JP3135041B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device

Info

Publication number
JP3135041B2
JP3135041B2 JP31784995A JP31784995A JP3135041B2 JP 3135041 B2 JP3135041 B2 JP 3135041B2 JP 31784995 A JP31784995 A JP 31784995A JP 31784995 A JP31784995 A JP 31784995A JP 3135041 B2 JP3135041 B2 JP 3135041B2
Authority
JP
Japan
Prior art keywords
layer
type
thickness
led
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31784995A
Other languages
Japanese (ja)
Other versions
JPH09153642A (en
Inventor
成人 岩佐
慎一 長濱
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP31784995A priority Critical patent/JP3135041B2/en
Publication of JPH09153642A publication Critical patent/JPH09153642A/en
Application granted granted Critical
Publication of JP3135041B2 publication Critical patent/JP3135041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化物半導体(InX
YGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなるL
ED素子に関する。
The present invention relates to a nitride semiconductor (In XA).
L consisting of l Y Ga 1 -XYN , 0 ≦ X, 0 ≦ Y, X + Y ≦ 1)
It relates to an ED element.

【0002】[0002]

【従来の技術】可視LEDには、従来より赤色LEDと
黄緑色LEDとが実用化されていたが、最近、窒化物半
導体で青色LED、青緑色LEDが開発されたことによ
り、初めてB、G、R3色を用いたフルカラーLEDデ
ィスプレイが出現した。
2. Description of the Related Art Conventionally, red LEDs and yellow-green LEDs have been put into practical use as visible LEDs, but recently blue and blue-green LEDs have been developed as nitride semiconductors. , Full color LED displays using R3 colors have emerged.

【0003】しかし、今の緑色LEDは発光波長が56
0nm付近の黄緑色領域にあり、520nm付近の純緑
色のLEDではないため色再現領域が狭い。しかも青色
LED、赤色LEDの明るさに対して、1/10以下し
かないため、ホワイトバランスを取るためには黄緑色L
EDの数を増やさなければならないと言う欠点があっ
た。これを解決するには最低でも光度2cd以上の純緑
色LEDが必要である。
However, the current green LED has an emission wavelength of 56
The color reproduction area is narrow because it is not a yellowish green area near 0 nm and a pure green LED near 520 nm. In addition, since the brightness of the blue LED and the red LED is only 1/10 or less, the yellow-green L
There was a disadvantage that the number of EDs had to be increased. To solve this, a pure green LED having a luminous intensity of at least 2 cd is required.

【0004】我々はその問題を解決できる純緑色に発光
する高輝度なLEDを開発し、既に発表した{Jpn.J.Ap
pl.Phys. Vol.34 (1995) pp.L797-L799}。図2にそのL
EDの構造を示す。21はサファイアよりなる基板、2
2は膜厚30nmのGaNよりなるバッファ層、23は
4μm厚のSiドープn型GaN層、24は0.1μm
厚のSiドープn型Al0.1Ga0.9N層、25は50n
m厚のSiドープn型In0.05Ga0.95N層、26は2
nm厚のノンドープIn0.43Ga0.57N活性層、27は
0.1μm厚のMgドープp型Al0.1Ga0.9N層、2
8は0.5μm厚のMgドープp型GaN層である。こ
のLEDは単一量子井戸(SQW)構造の活性層を有し
ており、順方向電流20mAにおいて、主発光波長52
5nm、発光出力1mW、指向角10゜のレンズ形状を
有する樹脂でモールドした際の光度は4cdである。こ
のLEDが開発されたことにより、G、B、R各一個ず
つで一画素が構成でき、色再現領域が広いディスプレイ
が実現できるようになった。
[0004] We have developed a high-brightness LED that emits pure green light that can solve the problem, and has already announced {Jpn.J.Ap
pl.Phys. Vol.34 (1995) pp.L797-L799}. FIG.
1 shows the structure of an ED. 21 is a substrate made of sapphire, 2
2 is a buffer layer of GaN having a thickness of 30 nm, 23 is a Si-doped n-type GaN layer having a thickness of 4 μm, and 24 is 0.1 μm
Thick Si-doped n-type Al0.1Ga0.9N layer, 25 is 50n
m-thick Si-doped n-type In0.05Ga0.95N layer;
a non-doped In0.43Ga0.57N active layer having a thickness of nm; an Mg-doped p-type Al0.1Ga0.9N layer having a thickness of 0.1 .mu.m;
8 is a Mg-doped p-type GaN layer having a thickness of 0.5 μm. This LED has an active layer of a single quantum well (SQW) structure and has a main emission wavelength of 52 mA at a forward current of 20 mA.
The luminous intensity when molded with a resin having a lens shape with a wavelength of 5 nm, an emission output of 1 mW, and a directional angle of 10 ° is 4 cd. With the development of this LED, one pixel can be constituted by each of G, B, and R, and a display having a wide color reproduction area can be realized.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記構
造のLEDは複雑な積層構造を有しているので、窒化物
半導体の成長工程が煩雑である。従って本発明の目的と
するところは、最小限の窒化物半導体の積層構造で、高
輝度なLED等の発光素子を実現することにある。
However, since the LED having the above-mentioned structure has a complicated laminated structure, the growth process of the nitride semiconductor is complicated. Therefore, an object of the present invention is to realize a high-luminance light-emitting element such as an LED with a minimum nitride semiconductor laminated structure.

【0006】[0006]

【課題を解決するための手段】本発明の窒化物半導体L
EDは、基板上に、少なくともn型GaNからなるコン
タクト層を兼ねたクラッド層と、7nm以下の膜厚を有
するノンドープのInXGa1-XN(0<X<1)井戸層
を含む単一量子井戸構造、または7nm以下の膜厚を有
するノンドープのInXGa1-XN(0<X<1)井戸層
とノンドープのInYGa1-YN(Y<X、Y=0を含
む)障壁層とからなる多重量子井戸構造の活性層と、膜
厚1nm以上、0.5μm以下のp型AlYGa1-Y
(0<Y<1)からなるp型クラッド層と、p型GaN
からなるp型コンタクト層との積層構造を有することを
特徴とする。なお、本発明において、InGaN、Al
GaN、GaN等は必ずしも三元混晶のみ、二元混晶の
みの窒化物半導体を指すのではなく、例えばInGaN
ではInGaNの作用を変化させない範囲で微量のA
l、その他の不純物を含んでいても本発明の範囲内であ
ることは云うまでもない。
SUMMARY OF THE INVENTION A nitride semiconductor L of the present invention
The ED includes a substrate including a cladding layer serving also as a contact layer made of at least n-type GaN and a non-doped In x Ga 1 -xN (0 <X <1) well layer having a thickness of 7 nm or less on a substrate. A single quantum well structure or a non-doped In x Ga 1-x N (0 <X <1) well layer having a thickness of 7 nm or less and a non - doped In Y Ga 1-Y N (Y <X, Y = 0 An active layer having a multiple quantum well structure comprising a barrier layer and a p-type Al Y Ga 1-Y N film having a thickness of 1 nm or more and 0.5 μm or less.
A p-type cladding layer composed of (0 <Y <1) and a p-type GaN
Characterized by having a laminated structure with a p-type contact layer made of In the present invention, InGaN, Al
GaN, GaN and the like do not necessarily indicate a nitride semiconductor consisting of only a ternary mixed crystal or only a binary mixed crystal.
In this case, a small amount of A within the range that does not change the action of InGaN
1, it goes without saying that even if other impurities are included, they are within the scope of the present invention.

【0007】[0007]

【0008】図1に本発明のLED素子の構造を示す模
式断面図を示す。この図において、11は基板、12は
バッファ層、13はn型InaAlbGa1-a-bN(0≦
a、0≦b、a+b≦1)よりなるクラッド層、兼n型コン
タクト層、16は単一量子井戸若しくは多重量子井戸構
造を有するInXGa1-XN(0≦X<1)よりなる活性
層、17はp型AlYGa1-YN(0≦Y<1)よりなる
p型クラッド層、18はp型GaNよりなるp型コンタ
クト層である。
FIG. 1 is a schematic sectional view showing the structure of the LED element of the present invention. In this figure, 11 is a substrate, 12 denotes a buffer layer, 13 n-type In a Al b Ga 1-ab N (0 ≦
The cladding layer composed of a, 0 ≦ b, a + b ≦ 1) and the n-type contact layer, 16 is composed of In x Ga 1 -xN (0 ≦ X <1) having a single quantum well or multiple quantum well structure. An active layer 17 is a p - type cladding layer made of p-type Al Y Ga 1 -YN (0 ≦ Y <1), and 18 is a p-type contact layer made of p-type GaN.

【0009】基板11にはサファイア(Al23、A
面、R面、C面を含む)の他、スピネル(MgAl
24)、SiC(6H、4H、3Cを含む)、ZnS、
ZnO、GaAs、GaN等窒化物半導体を成長するた
めに提案されている従来の材料が使用できる。
Sapphire (Al 2 O 3 , A
Plane, R plane, and C plane), as well as spinel (MgAl
2 O 4 ), SiC (including 6H, 4H, 3C), ZnS,
Conventional materials proposed for growing nitride semiconductors such as ZnO, GaAs, and GaN can be used.

【0010】バッファ層12は例えばGaN、AlN、
GaAlN、SiC等が知られており、基板と窒化物半
導体との格子不整合を緩和するために、通常およそ5n
m〜1μmの膜厚で成長される。例えば、特公昭59−
48794号、特公平4−15200号公報にはAlN
をバッファ層とする方法が記載され、特開昭60−17
3829号、特開平4−297023号公報にはGaN
をバッファ層とする方法が記載されている。また特に窒
化物半導体と格子定数の近い基板、格子定数が一致した
基板を用いる場合にはバッファ層が形成されない場合も
ある。
The buffer layer 12 is made of, for example, GaN, AlN,
GaAlN, SiC and the like are known, and are usually about 5 n in order to reduce lattice mismatch between the substrate and the nitride semiconductor.
It is grown to a thickness of m to 1 μm. For example,
No. 48794 and Japanese Patent Publication No. 4-15200 disclose AlN
Is described as a buffer layer.
No. 3829 and Japanese Unexamined Patent Publication No.
Is described as a buffer layer. In particular, when a substrate having a lattice constant close to that of a nitride semiconductor or a substrate having the same lattice constant is used, the buffer layer may not be formed in some cases.

【0011】次に本発明の特徴である積層構造について
述べる。n型クラッド層13はIn aAlbGa1-a-b
(0≦a、0≦b、a+b≦1)で表される窒化物半導体で
あれば、どのような組成としても良いが、特に好ましく
はGaN、a値が0.5以下のInaGa1-aN、またはb
値が0.5以下のAlbGa1-bNとすることが望まし
い。なぜなら、図1に示すように、n型クラッド層13
をn電極を形成するためのコンタクト層として兼用する
際に、ある程度の膜厚を必要とする。前記窒化物半導体
は例えば1μm以上の膜厚で成長させても、結晶性の良
いものが得られるので、コンタクト層としてもn電極と
良好なオーミックが得られる。しかも結晶性の良いn型
クラッド層の上に次の活性層、p型クラッド層等を積層
しないと出力の高いLED素子を得ることは難しいから
である。n型クラッド層の膜厚は特に限定するものでは
ないが、前記のようにコンタクト層として兼用するため
には、0.5μm〜5μm程度の膜厚で成長させること
が望ましい。なお、窒化物半導体はノンドープでも結晶
中にできる窒素空孔のためにn型となる性質があるが、
通常Si、Ge、Se等のドナー不純物を結晶成長中に
ドープすることにキャリア濃度の高い好ましいn型とす
ることができる。
Next, a laminated structure which is a feature of the present invention will be described.
State. The n-type cladding layer 13 is made of In aAlbGa1-abN
(0 ≦ a, 0 ≦ b, a + b ≦ 1)
Any composition is acceptable, but particularly preferred
Is GaN, and In value is 0.5 or less.aGa1-aN or b
Al with a value of 0.5 or lessbGa1-bIt is desirable to be N
No. This is because, as shown in FIG.
As a contact layer for forming an n-electrode
In this case, a certain thickness is required. The nitride semiconductor
Has good crystallinity even when grown to a thickness of, for example, 1 μm or more.
The contact layer can also be used as an n-electrode
Good ohmic is obtained. And n-type with good crystallinity
The next active layer, p-type cladding layer, etc. are laminated on the cladding layer
Otherwise, it is difficult to obtain high output LED elements
It is. The thickness of the n-type cladding layer is not particularly limited.
No, but as described above, it is also used as a contact layer
Is to be grown to a thickness of about 0.5 μm to 5 μm
Is desirable. In addition, the nitride semiconductor is non-doped and
It has the property of becoming n-type due to the nitrogen vacancies formed therein,
Usually, donor impurities such as Si, Ge, Se, etc. are added during crystal growth.
For doping, it is preferable to use a preferable n-type having a high carrier concentration.
Can be

【0012】次に、活性層16は単一量子井戸(SQW:
Single-Quantum-Well)構造、若しくは多重量子井戸(M
QW:Multi-Quantum-Well)構造を有するInXGa1-X
(0≦X<1)とする必要がある。SQW構造若しくは
MQW構造とすると非常に出力の高い発光素子が得られ
る。SQW、MQWとはノンドープのInGaNによる
量子準位間の発光が得られる活性層の構造を指し、例え
ばSQWでは活性層を単一組成のInXGa1-XN(0≦
X<1)で構成した層であり、InXGa1-XNの膜厚を
10nm以下、さらに好ましくは7nm以下とすること
により量子準位間の強い発光が得られる。またMQWは
組成比の異なるInXGa1-XN(この場合X=0、X=1
を含む)の薄膜を複数積層した多層膜とする。このよう
に活性層をSQW、MQWとすることにより量子準位間
発光で、約365nm〜660nmまでの発光が得られ
る。量子構造の井戸層の厚さとしては、前記のように7
nm以下が好ましい。多重量子井戸構造では井戸層はI
XGa1-XNで構成し、障壁層は同じくInYGa1-Y
(Y<X、この場合Y=0を含む)で構成することが望ま
しい。特に好ましくは井戸層と障壁層をInGaNで形
成すると同一温度で成長できるので結晶性のよい活性層
が得られる。障壁層の膜厚は15nm以下、さらに好ま
しくは12nm以下にすると高出力な発光素子が得られ
る。
Next, the active layer 16 has a single quantum well (SQW:
Single-Quantum-Well) structure or multiple quantum well (M
In X Ga 1 -X N having a QW (Multi-Quantum-Well) structure
(0 ≦ X <1). With the SQW structure or the MQW structure, a light-emitting element with extremely high output can be obtained. SQW and MQW indicate the structure of an active layer in which light emission between quantum levels by non-doped InGaN is obtained. For example, in SQW, the active layer is formed of a single-composition In x Ga 1 -xN (0 ≦
X <1), and strong light emission between quantum levels can be obtained by setting the film thickness of In x Ga 1 -xN to 10 nm or less, more preferably 7 nm or less. The MQW is In x Ga 1 -xN having different composition ratios (X = 0 and X = 1 in this case).
Is included in the multilayer film. By using the active layer of SQW or MQW as described above, light emission of about 365 nm to 660 nm can be obtained by quantum level emission. As described above, the thickness of the quantum well layer is 7
nm or less is preferable. In the multiple quantum well structure, the well layer is I
n X Ga 1 -XN, and the barrier layer is also In Y Ga 1 -YN
(Y <X, including Y = 0 in this case). Particularly preferably, when the well layer and the barrier layer are formed of InGaN, they can be grown at the same temperature, so that an active layer having good crystallinity can be obtained. When the thickness of the barrier layer is 15 nm or less, more preferably 12 nm or less, a high-output light-emitting element can be obtained.

【0013】前記のように量子構造の井戸層の厚さとし
ては7nm以下、さらに好ましくは5nm以下とすると
発光出力の高い素子を実現できる。これはこの膜厚がI
nGaN活性層の臨界膜厚以下であることを示してい
る。InGaNでは電子のボーア半径が約3nmであ
り、このためInGaNの量子効果が7nm以下で現れ
る。多重量子井戸構造の場合も同様に、井戸層の厚さは
7nm以下に調整し、一方、障壁層の厚さは15nm以
下に調整することが望ましい。
As described above, when the thickness of the well layer of the quantum structure is 7 nm or less, more preferably 5 nm or less, an element having a high light emission output can be realized. This is because this film thickness is I
This indicates that the thickness is less than or equal to the critical thickness of the nGaN active layer. In InGaN, the Bohr radius of electrons is about 3 nm, so that the quantum effect of InGaN appears at 7 nm or less. Similarly, in the case of a multiple quantum well structure, it is desirable that the thickness of the well layer is adjusted to 7 nm or less, while the thickness of the barrier layer is adjusted to 15 nm or less.

【0014】次に活性層16に接するp型クラッド層1
7はp型AlYGa1-YN(0≦Y<1)とする必要があ
り、特に好ましくはY値を0.05以上とすると高出力
の素子が得られる。さらに、AlGaNは高キャリア濃
度のp型が得られやすく、また成長時に分解しにくく、
InGaN活性層16の分解を抑える作用がある。しか
もInGaN活性層16に対し、バンドオフセットおよ
び屈折率差を他の窒化物半導体に比べて大きくできるの
で最も優れている。また第一のp型クラッド層をp型G
aNとすると、p型AlGaNに比べて発光出力が約1
/3に低下してしまう。これはAlGaNがGaNに比
べてp型になりやすいか、あるいはGaN成長時にIn
GaN活性層が分解していると推察される。従ってp型
クラッド層としては、Y値が0.05以上のMgドープ
p型AlYGa1-YNが最も好ましい。
Next, the p-type cladding layer 1 in contact with the active layer 16
7 needs to be p-type Al Y Ga 1 -Y N (0 ≦ Y <1), and particularly preferably, when the Y value is 0.05 or more, a high output device can be obtained. Furthermore, AlGaN is easy to obtain a p-type with a high carrier concentration and is hardly decomposed during growth.
This has the effect of suppressing the decomposition of the InGaN active layer 16. In addition, the band offset and the refractive index difference can be made larger than those of the other nitride semiconductors with respect to the InGaN active layer 16, which is the most excellent. Also, the first p-type cladding layer is
Assuming aN, the emission output is about 1 compared to p-type AlGaN.
/ 3. This is because AlGaN is more likely to be p-type than GaN, or
It is presumed that the GaN active layer has decomposed. Therefore, as the p-type cladding layer, Mg-doped p-type Al Y Ga 1-Y N having a Y value of 0.05 or more is most preferable.

【0015】このp型クラッド層17の膜厚は1nm以
上、2μm以下、さらに好ましくは5nm以上、0.5
μm以下にすることが望ましい。1nmよりも薄いとp
型クラッド層17が存在しないのに近い状態になり、発
光出力が低下する傾向にあり、2μmより厚いと結晶成
長中にp型クラッド層自体にクラックが入りやすくな
り、クラックの入った層に次の層を積層しても、結晶性
の良い半導体層が得られず、出力が低下する傾向にある
からである。なお、窒化物半導体をp型とするには、結
晶成長中にMg、Zn、C、Be、Ca、Ba等のアク
セプター不純物をドープすることによって得られるが、
高キャリア濃度のp層を得るためには、アクセプター不
純物ドープ後、窒素、アルゴン等の不活性ガス雰囲気
中、400℃以上でアニーリングすることがより望まし
い(特開平5−183189号公報)。アニーリングを
行うことにより、通常p型AlGaNで1×1017〜1
×10 19/cm3のキャリア濃度が得られる。またその
他、特開平3−218625号公報に示される電子線照
射処理を行ってもよい。
The thickness of the p-type cladding layer 17 is 1 nm or less.
Above, 2 μm or less, more preferably 5 nm or more, 0.5
It is desirable that the thickness be not more than μm. If it is thinner than 1 nm, p
The state is close to the absence of the mold cladding layer 17 and
The light output tends to decrease.
Cracks easily form in the p-type cladding layer itself during long
Even if the next layer is stacked on a cracked layer,
Good semiconductor layer is not obtained and output tends to decrease
Because. In order to make the nitride semiconductor p-type,
During crystal growth, the action of Mg, Zn, C, Be, Ca, Ba, etc.
Obtained by doping with scepter impurities,
In order to obtain a p-layer having a high carrier concentration, it is necessary to use an acceptor.
After doping with pure substance, atmosphere of inert gas such as nitrogen or argon
It is more desirable to anneal at
(JP-A-5-183189). Annealing
By doing so, it is usually 1 × 1017~ 1
× 10 19/cmThreeIs obtained. Again
And an electron beam illuminator disclosed in JP-A-3-218625.
A firing process may be performed.

【0016】次に、p型コンタクト層18はp型Ga
N、特に好ましくはMgドープp型GaNとする。p型
GaNは電極と接する層であるので、LED、LD等の
発光素子の場合オーミック接触を得ることが重要であ
る。p型GaNは多くの金属とオーミックが取りやすく
コンタクト層として最も好ましい。電極材料としては例
えばNi−Au、Ni−Ti等によりオーミックを得る
ことができる。p型コンタクト層の厚さは特に限定する
ものではないが、通常50nm〜2μm程度の厚さで成
長することが望ましい。
Next, the p-type contact layer 18 is made of p-type Ga
N, particularly preferably Mg-doped p-type GaN. Since p-type GaN is a layer in contact with an electrode, it is important to obtain ohmic contact in the case of light-emitting elements such as LEDs and LDs. p-type GaN is easy to take ohmic with many metals and is most preferable as a contact layer. An ohmic material can be obtained by using, for example, Ni-Au, Ni-Ti, or the like as the electrode material. Although the thickness of the p-type contact layer is not particularly limited, it is generally preferable that the p-type contact layer is grown to a thickness of about 50 nm to 2 μm.

【0017】窒化物半導体は有機金属気相成長法(MO
VPE)、ハライド気相成長法(HDVPE)、分子線
気相成長法(MBE)等の気相成長法によって成長でき
る。その中でもMOVPE法によると、迅速に結晶性の
良いものが得られる。MOVPE法では、Gaソースと
してはTMG(トリメチルガリウム)、TEG(トリエ
チルガリウム)、AlソースとしてはTMA(トリメチ
ルアルミニウム)、TEA(トリエチルアルミニウ
ム)、Inソースとしては、TMI(トリメチルインジ
ウム)、TEI(トリエチルインジウム)等のトリアル
キル金属化合物が多く用いられ、窒素源としてはアンモ
ニア、ヒドラジン等のガスが用いられる。また不純物ソ
ースとしてはSiであればシランガス、Geであればゲ
ルマンガス、MgであればCp2Mg(シクロペンタジ
エニルマグネシウム)、ZnであればDEZ(ジエチル
ジンク)等のガスが用いられる。MOVPE法ではこれ
らのガスを例えば600℃以上に加熱された基板の表面
に供給して、ガスを分解することにより、InXAlY
1-X-YN(0≦X、0≦Y、X+Y≦1)をエピタキシャ
ル成長させることができる。
Nitride semiconductors are prepared by metal organic chemical vapor deposition (MO)
VPE), halide vapor deposition (HDVPE), and molecular beam vapor deposition (MBE). Among them, according to the MOVPE method, a material having good crystallinity can be obtained quickly. In the MOVPE method, TMG (trimethylgallium) and TEG (triethylgallium) are used as a Ga source, TMA (trimethylaluminum) and TEA (triethylaluminum) are used as an Al source, and TMI (trimethylindium) and TEI (triethylaluminum) are used as an In source. Trialkyl metal compounds such as indium) are often used, and gases such as ammonia and hydrazine are used as a nitrogen source. As an impurity source, a gas such as silane gas for Si, germane gas for Ge, Cp2Mg (cyclopentadienyl magnesium) for Mg, and DEZ (diethyl zinc) for Zn is used. In the MOVPE method, these gases are supplied to the surface of a substrate heated to, for example, 600 ° C. or higher to decompose the gases, thereby obtaining In x Al Y G
a 1 -XYN (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) can be epitaxially grown.

【0018】[0018]

【作用】本発明の発光素子は必要最小限の構造で、発光
出力に優れた素子を得ることができる。それは各層それ
ぞれが有効に作用しているからである。まずn型クラッ
ド層は電流注入層にもなるし、キャリア閉じ込め層にも
なる。SQW、MQWの活性層は結晶性が良いので、発
光層として非常に効率の良い層となる。p型クラッド層
はキャリア閉じ込め層として濃度が高い層であり、さら
にキャリア閉じ込め層としてるので高発光出力が得られ
る。さらにp型コンタクト層も電極材料と好ましいオー
ミックが得られるのでLED素子の順方向電圧を下げ
て、発光効率を向上させる。
The light emitting device of the present invention can provide a device having excellent light emission output with a minimum necessary structure. This is because each layer works effectively. First, the n-type cladding layer serves both as a current injection layer and a carrier confinement layer. Since the active layers of SQW and MQW have good crystallinity, they are very efficient layers as light emitting layers. The p-type cladding layer is a layer having a high concentration as a carrier confinement layer, and a high light emission output is obtained because it is a carrier confinement layer. Furthermore, since the p-type contact layer also obtains a favorable ohmic with the electrode material, the forward voltage of the LED element is reduced, and the luminous efficiency is improved.

【0019】図3は、本発明の発光素子に係る単一量子
井戸構造の活性層の膜厚と、発光出力の関係を相対値で
もって示す図であり、具体的には実施例1に示すLED
素子の構造について示したものである。このように本発
明の発光素子は井戸層を7nm以下にすることにより高
出力な発光素子が得られる。
FIG. 3 is a diagram showing, as relative values, the relationship between the thickness of the active layer having a single quantum well structure and the light emission output according to the light emitting device of the present invention. LED
It shows the structure of the element. As described above, the light-emitting element of the present invention can provide a high-output light-emitting element by setting the thickness of the well layer to 7 nm or less.

【0020】[0020]

【実施例】以下、図1を元に本発明に係るLED素子を
詳説する。以下に述べる工程はMOVPE法によるもの
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an LED device according to the present invention will be described in detail with reference to FIG. The steps described below are based on the MOVPE method.

【0021】[実施例1]よく洗浄したサファイア基板
11を反応容器内にセットし、反応容器内を水素で十分
置換した後、水素を流しながら、基板の温度を1050
℃まで上昇させサファイア基板のクリーニングを行う。
Example 1 A well-washed sapphire substrate 11 was set in a reaction vessel, and after sufficiently replacing the inside of the reaction vessel with hydrogen, the temperature of the substrate was increased to 1050 while flowing hydrogen.
The temperature is raised to ° C. to clean the sapphire substrate.

【0022】続いて、温度を510℃まで下げ、キャリ
アガスに水素、原料ガスにアンモニアとTMG(トリメ
チルガリウム)とを用い、サファイア基板11上にGa
Nよりなるバッファ層12を20nmの膜厚で成長させ
る。
Subsequently, the temperature is lowered to 510 ° C., and hydrogen is used as a carrier gas, ammonia and TMG (trimethylgallium) are used as source gases, and Ga is deposited on the sapphire substrate 11.
A buffer layer 12 of N is grown to a thickness of 20 nm.

【0023】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、n型クラッド層13とし
て、Siを1×1020/cm3ドープしたn型GaN層を
4μm成長させる。
After the growth of the buffer layer, only TMG is stopped, and the temperature is increased to 1030 ° C. When the temperature reaches 1030 ° C., an n-type GaN layer doped with 1 × 10 20 / cm 3 of Si is grown to 4 μm as the n-type cladding layer 13 using TMG and ammonia gas as the source gas and silane gas as the dopant gas.

【0024】n型GaN層成長後、原料ガス、ドーパン
トガスを止め、温度を800℃にして、原料ガスにTM
GとTMI(トリメチルインジウム)とアンモニアを用
い、単一量子井戸構造の活性層16としてIn0.43Ga
0.57N層を3nm成長させる。
After the growth of the n-type GaN layer, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., and TM is added to the source gas.
Using G, TMI (trimethylindium) and ammonia, the active layer 16 having a single quantum well structure is In0.43Ga.
A 0.57N layer is grown to 3 nm.

【0025】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスにTM
G、TMA(トリメチルアルミニウム)、アンモニア、
ドーパントガスにCp2Mg(シクロペンタジエニルマ
グネシウム)を用い、p型クラッド層17としてMgを
2×1019/cm3ドープしたp型Al0.1Ga0.9N層を
50nm成長させる。
Next, the source gas and the dopant gas are stopped,
The temperature was raised again to 1020 ° C.
G, TMA (trimethylaluminum), ammonia,
Using Cp2Mg (cyclopentadienyl magnesium) as a dopant gas, a p-type Al0.1Ga0.9N layer was 2 × 10 19 / cm 3 doped with Mg as a p-type cladding layer 17 is 50nm grow.

【0026】TMAガスを止め、続いてp型コンタクト
層18として、Mgを1×1019/cm3ドープしたp型
GaN層を1μm成長させる。
The TMA gas is stopped, and a p-type GaN layer doped with Mg at 1 × 10 19 / cm 3 is grown as a p-type contact layer 18 to a thickness of 1 μm.

【0027】p型GaN層成長後、基板を反応容器から
取り出し、アニーリング装置にて窒素雰囲気中、700
℃で20分間アニーリングを行い、p型クラッド層、p
型コンタクト層をさらに低抵抗化する。
After the growth of the p-type GaN layer, the substrate is taken out of the reaction vessel, and is heated in an annealing apparatus in a nitrogen atmosphere at 700.degree.
Annealing at 20 ° C. for 20 minutes to form a p-type clad layer,
The resistance of the mold contact layer is further reduced.

【0028】以上のようにして得られたウエハーのp型
コンタクト層18、p型クラッド層17、及び活性層1
6の一部をエッチングにより取り除き、n型クラッド層
13を露出させ、p型コンタクト層にNi−Auと、p
型GaN層とTi−Al−Auよりなるオーミック電極
を設け、350μm角のチップにカットした後、カップ
形状を有するリードフレームに設置し、エポキシ樹脂で
モールドして、レンズ指向角10゜のLED素子を作成
した。
The p-type contact layer 18, the p-type cladding layer 17, and the active layer 1 of the wafer obtained as described above
6 is removed by etching to expose the n-type cladding layer 13 and Ni-Au and p-type
GaN layer and an ohmic electrode made of Ti-Al-Au are provided, cut into chips of 350 μm square, installed on a lead frame having a cup shape, molded with epoxy resin, and an LED element having a lens directivity angle of 10 ° It was created.

【0029】このLEDを順方向電流20mAで発光さ
せ、そのスペクトルを測定したところ、発光ピーク52
5nm、半値幅45nmの純緑色発光を示し、発光出力
1.5mW、量子効率2.5%と、従来のGaPよりな
る黄緑色LEDに対して40倍以上の発光出力を示し
た。
This LED was made to emit light at a forward current of 20 mA, and its spectrum was measured.
The device exhibited pure green light emission of 5 nm and a half-value width of 45 nm, a light emission output of 1.5 mW, a quantum efficiency of 2.5%, and a light emission output more than 40 times that of a conventional yellow-green LED made of GaP.

【0030】[実施例2]活性層16を成長させる工程
において、原料ガスにTMGとTMI(トリメチルイン
ジウム)とアンモニアを用い、800℃で、井戸層とし
て膜厚3nmのIn0.40Ga0.60N層を成長させ、その
上に障壁層として膜厚6nmのIn0.2Ga0.4N層を成
長させ、5層構造(井戸+障壁+井戸+障壁+井戸)の
多重量子井戸構造よりなる活性層16を成長させる。
Example 2 In the step of growing the active layer 16, a 3 nm-thick In0.40Ga0.60N layer was used as a well layer at 800 ° C. using TMG, TMI (trimethylindium) and ammonia as source gases. A 6 nm thick In0.2Ga0.4N layer is grown thereon as a barrier layer, and an active layer 16 having a multiple quantum well structure having a five-layer structure (well + barrier + well + barrier + well) is grown thereon. .

【0031】後は実施例1と同様にしてLED素子とし
たところ、発光ピーク波長520nm、発光出力1.9
mW、量子効率3%の優れたLEDを得た。
After that, when an LED element was formed in the same manner as in Example 1, the emission peak wavelength was 520 nm and the emission output was 1.9.
An excellent LED with mW and quantum efficiency of 3% was obtained.

【0032】[実施例3]実施例1において、単一量子
井戸構造よりなる活性層16の膜厚を7nmとする他は
同様にして、緑色LED素子を得たところ、発光出力
1.3mW、量子効率2.1%の緑色LEDを得た。
Example 3 A green LED device was obtained in the same manner as in Example 1 except that the thickness of the active layer 16 having a single quantum well structure was changed to 7 nm, and a light emission output of 1.3 mW was obtained. A green LED having a quantum efficiency of 2.1% was obtained.

【0033】[実施例4]バッファ層成長後、温度を1
030℃まで上昇させた後、原料ガスにTMGとTM
A、アンモニアガス、ドーパントガスにシランガスを用
い、n型クラッド層13としてSiを1×1020/cm3
ドープしたn型Al0.05Ga0.95N層を4μm成長させ
る他は、実施例1と同様にしてLED素子を作成したと
ころ、発光波長、」発光出力とも、実施例1と同等の特
性を示した。
Example 4 After growing the buffer layer, the temperature was raised to 1
After the temperature was raised to 030 ° C., TMG and TM
A, ammonia gas and silane gas are used as dopant gas, and Si is used as the n-type cladding layer 13 at 1 × 10 20 / cm 3.
Except for growing a doped n-type Al0.05Ga0.95N layer of 4 μm, an LED element was prepared in the same manner as in Example 1. As a result, both the emission wavelength and the emission output showed characteristics equivalent to those of Example 1.

【0034】[実施例5]p型クラッド層17の膜厚を
2μmとする他は、実施例1と同様にしてLED素子を
作成したところ、発光出力1.0mW、量子効率1.7
%の緑色LEDを得た。
Example 5 An LED device was prepared in the same manner as in Example 1 except that the thickness of the p-type cladding layer 17 was changed to 2 μm. The light emission output was 1.0 mW and the quantum efficiency was 1.7.
% Green LED was obtained.

【0035】[実施例6]実施例1において、活性層1
6の組成をノンドープIn0.4Ga0.6Nよりなる井戸層
を2.5nmと、ノンドープIn0.01Ga0.99Nよりな
る障壁層を5nmの膜厚で成長させる。この操作を13
回繰り返し、最後に井戸層を積層して総厚1000オン
グストロームの活性層を成長させた。後は実施例1と同
様にして、LED素子としたところ、520nm、発光
出力2.5mW、量子効率3.2%の優れた緑色LED
を得た。
[Embodiment 6] In the embodiment 1, the active layer 1
A well layer composed of non-doped In0.4Ga0.6N is grown to a thickness of 2.5 nm, and a barrier layer composed of non-doped In0.01Ga0.99N is grown to a thickness of 5 nm. Perform this operation 13
This was repeated twice, and finally, an active layer having a total thickness of 1000 Å was grown by stacking well layers. After that, as in Example 1, an LED element was obtained, which was an excellent green LED having 520 nm, an emission output of 2.5 mW, and a quantum efficiency of 3.2%.
I got

【0036】[0036]

【発明の効果】以上説明したように、本発明のLEDは
複雑な積層構造としなくとも、必要最小限の構造で非常
に発光出力が高い緑色LEDが得られる。また本発明の
思想を逸脱しない範囲で、本発明に開示した他の窒化物
半導体層を積層構造の間、または外側に入れても良い。
As described above, the LED of the present invention can provide a green LED having a very high light emission output with a minimum necessary structure without having a complicated laminated structure. Further, other nitride semiconductor layers disclosed in the present invention may be inserted between or outside the stacked structures without departing from the spirit of the present invention.

【0037】このように、本発明のLEDを使用するこ
とにより、LEDフルカラーディスプレイにおいては、
従来では光度を稼ぐため複数のGaP系LEDを必要と
していたが、B、G、R各一個づつで一画素が形成でき
るため、高精細度な画面が得られる。またチップLED
とすればさらに小さな画素が実現でき、壁掛けTVも実
現可能となる。
As described above, by using the LED of the present invention, in an LED full-color display,
Conventionally, a plurality of GaP LEDs are required to increase the luminous intensity. However, since one pixel can be formed for each of B, G, and R, a high-definition screen can be obtained. Also chip LED
Then, even smaller pixels can be realized, and a wall-mounted TV can also be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係るLED素子の構造を
示す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of an LED element according to one embodiment of the present invention.

【図2】 従来のLED素子の構造を示す模式断面図。FIG. 2 is a schematic sectional view showing the structure of a conventional LED element.

【図3】 本発明の発光素子に係る井戸層の膜厚と素子
の出力との関係を示すグラフ図。
FIG. 3 is a graph showing the relationship between the thickness of a well layer and the output of the light-emitting element of the present invention.

【符号の説明】[Explanation of symbols]

11・・・・基板 12・・・・バッファ層 13・・・・n型クラッド層 16・・・・活性層 17・・・・p型クラッド層 18・・・・p型コンタクト層 11 substrate 12 buffer layer 13 n-type cladding layer 16 active layer 17 p-type cladding layer 18 p-type contact layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 修二 徳島県阿南市上中町岡491番地100 日亜 化学工業株式会社内 (56)参考文献 特開 平6−268257(JP,A) 特開 平6−268259(JP,A) Appl.Phys.Lett.67 (13)1995年9月25日発行 p.1868− 1870 (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01S 5/30 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shuji Nakamura 491 Kaminakacho Oka, Anan-shi, Tokushima Prefecture Inside Nichia Chemical Industry Co., Ltd. (56) References JP-A-6-268257 (JP, A) JP-A Heisei 6-268259 (JP, A) Appl. Phys. Lett. 67 (13) Published September 25, 1995 p. 1868-1870 (58) Fields surveyed (Int. Cl. 7 , DB name) H01L 33/00 H01S 5/30 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に、少なくともn型GaNからな
るコンタクト層を兼ねたクラッド層と、7nm以下の膜
厚を有するノンドープのInXGa1-XN(0<X<1)
井戸層を含む単一量子井戸構造、または7nm以下の膜
厚を有するノンドープのInXGa1-XN(0<X<1)
井戸層とノンドープのInYGa1-YN(Y<X、Y=0
を含む)障壁層とからなる多重量子井戸構造の活性層
と、膜厚1nm以上、0.5μm以下のp型AlYGa
1-YN(0<Y<1)からなるp型クラッド層と、p型
GaNからなるp型コンタクト層との積層構造を有する
ことを特徴とする窒化物半導体発光素子。
A non-doped In x Ga 1 -xN (0 <X <1) having a thickness of 7 nm or less on a substrate, the cladding layer also serving as a contact layer made of at least n-type GaN.
A single quantum well structure including a well layer, or non-doped In x Ga 1 -xN having a thickness of 7 nm or less (0 <X <1)
Well layers and non-doped In Y Ga 1 -Y N (Y <X, Y = 0
And a p-type Al Y Ga having a thickness of 1 nm or more and 0.5 μm or less.
A nitride semiconductor light emitting device having a stacked structure of a p-type cladding layer made of 1-YN (0 <Y <1) and a p-type contact layer made of p-type GaN.
JP31784995A 1995-09-29 1995-12-06 Nitride semiconductor light emitting device Expired - Fee Related JP3135041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31784995A JP3135041B2 (en) 1995-09-29 1995-12-06 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-276820 1995-09-29
JP27682095 1995-09-29
JP31784995A JP3135041B2 (en) 1995-09-29 1995-12-06 Nitride semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30098399A Division JP3809749B2 (en) 1995-09-29 1999-10-22 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH09153642A JPH09153642A (en) 1997-06-10
JP3135041B2 true JP3135041B2 (en) 2001-02-13

Family

ID=26552127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31784995A Expired - Fee Related JP3135041B2 (en) 1995-09-29 1995-12-06 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3135041B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663138B2 (en) 2006-05-12 2010-02-16 Hitachi Cable, Ltd. Nitride semiconductor light emitting element
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696353B1 (en) * 1998-07-23 2007-03-19 소니 가부시끼 가이샤 Light emitting device and process for producing the same
US6958497B2 (en) 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
US7692182B2 (en) 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
JP4852826B2 (en) * 2004-05-11 2012-01-11 日立電線株式会社 Nitride semiconductor wafer, nitride semiconductor device, method for manufacturing nitride semiconductor wafer, and p-type conductive nitride semiconductor
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
US7769066B2 (en) 2006-11-15 2010-08-03 Cree, Inc. Laser diode and method for fabricating same
US7834367B2 (en) 2007-01-19 2010-11-16 Cree, Inc. Low voltage diode with reduced parasitic resistance and method for fabricating
KR20100023960A (en) * 2007-06-15 2010-03-04 로무 가부시키가이샤 Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
JP5579435B2 (en) * 2007-06-15 2014-08-27 ローム株式会社 Nitride-based semiconductor device and manufacturing method thereof
US8519437B2 (en) 2007-09-14 2013-08-27 Cree, Inc. Polarization doping in nitride based diodes
US9012937B2 (en) 2007-10-10 2015-04-21 Cree, Inc. Multiple conversion material light emitting diode package and method of fabricating same
JP4829273B2 (en) * 2008-06-16 2011-12-07 昭和電工株式会社 Group III nitride semiconductor light emitting device manufacturing method
US8575592B2 (en) 2010-02-03 2013-11-05 Cree, Inc. Group III nitride based light emitting diode structures with multiple quantum well structures having varying well thicknesses

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.67(13)1995年9月25日発行 p.1868−1870

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663138B2 (en) 2006-05-12 2010-02-16 Hitachi Cable, Ltd. Nitride semiconductor light emitting element
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH09153642A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
JP3135041B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
EP1248303B1 (en) Light-emitting device
US6900465B2 (en) Nitride semiconductor light-emitting device
EP0716457B1 (en) Nitride semiconductor light-emitting device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
JP4629178B2 (en) Nitride semiconductor device
EP2164115A1 (en) Nitride semiconductor light emitting element and method for manufacturing nitride semiconductor
WO2013015035A1 (en) Semiconductor light-emitting element
JP2011517098A (en) Method for the production of semipolar (Al, In, Ga, B) N-based light emitting diodes
JP2780691B2 (en) Nitride semiconductor light emitting device
JPH09148678A (en) Nitride semiconductor light emitting element
JP3651260B2 (en) Nitride semiconductor device
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH11191639A (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JPH09116130A (en) Iii-v compound semiconductor and its manufacture and light emitting device
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3809749B2 (en) Nitride semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees