p-type layer having a high impurity concentration and is in contact with the first p-type layer. The difference is that the second p-type layer has a low impurity concentration. By configuring the p layer with reference to the layer in contact with the positive electrode, V
f can be reduced.

【0011】さらに前記公報に開示される発光素子と、
本発明の発光素子とが最も異なる点はp+層の膜厚であ
る。つまり、前記公報では高キャリア濃度のp+型の半
導体層の膜厚が0.2μm以上なければ発光素子の発光
出力が低下するが、本発明の発光素子では高不純物濃度
の第一のp型層の膜厚を0.2μm以上にすると、Vf
が高くなる。これは不純物ドープによる結晶性の悪化に
よるものである。逆に本発明の発光素子では高不純物濃
度の第一のp型層の膜厚は0.1μm以下であることが
好ましい。0.1μm以下とすることにより、効果的に
発光素子のVfを低下させることが可能である。
Further, the light emitting device disclosed in the above publication,
The most different point from the light emitting device of the present invention is the film thickness of the p + layer. That is, in the above publication, the light emission output of the light emitting device is reduced unless the film thickness of the p + type semiconductor layer having a high carrier concentration is 0.2 μm or more. When the layer thickness is 0.2 μm or more, Vf
Will be higher. This is due to deterioration of crystallinity due to impurity doping. On the contrary, in the light emitting device of the present invention, the film thickness of the first p-type layer having a high impurity concentration is preferably 0.1 μm or less. By setting the thickness to 0.1 μm or less, Vf of the light emitting element can be effectively reduced.

【0012】[0012]

【実施例】【Example】

[実施例1]以下、図面を元に本発明の発光素子を詳説
する。図1は本発明の一実施例の発光素子の構造を示す
模式断面図である。この発光素子は基板1の上にバッフ
ァ層2、n型コンタクト層3、n型クラッド層4、活性
層5、p型クラッド層6、アクセプター不純物濃度の低
い第二のp型コンタクト層72、アクセプター不純物濃
度が高い第一のp型コンタクト層71を順に積層した構
造を示している。さらに第一のp型コンタクト層71に
は正電極9が形成され、n型コンタクト層3には負電極
8が形成されている。
Example 1 The light emitting device of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the present invention. This light emitting device includes a buffer layer 2, an n-type contact layer 3, an n-type cladding layer 4, an active layer 5, a p-type cladding layer 6, a second p-type contact layer 72 having a low acceptor impurity concentration, and an acceptor on a substrate 1. This shows a structure in which the first p-type contact layer 71 having a high impurity concentration is sequentially stacked. Further, the positive electrode 9 is formed on the first p-type contact layer 71, and the negative electrode 8 is formed on the n-type contact layer 3.

【0013】基板1にはサファイア(A面、C面、R面
を含む)の他、SiC(6H、4Hを含む)、ZnO、
Si、GaAsのような窒化物半導体と格子不整合の基
板、またNGO(ネオジウムガリウム酸化物)のような
酸化物単結晶よりなる窒化物半導体と格子定数の近い基
板等を使用することができる。
The substrate 1 includes sapphire (including A-plane, C-plane, R-plane), SiC (including 6H and 4H), ZnO,
A substrate having a lattice mismatch with a nitride semiconductor such as Si or GaAs, or a substrate having a lattice constant close to that of a nitride semiconductor made of an oxide single crystal such as NGO (neodymium gallium oxide) can be used.

【0014】バッファ層2はGaN、AlN、GaAl
N等を例えば50オングストローム〜0.1μmの膜厚
で成長させることが好ましく、例えばMOVPE法によ
ると400℃〜600℃の低温で成長させることにより
形成できる。バッファ層2は基板1と窒化物半導体との
格子不整合を緩和するために設けられるが、SiC、Z
nOのような窒化物半導体と格子定数が近い基板、窒化
物半導体と格子整合した基板を使用する際にはバッファ
層が形成されないこともある。
The buffer layer 2 is composed of GaN, AlN, GaAl.
It is preferable to grow N or the like in a film thickness of 50 angstrom to 0.1 μm, for example, and it can be formed by growing at a low temperature of 400 ° C. to 600 ° C. according to the MOVPE method. The buffer layer 2 is provided to alleviate the lattice mismatch between the substrate 1 and the nitride semiconductor.
The buffer layer may not be formed when a substrate having a lattice constant close to that of a nitride semiconductor such as nO or a substrate lattice-matched to a nitride semiconductor is used.

【0015】n型コンタクト層3は負電極8を形成する
層であり、GaN、AlGaN、InAlGaN等を例
えば1μm〜10μmの膜厚で成長させることが好まし
く、その中でもGaNを選択することにより負電極の材
料と好ましいオーミック接触を得ることができる。負電
極8の材料としては例えばTiとAl、TiとAu等を
好ましく用いることができる。
The n-type contact layer 3 is a layer for forming the negative electrode 8. It is preferable to grow GaN, AlGaN, InAlGaN or the like to have a film thickness of, for example, 1 μm to 10 μm. A favorable ohmic contact with the material can be obtained. As the material of the negative electrode 8, for example, Ti and Al, Ti and Au, etc. can be preferably used.

【0016】n型クラッド層4はGaN、AlGaN、
InAlGaN等を例えば500オングストローム〜
0.5μmの膜厚で成長させることが好ましく、その中
でもGaN、AlGaNを選択することにより結晶性の
良い層が得られる。また、n型クラッド層4、n型コン
タクト層3のいずれかを省略することも可能である。ど
ちらかを省略すると、残った層がn型クラッド層および
n型コンタクト層として作用する。
The n-type cladding layer 4 is composed of GaN, AlGaN,
InAlGaN or the like is, for example, 500 Å
It is preferable to grow the film with a thickness of 0.5 μm, and by selecting GaN or AlGaN among them, a layer with good crystallinity can be obtained. It is also possible to omit either the n-type cladding layer 4 or the n-type contact layer 3. If either is omitted, the remaining layer acts as an n-type cladding layer and an n-type contact layer.

【0017】活性層5はクラッド層よりもバンドギャッ
プエネルギーが小さいInGaN、InAlGaN、A
lGaN等の窒化物半導体であれば良く、特に所望のバ
ンドギャップによってインジウムの組成比を適宜変更し
たInGaNにすることが好ましい。また活性層5を例
えばInGaN/GaN、InGaN/InGaN(組
成が異なる)等の組み合わせで、それぞれの薄膜を積層
した多重量子井戸構造としてもよい。単一量子井戸構
造、多重量子井戸構造いずれの活性層においても、活性
層はn型、p型いずれでもよいが、特にノンドープ(無
添加)とすることにより半値幅の狭いバンド間発光、励
起子発光、あるいは量子井戸準位発光が得られ、LED
素子、LD素子を実現する上で特に好ましい。活性層を
単一量子井戸(SQW:single quantum well)構造若
しくは多重量子井戸(MQW:multiquantum well)構
造とすると非常に出力の高い発光素子が得られる。SQ
W、MQWとはノンドープのInGaNによる量子準位
間の発光が得られる活性層の構造を指し、例えばSQW
では活性層を単一組成のInXGa1-XN(0≦X<1)
で構成した層であり、InXGa1-XNの膜厚を100オ
ングストローム以下、さらに好ましくは70オングスト
ローム以下とすることにより量子準位間の強い発光が得
られる。またMQWは組成比の異なるInXGa1-X
(この場合X=0、X=1を含む)の薄膜を複数積層した
多層膜とする。このように活性層をSQW、MQWとす
ることにより量子準位間発光で、約365nm〜660
nmまでの発光が得られる。量子構造の井戸層の厚さと
しては、前記のように70オングストローム以下が好ま
しい。多重量子井戸構造では井戸層はInXGa1-XNで
構成し、障壁層は同じくInYGa1-YN(Y<X、この場
合Y=0を含む)で構成することが望ましい。特に好ま
しくは井戸層と障壁層をInGaNで形成すると同一温
度で成長できるので結晶性のよい活性層が得られる。障
壁層の膜厚は150オングストローム以下、さらに好ま
しくは120オングストローム以下にすると高出力な発
光素子が得られる。また、活性層5にドナー不純物およ
び/またはアクセプター不純物をドープしてもよい。不
純物をドープした活性層の結晶性がノンドープと同じで
あれば、ドナー不純物をドープするとノンドープのもの
に比べてバンド間発光強度をさらに強くすることができ
る。アクセプター不純物をドープするとバンド間発光の
ピーク波長よりも約0.5eV低エネルギー側にピーク
波長を持っていくことができるが、半値幅は広くなる。
アクセプター不純物とドナー不純物を同時にドープする
と、アクセプター不純物のみドープした活性層の発光強
度をさらに大きくすることができる。特にアクセプター
不純物をドープした活性層を実現する場合、活性層の導
電型はSi等のドナー不純物を同時にドープしてn型と
することが好ましい。活性層5は例えば数オングストロ
ーム〜0.5μmの膜厚で成長させることができる。但
し、活性層を単一量子井戸構造若しくは多重量子井戸構
造として、活性層を構成する窒化物半導体層の膜厚を薄
くするときはn型クラッド層4と活性層5との間にIn
を含むn型の窒化物半導体よりなる第二のn型クラッド
層40を形成することが望ましい。
The active layer 5 is made of InGaN, InAlGaN, A whose band gap energy is smaller than that of the cladding layer.
Any nitride semiconductor such as lGaN may be used, and in particular, InGaN in which the composition ratio of indium is appropriately changed according to a desired band gap is preferable. Further, the active layer 5 may have a multi-quantum well structure in which thin films are laminated by combining InGaN / GaN, InGaN / InGaN (having different compositions), for example. In the active layer having either a single quantum well structure or a multiple quantum well structure, the active layer may be either n-type or p-type. Luminescence or quantum well level luminescence is obtained, and LED
It is particularly preferable for realizing a device and an LD device. When the active layer has a single quantum well (SQW) structure or a multi-quantum well (MQW: multiquantum well) structure, a light emitting device having a very high output can be obtained. SQ
W and MQW refer to the structure of the active layer in which light emission between quantum levels by non-doped InGaN is obtained, and for example, SQW.
Then, the active layer is composed of a single composition of In X Ga 1-X N (0 ≦ X <1)
By making the film thickness of In X Ga 1-X N 100 angstroms or less, more preferably 70 angstroms or less, strong light emission between quantum levels can be obtained. MQW is In X Ga 1 -X N with different composition ratios.
A multilayer film is formed by laminating a plurality of thin films (including X = 0 and X = 1 in this case). Thus, by making the active layer SQW and MQW, light emission between quantum levels is about 365 nm to 660.
Emission up to nm is obtained. As described above, the thickness of the quantum well layer is preferably 70 Å or less. In the multiple quantum well structure, it is desirable that the well layer is made of In X Ga 1 -X N and the barrier layer is also made of In Y Ga 1 -Y N (Y <X, including Y = 0 in this case). Particularly preferably, when the well layer and the barrier layer are formed of InGaN, they can be grown at the same temperature, so that an active layer having good crystallinity can be obtained. When the thickness of the barrier layer is 150 angstroms or less, more preferably 120 angstroms or less, a high-power light emitting device can be obtained. Further, the active layer 5 may be doped with a donor impurity and / or an acceptor impurity. If the crystallinity of the impurity-doped active layer is the same as that of the non-doped one, doping with the donor impurity can further increase the interband emission intensity as compared with the non-doped one. Doping with an acceptor impurity can bring the peak wavelength to a low energy side of about 0.5 eV lower than the peak wavelength of band-to-band emission, but the full width at half maximum becomes wider.
When the acceptor impurity and the donor impurity are doped at the same time, the emission intensity of the active layer doped with only the acceptor impurity can be further increased. Particularly when realizing an active layer doped with an acceptor impurity, it is preferable that the conductivity type of the active layer be n-type by simultaneously doping with a donor impurity such as Si. The active layer 5 can be grown to have a film thickness of, for example, several angstroms to 0.5 μm. However, when the active layer has a single quantum well structure or a multiple quantum well structure to reduce the thickness of the nitride semiconductor layer forming the active layer, the In layer between the n-type cladding layer 4 and the active layer 5 is
It is preferable to form the second n-type cladding layer 40 made of an n-type nitride semiconductor containing

【0018】p型クラッド層6はGaN、AlGaN、
InAlGaN等を例えば500オングストローム〜
0.5μmの膜厚で成長させることが好ましく、その中
でもGaN、AlGaNを選択することにより結晶性の
良い層が得られる。なおこのp型クラッド層6を省略す
ることも可能である。
The p-type cladding layer 6 is composed of GaN, AlGaN,
InAlGaN or the like is, for example, 500 Å
It is preferable to grow the film with a thickness of 0.5 μm, and by selecting GaN or AlGaN among them, a layer with good crystallinity can be obtained. The p-type clad layer 6 can be omitted.

【0019】次に、本発明の特徴であるコンタクト層7
1、72について述べる。このコンタクト層71、72
は正電極9を形成して、正電極9と好ましいオーミック
接触を得る層であり完全なオーミックに近ければ近いほ
ど、発光素子のVfを低下させることができる。そのた
め、このコンタクト層は、正電極9に接する層をアクセ
プター不純物濃度が高い第一の窒化物半導体層である第
一のp型コンタクト層71と、その第一のp型コンタク
ト層よりもアクセプター不純物濃度が低い第二の窒化物
半導体である第二のp型コンタクト層72とで構成され
ている。
Next, the contact layer 7 which is a feature of the present invention.
1, 72 will be described. The contact layers 71, 72
Is a layer that forms the positive electrode 9 and obtains a preferable ohmic contact with the positive electrode 9. The closer to a perfect ohmic contact, the lower the Vf of the light emitting element can be. Therefore, in this contact layer, the layer in contact with the positive electrode 9 is the first p-type contact layer 71 which is the first nitride semiconductor layer having a high acceptor impurity concentration, and the acceptor impurity is higher than that of the first p-type contact layer. And a second p-type contact layer 72 which is a second nitride semiconductor having a low concentration.

【0020】第一のp型コンタクト層71、および第二
のp型コンタクト層72は同一組成の窒化物半導体で形
成することが望ましく、例えばGaN、AlGaN、I
nAlGaN等を成長させることができる。その中でも
GaNを選択することにより正電極9の材料と好ましい
オーミック接触を得ることができる。
The first p-type contact layer 71 and the second p-type contact layer 72 are preferably formed of a nitride semiconductor having the same composition, for example, GaN, AlGaN, I.
It is possible to grow nAlGaN or the like. By selecting GaN among them, preferable ohmic contact with the material of the positive electrode 9 can be obtained.

【0021】高濃度の第一のp型コンタクト層71のア
クセプター不純物濃度は1×1017〜5×1021/cm3
に調整することが望ましい。1×1017/cm3よりも低
いと、電極とオーミック接触を得ることが難しく、5×
1021/cm3よりも高いと不純物により窒化物半導体の
結晶性が悪くなり、Vfが高くなる傾向にある。
The high-concentration first p-type contact layer 71 has an acceptor impurity concentration of 1 × 10 17 to 5 × 10 21 / cm 3.
It is desirable to adjust to. If it is lower than 1 × 10 17 / cm 3 , it is difficult to obtain ohmic contact with the electrode.
When it is higher than 10 21 / cm 3, the crystallinity of the nitride semiconductor is deteriorated due to impurities, and Vf tends to be high.

【0022】一方、低濃度の第二のp型コンタクト層7
2のアクセプター不純物濃度は2×1015〜5×1020
/cm3の範囲に調整することが望ましい。2×1015/c
m3よりも低いと、p型としての抵抗が高くなるのでVf
が高くなる傾向にある。5×1020/cm3よりも高いと
高濃度の第一のp型コンタクト層71とのバランスが取
りにくく、Vfの向上があまり望めなくなる傾向にあ
る。
On the other hand, a low concentration second p-type contact layer 7
The acceptor impurity concentration of 2 is 2 × 10 15 to 5 × 10 20
It is desirable to adjust to the range of / cm 3 . 2 x 10 15 / c
If it is lower than m 3 , the resistance as p-type becomes high, so Vf
Tends to be higher. When it is higher than 5 × 10 20 / cm 3, it is difficult to balance with the high-concentration first p-type contact layer 71, and there is a tendency that improvement of Vf cannot be expected so much.

【0023】コンタクト層71、72のホールキャリア
濃度は前にも述べたように、窒化物半導体にドープする
アクセプター不純物の濃度を変化させるか、あるいはア
クセプター不純物をドープしたコンタクト層71、72
を、400℃以上でアニーリングすることにより調整で
きるが、正確な値を測定することは困難である。おおよ
その値としては、前記アクセプター不純物濃度で400
℃以上のアニールを行うことにより、例えばホールキャ
リア濃度およそ1×1016〜5×1019/cm3の第一の
p型コンタクト層71が得られ、同じくホールキャリア
濃度およそ1×1015〜1×1019/cm3の第二のp型
コンタクト層72が得られる。
As described above, the hole carrier concentration of the contact layers 71 and 72 changes the concentration of the acceptor impurities doped into the nitride semiconductor, or the contact layers 71 and 72 doped with the acceptor impurities.
Can be adjusted by annealing at 400 ° C. or higher, but it is difficult to measure an accurate value. Approximate value is 400 at the acceptor impurity concentration.
By performing the annealing at a temperature of not less than ° C, for example, the first p-type contact layer 71 having a hole carrier concentration of about 1 x 10 16 to 5 x 10 19 / cm 3 is obtained, and the hole carrier concentration of about 1 x 10 15 to 1 is obtained. A second p-type contact layer 72 of × 10 19 / cm 3 is obtained.

【0024】第一のp型コンタクト層71と好ましいオ
ーミックが得られる正電極9の材料としてはNiおよび
Auを含む金属を用いることができる。NiおよびAu
を含む正電極は特にp型GaNと好ましいオーミックを
得ることができる。
A metal containing Ni and Au can be used as the material of the positive electrode 9 that can obtain a preferable ohmic contact with the first p-type contact layer 71. Ni and Au
A positive electrode containing a can obtain a preferable ohmic contact with p-type GaN.

【0025】本発明の発光素子は例えばMOVPE(有
機金属気相成長法)、MBE(分子線気相成長法)、H
DVPE(ハイドライド気相成長法)等の気相成長法を
用いて、基板上にInaAlbGa1-a-bN(0≦a、0≦
b、a+b≦1)をn型、p型等の導電型で積層すること
によって得られる。n型の窒化物半導体はノンドープの
状態でも得られるが、Si、Ge、S等のドナー不純物
を結晶成長中に半導体層中に導入することによって得ら
れる。
The light emitting device of the present invention is, for example, MOVPE (metal organic chemical vapor deposition), MBE (molecular beam vapor deposition), H
In a Al b Ga 1 -ab N (0 ≦ a, 0 ≦ is formed on the substrate by using a vapor phase growth method such as DVPE (hydride vapor phase growth method).
It is obtained by stacking b, a + b ≦ 1) with conductivity types such as n-type and p-type. Although the n-type nitride semiconductor can be obtained in a non-doped state, it can be obtained by introducing a donor impurity such as Si, Ge, and S into the semiconductor layer during crystal growth.

【0026】一方、p型の窒化物半導体層はMg、Z
n、Cd、Ca、Be、C等のアクセプター不純物を同
じく結晶成長中に半導体層中に導入することにより得ら
れるが、前にも述べたように、アクセプター不純物導入
後400℃以上でアニーリングを行うことにより、さら
に好ましいp型が得られる。
On the other hand, the p-type nitride semiconductor layer is made of Mg, Z
Although it can be obtained by introducing acceptor impurities such as n, Cd, Ca, Be, and C into the semiconductor layer during crystal growth, as described above, annealing is performed at 400 ° C. or higher after the introduction of acceptor impurities. Thereby, a more preferable p-type is obtained.

【0027】次に図1の発光素子を具体的に述べる。以
下の実施例はMOVPE法による成長方法を示してい
る。
Next, the light emitting device of FIG. 1 will be specifically described. The following example shows a growth method by the MOVPE method.

【0028】まず、TMG(トリメチルガリウム)とN
3とを用い、反応容器にセットしたサファイア基板1
のC面に500℃でGaNよりなるバッファ層2を50
0オングストロームの膜厚で成長させる。
First, TMG (trimethylgallium) and N
Sapphire substrate 1 set in a reaction vessel using H 3
Of the GaN buffer layer 2 at 500 ° C. on the C surface of
It is grown to a film thickness of 0 angstrom.

【0029】次に温度を1050℃まで上げ、TMG、
NH3に加えシランガスを用い、Siドープn型GaN
よりなるn型コンタクト層23を4μmの膜厚で成長さ
せる。
Next, the temperature is raised to 1050 ° C. and TMG,
Si-doped n-type GaN using silane gas in addition to NH 3.
The n-type contact layer 23 is made to have a thickness of 4 μm.

【0030】続いて原料ガスにTMA(トリメチルアル
ミニウム)を加え、同じく1050℃でSiドープn型
Al0.3Ga0.7N層よりなるn型クラッド層4を0.1
μmの膜厚で成長させる。
Subsequently, TMA (trimethylaluminum) was added to the source gas, and the n-type cladding layer 4 made of Si-doped n-type Al0.3Ga0.7N layer was also formed at 0.150 ° C. to 0.1%.
Grow with a film thickness of μm.

【0031】次に温度を800℃に下げ、TMG、TM
I(トリメチルインジウム)、NH 3、シランガス、D
EZ(ジエチルジンク)を用い、Si+Znドープn型
In0.05Ga0.95Nよりなる活性層5を0.1μmの膜
厚で成長させる。
Next, the temperature is lowered to 800 ° C. and TMG, TM
I (trimethylindium), NH 3, Silane gas, D
Si + Zn-doped n-type using EZ (diethyl zinc)
The active layer 5 made of In0.05Ga0.95N has a thickness of 0.1 μm.
Grow thick.

【0032】次に温度を1050℃に上げ、TMG、T
MA、NH3、Cp2Mg(シクロペンタジエニルマグネ
シウム)を用い、Mgドープp型Al0.3Ga0.7Nより
なるp型クラッド層6を0.1μmの膜厚で成長させ
る。
Next, the temperature is raised to 1050 ° C. and TMG, T
A p-type clad layer 6 made of Mg-doped p-type Al0.3Ga0.7N is grown to a thickness of 0.1 μm using MA, NH 3 , and Cp2Mg (cyclopentadienylmagnesium).

【0033】次に1050℃でTMG、NH3、Cp2M
gを用い、Mgドープp型GaNよりなる第二のp型コ
ンタクト層72を0.5μmの膜厚で成長させる。なお
この第二のp型コンタクト層のMg濃度は1×1018
cm3であった。
Next, at 1050 ° C., TMG, NH 3 , Cp2M
Using g, a second p-type contact layer 72 made of Mg-doped p-type GaN is grown to a thickness of 0.5 μm. The Mg concentration of this second p-type contact layer was 1 × 10 18 /
It was cm 3.

【0034】続いて1050℃でCp2Mgの流量を多
くして、Mgドープp型GaNよりなる第一のp型コン
タクト層71を200オングストロームの膜厚で成長さ
せる。なおこの第一のp型コンタクト層71のMg濃度
は2×1019/cm3であった。
Subsequently, the flow rate of Cp 2 Mg is increased at 1050 ° C. to grow the first p-type contact layer 71 made of Mg-doped p-type GaN with a film thickness of 200 Å. The Mg concentration of the first p-type contact layer 71 was 2 × 10 19 / cm 3 .

【0035】反応終了後、温度を室温まで下げてウェー
ハを反応容器から取り出し、700℃でウェーハのアニ
ーリングを行い、p型層をさらに低抵抗化する。次に最
上層のp型コンタクト層7の表面に所定の形状のマスク
を形成し、n型コンタクト層3の表面が露出するまでエ
ッチングする。エッチング後、n型コンタクト層3の表
面にTiとAlよりなる負電極8、第一のp型コンタク
ト層71の表面にNiとAuよりなる正電極9を形成す
る。電極形成後、ウェーハを350μm角のチップに分
離した後、LED素子とした。このLED素子はIf2
0mAで、Vf3.1V、発光ピーク波長450nm、
半値幅70nmの青色発光を示し、発光出力は3mWで
あった。
After the reaction is completed, the temperature is lowered to room temperature, the wafer is taken out from the reaction container, and the wafer is annealed at 700 ° C. to further reduce the resistance of the p-type layer. Next, a mask having a predetermined shape is formed on the surface of the uppermost p-type contact layer 7, and etching is performed until the surface of the n-type contact layer 3 is exposed. After etching, the negative electrode 8 made of Ti and Al is formed on the surface of the n-type contact layer 3, and the positive electrode 9 made of Ni and Au is formed on the surface of the first p-type contact layer 71. After the electrodes were formed, the wafer was separated into chips of 350 μm square to obtain LED elements. This LED element is If2
At 0 mA, Vf3.1 V, emission peak wavelength 450 nm,
Blue light emission with a half-value width of 70 nm was exhibited, and the emission output was 3 mW.

【0036】[実施例2]実施例1において第一のp型
コンタクト層71の膜厚を500オングストロームとす
る他は同様にして発光素子を得たところ、If20mA
において、Vf3.2V、発光出力はほぼ同一であっ
た。
[Embodiment 2] A light emitting device was obtained in the same manner as in Embodiment 1 except that the thickness of the first p-type contact layer 71 was 500 angstroms.
In Vf3.2V, the light emission output was almost the same.

【0037】[実施例3]実施例1において第一のp型
コンタクト層71の膜厚を0.1μmとする他は同様に
して発光素子を得たところ、If20mAにおいて、V
fが3.3V、発光出力2.9mWであった。
[Embodiment 3] A light emitting device was obtained in the same manner as in Embodiment 1 except that the thickness of the first p-type contact layer 71 was 0.1 μm.
f was 3.3 V and the light emission output was 2.9 mW.

【0038】[実施例4]実施例1において第一のp型
コンタクト層71の膜厚を0.3μmとする他は同様に
して発光素子を得たところ、If20mAにおいてVf
は3.7Vとなり、発光出力は2.8mWであった。
[Embodiment 4] A light emitting device was obtained in the same manner as in Embodiment 1 except that the film thickness of the first p-type contact layer 71 was 0.3 μm. Vf at If 20 mA was obtained.
Was 3.7 V, and the emission output was 2.8 mW.

【0039】[実施例5]実施例1において、第二のp
型コンタクト層72のMg濃度を5×1017/cm 3
し、第一のp型コンタクト層71のMg濃度を1×10
19/cm3とする他は、同様にしてLED素子を得たとこ
ろ、実施例1とほぼ同一の特性を示した。
[Embodiment 5] In Embodiment 1, the second p
The Mg concentration of the mold contact layer 72 is 5 × 1017/cm 3When
Then, the Mg concentration of the first p-type contact layer 71 is set to 1 × 10.
19/cm3The LED element was obtained in the same manner except that
In fact, it showed almost the same characteristics as in Example 1.

【0040】[実施例6]図3は実施例5に係る発光素
子の構造を示す模式的な断面図である。この発光素子が
図1の発光素子と異なるところは、n型クラッド層4と
活性層5との間に新たなバッファ層としてInを含むn
型の窒化物半導体よりなる第二のn型クラッド層40を
形成しているところである。この第二のクラッド層40
は10オングストローム以上、0.1μm以下の膜厚で
形成することが望ましく、さらに第二のn型クラッド層
40と活性層5の膜厚を300オングストローム以上に
すると、Inを含む第一のn型クラッド層40とInを
含む活性層5とがバッファ層として作用し、n型クラッ
ド層4、p型クラッド層6にクラックが入らず結晶性良
く成長できる。さらに、この第二のn型クラッド層40
を成長させることにより、不純物をドープしない量子構
造の活性層が実現でき、半値幅が狭く、出力の高い発光
を得ることができる。なおこの第二のn型クラッド層4
0はGaNでもよい。
[Embodiment 6] FIG. 3 is a schematic sectional view showing the structure of a light emitting device according to Embodiment 5. The difference between this light emitting device and the light emitting device of FIG. 1 is that n containing In is added as a new buffer layer between the n-type cladding layer 4 and the active layer 5.
The second n-type clad layer 40 made of a positive type nitride semiconductor is being formed. This second cladding layer 40
Is preferably formed to have a film thickness of 10 angstroms or more and 0.1 μm or less. Further, when the film thickness of the second n-type cladding layer 40 and the active layer 5 is 300 angstroms or more, the first n-type containing In is formed. The clad layer 40 and the active layer 5 containing In act as a buffer layer, and the n-type clad layer 4 and the p-type clad layer 6 can be grown with good crystallinity without cracks. Furthermore, this second n-type cladding layer 40
Growth of the active layer having a quantum structure in which no impurity is doped can be realized, and the full width at half maximum can be narrowed and high-power emission can be obtained. The second n-type cladding layer 4
0 may be GaN.

【0041】この第二のn型クラッド層40は、活性層
5とAlとGaとを含むn型クラッド層4との間のバッ
ファ層として作用する。つまりInとGaとを含む第二
のn型クラッド層40が結晶の性質として柔らかい性質
を有しているので、AlとGaとを含むn型クラッド層
4と活性層5との格子定数不整と熱膨張係数差によって
生じる歪を吸収する働きがある。従って活性層を単一量
子井戸構造、若しくは多重量子井戸構造として、活性層
を構成する窒化物半導体層の膜厚を薄くしても、活性層
5、n型クラッド層4にクラックが入らないので、活性
層が弾性的に変形し、活性層の結晶欠陥が少なくなる。
つまり活性層を量子井戸構造としたことにより、活性層
の結晶性が良くなるので発光出力が増大する。さらに、
活性層を量子井戸構造とすると、量子効果および励起子
効果により発光出力が増大する。言い換えると、従来の
発光素子では活性層の膜厚を例えば1000オングスト
ローム以上と厚くすることにより、クラッド層、活性層
にクラックが入るのを防止していた。しかしながら活性
層には常に熱膨張係数差、格子不整による歪が係ってお
り、従来の発光素子では活性層の厚さが弾性的に変形可
能な臨界膜厚を超えているので、弾性的に変形すること
ができず、活性層中に多数の結晶欠陥を生じ、バンド間
発光ではあまり光らない。この第二のn型クラッド層4
0を形成することにより、活性層が量子構造の状態にお
いて、発光素子の発光出力を飛躍的に向上させることが
可能である。
The second n-type cladding layer 40 acts as a buffer layer between the active layer 5 and the n-type cladding layer 4 containing Al and Ga. That is, since the second n-type cladding layer 40 containing In and Ga has a soft crystal property, the lattice constant mismatch between the n-type cladding layer 4 containing Al and Ga and the active layer 5 is caused. It has the function of absorbing the strain caused by the difference in thermal expansion coefficient. Therefore, even if the active layer has a single quantum well structure or a multiple quantum well structure and the thickness of the nitride semiconductor layer forming the active layer is reduced, cracks do not occur in the active layer 5 and the n-type cladding layer 4. The active layer is elastically deformed, and the crystal defects in the active layer are reduced.
That is, since the active layer has the quantum well structure, the crystallinity of the active layer is improved, and the light emission output is increased. further,
When the active layer has a quantum well structure, the light emission output increases due to the quantum effect and the exciton effect. In other words, in the conventional light emitting device, the thickness of the active layer is increased to, for example, 1000 angstroms or more to prevent cracks from forming in the cladding layer and the active layer. However, the active layer is always affected by the difference in coefficient of thermal expansion and strain due to lattice misalignment, and in conventional light emitting devices, the thickness of the active layer exceeds the elastically deformable critical film thickness. It cannot be deformed, many crystal defects are generated in the active layer, and the band-to-band emission does not emit much. This second n-type cladding layer 4
By forming 0, it is possible to dramatically improve the light emission output of the light emitting element when the active layer has a quantum structure.

【0042】具体的には、実施例1においてn型クラッ
ド層4を成長させた後、温度を800℃に下げ、TM
G、TMI(トリメチルインジウム)、NH3、シラン
ガスを用い、Siドープn型In0.01Ga0.99Nよりな
る第二のn型クラッド層40を500オングストローム
の膜厚で成長させる。
Specifically, after growing the n-type cladding layer 4 in Example 1, the temperature was lowered to 800 ° C.
A second n-type cladding layer 40 made of Si-doped n-type In0.01Ga0.99N is grown to a thickness of 500 Å using G, TMI (trimethylindium), NH 3 , and silane gas.

【0043】続いてTMG、TMI、NH3を用い80
0℃でノンドープn型In0.05Ga0.95Nよりなる活性
層5を80オングストロームの膜厚で成長させる。後は
実施例1と同様にして、p型クラッド層6、第二のp型
コンタクト層72、第一のp型コンタクト層71を成長
させてLED素子としたところ、このLED素子は、I
f20mAでVf3.1V、発光ピーク波長400nm
の青色発光を示し、発光出力は12mWであった。さら
に、発光スペクトルの半値幅は20nmであり、非常に
色純度の良い発光を示した。
Then, using TMG, TMI, and NH 3 , 80
An active layer 5 made of non-doped n-type In0.05Ga0.95N is grown to a thickness of 80 Å at 0 ° C. After that, when the p-type clad layer 6, the second p-type contact layer 72, and the first p-type contact layer 71 were grown into LED elements in the same manner as in Example 1, the LED elements were
Vf3.1V at f20mA, emission peak wavelength 400nm
Blue emission was exhibited, and the emission output was 12 mW. Further, the full width at half maximum of the emission spectrum was 20 nm, and the emission showed very good color purity.

【0044】[実施例7]実施例6において、活性層5
の組成をノンドープIn0.05Ga0.95Nよりなる井戸層
を25オングストロームと、ノンドープIn0.01Ga0.
99Nよりなる障壁層を50オングストロームの膜厚で成
長させる。この操作を26回繰り返し、最後に井戸層を
積層して総厚約2000オングストロームの活性層6を
成長させた。後は実施例6と同様にして、LED素子と
したところ、このLED素子も、If20mAでVf
3.1V、発光ピーク波長400nmの青色発光を示
し、発光出力は12mWであった。さらに、発光スペク
トルの半値幅は20nmであり、非常に色純度の良い発
光を示した。
[Embodiment 7] In Embodiment 6, the active layer 5 is used.
The composition of the non-doped In0.05Ga0.95N is 25 angstroms for the well layer and the non-doped In0.01Ga0.
A barrier layer of 99N is grown to a thickness of 50 Å. This operation was repeated 26 times, and finally well layers were laminated to grow the active layer 6 having a total thickness of about 2000 angstroms. After that, when an LED element was formed in the same manner as in Example 6, this LED element also showed Vf at If 20 mA.
It exhibited blue light emission with an emission peak wavelength of 400 nm at 3.1 V and an emission output of 12 mW. Further, the full width at half maximum of the emission spectrum was 20 nm, and the emission showed very good color purity.

【0045】[0045]

【発明の効果】以上説明したように、本発明の発光素子
はダブルへテロ構造の発光素子において、正電極を形成
するp型層を高アクセプター不純物濃度の第一のp型層
と、低不純物濃度の第二のp型層とすることにより、V
fを低下させることができるので発光効率が向上する。
従ってLEDを大量に用いた大型ディスプレイ、屋外広
告板等を実現した際には消費電力の少ないデバイスを実
現でき、その産業上の利用価値は大きい。
As described above, in the light emitting device of the present invention, in the light emitting device having the double hetero structure, the p-type layer forming the positive electrode is the first p-type layer having a high acceptor impurity concentration and the low impurity content. By setting the concentration of the second p-type layer, V
Since f can be reduced, the luminous efficiency is improved.
Therefore, when a large display using a large amount of LEDs, an outdoor advertising board, etc. are realized, a device with low power consumption can be realized, and its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic cross-sectional view showing the structure of a light emitting device according to an embodiment of the invention.

【図2】 従来の発光素子の構造を示す模式断面図。FIG. 2 is a schematic cross-sectional view showing the structure of a conventional light emitting element.

【図3】 本発明の他の実施例に係る発光素子の構造を
示す模式断面図。
FIG. 3 is a schematic cross-sectional view showing the structure of a light emitting device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・基板 2・・・・バッファ層 3・・・・n型コンタクト層 4・・・・n型クラッド層 5・・・・活性層 6・・・・p型クラッド層 72・・・・第二のp型コンタクト層 71・・・・第一のp型コンタクト層 8・・・・負電極 9・・・・正電極 1 ... Substrate 2 ... Buffer layer 3 ... N-type contact layer 4 ... N-type clad layer 5 ... Active layer 6 ... P-type clad layer 72 ...・ ・ Second p-type contact layer 71 ・ ・ ・ ・ First p-type contact layer 8 ・ ・ ・ ・ Negative electrode 9 ・ ・ ・ ・ Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型窒化物半導体層とp型窒化物半導体
層との間に発光する活性層を有し、p型窒化物半導体層
表面に正電極が形成されてなる窒化物半導体発光素子に
おいて、前記p型窒化物半導体層は正電極と接する側か
ら順にアクセプター不純物濃度の高い第一のp型窒化物
半導体層と、第一のp型窒化物半導体層よりもアクセプ
ター不純物濃度の低い第二のp型窒化物半導体層とを含
むことを特徴とする窒化物半導体発光素子。
1. A nitride semiconductor light emitting device having an active layer for emitting light between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer, and a positive electrode formed on the surface of the p-type nitride semiconductor layer. In the first p-type nitride semiconductor layer, the first p-type nitride semiconductor layer having a high acceptor impurity concentration in order from the side in contact with the positive electrode, and the first p-type nitride semiconductor layer having a lower acceptor impurity concentration than the first p-type nitride semiconductor layer. And a second p-type nitride semiconductor layer.
【請求項2】 前記第一のp型窒化物半導体層の膜厚が
0.1μm以下であることを特徴とする請求項1に記載
の窒化物半導体発光素子。
2. The nitride semiconductor light emitting device according to claim 1, wherein the film thickness of the first p-type nitride semiconductor layer is 0.1 μm or less.
【請求項3】 前記正電極がニッケルおよび金を含むこ
とを特徴とする請求項1または請求項2に記載の窒化物
半導体発光素子。
3. The nitride semiconductor light emitting device according to claim 1, wherein the positive electrode contains nickel and gold.
JP31784495A 1995-03-29 1995-12-06 Nitride semiconductor light emitting device Expired - Fee Related JP3250438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784495A JP3250438B2 (en) 1995-03-29 1995-12-06 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-70989 1995-03-29
JP7098995 1995-03-29
JP31784495A JP3250438B2 (en) 1995-03-29 1995-12-06 Nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001238146A Division JP3890930B2 (en) 1995-03-29 2001-08-06 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH08330629A true JPH08330629A (en) 1996-12-13
JP3250438B2 JP3250438B2 (en) 2002-01-28

Family

ID=26412100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784495A Expired - Fee Related JP3250438B2 (en) 1995-03-29 1995-12-06 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3250438B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174563A (en) * 1997-06-16 1999-03-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor, semiconductor device and semiconductor substrate
WO1999046822A1 (en) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6057565A (en) * 1996-09-26 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
JP2002151798A (en) * 1997-02-17 2002-05-24 Nichia Chem Ind Ltd Nitride semiconductor element
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
US6657300B2 (en) 1998-06-05 2003-12-02 Lumileds Lighting U.S., Llc Formation of ohmic contacts in III-nitride light emitting devices
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
WO2005106979A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element
US6984840B2 (en) 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US7098484B2 (en) 2002-07-08 2006-08-29 Sumitomo Chemical Company Limited Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
CN100426545C (en) * 1998-03-12 2008-10-15 日亚化学工业株式会社 Nitride semiconductor device
US7511311B2 (en) 2002-08-01 2009-03-31 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
EP2053668A2 (en) 2007-06-21 2009-04-29 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light-emitting device
JP2009152644A (en) * 1998-05-08 2009-07-09 Samsung Electronics Co Ltd Method of activating compound semiconductor thin film into p-type one
US8945960B2 (en) 2012-06-12 2015-02-03 Disco Corporation Optical device processing method
US8945963B2 (en) 2012-06-12 2015-02-03 Disco Corporation Optical device processing method
JP2015092634A (en) * 2012-03-13 2015-05-14 台積固態照明股▲ふん▼有限公司 Light-emitting device and method for manufacturing the same
US9379523B2 (en) 2014-03-10 2016-06-28 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor device, p-type contact structure, and method for fabricating group III nitride semiconductor device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200908393A (en) 2007-06-15 2009-02-16 Rohm Co Ltd Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
EP2544220A4 (en) 2010-03-05 2015-12-02 Namiki Precision Jewel Co Ltd Single crystal substrate, production method for single crystal substrate, production method for single crystal substrate with multilayer film, and device production method
JP2011201759A (en) 2010-03-05 2011-10-13 Namiki Precision Jewel Co Ltd Single crystal substrate with multilayer film, production method for single crystal substrate with multilayer film, and device production method
TWI508327B (en) 2010-03-05 2015-11-11 Namiki Precision Jewel Co Ltd An internal modified substrate for epitaxial growth, a multilayer film internal modified substrate, a semiconductor device, a semiconductor bulk substrate, and the like
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133058A (en) * 1994-07-21 2000-10-17 Matsushita Electric Industrial Co., Ltd. Fabrication of semiconductor light-emitting device
US6057565A (en) * 1996-09-26 2000-05-02 Kabushiki Kaisha Toshiba Semiconductor light emitting device including a non-stoichiometric compound layer and manufacturing method thereof
JP2002151798A (en) * 1997-02-17 2002-05-24 Nichia Chem Ind Ltd Nitride semiconductor element
JPH1174563A (en) * 1997-06-16 1999-03-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor, semiconductor device and semiconductor substrate
US7193246B1 (en) 1998-03-12 2007-03-20 Nichia Corporation Nitride semiconductor device
WO1999046822A1 (en) * 1998-03-12 1999-09-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US7947994B2 (en) 1998-03-12 2011-05-24 Nichia Corporation Nitride semiconductor device
CN100446289C (en) * 1998-03-12 2008-12-24 日亚化学工业株式会社 Nitride semiconductor device
CN100426545C (en) * 1998-03-12 2008-10-15 日亚化学工业株式会社 Nitride semiconductor device
US7402838B2 (en) 1998-03-12 2008-07-22 Nichia Corporation Nitride semiconductor device
JP2009152644A (en) * 1998-05-08 2009-07-09 Samsung Electronics Co Ltd Method of activating compound semiconductor thin film into p-type one
US6984840B2 (en) 1998-05-18 2006-01-10 Fujitsu Limited Optical semiconductor device having an epitaxial layer of III-V compound semiconductor material containing N as a group V element
US6914272B2 (en) 1998-06-05 2005-07-05 Lumileds Lighting U.S., Llc Formation of Ohmic contacts in III-nitride light emitting devices
US7345323B2 (en) 1998-06-05 2008-03-18 Philips Lumileds Lighting Company Llc Formation of Ohmic contacts in III-nitride light emitting devices
US6657300B2 (en) 1998-06-05 2003-12-02 Lumileds Lighting U.S., Llc Formation of ohmic contacts in III-nitride light emitting devices
US6838705B1 (en) 1999-03-29 2005-01-04 Nichia Corporation Nitride semiconductor device
US7348602B2 (en) 1999-03-29 2008-03-25 Nichia Corporation Nitride semiconductor device
CN1312784C (en) * 1999-03-29 2007-04-25 日亚化学工业株式会社 Nitride semiconductor device
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
US7459326B2 (en) 2002-07-08 2008-12-02 Sumitomo Chemical Company Limited Method for producing and epitaxial substrate for compound semiconductor light-emitting device
US7098484B2 (en) 2002-07-08 2006-08-29 Sumitomo Chemical Company Limited Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device
US8330179B2 (en) 2002-08-01 2012-12-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US7511311B2 (en) 2002-08-01 2009-03-31 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8742438B2 (en) 2002-08-01 2014-06-03 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US8035118B2 (en) 2002-08-01 2011-10-11 Nichia Corporation Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
US7345297B2 (en) 2004-02-09 2008-03-18 Nichia Corporation Nitride semiconductor device
WO2005106979A1 (en) * 2004-04-28 2005-11-10 Mitsubishi Cable Industries, Ltd. Nitride semiconductor light emitting element
EP2053668A2 (en) 2007-06-21 2009-04-29 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light-emitting device
US8829545B2 (en) 2007-06-21 2014-09-09 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor light-emitting device
JP2015092634A (en) * 2012-03-13 2015-05-14 台積固態照明股▲ふん▼有限公司 Light-emitting device and method for manufacturing the same
US8945960B2 (en) 2012-06-12 2015-02-03 Disco Corporation Optical device processing method
US8945963B2 (en) 2012-06-12 2015-02-03 Disco Corporation Optical device processing method
US9379523B2 (en) 2014-03-10 2016-06-28 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor device, p-type contact structure, and method for fabricating group III nitride semiconductor device

Also Published As

Publication number Publication date
JP3250438B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3551101B2 (en) Nitride semiconductor device
JP3656456B2 (en) Nitride semiconductor device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP3135041B2 (en) Nitride semiconductor light emitting device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
WO2013015035A1 (en) Semiconductor light-emitting element
JPH08228025A (en) Nitride semiconductor light emitting element
JPH06177423A (en) Blue light emitting element
JP2780691B2 (en) Nitride semiconductor light emitting device
JPH07162038A (en) Gallium nitride compound semiconductor light emitting diode
JP3620292B2 (en) Nitride semiconductor device
JP4815732B2 (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device
JP3314671B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees